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Abstract
The classification and extraction of road markings and lanes are of critical importance to infrastructure assessment, planning
and road safety. We present a pipeline for the accurate segmentation and extraction of rural road surface objects in 3D lidar
point-cloud, as well as amethod to extract geometric parameters belonging to tar seal. To decrease the computational resources
needed, the point-clouds were aggregated into a 2D image space before being transformed using affine transformations. The
Mask R-CNN algorithm is then applied to the transformed image space to localize, segment and classify the road objects.
The segmentation results for road surfaces and markings can then be used for geometric parameter estimation such as road
widths estimation, while the segmentation results show that the efficacy of the existing Mask R-CNN to segment needle-type
objects is improved by our proposed transformations.

Keywords Machine learning · Object segmentation · Object classification · Geometric parameter estimation · Road
segmentation · Deep neural network

1 Introduction

Due to the rise in the development of mobile mapping sys-
tems (MMS) and mobile laser scanning (MLS) systems,
research in the areas of lane level feature extraction and
infrastructure assessment automation has grown quickly in
popularity. The classification and extraction of roadmarkings
and lanes are of critical importance to effective road infras-
tructure assessment and planning to improve road safety.
Road expenditure towards NewZealand state highways (SH)
was estimated to be 2.8 billion in [1]. There are many road
hazards for drivers [2], melding MMS and MLS systems
coupledwithmodern computational capability has the poten-
tial for cost-efficient compliance and capital planning by
automating the characterization of a rural road environment
from lidar and camera images.
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1.1 Mobile laser system

Previous studies have been developed using image data gath-
ered by a vehicle-mounted camera [3,4], yet these methods
collect data sensitive to the variability in environmental
conditions. MLS systems use light detecting and ranging
sensors (lidar) to collect point-clouds of their surrounding
environments as detailed high definition (HD) maps. Unlike
image-based methods, MLS systems are invariant to vari-
ability in lighting and environmental conditions [5,6]. These
HD maps have been used for the extraction and classifica-
tion of road features such as road markings, drivable regions,
road signs and others present in a vehicles MLS defined sur-
rounding environment [7,8], as well as the development of
methods for automated infrastructure assessment [9–11]. For
example, Jung et al. [12] uses anMLS system to extract driv-
able regions, road markings and road lines. Their steps were
classifying the drivable regions using the distance from the
MLS as a threshold and then using intensity to classify the
road markings and road lines.

1.2 Road surface andmarking segmentation

It is known that an accurate extraction of road surface
allows for accurate extraction of roadmarkings [13,14]. Prior
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research efforts have focused on finding effective means for
both road surface and road marking extraction with much
effort spent on the use of intensity-based methods, as road
markings greater reflective capability allows for normalized
intensity values to show some contrast betweenmarkings and
road seal. However, the variability in the contrast between
road markings and road seal, reflective intensity and point
density values is a constant challenge in the use of MLS
data [15,16]. For example, Jung et al. proposed a constrained
Random Sampling and Consensus algorithm (RANSAC) to
transform extracted road surfaces as 2D images before apply-
ing techniques to extract and classify road markings. Yu et
al. mitigated issues that arise when using a global threshold
measure by segmenting road surfaces into distinct patches
with their own threshold measures before applying a spa-
tial density filter to further mitigate noise. Although these
methods reduced the effects of this variability, they are still
not invariant. Many recent research efforts are using deep
learning frameworks for road surface andmarking extraction.
For example, Kim et al. [17] proposed an extreme learn-
ing machine for faster computation of image denoising for
road marking and edge detection. Tian et al. developed a
modified Fast Region-Based Convolutional Neural Network
(Fast-RCNN) to generate regions of interests (RoI) contain-
ing road markings. A deep convolutional neural network
and a finite state machine were applied to aerial images for
road surface extraction [18]. Recently Kruz et al. applied a
wavelet-enhanced fully convolutional networkwithHDmul-
tiview aerial images for surface extraction. However, all of
these methods are influenced by variability in weather condi-
tions and environmental events due to their reliance on image
data.

Deep pixel-wise classification methods such as SegNet
[19] and ApesNet [20] have been developed for road scene
understanding and segmentation tasks, yet have not specifi-
cally targeted the road surface and marking extraction. Rui
et al. applied U-net, a deep pixel-wise encoder–decoder net-
work, for the segmentation of road crack instances, receiving
state of the art results. Yet do not apply this method to seg-
ment road surface or its markings. Only recently, Wen et
al. proposed a deep learning framework that uses U-net for
surface extraction. This was invariant to the variation that
intensity threshold methods face, but used standard tech-
niques for the extraction of road markings once the surface
instance was predicted. Although deep pixel-wise classifi-
cation shows promise in its application to the extraction of
both road surfaces and road markings from MLS generated
2D projected images, it is a research area with limited con-
tribution to date.

