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Abstract
In this paper, the binary tomographic reconstruction problem for very limited projection data availability is considered. Being
this inverse problem highly ill-posed, we propose a new reconstruction model that uses a shape centroid-based regularization
term, i.e., we assume that the center of gravity of the object of interest is known, at least approximately, in advance. Motivation
for this regularization is found in the close connection between the projection data and the object centroid, as we will show.
Experimental evaluation underpins that reasonable results can be obtained from practically minimal amount of projection
data, gathered from just one projection direction.

Keywords Binary tomography · Reconstruction · Inverse problems · Center of gravity · Energy minimization

1 Introduction

Tomography [10] is a field of image processing which deals
with reconstruction of images from a number of projec-
tions. It has a particularly important role in investigating
the non-accessible or non-visible interior of objects, in a
non-invasive way. Tomography methods allow, among oth-
ers, non-destructive industrial testing [7,16,34] and also a
big variety of diagnostic approaches in medicine [1,6,13,17,
28,29,32,35]. In the standard protocol for COVID-19 case
ascertainment, computer tomography (CT) chest scan of the
patient plays also an essential role, which makes the tomo-
graphic reconstruction additionally topical.

The aim of this paper is to study the shape centroid as
a priori information in the context of binary tomography.
The centroid point of an object can be calculated in terms of
discrete geometric moments. This property makes this fea-
ture more suitable for use in discrete (digital) spaces (see
[25]). Based on the knowledge of the centroid, we introduce
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a regularization term into the reconstruction model, with the
purpose to make reconstructions possible from very limited
projection data, practically from a minimum quantity, taken
from a single projection direction.

The main contribution of our work include:

– We reveal the connection between horizontal and vertical
projections and the centroid of a binary image.

– We construct an energy function incorporating prior
information on the centroid of the image to reconstruct
from its projections.

– We derive the gradient of this energy function in an
analytical way to optimize the function by the spectral
projected gradient algorithm.

– We underpin by experiments that a single direction pro-
jection data can be augmented by the prior information
on the centroid of the image in order to increase recon-
struction quality.

The paper begins with a brief overview of related works
and the results achieved in the field (Sect. 2). Then, we give
the formalization of the reconstruction problem (Sect. 3)
and recall the concept of geometrical moments (Sect. 4).
In Sect. 5, we show that reconstructions of objects from
two orthogonal projection directions completely preserve the
centroid. Knowing this fact, we analyze the opposite possi-
bility: can the centroid, as a priori information, “replace”
projection data? Hoping for a positive answer, the object
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centroid as prior knowledge is incorporated into the recon-
struction process, with a new regularization term (Sect. 6).
Our aim is to develop a method capable of providing
acceptable reconstructions based on a single projection direc-
tion. The “missing projection data” obtainable from another
(orthogonal) direction is compensated by the information
about the object centroid. Experimental results, presented
in Sect. 7, confirm the validity of this idea. Finally, in Sect. 8
we conclude our results.

2 Related works

Frommathematical point of view, the tomographic projection
process can be defined by integrals or sums. For a continuous
image function u(x, y), the calculation of projection values
can be modeled by the Radon transform [31]

R(α, s) =
∫ +∞

−∞
u(t sin α + s cosα,−t cosα + s sin α) dt,

where α is the angle of the projection ray relative to the
given coordinate axis, while s denotes the distance from
the ray to the origin of the coordinate system. The tomo-
graphic reconstructionproblembelongs to the class of inverse
problems and deals with the reconstruction of the original
function u(x, y) based on the given projection data R(α, s),
for some fixed α. The filtered backprojection and its variants
[26,27] are the most often used methods for image recon-
struction. However, for a good image quality, they require
a large amount of projection data. An important class of
tomographic reconstruction problems usingmuch fewer pro-
jections belongs to the field of Discrete Tomography (DT)
[11,12]. In DT problems, the range of the image function is a
finite and discrete set, known in advance. In practical appli-
cations, DT deals with reconstructions of digital images that
have only a few different gray levels. Binary tomography
(BT) is a special case of DT and its scope is the reconstruc-
tion of binary images. Although BT is a restricted subfield
of DT, it has various applications, as in many real situations,
the object being studied consists of a single known material,
and therefore, the absence or presence of this material can be
represented by 0 and 1 in the images, respectively.

