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Abstract The reconstruction of flame from the captured
images is a difficult and computationally expensive prob-
lem. Reconstruction from color images will keep the colorful
appearance, as is beneficial for visually realistic flame mod-
eling. Most of existing color-image-based methods rebuild
three density fields from RGB intensities; however, these
methods suffer from the color distortion problem due to the
high correlation of RGB intensities. A novel method for 3D
flame reconstruction using color temperature is presented in
this paper. Color-temperature mapping is calculated to avoid
color distortion; this method maps the RGB intensities into
the color temperature and its joint intensity. We improve the
multiplication reconstruction with visual hull restriction so
that the energy distribution is more reasonable, which allows
avoidance of the impossible zones. Experimental results indi-
cate that our approach is efficient in the visually plausible 3D
flame generation and produces better color restorations.

Keywords Color distortion · Color temperature ·
Multiplication reconstruction · Visual hull ·
Three-dimensional reconstruction · Flame/fire

1 Introduction

Fire/flame plays an essential role in virtual environments,
which is an inherently dynamic phenomenon with sparse
density, uneven particle distribution and self-illumination.
Generating computer animated flame is a difficult and com-
putationally expensive problem.
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Flame simulation methods currently focus on dynamic
texture, particle system, physics-based simulation and image-
based reconstruction [1]. Dynamic texture exhibits certain
stationarity properties in time from sequences of flame
images. It has advantages in the extrapolation and synthe-
sis of 2D dynamic flame; however, the flame information
from the third dimension is lost. A particle system that gen-
erates random particles is easy to implement to simulate tur-
bulent flame, but particle movement is too random to achieve
an accurate description of the movement of flame. Physics-
based simulation is closer to the real development according
to the physics equations; however, it is difficult to capture the
flames high-frequency details due to the numerical dissipa-
tion. Unlike traditional flame simulations, image-based 3D
reconstruction [2] captures multi-view images directly from
real flame, and based on these data generates 3D flame mod-
els. Thismethod is not only useful for reconstructing visually
realistic 3D flame, but it also deepens our understanding of
flame details.

Image-based reconstructionmethods have obvious advan-
tages for modeling visually realistic flame. However, they
also have two significant problems. On the one hand, two-
view reconstruction methods, such as multiplication and
flame sheet generation [3] are easy to implement but yield
poor visual effects. Multi-view (>2) reconstruction meth-
ods generate 3D modeling accurately but are high time-
consuming due to computational complexity. Thus, it is
preferable to develop a reconstruction algorithm with a sim-
ple system setup, which decreases the setup time making the
process more cost efficient and produces visually plausible
results. On the other hand, most of the existing color-image-
based methods [3–5] reconstruct three density fields from
RGB intensities according to the order of their appearance.
These methods suffer from color distortion due to the high
correlation of RGB intensities. A minor reconstruction error
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in one of the RGB components will result in an apparent
color difference in the final rendered image.

The motivation for this study is derived from the fact that
there is a one-to-one mapping relationship between the tem-
perature and color of a luminosity flameaccording to the prin-
ciple of color pyrometry [4]. A novel method for 3D flame
reconstruction with color temperature is presented in this
paper. A multi-camera digital imaging system is designed to
capture flame color images synchronously, and the captured
images are preprocessed to meet the linear optical model.
Then, we calculate the color-temperature mapping to con-
vert the RGB intensities into the color temperature and its
joint intensity for flame reconstruction. At last, a 3D flame
is reconstructed with color temperature using the multipli-
cation reconstruction and visual hull technology. Three dif-
ferent flame scenes are tested to verify the efficiency of our
method.

The main contribution of this paper includes: First, the
color temperature is calculated to avoid the color distortion in
flame reconstruction. Second, the multiplication reconstruc-
tion is restricted using a visual hull to discard the impossi-
ble zones for shape constraint and compensate the removed
intensity for photo-consistency. To the best of our knowledge,
this is the first study to introduce color temperature into the
flame reconstruction.

The remainder of the paper is organized as follows. The
next section reviews related work. Section 3 gives a concise
introduction to image formation model and an overview of
our method. Section 4, 5 and 6 describe data preprocess-
ing, color-temperature conversion and 3D flame genera-
tion, respectively. Section 7 introduces experimental setup.
Results and conclusions are given in Sects. 8 and 9.