1.3 Road environment geometric parameter
estimation

AnMLS system’s ability to captureHD information of a road
environment has gained interest in the ability to automate
the estimation of the detected object’s geometric character-
istics. Recently, Husain et al. used MLS data to detect and
estimate morphological parameters of trees in urban road
environments. Street trees were first detected in the MLS
system-generated point-cloud before being thinned by slic-
ing on each x, y and z axis to reduce computations. After
the instance of street trees were detected and processed mor-
phological parameters such as diameters and heights were
computed [9]. Other methods follow the steps of detection,
classification, processing and estimation of geometric char-
acteristics. Voxelization segmentation and nearest neighbour
search were used to detect road highway overhead structures,
before being classified using a density-based spatial clus-
tering of applications with noise algorithm followed by the
extraction of structural clearance information [10].

Only a few methods have been applied to estimate geo-
metric characteristics of road surfaces usingMLS data. Post-
vegetation-filtered point-clouds were geo-referenced and
extracted from each other to estimate geometric differences
and damages of road surface slopes in [21]. Holgado-Barco
et al. first used human interaction to set angular thresholds
in a road function to extract a road platform before partition-
ing it into 1m segmented cross sections. Points encapsulating
the rectangular plane cross-sections were then adjusted using
principal component analysis (PCA) which were then used
in a linear transformation to obtain a new coordinate system.
Longitudinal and transversal parameters of each road plat-
form were then derived by calculating the eigenvalues and
eigenvectors of each transformed cross-section’s covariance
matrix [11].

The point-cloud-based estimation of the width and vol-
ume belonging to rural road surfaces is an under-researched
area. This is the same in application to the rural road tar seal
component. Only recently Yadav et al. proposed a method
that estimates the geometric parameters for road width, road
centreline, longitudinal slope and cross slope in a road sur-
face environment. Their method represented the road surface
boundary as piece-wise linear segments of a best-fit polyno-
mial, before estimating the road surface width with refined
road boundary points divided into n connected road seg-
ments along the trajectory of the road boundary [22]. The
main disadvantage of recent methods is that they run numer-
ous operations on the point-cloud data to detect, segment
and classify the targeted objects before basic calculations are
taken to estimate geometric parameters. These operations can
be computationally expensive across numerous point-clouds.
The computations in Holgado-Barco et al. proposed method
are taken on the road surface platform, yet this relies on the

123



3D lidar point-cloud projection operator and transfer... 1761

continued user interaction to set angular thresholds for effi-
cient capturing of segments. Yadav et al. method for road
surface characterization faced the difficulty of removing the
flat level surface surrounding the targeted road segmented,
which resulted in a road boundary that captured a road sur-
face segment larger than desired. Another disadvantage in
previousmethods is that the geometric characterization of the
upper layer of chip seal present in point-cloud data has yet to
be achieved. We believe that the potential of deep pixel clas-
sification shows promise for the segmentation of rural road
environment object instances. These accurately segmented
instances would allow for the efficient computation of geo-
metric parameters belonging to road surface objects and road
tar seal.

In this paper, we introduce a three-part pipeline for the
accurate segmentation, extraction and estimation of geo-
metric parameters belonging to road surfaces. Firstly, a
framework is introduced for efficient pre-processing and aug-
mentation of point-cloud data. Secondly, a deep learning
framework that combines post-processing steps with deep
pixel classification for accurate road surface object segmenta-
tion and extraction is proposed. In this second framework, the
difficulty that the existingMaskRegion-BasedConvolutional
Neural Network (Mask R-CNN) faces in segmenting object
instances that are long and thin needle-shaped is resolved
through our proposed post-processing steps [23]. In this step,
the issue that Yadav et al. faced is also resolved due to the
potential of deep pixel-wise classification for segmentation.
Thirdly, a framework for the computationally efficient esti-
mation of geometric parameters belonging to road surfaces is
proposed using prior inferred instance predictions, including
an ablation study in Sect. 4.3. Lastly, a discussion is pro-
vided supporting the potential of our introduced three-part
pipeline to achieve efficient and effective automation of road
surface infrastructure assessment as an improvement from
the existing Mask R-CNN.

2 Dataset

This section explains how the dataset was captured, the for-
mat the dataset is in post-capture, and the pre-processing
steps used to obtain the sample populating. The section
then goes into detail about the three types of road objects
being looked at (road surfaces, markings, and seal) and then
describes the steps to obtain the augmentation population and
which data is being excluded.

2.1 Dataset capture

A series of raw 3D point-clouds of different state highways
was captured by a mobile mapping vehicle (MMV) mounted
with an MMS using lidar (pictured in Fig. 1).