Among the possible applications, we mention the field of
human X-ray angiography, where the aim is to reconstruct
images representing blood vessels or heart chambers, using
X-ray tomography methods. Injecting a contrast agent with
high linear attenuation coefficient into the part of the body
being examined, the problem can be solved with BT: one
can seek for the presence or absence of the contrast agent in
certain positions [8,30].

Another field of the applications of BT belongs to indus-
trial non-destructive testing, where the goal is to examine the

quality or degree of degradation of the interior of objects
made of homogeneous materials, without damaging the
objects themselves. Such objects include, for example, jet
engine turbine blades or cylinder heads in internal combus-
tion engines [4,14].

There are a number of excellent reconstruction methods
suggested for discrete or binary tomography, such as the
discrete algebraic reconstruction technique [3,42], convex–
concave regularized algorithms [33], simulated annealing-
based approaches [40] and multi-well potential-based tech-
niques [18]. However, they require data from at least two or
even more projection directions. In BT, the projection data
is often amended by prior information of the image to be
reconstructed, such as, e.g., smoothness, convexity, texture
[2,33,38,40].

To our knowledge, the only BT reconstruction method
suggested for single projection availability is based on shape
orientation [19]. Our intention is to go a step further and give
a new contribution in this direction of research.

3 Formalization of the reconstruction
problem

We follow the strategy of formalizing the binary tomographic
reconstruction problem as a system of linear equations

Au = b, A ∈ R
M×N , u ∈ {0, 1}N , b ∈ R

M , (1)

where N and M denote the number of image pixels and
projection rays, respectively. Furthermore, u is the vector
representation of the image to reconstruct, and A is the so-
called projection matrix whose row entries ai,· represent the
length of the intersection of the pixels and the i-th projection
ray passing through them (see Fig. 1b). The projection vector
b contains the acquired projection data. Coordinates of this
vector bi are calculated as it is explained in Fig. 1b. The side
length of each pixel is assumed to be one unit. Moreover,
we assume parallel beam projection geometry, i.e., for each
projection direction a number of equidistantly placed paral-
lel projection rays are taken (being the distance equal to the
side length of the pixels), as it is shown in Fig. 1a.

Under the problem of reconstruction, we understand the
determination of the solution image u of (1). (The matrix
A and the projection vector b are given.) It is important to
notice that this system has a binary constraint, and it is also
often underdetermined (N > M), i.e., there are more pixels
(unknowns) than projection rays (equations). Transforming
(1) into an optimization problem and using regularization to
incorporate prior information about the solution is a com-
monly used technique to treat this issue (see, e.g., [19,33]).
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Limited-view binary tomography reconstruction assisted by shape centroid 697

Fig. 1 a Parallel beam
projection geometry. The
source-detector system can
rotate around the considered
object, allowing to acquire data
from different directions. The
angle α determines the
projection direction,
α ∈ [00, 1800). b Model of
calculation of projection values
for a given image u∗ of size
N = 4× 4 = 16. The projection
value for the i-th projection ray
is calculated by bi =
ai,13u∗

13 + ai,9u∗
9 + ai,10u∗

10 +
ai,11u∗

11 + ai,7u∗
7 + ai,8u∗

8

4 Geometrical moments

Given a 2-dimensional continuous image u (i.e., a function
u : Ω → R, Ω ⊆ R

2), the geometrical moment (or shortly,
the moment) of order (p + q) of u, denoted by mp,q(u)

(p, q ∈ {0, 1, 2, . . .}), is defined by

mp,q(u) =
∫∫

Ω

u(x, y)x p yqdxdy . (2)

When u is a digital image (i.e., a function u : Γ → Z,
Γ ⊆ Z

2), we can calculate the digitized moments as

mp,q(u) =
∑

(i, j)∈Γ

u(i, j)i p jq .

