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Abstract
Model-based damage identification for structural health monitoring (SHM) remains an open issue in the literature. Along 
with the computational challenges related to the modeling of full-scale structures, classical single-model structural identifica-
tion (St-Id) approaches provide no means to guarantee the physical meaningfulness of the inverse calibration results. In this 
light, this work introduces a novel methodology for model-driven damage identification based on multi-class digital models 
formed by a population of competing structural models, each representing a different failure mechanism. The forward models 
are replaced by computationally efficient meta-models, and continuously calibrated using monitoring data. If an anomaly 
in the structural performance is detected, a model selection approach based on the Bayesian information criterion (BIC) is 
used to identify the most plausibly activated failure mechanism. The potential of the proposed approach is illustrated through 
two case studies, including a numerical planar truss and a real-world historical construction: the Muhammad Tower in the 
Alhambra fortress.

Keywords Damage identification · Digital twins · Model selection · Model updating · Operational modal analysis · 
Structural health monitoring · Supervised damage identification

1 Introduction

Efforts worldwide are underway to transition from run-to-
failure to condition-based preventive structural maintenance 
policies [1, 2]. This paradigm shift is driven by the rising 
awareness among citizens and policymakers of the signifi-
cant socio-economic impacts of aging infrastructures. These 
derive from the high risks associated with deficient main-
tenance, possibly leading to catastrophic collapses and loss 
of human lives. Exacerbated by the faster rates of material 
degradation induced by climate change, experts estimate that 
damages to critical infrastructures in Europe could increase 
ten-fold by the end of the century (from the current 3.4 to 
34 billion €) [3]. In this context, Structural Health Monitor-
ing (SHM) systems are being increasingly adopted as an 

effective means to provide continuous health assessment 
of structures, enabling precise interventions to extend their 
lifespan, reduce costs, and prevent collapses. In this regard, 
cultural heritage structures are particularly critical as stra-
tegic assets for sustainability in Europe [4]. Vibration-based 
SHM systems are particularly well-suited for these construc-
tions of invaluable historical and cultural value due to their 
non-destructive and non-intrusive nature, global damage 
assessment, and relatively easy automation [5, 6]. However, 
while these systems excel at detecting damage, their use for 
achieving higher identification levels such as localization 
and quantification is still evolving and subject to scrutiny. 
These identification levels, however, become critical in the 
aftermath of disruptive events, such as earthquakes, facilitat-
ing the organization of emergency services and intervention 
prioritization.

Damage identification in SHM is typically structured as 
a hierarchical problem with increasing levels of complex-
ity [7]: I—Detection; II—Localization; III—Classification; 
IV—Extension; and V—Prognosis. This problem can be 
addressed through either unsupervised learning (UL) and 
supervised learning (SL) techniques [8]. Data-driven UL 
approaches directly analyze monitoring data to detect the 
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appearance of damage in the form of anomalies affecting 
the structural performance [9–11]. In this light, techniques 
such as statistical pattern recognition and quality control 
charts have gained popularity, as they are independent of 
structural models and associated uncertainties. Addition-
ally, these techniques seamlessly integrate into continuous 
SHM [12–14]. However, one of the key limitations of UL 
is its limitation to damage detection (Level I), as it can only 
locate and quantify defects in some specific cases [15]. To 
achieve higher damage identification levels, SL techniques 
often become imperative. These methods, often referred to 
as structural identification (St-Id) or model updating, stand 
as the most efficient means to achieve complete damage 
identification. The goal of model updating is to adjust the 
parameters of a certain structural model of the monitoring 
asset with the purpose of minimizing discrepancies between 
the model’s theoretical predictions and actual experimental 
observations [16–18]. In this light, if a damage condition 
emerges, it can be translated into a variation in the mechani-
cal properties of some specific structural members. None-
theless, the inverse calibration of structural models of real-
world civil engineering structures is often ill-conditioned 
[19], which refers to the lack of convexity in the associated 
optimization problem. As a solution, several studies in the 
literature have proposed the use of global optimization algo-
rithms such as genetic [20–22] or particle swarm optimiza-
tion (PSO) algorithms [23, 24], as well as robust probabilis-
tic Bayesian St-Id [25, 26].