Fig. 1 Mobile mapping vehicle used in the gathering of point-cloud
data. The sensors and additional equipment included lidars (201 and
206), GPS (203 and 207), depth cameras (200, 204 and 208), cameras
(202, 205, 209 and 201) and the power supply (210)

2.2 Point-cloud pre-processing

Previous methods mentioned used pre-processing steps in
order to capture relevant information from the point-cloud,
reduce computational complexity during the learning stage
and save on memory space [5,6,8,24]. We implemented a
similar process to the point-cloud partitioning pre-processing
steps used by Soilan et al. with the points-cloud partitions
overlapping by roughly 3%.

We projected point-cloud points onto a 2D plane captur-
ing intensity and height information in RGB channels which
we then saved a 1280x1280 image. The red colour chan-
nel represents the intensity, this was calculated by averaging
the intensity of all the points within the pixel. The intensity
was then capped to the 99th percentile and normalized. The
same process was applied to the blue colour channel using
the height of the points instead of the intensity and capping
at the 95th percentile. The green colour channel is an average
of the red and blue colour channels.

Figure 2 shows the before and after of the prepossessing,
with the road marking being redder than the road surface and
the trees being bluer than the rest of the image.

2.3 Annotations

VGG Image Annotator (VIA) [25] was used to create ground
truth masks of the road surface and road marking instances
for each image. Each of these ground truth masks was gen-
erated by annotating the images. The ground truth objects
were annotated by encapsulating the relevant image segments
within polygons, to ensure that only the pixels relevant to an
object were included. A Boolean matrix M with the same
dimensions as the image is assigned to each object with each
Mi j ∈ M being marked true if it is contained inside the
polygon.
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Fig. 2 Road environment can clearly be seen in the point-cloud data. The image has intensity in the red colour channel, height in the blue colour
channel and an average of the two in the green colour channel

2.4 Class definitions and components

As the point-cloud was captured along New Zealand state
highways the class definitions assigned during the annotation
stage were consistent with part two of the Manual Of Traffic
Signs And Markings (MOTSAM) policy [26,27]. Typically,
a rural road environment includes objects static in nature
such as the road’s material, markings, road signs and veg-
etation. Ma et al. [28] described five categories of on-road
object inventory consisting of; road surfaces, road markings,
driving lines, road cracks, and road manholes. Additional
class names outside of MOTSAM standards were assigned
for seal instance segmentation, aswell as for the drivable area
of the road surface. In cases where a road marking included
gaps between striped white bars, we included this gap in
the object’s instance, as we believe this is part of the object
instance.

Wehave split the classes in this paper into three road object
categories:

1. Road Surface; defined as the area in the road environment
that lies within the outer bounds of the side markings.

2. Road Surface Markings; consisting of three classes that
exist within the Road Surface; drivable lane, driving Line
and hatched area.

3. Road Seal; defined as the area in the road environment
that is the surface layer of chip seal laid when the road
was built.

A road surface instance is the m x m binary matrix M
where each value Mi j is contained within the outer bounds
of the road surface’s driving line markings on the y-axis, and
whose maximum and minimum x-coordinate values equal to
that of the x-axis.

The three surface marking classes are; drivable lane, driv-
ing Line, and hatched areas. The densities of classes in the
images differ according to location and class count (as shown
in Fig. 3 and Table 1). Driving lines are markings that parti-
tion the road surface into drivable lanes. These include both
the continuous white edge lines located at the outer bound-
aries of the road surface and the centrelines. Drivable lanes
exist as the space between driving lines. They are the densest
object class with the highest class count in the dataset (as
shown in Table 1). Driving lines are dense nearer to the cen-
tre of the augmented images with some sparsity caused by
the inclusion of edge and centre lines.

The seal is defined as the area along with a road environ-
ment where the road is coated with chip seal. In the image,
the seal instance can be seen along with the road’s environ-
ment due to its low reflective intensity and changing height
values.

2.5 Data exclusions

The mapping vehicle started and ended its data collec-
tion in an urban environment before traversing rural areas.
When processed as 2D images, the urban roads made up
13.8% of the dataset before data augmentations. The urban
road included a large variety of road marking and include
additional road objects on top of the road surface such as
roundabouts and crossing islands. These objects significantly
increase the variation on the road surface. Considering this
and that information on urban areas not being relevant to the
task of rural road surface level feature extraction, the urban
images were excluded.
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Fig. 3 Road feature heatmaps post 65 degree rotation. The lighter the pixel is in the heatmap the larger number of labelled instances intersect with
that pixel