It is worth noting that this discrete version approximates very
well the original continuous definition (2) (for more details
we refer to [15]). In addition, moments are desirable opera-
tors in discrete spaces, and many regularization procedures
in image inverse problems, such as tomographic reconstruc-
tion or denoising, are based on discrete moments (see, e.g.,
[19,25]). Especially, we focus now on the center of gravity
(or centroid) of the imagewhich can be expressed in the terms
of first-order geometrical moments. The centroid of image u
is defined by

(Cx (u),Cy(u)) =
(
m1,0(u)

m0,0(u)
,
m0,1(u)

m0,0(u)

)
. (3)

5 Relation between projection data and
centroid

Let u(i, j) be a digital image of size m × n (i = 1, . . . ,m;
j = 1, . . . , n). The vertical projection data corresponding to

the k-th column, vk , is calculated in the following way:

vk =
m∑
i=1

u(i, k), (k = 1, . . . , n) .

In the same manner, the horizontal projection data is calcu-
lated as

hk =
n∑
j=1

u(k, j), (k = 1, . . . ,m) .

Now, we can easily show that the vertical and horizontal
projection data completely determines the centroid. Indeed,
moments in (3) can be expressed as functions of hk and vk :

m1,0(u) =
m∑
i=1

i
n∑
j=1

u(i, j) =
m∑
i=1

i · hi ,

m0,1(u) =
n∑
j=1

j
m∑
i=1

u(i, j) =
n∑
j=1

j · v j , and

m0,0(u) =
m∑
i=1

hi =
n∑
j=1

v j .

We are interested in the opposite issue, that is, how useful
it is to utilize the centroid as a priori information, to achieve a
successful regularization? In other words, can the centroid be
a good substitute for projection data, especially for vertical
or horizontal? We believe in a positive answer and therefore
propose a new reconstruction method with centroid based
regularization. Our focus is on the reconstructions obtained
from projection data acquired in a single direction. Since
in this case only a minimal amount of data is available, it
is normal to expect reconstructions being far from perfect.
Nevertheless, our goal is to reach acceptable reconstructions,
that already allow us to get important information about the
original objects.
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6 Proposedmethod

We propose an energy-minimization reconstruction model,
where the information about the centroid of the original
object is incorporated in the reconstruction process. For-
mally, the proposed model is given by

min
u∈{0,1}N

E(u) , (4)

where u is a vector representation of the image u(i, j),
defined by u = [u(1, 1), u(2, 1), . . . , u(m, 1), u(1, 2),
u(2, 2), . . . , u(m, 2), . . . , u(1, n), . . . , u(m, n)]T , while the
energy or objective function is given by

E(u) = 1

2

(
wP‖Au − b‖22

+wH

N∑
i=1

[(ur − ui )
2 + (ub − ui )

2]

+wC‖(Cx (u),Cy(u)) − (C∗
x ,C

∗
y )‖22

)
. (5)

The energy function (5) is a sum of three nonnegative terms.
The first one, also called the data fitting term, expresses con-
sent of a solution with the given projection data. The role of
the second term, also called smooth regularization term, is to
ensure the smoothness or homogeneity of the solution. Here,
r and bmark the index of the pixel adjacent to ui , to the right
and to the bottom, respectively. The application of this regu-
larization is based on the assumption about the compactness
of the original image, in the sense that it consists of hole-
less regions. The third term measures the accordance of the
centroid point of the current solution (Cx (u),Cy(u)) with
the given centroid coordinates (C∗

x ,C
∗
y ), being this latter the

centroid of the original object (or at least its proper approx-
imation). In industrial applications, such information can be
gained either by a CAD model or by studying a blueprint
object. In medicine, in case of slice-by-slice imaging, the
similarity of adjacent cross-sections can be exploited. Adja-
cency can be regarded not only in space but also in timewhen
the same slice is reconstructed several times within a short
period to investigate dynamic processes [30]. We note that in
case of in-vivo experiments, binary tomography is only appli-
cable when an imaging protocol ensures that only the organ
of interest is X-ray projected. This can be achieved, e.g., by
Substraction Computed Tomography (SCT) [9,17,37].

The impact of different terms in the energy function (5)
is controlled by parameters wP > 0, wH > 0, and wC > 0
(associated to projection data, homogenization, and centroid,
respectively). In the special case, when wC = 0, the energy
(5) reduces to the energy function that has been already
successfully applied in several tomographic reconstruction

problems [20,33,40] which motivates our choice to insert the
second term into (5).