The connection between St-Id and the modern concept 
of Digital Twins (DT) is evident. Broadly, a DT serves as 
a digital counterpart of a physical asset characterized by 
virtual-real interactions [27–29]. In the context of SHM, 
a DT involves a physics-based or machine learning model 
that continuously utilizes monitoring data to deduce and 
categorize the health status of the physical asset [30]. This, 
in turn, enables the autonomous trigger of specific opera-
tional, inspection, and maintenance actions [31]. The use of 
St-Id for constructing DTs, however, represents a formidable 
challenge. This is primarily due to the large computational 
burden of numerical models of real-world civil engineer-
ing structures, as well as the considerable volume of model 
evaluations required by global optimization algorithms. As 
a solution to reconcile St-Id with real-time SHM schemes, a 
large variety of surrogate models (SM) have been reported 
in the literature to bypass resourceful numerical models 
in a computationally efficient way [32–34]. In this light, 
Cabboi et al. [35] adopted a second-order response surface 
model to meta-model the modal predictions of a 3D FEM of 
a stone-masonry tower, the San Vittore bell-tower in Varese, 
Italy. Those authors adopted a SM-based deterministic St-Id 
approach, demonstrating its effectiveness under various syn-
thetic damage scenarios. Similarly, García-Macías et al. [36] 
proposed the use of a SM combining adaptive polynomial 

chaos expansion (PCE) and Kriging modeling for continuous 
Bayesian damage identification of a historic masonry civic 
tower, the Sciri Tower in Perugia, Italy. These experiences 
evidence the potential of SMs to conduct quasi real-time 
damage identification.

While SMs hold significant potential for developing struc-
tural DTs, the inherent ill-posed nature of the St-Id problem 
remains a major limitation. Ill-posedness refers to the lack of 
uniqueness or stability in the solutions of an inverse problem 
[37]. To address this issue, established approaches in the 
literature include regularization and parameterization tech-
niques [19]. Common regularization approaches encompass 
various adaptations of the classical Tikhonov regularisation 
[38], as well as the natural regularization capabilities of 
Bayesian St-Id [39]. An equally crucial aspect is the selec-
tion of an appropriate model parameterization. Essentially, 
this entails the selection of parameters that exert the most 
significant influence on the model’s output. To this aim, lin-
ear sensitivity analysis is the simplest and most intuitive 
approach [40], although more advanced methods are also 
available in the literature, such as variance-based global sen-
sitivity analysis [41], sensitivity-based parameter clustering 
[42], and others [26].

Nevertheless, model parameterization becomes a chal-
lenging issue in the context of damage identification, with no 
general procedure being available in the literature. In these 
applications, it is evident that regions or members affected 
by a particular pathology are not strictly related to the sensi-
tivity of the undamaged configuration. Instead, they depend 
on the specific damage mechanism, such as the loading 
configuration or the load-bearing capacity of the structural 
members. This implies that, if a classical sensitivity-based 
parametrization is adopted, elements with limited (undam-
aged) sensitivity may be omitted in the St-Id regardless of 
their susceptibility to a certain damage mechanism. Moreo-
ver, in conditions of limited observability, as is common in 
St-Id of civil engineering structures, ill-conditioning limita-
tions induce considerable uncertainties in the damage locali-
zation task, especially when combining parameters with dif-
ferent sensitivities [43]. In this context, it deems reasonable 
to believe that engineering knowledge can be injected into 
the St-Id problem by narrowing the parameter search space 
to regions/members affected by certain structural patholo-
gies frequently observed in similar structures. This idea 
has prompted some researchers to pursue St-Id approaches 
involving not just a single model but a family of compet-
ing models, representing diverse damage mechanisms that a 
structure may experience. Building on this approach, when 
structural damage occurs, the model class that most accu-
rately represents the damage-induced effects can be identi-
fied through a model class selection approach, providing 
intrinsic information on the damage localization. Addition-
ally, once selected, the corresponding fitting parameters offer 
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more detailed information on both the localization/extension 
and severity of the damage. This problem aligns with the 
field of model class selection in statistics, referring to the 
task of choosing the best model from a model class to rep-
resent a set of data [44, 45].