Table 1 Class counts in dataset after augmentations

Set Drivable Lane Driving Line hatched Area

Train 1456 995 175

Validation 476 330 51

Test 448 327 58

Total 2420 1652 284

2.6 Data augmentations

To increase the dataset size, each imagewent through a series
of augmentations. Before the augmentation, the images were
rotated 65 degrees as the majority of the surface mask were
oriented between 60 and 70 degrees. The rotation increased
the relative squareness of themasks,which enables themasks
to capture more of the annotated polygon as lines that are not
strictly horizontal or vertical result in more jagged edges
to mask. The set of augmented applied to the image were
a 180 degrees rotation, a horizontal flip and a 180 degrees
rotation followed by a horizontal flip. These steps increased

the dataset size by 400% to 772 images. The only issues
with these augmentations are that some road markings are
direction-dependent (e.g. hatched areas) adding features that
the algorithm needs to extract which do not exist in the phys-
ical environment (e.g. backwards hatched areas).

The dataset is then split into training, validation and test-
ing sets as 60%, 20%, and 20% splits, respectively. Using
image augmentation to increase the sample populations size
exposes the Mask R-CNN algorithm to a larger amount of
examples to train, validate and test.

3 Methods

This section explains the Mask R-CNN algorithm and how it
is used for segmentation, localization and classification. The
section also goes into detail about the specific pre-processing
for the road surfaces, markings and seal object and the uses
of PCA and affine transformation to increase size-relevant
features. The section also describes the apparatus used to run
the various methods used.
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3.1 Mask region-based convolutional neural
network

Mask R-CNN is an extension to Fast RCNN [29] [30] that
uses pixel-wise binary classification and alignment for object
instance segmentation in parallel to the Fast RCNN’s branch
for bounding box recognition. Using the same first stage of
fast RCNN, mask R-CNN takes the region proposal network
(RPN) and predicts a binary mask for each Region of Inter-
est (RoI) which is then passed through an alignment layer for
more accurate pixel-to-pixel segmentation. In this paper, we
applied Mask R-CNN with a Resnet-101 backbone architec-
ture. Pre-trained weights from the COCO-2016 dataset were
used for transfer learning [31]. The extension to Fast RCNN
outputs a binary mask for each RoI and kth class where there
are K classes in total. A sigmoid function is then applied to
each pixel using an average binary cross-entropy loss lmask .
The loss function for Mask R-CNN adds lmask onto the loss
function for Fast RCNN, as follows:

l = lclass + lbox + lmask (1)

lclass , lbox are same as they are in Fast RCNN, while lmask

is computed on RoIs that are associated with the ground truth
kth class and is defined as the average binary cross-entropy
loss;

lmask = −1

m2

∑

1≤i, j≤m

[
Mk

i j log(M̂
k
i j )

+(1 − Mk
i j )log(1 − M̂k

i j )
]

(2)

where M is a Boolean m x m matrix for the true mask, Mi j

is the label of (i, j) ∈ M . M̂k
i j denotes the predicted value of

(i, j) in the mask that Mask R-CNN learns for the ground-
truth class k.

3.1.1 GPU computational equipment

The GPU used to train the models was an Nvidia Titan
Xp graphics card with 12GB memory running with CUDA
10.1 and an Nvidia driver version 418.13. The Mask R-CNN
implementation uses theMatterportMaskR-CNN repository
[32].

3.2 Proposed framework

After pre-processing each task is completed as a separate
branch, as shown in Fig. 4. An ensemble method is used
for the surface and marking extraction tasks, where Mask
R-CNN is used again with post-processing steps for better
feature extraction. Surface seal extraction and measurement

is achieved with a single use of Mask R-CNN and its sub-
framework for the width estimation stage.

3.2.1 Road surface

To separate the instance of the surface from its surrounding
noise,we usedMaskR-CNNfor binomial instance classifica-
tion and segmentation between the surface and background.
Images were downsized to 1024 x 1024 due to hardware
memory limitations. A learning rate of 0.001 was used with
a weight decay rate of 0.0001. The mini-mask shape was set
to 400 by 400. Training RoIs per image was set to 200 with
a detection minimum confidence of 80%. The anchor sizes
for the RoIs pooling stage were 50, 150, 300, 500 and 800.

3.2.2 Road surface markings

Deep pixel-wise methods such as the methods we are using
rely on training images where the instance needs to be
segmented has a resolution as high as possible relative to
available memory capability as it can so that the potential for
extracted features during convolutions is maximized. The
pixel-width of the road markings in each image were 1–2
pixels wide and only took up 5% of the image information
which made it difficult for the algorithm to utilize the road
marking information without up-sampling as the pixel width
was too small for feature extraction. Also, up-sampling alone
required a larger amount of processor memory to store the
images during training. To solve these issues PCA was used
to transform the image to increase the pixel count of the road
markings [33].