Owing to the binary conditions, theminimization problem
(4) belongs to the class of constrained minimization prob-
lems. The feasible set {0, 1}N is discrete andfinite. Therefore,
application of a gradient type optimization approach is not
possible in this formulation. However, we can transform this
problem into a relaxed form, with continuous feasible set:

min
u∈[0,1]N

ER(u) := E(u) + μ

2
〈u, τ − u〉 , μ > 0, (6)

where τ = [1, 1, . . . , 1]T . The concave regularization term
〈u, τ − u〉 is added to enforce the binary solution. Its mini-
mum value (zero) is achieved when all pixel intensities of u
are equal to zero or one, i.e., u is a binary image. Therefore,
minimization of this term during the reconstruction process
enforces the binary solution. This effect is used to ensure the
final binary solution. Parameter μ controls the magnitude
of the influence of the term 〈u, τ − u〉 in the reconstruction
process. We note that this type of binary regularization for
tomography problems was first introduced in [33] (where the
reader can find more details), and later successfully applied
in a number of similar problems, see [19,40].

The gradient of the energy function in (6) can be deter-
mined in analytical manner:

∇ER(u) = ∇E(u) + μ(
1

2
τ − u) ,

where

∇E(u) = wP A
T (Au − b) + wH∇SR(u) + wC∇CR(u) .

Elements of the gradient of the smooth regularization term
are calculated by

∇SR(u)i = 4ui − ur − ub − ul − ua , i = 1, 2, . . . , N ,

where ua and ul designate neighbors above and to the left
of the pixel ui , respectively. For the gradient of the centroid
based regularization term, we have

∇CR(u) = (Cx (u) − C∗
x )∇Cx (u) + (Cy(u) − C∗

y )∇Cy(u).

Applying elementary calculus, we can show that

∇Cx (u) = ∇m1,0(u)

m0,0(u)
= l · m0,0(u) − τ · m1,0(u)

m2
0,0(u)

and

∇Cy(u) = ∇m0,1(u)

m0,0(u)
= k · m0,0(u) − τ · m0,1(u)

m2
0,0(u)

,
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where k and l are vectors of size N , defined by

l = [1, 2, 3, . . . ,m, 1, 2, 3, . . . ,m, . . . , 1, 2, . . . ,m]T

and

k = [1, 1, . . . , 1, 2, 2, . . . , 2, 3, 3, . . . , 3, . . . ,m,m, . . . ,m]T .

With this, we have fully determined the calculation of the
gradient ∇ER(u) of the proposed energy function in (6).
Therefore, the proposed reconstruction model can be solved
be a gradient based minimization method. For this task, we
use the spectral projected gradient iterative algorithm, orig-
inally proposed in [5]. Our choice is motivated by the fact
that this algorithm has been successfully applied in simi-
lar problems [19,23,25]. The process is repeated, gradually
increasing the value of μ, until the final (binary) solution
is reached. The pseudocode of the proposed reconstruction
method is shown in Algorithm 1.

Algorithm 1:
Parameters: εout = 10−3; μΔ = 0.01;
uinit = [0.5, 0.5, . . . 0.5]T ; μ = 0.
while max

i
{min{uiniti , 1 − uiniti }} > εout

do
/* Solve by SPG method: */
unew = arg min

u∈[0,1]n ER(u);

uinit = unew;
μ = μ + μΔ;

end

7 Experimental results

In this part of the paper, we deal with the presentation and
evaluation of experimental results. The goal is to investi-
gate how the newly proposed centroid prior can enhance the
reconstruction quality, especially in situations of very limited
projection availability.

In the experiments, nine binary test images of size 64 ×
64 are used as originals (see Fig. 2). The first six images
are synthetic (phantom) ones, and they represent arbitrarily
created different shapes. It is obvious that for each shape the
centroid also takes significantly different positions. The last
three test images (liver, bone, and cell) are acquired from
real data. Liver is based on a binary segmented CT image
[41]. Bone image is obtained from a histological CT image
of a bone implant, inserted in a leg of a rabbit [36]. Cell is
a binary segmented fluorescence image of a calcein-stained
Chinese hamster ovary cell [24,39].