To address the model selection problem, the two most 
commonly adopted approaches include the use of informa-
tion criteria (IC) and Bayesian evidence [46]. Information 
criteria are simple metrics representing a trade-off between 
the uncertainty in the model (prediction error) and its com-
plexity (number of fitting parameters). Among the different 
IC available in the literature, the most widely recognized 
ones include the Akaike (AIC) and the Bayesian (BIC) cri-
teria, along with their various extensions [47]. Bayesian evi-
dence techniques represent a more sophisticated, although 
a more computationally intensive, approach for model 
selection. These techniques estimate the model evidence 
as the likelihood of the observed data integrated across the 
parameter space of the model. Such an integral is as high-
dimensional as the number of model parameters; therefore, 
Markov chain Monte Carlo (MCMC) sampling techniques 
are usually required, with nested sampling and transitional 
MCMC (TMCMC) being the most popular approaches [48]. 
Among the competing models, these techniques allow for 
the selection of the most plausible one using Bayes factors 
(evidence rates), while also extracting the probability dis-
tributions of the fitting parameters as a by-product. In either 
case, both IC and Bayesian evidence techniques encapsulate 
the spirit of the Occam’s razor or the principle of parsimony 
[49], that is, under the circumstance of explaining the data 
with comparable accuracy, the simplest model will be the 
most plausible one. Overall, model selection techniques 
have found wide applicability across various disciplines 
such as epidemiology, chemometrics, astrophysics, ecology 
and evolution [50, 51], although their applicability in civil 
engineering and SHM has been poorly investigated. This 
can be primarily attributed to the formidable computational 
challenges inherent in the numerical models used for St-Id. 
Among the few experiences in the literature, it is notable 
to mention the work by Mthembu and co-authors [52] who 
adopted the nested sampling algorithm proposed by Skilling 
[53] for the model updating of a theoretical H-beam and a 
laboratory airplane model, the Garteur SM-AG19 structure. 
Another significant contribution came from Qian and Zheng 
[54], who introduced an evolutionary nested sampling algo-
rithm for both model updating and model selection, illus-
trating the potential of this approach with two numerical 
examples including a clamped beam and a truss structure. 
Despite these promising results, to the best of the authors’ 
knowledge, the use of model selection techniques for con-
tinuous supervised damage identification of real-world civil 
engineering structures remains unexplored in the literature.

To address the previously mentioned gap in the literature, 
this work presents a novel multi-model or multi-class SL 
damage identification approach based on surrogate mod-
eling and IC for model selection. Unlike traditional single-
model St-Id, this work proposes the use of multiple finite 
element models (FEMs) with fitting parameters tailored to 
replicate the different damage mechanisms a structure may 
experience. On this basis, if an anomaly is detected, the most 
probable damage mechanism being activated is identified 
by a model selection approach based on the assessment of 
the BIC. To make the inverse calibration of all the model 
classes compatible with continuous SHM, we propose the 
use of Kriging meta-modeling to produce computationally 
light SMs of the forward FEMs. In this light, the proposed 
approach allows constructing multi-class digital models con-
formed by populations of competing structural models, pro-
viding a quasi real-time, interpretable, and comprehensive 
health assessment of instrumented civil engineering struc-
tures. Specifically, we focus on this paper on vibration-based 
SHM data, exploiting modal data in the inverse calibration 
and using a deterministic St-Id approach. To illustrate the 
potential of this approach, two case studies are presented, 
including a (i) numerical planar truss structure; and (ii) a 
real case study of an instrumented cultural heritage struc-
ture, the Muhammad Tower in the Alhambra fortress located 
in Granada, Spain. In the latter, a series of simulated damage 
scenarios is presented to evaluate the damage identification 
capabilities of the proposed approach.

2  Theoretical fundamentals

The proposed approach for multi-class SL damage identifi-
cation comprises three key components presented hereafter. 
Section 2.1 introduces the general framework of the pro-
posed methodology. Section 2.2 explores the fundamental 
concepts used in FEM updating, and Sect. 2.3 overviews 
the principles for the construction of Kriging SMs. Finally, 
Sect. 2.4 presents the adopted BIC formulation for model 
selection.