Tomitigate these issues during training, the following aug-
mentation steps were taken of the training, test and validating
data set (as demonstrated in Fig. 5.).

(a) Detecting the surface segment. The surface segment is
detected usingMaskR-CNN trained for surface segmen-
tation.

(b) Fitting a PCA with two components on the predicted
surface segment.

(c) Calculating the PCA’s bounding box. This is then used
to aid in the affine transformation in the next step.

(d) Inverting the PCA bounding box coordinates back to the
image space with an affine transformation to map the
predicted masks to the transformed image and increase
the relevant features.

Another issue that presented itself was that when Mask
R-CNN extracted features for each of the different classes,
changes in the geometric shape of objects caused by the
curvature in the road directly negatively affecting Mask R-
CNN’s performance. In order to mitigate this multiple PCAs
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Fig. 4 Proposed framework

Fig. 5 PCA process

were taken at step (b) in Fig. 5 where a PCA was taken on
the first PCA mask resulting in two PCA masks, followed
by another PCA on each of the two PCA masks in order to
derive at four distinct PCA masks for the detected instance.
Each of these distinct PCA masks are then inputted into step
(c–d) in Fig. 5 where the output of each is inputted intoMask
R-CNN.

This step-wise framework manages to both increase road
marking’s pixel count in the image and remove the effect
of road direction curvature as well as retain the segmented
surface in the PCA inverted images.

3.2.3 Road surface configurations

The surface markings multinomial classification and seg-
mentation task involved the three surface marking classes
mentioned earlier plus the background. A learning rate of
0.001 was used with a weight decay rate of 0.0001. Themask
shape was set to 28 x 28 and mini-mask shape set to [200,
200]. The anchor sizes were 25, 75, 150, 300 and 600 with
ratios 0.2, 0.4, 0.6, 0.8 and 1.

3.2.4 Road seal

Mask R-CNN was used for binomial classification and
instance segmentation of the tar seal as shown in Fig. 4. The
mask’s shape was often irregular along with the outer bounds
of the seal due to tar seal’s liquidity and wear, unlike with
the road surfaces which often had a flat-sided shape. This
made the mini-mask configurations of higher importance for
successful pixel-wise segmentation for seal than for surfaces.

Road seal was treated as a binomial classification task
like road surfaces with road seal and background as the two
classes. The boundary between the road seal and the road
shoulder encompasses a relatively small part of the image,
as this boundary is of a similar size to the road markings we
used the same PCA process used for the road markings to
enlarge the road seal boundary. The setting we used for the
Mask R-CNN model where: learning rate of 0.001, weight
decay rate of 0.0001 and anchor sizes used for RoI pooling
were 50, 150, 300, 500 and 800 with ratios 1.2, 1.8 and 2.5.
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Fig. 6 Ground Truth Seal Widths Examples. Widths in green and n = 16 and r = 150)

Algorithm 1 Widths Estimation
Inputs: M (road mask),

n (number of road widths) and
r (length from boundary)

Requires: 2r > range({y|(x, y) ∈ M})
Output: w (road widths)

1: Mpca,Mcomp,Mmean ← PCA(M)

2: step ← 1
n (range({x | (x, y) ∈ Mpca}) − 2r)

3: for i ∈ {min(Mpca) + kstep | k ∈ [0, n − 1]} do
4: L ← {i ≤ x < i + 2r | (x, y) ∈ Mpca}
5: L pca, Lcom , Lmean ← PCA(L)
6: La f f ← median(L pca) · Lcomp + Lmean
7: Maf f ← La f f · Mcomp + Mmean
8: w ← w ∪ {Maf f }

3.3 Width estimation

Our proposed algorithm works by first taking a mask M and
performing a PCA on it to output its mask MPCA, its com-
ponent Mcomp and mean Mmean . MPCA is then partitioned
across its x-axis where the number of partitions n is deter-
mined after subtracting r length from the boundary. A second
PCA LPCA with its component Lcomp and mean Lmean is
then taken centred around each n point with a window of r
length either side. Finally, each of the points are readjusted
to the mask space by first performing a local affine trans-
formation using Lcomp and Lmean , and then performing an
affine transformation using Mcomp and Mmean . The result is
then added to the set of widthsw. Limitations of this are that
the correct selection of r is needed to ensure that LPCA’s x
range is larger than its y range which results in the selected
widths to rotate and select a point near the middle of the
surface of the road. An example of the ground truth width
measurements with n = 16 is provided in Fig. 6.

4 Experiments and results

This section explains the experimentation carried out to test
the proposed method and how these experiments are evalu-
ated. This section then describes the experiment outcomes.