Fig. 2 Original binary images used in the experiments, the correspond-
ing centroid coordinates are shown in brackets

The results obtained by the proposed method, in the fol-
lowing denoted by CENT, based on the centroid prior are
compared to other methods relevant for the case of low pro-
jection availability. Algorithms used for comparison are: the
spectral projected gradient (SPG) algorithm, suggested in
[21] and also applied in [22,23]; and the approach based on
the shape orientation prior information (ORI), proposed in
[19]. The SPG and ORI are energy minimization type meth-
ods, and their functioning can be shortly illustrated by the
following common energy function:

E2(u) = 1

2

(
wP‖Au − b‖22

+wH

N∑
i=1

[(ur − ui )
2 + (ub − ui )

2]

+wO(Φ(u) − α∗)2
)
, (7)

whereΦ(u) denotes the orientation of the shape presented in
image u, and α∗ is the given a priori known orientation value.
The weighting parameter wO ≥ 0 controls the orientation
term. The first and second terms are identical as in the energy
(5). According to suggestions in [19,21], in the presented
experiments the value of wH is set to 0.5 in both methods.
The SPG method does not use a priori information, and its
energy is derived from (7) when wO = 0. The ORI method,
however, relies on the orientation prior information and in
that case wO is set as a positive number. In our applications,
wO is set as 0.1, according to the suggestion in [19].
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700 T. Lukić, P. Balázs

Fig. 3 Influence of the concave binary solution enforcing regularization 〈u, τ − u〉, controlled by the parameter μ, in the reconstruction process
(see (6)). The liver test image is reconstructed by the CENT method, from the projection direction with α = 135◦

Fig. 4 Illustration of preservation of the centroid prior based on two different projections. Reconstructions of the PH6 test image are presented.
The used projection directions are indicated by pd. The used reconstruction method is SPG, i.e., the centroid prior is omitted in the reconstruction
process
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Limited-view binary tomography reconstruction assisted by shape centroid 701

Fig. 5 Reconstructions of PH3 and PH4 test images using only the horizontal projection without (SPG) and with (CENT) the centroid information

Fig. 6 Reconstructions of PH1
and PH2 test images using only
the vertical projection without
(SPG) and with (CENT) the
centroid information

Fig. 7 Centroid prior
performance in reconstructions
of the PH5 test image from one
projection direction with angles
of 160◦ or 20◦ with (CENT) and
without (SPG) the centroid prior
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702 T. Lukić, P. Balázs