2 Related work

Image-basedflame reconstruction has been an active research
area for the past few years. Some researchers [6,7] focus
on the characterization of flame geometry based on images.
Bheemul et al. [6] introduced an instrumentation system for
the three-dimensional quantitative characterization of flame
geometry, where a set of geometric parameters including
volume, surface area, orientation, length and circularity are
obtained. Upton et al. [7] put forward an optical acquisition
system which collects projection data from 12 directions to
measure the flame surface of the turbulent reacting flow. It is
effective to observe the details of turbulent combustion, but
difficult to calibrate since the two views are imaged to each
of the six cameras using a mirror array.

Furthermore, the image-based reconstruction methods
[8–10] were developed to acquire and rebuild physical para-
meters of flame. Atcheson et al. [8] addressed the first
time-resolved schlieren tomography system for capturing 3D

refractive index values, which directly correspond to physi-
cal properties of the flame with moderate hardware require-
ments. Ishino et al. [9] further designed a 40-lens camera
to measure the distribution of local burning velocity which
is important to develop data driven flame simulation on a
turbulent flame. In addition, a lot of work is about flame tem-
perature field measurement, such as [4,10] and [11].

More important is the image-based 3D flame intensity
and density field reconstruction because flame is a typical
inhomogeneous participating media. Ishino and Ohiwa [12]
introduced a custom-made camera which has 40 lenses to
simultaneously capture flame images and to reconstruct the
instantaneous 3D emission distribution of flame. Gilabert
et al. [13] employed a digital imaging technique to recon-
struct gray-scale sections of flame from three 2D images
taken by three identical charge-coupled device (CCD)mono-
chromatic cameras. They [14] further presented a 3D imaging
system with three RGB CCD cameras to acquire the lumi-
nosity distribution of combustion flame. It is useful to quanti-
tatively characterize the internal structures of flame. In 2003,
Hasinoff and Kutulakos [3] presented a photo-consistent
reconstruction method which reduces fire reconstruction to
the convex combination of sheet-like density fields. It is easy
to implement two-view reconstruction, but multi-view (more
than two views) reconstruction has very high computational
complexity. A year later, Ihrke and Magnor [5] proposed a
tomographic method for reconstructing a volumetric model
from multiple color images of flame, which restricted the
solution by visual hull. Their approach reconstructs the actual
3D distribution of flame intensity, but does not consider the
relationship of the RGB intensities.

In this paper, we are not focusing on the simulating phys-
ical properties of fire, but will instead focus on generating
visually plausible flame animations that can be rendered
fromarbitrary viewpoints. Three-dimensional flame is recon-
structed using the multiplication reconstruction and visual
hull technology for shape constraint and photo-consistency.
Different from existing color-image-based methods, our
method considers the relationship of RGB intensities using
color temperature to generate 3D flame.

3 Method overview

In this section, a concise introduction to the authors’ s image
formation model and an overview of the modeling method
are provided. There is a linear relationship between intensity
and density of the flame based on the linear optical model
(see Fig. 1), which was introduced by Hasinoff et al. [3].

At a given image point, the image irradiance Î can be
expressed as the sum of integrates radiance from luminous
flame material along the ray through that pixel, which incor-
porates background radiance:
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Fig. 1 Schematic illustration of flame imaging

Î =
L∫

0

D(t)τ (t)J (t)dt + Îbgτ(L), (1)

where D(t) is the flame’s density field along the ray; J is
the total effect of emission and in-scatter less absorption and
out-scatter; L defines the interval [0, L] along the ray where
the field is nonzero; Îbg is the radiance of the background;
and τ models transparency:

τ(x) = exp

⎛
⎝−σ

x∫

0

D(t)dt

⎞
⎠ , (2)

where σ is a positive constant dependent on the medium. To
simplify themodel, we further ignore refraction, neglect scat-
tering, assume constant self-emission, darken background
Îbg = 0, and linearize the model as

Ip =
L∫

0

D(t)dt, (3)

where Ip is pixel p’s intensity. Since flame irradiance is pro-
portional to the intensity of pixels when we assume a linear
camera response, the flame is modeled as a 3D density field
D based on flame reaction products, and image intensity is
related to the density of luminous particles in the flame.

Color-image-based reconstruction which keeps the color
information has advantage for modeling visually realistic
flame. Most existing color-image-based methods rebuild
three densityfields fromRGB intensities according toEq. (3).
However, a minor reconstructed error in one RGB compo-
nents will result in an apparent color difference in the final
rendered image. Considering the high correlation of RGB
intensities, a novel flame generation method with color tem-
perature is proposed in this paper. Thismethod includes three
processes: data preprocessing, color-temperature mapping
and 3D flame reconstruction, as illustrated in Fig. 2.