The proposed framework was evaluated using the 20%
test population after data augmentation. The test population
post data augmentation was used rather than sample popu-
lation as the steps required to create data augmentation are
inevitable and not bias towards the predicted results of their
structure (i.e. predicting on a non-sample population image
is not dependent on first having a ground truth mask for that
image). The performance of the localization and segmenta-
tion branches for the road surface, road surface markings and
tar seal tasks are evaluated independently before results are
outlined for geometric parameter estimation tasks.

4.1 Localization and segmentation statistical
evaluationmethods

For evaluating the performance of the tasks of instance detec-
tion and segmentation two common metrics were used. The
Intersection over Union (IoU) metric (also known as the Jac-
card Index) calculates the spatial overlap of predicted and true
m x m binary matrices in proportion to their spatial union.
The IoU metric is used for binary m x m matrices that are
either the predicted RoIs for localization, or the predicted
masks for segmentation.

For example; Let X̂n be the predicted m xm binary matrix
for the nth input image Imgn and true binary m x m matrix
of Imgn being Xn . The I oU (n) is then determined by:

I oU (n) =
∣∣∣X̂n ∩ Xn

∣∣∣
∣∣∣X̂n ∪ Xn

∣∣∣
(3)
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Fig. 7 An example of the image being used and the test results using only the point-cloud intensity information

4.2 Classification statistical evaluationmethods

To evaluate the performance of our model’s classification of
the different road markings the following metrics were used.

Accuracy = T P + T N

T P + FP + FN + T N
(4)

Precision = T P

T P + FP
(5)

Recall = T P

T P + FN
(6)

F1 = 2Recall · Precision
Recall + Precision

(7)

where the predicted class types are compared to the ground
truth class types. TP, TN, FP and FN represent the amount of
true positive, true negative, false positive and false negative
classification of the road object being tested.

4.3 Ablation study

This subsection explainswhy some design decisions and how
they may impact the experiment results.

4.3.1 Road surface colour channel selection

The pipeline above uses three colour channels for the images.
However, the mask R-CNN algorithm does not require this
and using less colour channels would decrease the computa-
tion resource needed, as it would decrease the dimensionality
of input images. The choice of using three colour channels
instead of one is a trade-off between computation complexity
and the inclusion of potentially useful image information.

The results in Fig. 7 show that the IoU results are good
with all test RoIs having greater than 93% predicted IoU and
all test masks having a greater than 83% IoU despite only

using one colour channel. However, there is a gap between
the prediction resultsRoIs IoUand theMask IoUand because
road surface are rectangular and similar to their bounding
boxes using additional data and adding colour channelmaybe
increase the quality of the predicted masks. It follows that if
there is possible improvement for road surfaces classes than
fine-grain problems such as markings and seal may also have
an improvement.

4.3.2 Roadmarkings pre-processing

The main goals of the road markings pre-processing is to
improve the results of the road markings via increase the rel-
ative size of the markings with in the image. The idea being
that a more prominent object relative to the background of
an image should be more visible to the Mask R-CNN algo-
rithm. The down side of using our pre-processing pipeline
is it requires additional computational steps that maybe not
significant improve the prediction.

The result in Fig. 8 show that the RoIs IoU is much better
than the mask IoU, with 60% of the marks having less than
10%. The relative good result in the RoI can be attributed to
the bounding box size of eachmarking as they span the length
of the image thereby having a large amount of information to
base the RoI prediction on. The poor mask result are like due
to the small size of the markings as they are only 1–2 pixels
wide. This shows that implementing a pipeline to increase
the prominence of the marking may increase marks IoU.

4.4 Road surface results

Road surface predicted masks median IoU was 93.13%,
where at an IoU threshold of 90%, 90% of the test sample
is included. Increases in the acceptance threshold past this
point results in a steep decrease in the amount of test popula-
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Fig. 8 Test IoU scores for RoIs and masks without using road markings pre-processing

Fig. 9 Road surface test results: a–e examples of predicted masks for road surface instances compared to ground truth masks, e–f test IoU scores
for RoIs and masks

tion being accepted (as shown in Fig. 9e–f). The localization
result improves upon this by having 100% of the test popu-
lation being accepted up to 92.5% IoU acceptance threshold
with a steep decline in test population accepted rate at 95%
IoU. Our proposed framework predicts masks for road sur-
face instances successfully across road surfaces with varying
spatial characteristics (as shown in Fig. 9a–d), where pre-
dicted masks accounted for road surface instances that were
either tapered or curved in shape throughout the MMS tra-
jectory. One issue with the road surface predicted masks was

that the ends of the predicted masks were enclosed within
the ground truth masks. In instances where the road was
curved, the predictedmaskswould also containwavybounds.
This effect can be minimized by having overlapping images,
allowing for a larger acceptance threshold to be implemented
without decreasing the amount of validation population being
selected.
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Fig. 10 Road marking segmentation results. In (a–i) the green and red represent the ground truth and predicted mask respectively. j–m are reverse
cumulative IoU distributions
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Table 2 Road Markings Evaluation Metrics at 90% IoU