Table 1 Reconstruction errors

rPE/PRE PH1 PH2 PH3 PH4 PH5 PH6
DC

0◦

SPG 15.28%/4.69 9.27%/6.16 15.72%/4.47 19.18%/5.47 15.23%/5.47 14.74%/5.47

4.69 1.31 7.50 8.07 7.28 7.61

ORI 14.20%/2.82 8.91%/4.79 10.08%/2.58 14.03%/1.73 21.85%/4.58 15.67%/4.00

2.31 4.83 5.60 6.49 12.84 7.02

CENT 8.69%/2.82 8.95%/4.79 8.56%/2.64 13.06%/2.64 14.06%/3.46 15.99%/4.79

0.15 0.16 0.06 0.52 0.33 0.46

45◦

SPG 14.69%/5.50 25.78%/7.68 9.54%/7.06 8.88%/7.06 3.39%/8.36 11.86%/5.96

5.00 17.15 5.19 1.45 1.00 2.19

ORI 11.15%/2.86 24.58%/3.69 9.00%/5.42 8.37%/2.29 3.17%/3.46 23.58%/3.19

3.28 13.70 0.05 2.51 1.92 15.64

CENT 10.57%/2.86 8.88%/3.69 8.44%/6.55 8.64%/3.38 3.41%/3.99 7.76%/3.71

0.77 0.23 0.41 0.01 0.70 0.32

90◦

SPG 29.51%/4.58 39.08%/5.56 28.05%/6.40 25.00%/4.00 14.74%/6.00 18.62%/4.12

9.89 16.08 12.68 9.66 6.35 5.31

ORI 25.24%/1.41 33.91%/3.60 27.09%/4.69 3.54%/2.23 9.91%/4.69 10.69%/4.24

9.34 13.71 12.23 0.33 4.88 1.11

CENT 7.27%/1.41 7.59%/3.60 9.15%/4.12 16.33%/3.60 13.67%/5.09 11.13%/4.89

0.52 0.25 0.61 0.55 0.55 0.08

135◦

SPG 30.32%/3.60 25.43%/5.25 31.12%/7.53 33.27%/3.56 23.09%/4.85 18.79%/5.05

14.85 15.08 19.83 18.36 14.18 12.31

ORI 24.12%/2.77 41.47%/83.88 26.00%/5.14 32.47%/2.99 22.11%/3.86 12.74%/4.51

13.73 15.36 16.59 17.98 13.61 2.73

CENT 9.39%/2.88 11.27%/3.23 5.15%/5.88 4.32%/2.72 2.73%/3.78 12.45%/5.10

0.28 0.19 0.47 0.31 0.59 0.55

The best values are typeset in boldface
Comparison of results for phantom images obtained using three different methods: SPG, ORI and CENT

The parameters in the proposed energy function (5)
are experimentally determined to provide the best possible
results and are set to wP = 0.1, wH = 0.5, and wC = 0.2.
In Fig. 3, the effect of the binary solution enforcing reg-
ularization of (6) is illustrated. During the reconstruction
process, the parameter μ is gradually increased by μΔ. Its
proper adjustment is important: Too large values can lead to
an overemphasized binarization effect and consequently to a
solution of lower quality; on the other hand, too small values
of μΔ may cause unwanted increase in execution time. In
our experiments, we set μΔ = 0.01.

We analyze reconstructions of test images obtained for
projection data acquired from different projection directions.
Three error measures are considered to express the quality
of the reconstructions. The first one indicates the number of
misclassified pixels in reconstructions, and it is denoted by

PE (pixel error). This error is calculated by

PE = ‖ur − u∗‖1 ,

where ur and u∗ represent the reconstructed and the original
image, respectively. We note that PE can also be understood
as theHammingdistance of the original and the reconstructed
images. By r PE we denote the relative number of misclas-
sified pixels, and its value is calculated as

r PE = 1

N
‖ur − u∗‖1 · 100% .

Finally, PRE refers to the projection error, which measures
how much the reconstruction matches with the projection
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Table 2 Reconstruction errors

rPE/PRE Liver Bone Cell
DC

0◦

SPG 18.65%/4.69 21.24%/6.92 15.72%/4.24

5.79 5.84 1.90

ORI 13.25%/2.23 17.35%/4.35 6.64%/0.00

3.70 5.81 2.51

CENT 10.57%/3.00 11.52%/5.09 16.23%/2.23

0.15 0.09 0.03

45◦

SPG 8.20%/6.56 20.75%/5.71 5.51%/5.47

3.61 7.28 2.47

ORI 8.22%/2.03 14.11%/5.61 2 31.83%/4.53

5.55 13.70 17.84

CENT 7.91%/2.59 10.00%/2.99 3.95%/4.50

0.07 2.33 0.31

90◦

SPG 13.18%/5.83 13.52%/3.74 15.82%/3.74

2.60 1.13 4.68

ORI 8.47%/4.35 15.72%/2.82 7.78%/3.60

2.77 7.28 3.82

CENT 10.79%/4.69 12.37%/2.23 16.16%/1.35

0.20 0.27 0.05

135◦

SPG 15.25%/3.70 18.96%/7.51 4.46%/8.67

7.95 4.82 6.61

ORI 15.57%/1.24 13.30%/6.17 3.51%/5.01

7.78 10.44 5.91

CENT 8.22%/1.68 11.37%/2.28 3.29%/0.98

0.04 0.72 0.67

The best values are typeset in boldface
Comparison of results for real images obtained using three different
reconstruction methods

data. It is calculated by

PRE = ‖Aur − b‖2 .

In addition, the deviation in centroid (DC) is calculated by

DC = |Cx (u
r ) − Cx (u

∗)| + |Cy(u
r ) − Cy(u

∗)| ,

where ur and u∗ are the reconstructed and the original
images, respectively.