The first step of data preprocessing is essential to meet
the assumption of a linear optical model. The second step
calculates color-temperature mapping which maps the RGB

Fig. 2 Framework for 3D flame reconstruction

intensities into the color temperature and its joint intensity.
In the third step, a 3D flame is reconstructed with color tem-
perature using the multiplication reconstruction and visual
hull technology. These steps will be described in detail in the
following sections.

4 Data preprocessing

According to the linear optical model, the sum of the image’s
intensity which is obtained from any view is constant for a
given flame density field, as shown in Fig. 3. Where D is a
given flame density field, I1 and I2 are the image intensity
obtained when the camera is located at different angles, and
then I1 should be equal to I2. There are, however, some tiny
differences between I1 and I2 in the same epipolar plane.
Potential sources of this error are background noises, cam-
era calibration errors, captured image saturation, nonlinear
camera response curve, absorption and scattering of flame.
In practice, eliminating the error entirely is not easily done
within the limitation of the current data capture equipment
and methodology. Therefore, one must preprocess the cap-
tured images using background subtraction, epipolar plane
matching and epipolar line equalization before generating
3D flame.

Background subtraction eliminates the majority of the
noises to isolate the target flames. In this paper, Otsu’s
method [15] is used to automatically perform clustering-

Fig. 3 Diagram of density field projection
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Fig. 4 Background subtraction. a Raw image, b binarization, c back-
ground substraction

Fig. 5 Diagram of epipolar plane matching

based image thresholding and to remove the background
noises, as shown inFig. 4. It is able to enhance the precision of
color-temperature conversion and 3D flame reconstruction.

Epipolar plane matching is used to locate the same object
in different images, which is crucial to reconstructing 3D
flame data field as shown in Fig. 5whereM represents a point
in space, V1 and V2 are the image planes of two cameras. This
allows us to get the projected pixel coordinates of M in the
image plane V1 and V2,m1(x1, y1) andm2(x2, y2), based on
the projection matrices of the two cameras.

Assuming that all cameras are located in the same hori-
zontal plane and are equidistant to the target flame, where
the pitch angles are the same for all the cameras in world
coordinate. Therefore, the epipolar lines of y = y1 in V1 and
y = y2 in V2 located in the same epipolar plane, which are
shown as dashed lines in Fig. 5. Then, the pixels of y = y1+n
in V1 and y = y2 + n in V2 locate in the same epipolar plane
where n is an arbitrary integer.

Epipolar line equalization ensures that the sumof the pixel
intensities of each epipolar line, such as y = y1 and y = y2
(see Fig. 5), is a constant in the same epipolar plane in order
tomeet the requirement of the linear optical model. The sums
of pixel intensities over each epipolar line are averaged in the
same epipolar plane formulated as:

Ī = 1

N

N∑
i=1

Ii , (4)

where Ī is the mean intensity of the epipolar lines, N is
number of viewpoints, and Ii is the sum of pixel intensity

of the i th epipolar line. Furthermore, the pixel intensity for
each epipolar line is corrected with Ī , shown as:

pnew( j) = Ī ∗ p( j)∑M
j=1 p( j)

, (5)

where p( j) is the initial intensity of the j th pixel, pnew( j) is
the corrected one, and M is the total number of pixels on this
epipolar line. For color images, it is necessary to equalize the
RGB intensities, respectively, which further exacerbates the
problemof color distortion. In the following section, the color
temperature of flame is introduced to avoid color distortion
in flame reconstruction.

5 Color-temperature mapping

There is a one-to-one mapping between the temperature and
color of luminosity flame according to the radiation ther-
mometry principle [16]. In this section, the ideal blackbody
color is obtained from Planck’s blackbody law and three pri-
mary color principle (T2RGB), and a closest point search
method is designed to calculate the color temperature of
flame images (RGB2T ). This mapping is assessed by test
data at the end.

5.1 Radiation thermometry principle for flame

According to Planck’s radiation law [17], the radiant exis-
tence of an ideal surface radiator with wavelength λ (nm)
and temperature T (K) can be expressed as

M(λ, T ) = ε(λ, T ) · C1

λ5 · (eC2/λT − 1)
, (6)

where C1 and C2 are known as Planck constants, ε(λ, T )

is the blackness of radiator, and ε = 1 when radiator is an
ideal blackbody. Then the radiant existence of the radiator
on camera response band (λ1, λ2) can be described as

M(T ) =
λ2∫

λ1

M(λ, T )dλ. (7)