Class Accuracy Precision Recall F1

Drivable Lane 70.44% 69.05% 84.15% 75.86%

Driving Line 75.52% 91.82% 58.41% 71.40%

Hatched Area 78.54% 5.33% 6.90% 6.01%

Table 3 Road Markings Confusion Matrix at 90% IoU

Drivable
Lane

Driving
Line

Hatched
Area

Unclassified

Drivable Lane 377 12 24 35

Driving Line 104 191 32 0

Hatched Area 21 4 4 29

4.5 Roadmarkings results

The classification results show that our proposed framework
performs best at classifying Driving Lines with a precision
score of 91.82% (as shown in Table 2). Average classification
accuracy across classes was 77.78%.

Figure 10j–m demonstrates the reverse cumulative dis-
tribution of IoU scores for predicted RoIs and masks for
the aggregated road markings class and the road markings
classes individually. The median IoU score for the predicted
RoIs across all classes is greater than 95%. The median RoIs
IoU for drivable lanes was the best among the three classes
with 97%. Using either 80% or 90% as the RoIs IOU accep-
tance threshold would result in 97% and 96% of the test
population being accepted respectively. The predicted RoIs
forDriving Lines had amedian IoUof 96%, using IoU accep-
tance thresholds of 80% and 90% results in 84% and 77% of
the test population being accepted respectfully. The results
for hatched areas received the lowest IoU scores among the
three classes with a median of 57% and at IOU thresholds of
80% and 90% having 57% and 50% of the test population,
respectively.

Our method also scored highly in the instance segmenta-
tion task across drivable lane and driving line but has some
difficulty with hatched areas. (Fig. 10j–m). The median IoU
score for predicted masks across all classes was 71.34%.
The median IoU scores for predicted masks for drivable
lane, driving line and hatched areas were 97.5%, 89%, and
57%, respectfully. Our method performed best at segment-
ing instances of drivable lane with 94% of the test population
being accepted at a threshold of 90%. Second to this, driving
lines instances were segmented with 75% of test population
belonging to an IoU acceptance threshold of 80% and 31%
belonging to 90%. Hatched areas segmentation results per-
formed the worst out the three classes with 57% and 43% of

test population being accepted at IoU thresholds of 80% and
90%, respectively.

The classification results for road markings reflect the
overall performance of their segmentation and locations, as
shown in Tables 2 and 3. The hatched areas perform theworst
out of the three road markings classes with accuracy, preci-
sion and recall of 78.54%, 5.33% and 6.90%, respectively.
The high accuracy in comparison to the precision and recall is
because of the high true negative rate, which more highlights
the strengths of the drivable lane and driving lines results
rather than the hatched areas results. The drivable lane and
driving lines classes perform the best out of the three classes.
However, driving lines have a larger proportion of its test
population misclassified as a drivable lane.

4.6 Road seal results

Results show that our proposed framework performs well
with localizing tar seal instances with a median IoU for RoIs
prediction of 95.45% and at an acceptance threshold of 90%
results in 95% of predicted RoIs being accepted (Fig. 11e–f).
Upon localization, our method performs well on the segmen-
tation of tar seal instances with a median IoU of 92.81% for
predicted masks. The predicted masks at an IoU threshold of
90% results in 86.6% of the test population being accepted.

4.7 Geometric parameter estimation results

The results in Fig. 12 show that our proposed method effec-
tively outputs a set of widths for predicted tar seal mask
instances. Lines 1 to 9 in Fig. 12d (counting from the left)
allowed for changes in road surface shape along its trajec-
tory to be included in each of the estimated widths making
estimations flexible to such changes. Figure 12d also shows
that the width calculation can only perform as well as the
predicted mask as lines 5 and 6 have ends that are over the
pavement.

5 Discussion

This section discusses the results from previous sections,
including the following sub-sections: Ablation study to com-
pare our added PCA approach to improve the mAP of
Mask-RCNN’s IoU; Road surface discussion in comparison
with priorworks;Road surfacemarkingdiscussiononfinding
object instance of 1–2 pixels wide; Road seal and geomet-
ric estimations to discuss some applications, and our method
have certain benefits and limitations.
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Fig. 11 Road seal test results: a–e examples of predicted masks for road surface instances compared to ground truth masks, e–f test IoU scores for
RoIs and masks

Fig. 12 Predicted seal widths examples. Widths in green and n = 16 and r = 150)

5.1 Ablation study

5.2 Road surface colour channel selection

The results in Table 4 show that the including the height val-
ues in the images improves theMask IoU results.With 0% of
the masks having a greater than 90% IoU when not includ-
ing the height values and 96.% of the masks when using the
height in the images. The trade-off for this increase in mask
IoU is that the RoI results start decreasing more rapidly over
95% IoU when including the heights. This shows the exist-

ing Mask R-CNN’s accuracy improved with our inclusion of
height colour channel.