As we already showed in Sect. 5, vertical and horizontal
projection data completely determines the centroid. In Fig. 4,
we investigate how the centroid is preserved when the angle
between the two projection directions is gradually decreas-
ing. We deduce that the centroid is well-preserved (the DC
values are small) even when the angle between the two direc-

tions is very small. Major changes happen only when the
angular difference is about 1◦ or smaller (see greater DC
values). This short experimental study also confirms that the
centroid prior is worth to be applied mostly in cases when
only one projection is accessible. Therefore, in the following,
we consider reconstructions obtained by a single projection
direction.

In Figs. 5 and 6, we focus on reconstructions relying on
a single (horizontal and vertical, respectively) projection,
which, in general, does not ensure sufficient information for
preserving the centroid of the original object. The absolute
and relative pixel errors indicate that in all of these experi-
ments introducing the suggested centroid prior significantly
contributes to improving the quality of reconstructions.With-
out a priori information about the centroid, the object may
be slightly translated in the fixed projection direction, which
can cause a high pixel error, even when the reconstruction is
“visually appealing.” The alternative way to apply the infor-
mation about the centroid is to use it after the reconstruction
process, by simply translating the obtained result such that
its centroid coincides with the centroid given beforehand.
The reconstruction error in that case can be expressed by the
centered pixel error, first introduced in [19], given by

CPE = ‖ϕ(ur ) − u∗‖1 ,

where ϕ is a linear image translation operator that maps the
center of gravity of ur into the center of gravity of u∗. The
corresponding relative centered pixel error is then defined by

rC PE = 1

N
‖ϕ(ur ) − u∗‖1 · 100% .

In Figs. 5 and 6, the CPE value for each considered test
image is also indicated. In all cases, these values are greater
than PE values for the proposed method with centroid
prior (CENT). This confirms that it is more beneficial to
incorporate the centroid prior directly in the process of recon-
struction, as we suggested, rather than just utilizing it after
the reconstruction is completed.

Similar results can be obtained when, instead of the verti-
cal and horizontal directions, we use arbitrarily chosen ones.
In Fig. 7, a representative example is presented showing
reconstructions of the PH5 test image using projection data
acquired fromangles 160◦ or 20◦. The results confirm that the
proposed method with the use of the centroid prior provides
significant enhancement in quality.

Tables 1 and 2 collect the reconstruction errors for all test
images using projections from different directions (0◦, 45◦,
90◦, 135◦). For each projection direction, results obtained by
three different reconstructionmethods are presented.Regard-
ing the relative pixel errors, in 26 out of 36 test cases (i.e., in
72.22%of the cases) the application of centroid prior (CENT)
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provided better results than the other two approaches, and
only in one experiment (PH6, 0◦) the method without any
of both features (SPG) provided the best result. The SPG is
better than CENT in the following cases also: (Cell, 0◦, 90◦)
and (PH5, 45◦). These test images (PH5, PH6 and Cell) rep-
resent thin shaped figures, when the centroid does not have
to carry enough shape information. Taking a look at the pro-
jection error we, observe that—except in the case of PH6 and
projection direction of 90◦—in all cases the projection error
is also higher when there is no prior information. Finally, not
surprisingly, in almost all the cases the DC distance is the
smallest for the centroid-based approach.

8 Conclusion

The goal of this paper was to provide a new binary tomo-
graphic approach for very limited (or minimal) projection
availability. We proposed the centroid of the original object
as a new regularization feature. We then designed the recon-
struction as an energy minimization model and solved the
optimization by a deterministic gradient-based algorithm. In
the experimental evaluation, we compared the new method
to another recently proposed one which uses the orientation
prior [19] as well as with a classical reconstruction method
that uses no prior information [21,40]. Experiments show
clear advantages of the proposed method for reconstructions
using data from a single projection.

Based on the above, our general conclusion is that the
proposed reconstruction method which includes the shape
centroid regularization is a useful tool in reconstruction prob-
lems with very limited projection accessibility, especially in
situations when just a single projection is available.
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21. Lukić, T., Lukity, A.: A spectral projected gradient optimization for
binary tomography. In: Computational Intelligence in Engineering,
SCI, vol. 313, pp. 263–272. Springer (2010)
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