To an image sensor (CCDorCMOS), the irradiance provokes
photoelectric conversionwhich generates an image. In parax-
ial geometrical optics, the irradiance E that the image plane
receives can be described as [16]

E = KT (λ)M(T )

4
·
[
2a

f ′

]2
, (8)

where KT (λ) denotes the optical system’s transmittance,
which is the function of wavelength, and 2a/ f ′ is called rel-
ative aperture. Furthermore, the output current (I ) of CCD
photo-generated charge is not only related to the irradiance
E , but also related to exposure time t , namely I = μEt ,
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Reconstruction of three-dimensional flame with color temperature 617

where μ denotes the coefficient of photoelectric conversion.
Let the spectral response function of monochrome CCD is
Y (λ) in visible range (380nm, 780nm), then the pixel gray-
scale value can be obtained as

H = 1

4
ημt

[
2a

f ′

]2 780∫

380

KT (λ)M(λ, T )Y (λ)dλ, (9)

where η demonstrates the conversion factor between the out-
putted current and the image gray value. For colorCCD, there
are three spectral response functions, r(λ), g(λ) and b(λ),
then the outputted RGB gray-level values of CCD pixel can
be described as [18]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R = A
∫ 780
380 r(λ)M(λ, T )dλ

G = A
∫ 780
380 g(λ)M(λ, T )dλ

B = A
∫ 780
380 b(λ)M(λ, T )dλ

, (10)

where A = (ημt/4) · KT (λ) · [2a/ f ′]2 and can be obtained
by calibration.

The monodromy of temperature determines the mon-
odromy of the objects radiation spectra, and further determi-
nates the monodromy of the color generated by the radiation
spectra. Therefore, there is a one-to-one mapping between
the measured temperature T and the outputted R, G, B gray-
level values of CCD pixel [16,18,19].

However, in term of flame, it is difficult to find the real
surface as it is a volume radiator. The intensity of a pixel in the
flame image is determined by the integral of radiant energy
of the small radiators with different temperature along the
viewing ray, as illustrated by Fig. 6a. Dividing the 3D flame
into voxels, and the radiant existence of the i th voxel with
temperature T, Mi (T ), can be calculated using Eq. 7. Then
the radiant existence that pixel j received from voxel i can
be formulated as [10,19]

Mi = W (i → j)Mi (T ), (11)

where W (i → j) is the weight of voxel i to the intensity of
pixel j , and the radiant existence of all voxels to the pixel j
can be described as

Mj =
∑
i

Mi . (12)

Assume the accumulated radiant existence Mj equals
to the radiant existence of an ideal surface radiator with
temperature T , namely Mj = M(T ), the same irradiance
on the image planes will be received, and the CCD will
output the same pixel intensity. So, the volume flame can
be approximated by an ideal surface radiator in viewing
direction according to the radiation thermometry princi-
ple [10,16,18,19], as shown in Fig. 6b. This radiator meets

Fig. 6 Diagram of flame imaging process

the following assumptions: its surface can be divided into
several facets which have a one-to-one correspondence with
the camera’s pixels; each pixel only accepts the radiation
energy of its corresponding facet; and each facet has a tem-
perature T .

Therefore, there are a one-to-one mapping between the
pixel’s intensity and the facet’s temperature. The intensity
of the flame image can be considered as another “form” of
the temperature field distribution [10]. And the facet’s tem-
perature T can be regraded as the color temperature of cor-
responding pixel color. Certainly, this temperature is only a
relative temperature to blackbody radiation rather than the
real one.

5.2 Color calculation of the ideal blackbody

The spectrum emitting from an ideal blackbody is entirely
determined by its temperature. According to the definition
of RGB color space [20], the RGB coordinates of an ideal
blackbody at temperature T would be given by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R = ∫ 780
380 r̄(λ)M(λ, T )dλ

G = ∫ 780
380 ḡ(λ)M(λ, T )dλ

B = ∫ 780
380 b̄(λ)M(λ, T )dλ

, (13)
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Fig. 7 Hues of the blackbody
radiators with temperature
(1,000K, 10,000K)

where r̄(λ), ḡ(λ) and b̄(λ) are the sensitivity functions for
the R, G and B sensors, respectively.