5.2.1 Roadmarkings pre-processing

The results in Table 5 show a significant improvement.
Improving from 16.2 to 55.0% at 50% IoU and from none
to 53.6% at 90% IoU. The existing Mask R-CNN’s accuracy
improved with our inclusion of both height colour channel
and PCA affine transformation, especially in accurately seg-
ment the needle type objects such as 1–2 pixel wide road line
markings.
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Table 4 Comparison of including height in colour channels

Metric Without Height With Height

mAP @.75 Mask IoU 100.0 100.0

mAP @.90 Mask IoU 0 96.4

Table 5 Comparison of the inclusion of the PCA pipeline

Metric Without PCA PCA

mAP @.50 Mask IoU 16.2 55.0

mAP @.75 Mask IoU 11.4 55.0

mAP @.90 Mask IoU 0.0 53.6

5.3 Road surface

Our proposed framework segments and extracts road surface
instances without the issue of including the flat level sur-
face surrounding faced by Yadav et al. , as well as removes
their method’s need to first extract planar ground surfaces
before extracting the targeted road surface. Unlike Rui et al.
and Wen et al. , our deep pixel-wise classification approach
eliminates the need to rely on relative raised curb locality
to segment targeted instances, thus also removing the need
for post-processing on the segmented surface to extract the
target instance. The proposed framework does not rely on
strong differentiation between tar seal and grass/dirt banks
like Yadav et al. and can accurately extract surface instances
regardless of surrounding details of the road surface envi-
ronment (see Fig. 9). Road surfaces of different shapes along
their trajectory such as curvature and taper are accounted for
due to our proposed processing pipeline.

An issue with using IoUmetric in the application of width
estimation is that it is biased towards high mean IoU relevant
to the instance segmentation goal. This is because in this
application the accuracy of the predicted mask’s endpoints
is more important for estimating the seal measurements than
the IoU of the predicted mask.

5.4 Road surface markings

The road marking results show that needle-like objects can
be segmented using the Mask R-CNN algorithm. In partic-
ular, this is demonstrated by the derivable line class where
the IOU is particularly high and the width of each instance is
only 1–2 pixels wide. However, without a large enough pop-
ulation to train on, the segmentation results for the hatched
areas are worse compared to the driving lanes which occur
at least twice per image and the driving lines which occur at
least thrice per image. Classifying the marking objects have
mixed results with the hatched areas having more unclas-
sified results then correctly classed results. In comparison

with methods such as Jung et al. [12], our approach does not
depend on factors such as roadwidth consistency, roadmark-
ing quality or weather. This is because the quality of results
is dependent on the ground truth mask set and the section of
the road in the dataset.

5.5 Road seal and geometric estimations

The seal result performs as well as the road surface result
from localization and segmentation perspective. Thereby
resulting in the benefits of not needing a flat level surface sur-
rounding faced, not requiring the need to first extract planar
ground surfaces before extracting the seal, and not relying on
relative raised curb locality to a segment. It also suffers from
the same limitations as the road surface method with IoU not
being the best method for width estimation, which is more
visible in seal segmentation as there is a thin gap between
the edge of the seal segmentation result and the ground truth.
The main limitation to the width estimation is that the accu-
racy of the width location in proportion to the scale ranges. In
this case, the images are 1024x1024 pixels width post predic-
tion which allows the width point to be around 5cm to its real
width location. The 5cm resolution limitationwould improve
by increasing the image size during the prepossessing stage.
However, this would increase computational power needed
to create the associated model andmore lidar points gathered
in the data acquisition process.

6 Conclusion

In this paper, we demonstrate an improved approach for
localizing, segmenting and classifying road objects such as
surface, seal, and marking using 3D lidar point-clouds. We
achieved this improvement from the existing Mask R-CNN
method, by aggregating the relevant 3D lidar point-clouds
information into a 2D image and further filtered this image
down using PCA and affine transformations. The Mask
R-CNNalgorithmwas then applied to obtain the classes loca-
tion and segments of the road objects. We also showed that
combining pre-processing with Mask R-CNN can be used
to segment needle-like objects. Future work would include
both improving the results and exploring additional meth-
ods to extract geometric parameters. The results could be
improved via increasing the dataset size, position of lidars
on the data collection apparatus, and increasing the available
computational resources. Future work could also focus on
geometric parameter estimation for road volume and slope
estimation, as well as comparing existing surface extraction
methods on our dataset.
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