To simplify the integral calculation and avoid the device-
dependant of RGB color space, a discrete method [22] is
adopted to compute the spectra color. We first compute the
tristimulus values of CIE XY Z color space, then transform
the CIE perceptual color XY Z into device parameters RGB
with specific primary color chromaticities. The CIE XY Z
components of an ideal blackbody at temperature T are
calculated through

X = �λ

780∑
380

x̄λ · M(λ, T )

Y = �λ

780∑
380

ȳλ · M(λ, T )

Z = �λ

780∑
380

z̄λ · M(λ, T )

, (14)

here, x̄λ, ȳλ and z̄λ are the CIE color matching functions.
They are constructed by measuring the mean color percep-
tion of human observers samples over the visual range [21].
Since the perceived color only depends upon the relative
magnitudes of X,Y and Z , the chromaticity coordinates are
defined as

x = X/(X + Y + Z)

y = Y/(X + Y + Z)

z = Z/(X + Y + Z)

. (15)

Furthermore, we convert perceptual color (CIE XY Z ) to
device color (RGB) by solving (r, g, b) in Eq. 16.

⎡
⎣xr xg xb
yr yg yb
zr zg zb

⎤
⎦ ·

⎡
⎣r
g
b

⎤
⎦ =

⎡
⎣x
y
z

⎤
⎦ , (16)

where (xr , xg, xb), (yr , yg, yb) and (zr , zg, zb) are known as
the equipment specified color parameters; (r, g, b) are the
weight of red, green and blue primaries which yield the
desired x, y and z.

Since the temperature of radiators with observable color
(minimum visible red) is more than 800K [23], and the
color temperature of common light sources does not exceed
10,000K. The colors of the ideal blackbody (between 1,000
and 10,000K) are computed, as shown in Fig. 7.

Fig. 8 Instances of flame color-temperature conversion. The first data
come from Reelfire 2 [25], and the second data come form Alcohol
dataset. Where a, e are the original RGB images; b, f are the cal-
culated temperature fields with equipotential lines using the closest
point research method; c, g show the results of converting the tem-
perature field back to color image; d, h are the residuals of a−c, e−g,
(RGB−RGBconverted), and the residual plots are shown in grayscales

5.3 Closest point search for color temperature calculation

The color temperature of a flame is the temperature of an
ideal blackbody radiator that radiates light of comparable
hue to that of the flame. Given the color of a flame image,
its color temperature can be resolved by Eq. (7) with the

123



Reconstruction of three-dimensional flame with color temperature 619

Newton iteration method in theory. However, it is an ill-
posed problem for involving a large spectrum width. Instead
of solving the complex nonlinear equations, a Closest Point
Search Method is proposed to approximately compute the
flame color temperature (RGB2T ).

The closeness of the two colors can be represented by the
distance between two points in the normalized RGB space
[24]. Normalized RGB is obtained from the RGB values by
a simple normalization procedure

r = R/
√
R2 + G2 + B2

g = G/
√
R2 + G2 + B2

b = B/
√
R2 + G2 + B2

, (17)

In normalized RGB space, we look up the closest point on
the blackbody color temperature curve with target point and
take the temperature of the closest point as the temperature
of target color. The pseudo codes of this algorithm are as
follows.

Algorithm 1: Closest point search
Preprocess:
T −→ (RT ,GT , BT ), T = 1000, . . . , 10000K ;
//Build a temperature-color lookup table for ideal //blackbody
(see Fig. 7).
(RT ,GT , BT ) −→ (rT , gT , bT );
//Normalize these colors by Eq. (8).
(rT ↓, gT , bT ) −→ T ;
//Sort the table by r and generate a //color-temperature lookup
table.
Input: (Ri ,Gi , Bi ), i = 1, 2, · · · , N .

1 //(Ri ,Gi , Bi ) is the pixel’s color of a flame image, N is the total
number of the pixels in this image.
Output: T ←− [T1, T2, . . . , TN ].

2 Initialization:
Pi ←− (I n f, I n f, I n f ); dmin ←− I n f ; T i ←− 0; // Pi is the
closest point of target point; dmin is the distance from (ri , gi , bi )
to Pi ; Ti is the color temperature of the target point.

3 for i ←− 1 to N do
4 (Ri ,Gi , Bi ) −→ (ri , gi bi ); //Normalize (Ri ,Gi , Bi ).
5 Binary search the closest point rtemp with ri by item r ;
6 Pi ←− (rtemp, gtemp, btemp);
7 d ←− ‖(ri , gi , bi ) · (rtemp, gtemp, btemp)‖;
8 dmin ←− d;//Calculate the distance from (ri , gi bi ) to Pi .
9 for each point which (|r j − rtemp| < d) do

10 di j ←− ‖(ri , gi bi ) · (r j , g j , b j )‖;
11 if di j < dmin then
12 dmin ←− di j ; Pi ←− (r j , g j , b j );
13 end
14 end
15 Ti ←− T (Pi ); //Find Pi ’s temperature from

color-temperature lookup table.
16 end

Different from the direct search method with time com-
plexity of O(n), the closest point search method is easy to
implement with time complexity of O(lgn). The conver-

Fig. 9 Sketch of 3D flame generation

Fig. 10 An example for multiplication reconstruction with color tem-
perature

sion between flame color and temperature is a lossy process,
and it is acceptable when the error is within the permissible
range. Taking twoflame datasets for example, we first change
the flame images into the combination of color temperature
and its joint intensity (

√
R2 + G2 + B2) by the closest point

search method (RGB2TI), then convert the color temperature
and joint intensity back to RGB images (TI2RGBconverted) by
the blackbody radiation color calculation. Figure 8b, f shows
that the temperature distributions calculated from Fig. 8a, e
are basically in accordance with the real flames. Figure 8c,
g shows that the reconstructed images from Fig. 8b, f are
the same as the raw flames (Fig. 8a, e), and the conversion
errors (Fig. 8d, h) are visually acceptable. Therefore, color-
temperature conversion is an effective way to map the RGB
intensities into the color temperature and its joint intensity
in flame reconstruction.

6 Three-dimensional flame reconstruction

Flame reconstruction is equivalent to a computerized tomog-
raphy problem by modeling fire as a 3D density field (see
Fig. 1). Since each epipolar plane is independent of the oth-
ers under the assumption of the flame linear imaging model,
the 3D reconstruction can be regarded as an L 2D recon-
struction problems where L is the number of pixel rows of
the image captured.

In this section, a reconstruction method with color tem-
perature is proposed since the intensity of the flame image
can be considered as another “form” of the temperature field
distribution,where the initial 3Dfield is generated usingmul-
tiplication and the projected results are restricted using visual
hull technology, as shown in Fig. 9.

Firstly, the initial 3D data field is reconstructed rapidly
using multiplication [3] from two orthogonal views. Given
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Fig. 11 Diagram of field data projection

images I1 and I2 corresponding to the row and column sums
of the field, respectively, the multiplication reconstruction
can be describe as D = I1 I T2 (see Fig. 10). Different from
existing methods, we use color temperature and its joint
intensity instead of RGB intensities to generate 3D data field
by multiplication. Multiplication reconstruction is a real 3D
approach but generates significant artifacts during view syn-
thesis since the result represents the most spread-out and
least-coherent solution. It is imperative to further restrain the
multiplication solution.

Secondly, the initial 3D field is projected to a new image
plane which is calculated for a new rendering viewpoint.
There are two reasons why we must project data field to 2D
image plane before visual hull constraint. On the one hand,
it is advantageous to compensate the removed intensities for
photo-consistency. On the other hand, the color temperature
is more meaningful in 2D image than 3D, since it is a relative

temperature of integrated brightness. The detailed process of
field data projection as shown in Fig. 11. Where I1 and I2
are the inputted images, O is the center of data field in an
epipolar plane. Given a viewing angle, we assume existing
an imaging plane Inew which across the center of 3D field and
is perpendicular to the optical axis. l is the intersecting line
of Inew and the epipolar plane, Vi is the field data of voxel i .
Assuming Vi is projected to l at Pi , where Pj ≤ Pi < Pj+1,
then the projected results can be described as

Dj+ = Vi ∗ (| Pi − Pj | /dpixel),

Dj+1+ = Vi ∗ (| Pj+1 − Pi | /dpixel),
(18)

where Dj is the projection of pixel j received, dpixel is the
unit pixel size.

Finally, the 3Dvisual hull is computed from2Dsilhouettes
of 4 views images by rapid octree construction [26]. The
visual hull is projected onto the target image plane, and the
projected data that lay outside the projected silhouette are
removed. Most importantly, the removed pixels’ intensity is
allocated in proportion to the remainder in the same epipolar
line for photo-consistency.

The pseudo codes of 3D flame reconstruction algorithm
are as follows.

The multiplication reconstruction with color temperature
is restricted by using visual hull technology, where the culled
intensities are compensated for photo-consistency while the
impossible zones are discarded for shape constraint. Fig-
ure 12 shows that visual hull constraint reduces the artifacts
andmaintains the shape of real flames during view synthesis.

7 Experimental setup

A multi-camera digital imaging system comprised of four
optical RGB cameras and an auxiliary ring is used to acquire
2D color images of flame simultaneously from four direc-
tions, as depicted in Fig. 13.

Fig. 12 Steps of visual hull generation and constraint: the data come
from Candle dataset, frame 45, and the 50◦ angle of view is synthe-
sized. a generate 3D flame field with multiplication, b calculate 3D

visual hull, c project the visual hull onto the target image plane and
binarization, d remove the outside of silhouette and e compensate the
inside of silhouette
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Algorithm 2: Improved flame reconstruction
Input: {(R,G, B)i , i = 1, 2, 3, 4}.

1 //Color images captured from four views.
Output: (R,G, B)new .

2 //Render the reconstructed flame from arbitrary viewpoints.

3 for each frame do

4 {(R,G, B)i , i = 1, 2, 3, 4} rapid−−−→
octree

V isualHull; //Calculate

3D visual hull from 2D silhouettes of four views images.

5 (R,G, B)1
RGB2T−−−−→ (T1, I1); (R,G, B)2

RGB2T−−−−→ (T2, I2);
//Map the RGB intensities into the color temperature and its
joint intensity.

6 DT ←− T T
1 T2; DI ←− I T1 I2; //Reconstruct the initial 3D

data field by multiplication.
7 DV H ←− V isualHull; //Calibrate the visual hull to the

identical 3D space.
8 Calculate a new image plane Pnew for a new rendering

viewpoint;

9 DT
Pnew−−→ Tp; DI

Pnew−−→ Ip; //Project the generated data field
onto Pnew .

10 DV H
Pnew−−→ Vp; //Project and binarize the visual hull onto

Pnew .
11 Tcull ←− (Tp&&Vp); Icull ←− (Ip&&Vp); //Cull the

projected data that lay out side the projected silhouette.
12 Tnew ←− Tcull ; Inew ←− Icull + (Ip&&Vp); //Compensate

the removed pixels’ intensity in proportion to the remainder.

13 (Tnew, Inew)
T 2RGB−−−−→ (R,G, B)new; //Convert the color

temperature and joint intensity back to color image.
14 end

Fig. 13 Data acquisition platform

Fig. 14 Physical devices of data acquisition

Fig. 15 Comparisons between the flame images captured and recon-
structed

On this platform, the cameras are located on the auxil-
iary ring with 45◦ intervals. The target flame is placed at the
center of the circle O , which is equidistant to each camera.
In addition, the pitch angles for each camera are basically
equal, which is easy to match the epipolar plane. The physi-
cal devices are shown in Fig. 14.

In our setup, the cameras are the Point Greys Flea 2
series 08S2C color cameras, with standard resolution of
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Fig. 16 Synthesized views of two different flames (Alcohol and Mixture): The five images of each row cover approximately 70◦

1,032×776 and are connected to a computer via IEEE-1394b
interfaces. The auxiliary ring is a double circle ring with a
diameter of 1.1m, and the inner ring is rotatable on which the
cameras are fixed. We can adjust the positions of the cam-
eras by rotating the inner ring while maintaining their rela-
tive positions. A black cloth is used to enclose the acquisition
environment to shield other light sources. Additionally, we
add a cover to the alcohol lamp to avoid the specular reflec-
tion and highlights. The Flea 2 cameras are used to support
the synchronization of soft trigger and external trigger. We
utilize the software providedby themanufacturer for soft trig-
ger synchronization. The extrinsic and intrinsic parameters
of all cameras are calibrated with standard techniques [27].

8 Results and discussion

Three different flame scenes were tested in this paper show-
ing the combustion of candle, alcohol and a mixture of both
(“Mixture”). Experiments were performed on amachinewith
dual core CPU 2.66GHz, 2.67GHz and 2GB ofmemory.We
captured 100 frames of 640×480 images from three scenes,
respectively, with a frame rate of 30 fps.

The comparison was made between the reconstructed
results and the ground truth on the datasets of Candle and
Alcohol (see Fig. 15). The first column is the captured images
from real fire, the second column are the generated results by
our method, and the last column is the reconstruction errors

with grayscales. The first and third rows are the input view-
points, the second and forth rows are the extrapolated view-
points for (a) and (b), respectively. To preserve visual realism,
reconstructed densitiesmust reproduce the input images. Fig-
ure 15 shows that the generated flames are basically consis-
tent with the captured flames, where the reconstructed results
reproduced the input images. So, it is effective to reconstruct
different flames with photo-consistency.

Figure 16 shows the rendering results of incorporating
more views other than the four input views. In Fig. 16, all
views can be rendered without obvious over-fitting. There-
fore, it is a real 3Dmethod which satisfied good view extrap-
olation.

Figure 17 shows the comparison of reconstructed results
before and after the visual constraint. It is obvious that the
restricted flames (Fig. 17d, i) are closer to the real flames
(Fig. 17a, f) than the multiplication reconstructed results
(Fig. 17b, g). The basic shape of the flame was retained when
we restricted the multiplication reconstruction with visual
hull (Fig. 17c, h), and the reconstruction errors (Fig. 17e, j)
are visually acceptable. So the visual hull constraint is essen-
tial to generate visually plausible 3D flame in this paper.

Figure 18 shows the comparison results of flame recon-
struction using RGB intensities and color temperature. There
were obvious color differences in the reconstructed results
when using RGB intensities (Fig. 18a) due to the high cor-
relation of RGB intensities. A minor change in one of RGB
components may result in an apparent color difference in the
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Fig. 17 Visual hull constraint. a, f are ground truth images we cap-
tured, b, g are the reconstructed results in a interpolation view with
multiplication, c, h are the visual hulls generated from four views, d, i
are the results after removing the outside of silhouette and compensat-
ing the inside of silhouette, and e, j are the reconstruction errors with
grayscales

final rendered image. However, flame reconstruction with
color temperature (Fig. 18b) can acquire better color con-
sistency in rendered images. These results show that flame
reconstruction using color temperature is effective to solve
the color distortion problem in flame reconstruction because
the color temperature fixed the RGB coupling relationship.

Improvement in average construction time (ms) per frame
as shown in Table 1 where time costs of data processing
for three datasets are record. In Table 1, the average gen-
eration time is about 4.5 s in Mixture dataset with resolu-
tion 310×200, and is only 2.4 s in Candle dataset with
resolution 240×200. The total time of flame reconstruc-
tion is no more than 5s per frame, which is much less than
the flame sheet decomposition (hours) [3] and the algebraic
tomographic reconstruction algorithm (minutes or dozens of
minutes) [13,28].

Fig. 18 Comparison of the reconstruction of RGB intensities with
color temperature. The left column is the reconstructed flames by RGB
intensities, and the right column is the generated flames with color
temperature

In order to describe the performance clearly, we con-
verted the Table1 data into 3-layer pie chart representing
the results of each dataset (Candle, Alcohol and Mixture).
Figure 19 shows that visual hull constraint was the most
time-consuming part of our method which takes about half
of total time, and the color-temperature conversion is the
second. This information allowed to further improve the per-
formance by optimizing these two parts for interactive appli-
cations. Comparing the time of color-temperature conversion
from the three selected datasets, we concluded that consumed
time increases accordingly with the increase in image com-
plexity.

All in all, four observations can be made from our exper-
iments. First, our 3D method has excellent view extrapola-
tion. Second, the visual hull compensated the culled inten-
sity for photo-consistency while abandoning the impossible
zones for shape constraint. Third, better color consistency
was achieved in rendered image since the color tempera-
ture fixes the relationship among RGB intensities. Forth, our
method is time-saving (no more than 5s per frame) and easy
to implement (only 4 views) thereby making it cost efficient.

Certainly, there are still some limitations in our method,
i.e., difficulties in addressingflameswith holes and the inabil-
ity of our color-temperature conversion to process a color
that deviates too far from the blackbody radiation curve. The
experiments conducted herein dealt only with ideal black-
body colors.

9 Conclusions and future work

In this paper, a novel 3D flame reconstruction method using
color temperature has been presented. Firstly, the color-
temperature mapping of flame was calculated to map the
RGB intensities into the color temperature and its joint inten-
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Table 1 Comparison of the
time cost of data processing on
different datasets

Dataset Resolution Color-temperature
conversion

Multiplication
reconstruction

Visual hull
generation

Visual hull
constraint

Total

Candle 240×200 358 132 453 1,365 2,306

Alcohol 240×200 538 130 390 1,360 2,418

Mixture 310×200 1,867 166 451 1,978 4,462

Fig. 19 Visualizing the distribution of time consumption, where the
radius of each torus is proportional to the overall time spent

sity for solving the color distortion problem in flame recon-
struction. Secondly, the multiplication reconstruction with
color temperature was restricted by using visual hull, which
compensated the culled intensity for photo-consistencywhile
discarding the impossible zones for shape constraint. Three
different flame scenes were tested in this paper. Experimen-
tal results illustrated that our approach is time-saving (<5s)
and efficient to generate visually plausible 3D flame without
apparent color distortions.

Future work includes calibrating the color temperatures to
the real temperatures, applying our method to flame interac-
tive simulation, and exploring realistic flame rendering based
on the color temperature field.
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