2.1  General framework: populations of digital twins

The overarching goal of the proposed approach is to 
develop multi-class digital models composed of a popula-
tion of competing structural models reproducing potential 
damage mechanisms. When implemented into a continu-
ous vibration-based SHM system, the DT is used to con-
duct supervised damage identification through St-Id. The 
process iteratively acquires experimental data from the 
physical asset, performs automated Operational Modal 
Analysis (OMA), and conducts St-Id by inverse calibra-
tion of the different SMs. Once calibrated, a simple model 



 Engineering with Computers

selection approach using the BIC is adopted to select the 
model that best fits the data, so achieving not only the 
identification of the activated pathology, but also of its 
severity. The general work-flow is sketched in Fig. 1 and 
comprises the following five consecutive steps:

(a) Automated modal identification (online phase) - A 
SHM system periodically acquires ambient vibration 
data and stores them in separate computer files of 
certain time duration. On this basis, using automated 
OMA, the time series of modal characteristics are esti-
mated, including resonant frequencies fj , mode shapes 
�j , and damping ratios �j . The impact of benign fluctua-
tions caused by environmental and operational condi-
tions (EOC) on the previously identified modal signa-
tures is mitigated through the application of statistical 
pattern recognition.

(b) Model parameterization (offline phase) - In this step, 
several FEMs are defined to represent the various fail-
ure mechanisms that the structure may encounter. Each 
of these models is parameterized taking into account 
the possible affected zones by the specific pathology, 
considering their local elastic properties as the fitting 
parameters. These models are defined on the basis of 
a reference (healthy) FEM, calibrated using the modal 
properties extracted from initial Ambient Vibration 
Test (AVT).

(c) Surrogate modeling (offline phase) - Using the previ-
ously defined FEMs, computationally efficient SMs are 
created as black-box functions that establish a corre-
spondence between the corresponding model param-
eters ( x ) and the modal signatures of the structure.

(d) Inverse model calibration (online phase) - This step 
establishes the St-Id of the asset by conducting the 
inverse calibration of all the created SMs. This process 
involves solving a specific optimization problem with 
an objective function denoted as J(x) , which quanti-
fies the disparity between the theoretical predictions 
and the previously identified experimental modal sig-
natures. Consequently, distinct time series of the esti-
mated fitting parameters are collected for all the con-
sidered models in the DT.

(e) Model Selection (online phase) - The model selection 
process is carried out using the BIC, which evaluates 
the goodness of fit and complexity of the different SMs 
forming the DT. If an anomaly in the structural per-
formance is detected, the main outcome of this pro-
cess is the identification of the most plausible dam-
age mechanism that has been activated, along with its 
severity (location and quantification). This information 
is derived from the inference results obtained from the 
parameterized zones in the FEM used to construct the 
selected SM.

2.2  Finite element model updating using modal 
data

Model updating, refers to the process of calibrating cer-
tain model parameters xi , i = 1, ...,m organized in a vec-
tor x =

[
x1, x2,… , xm

]T , with the aim of minimizing the 
mismatch between experimental data and the theoreti-
cal predictions. Each of these variables is constrained to 
a specific, physically meaningful range 

[
ai, bi

]
 , in such 

a way that x spans the m-dimensional design space 
𝔻 =

{
x ∈ ℝ

m ∶ ai ≤ xi ≤ bi
}

 . Note that the numerical 

Fig. 1  Flowchart of the proposed multi-class digital models for continuous supervised damage identification structures
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models of large-scale structures generally contain a signifi-
cant amount of uncertainty stemming from different assump-
tions, idealizations and spatial discretization, as well as 
epistemic uncertainties associated with the material and the 
connectivity between structural elements. To minimize such 
uncertainties, FEM updating is formulated as an optimiza-
tion problem seeking the model parameters that minimize 
the differences between the theoretical and experimental 
results. Therefore, the definition of the objective function is 
thus the first step in FEM updating. In this work, we focus on 
vibration-based SHM, therefore we introduce an objective 
function J(x) accounting for the relative differences between 
the l target modes of vibration determined experimentally 
and their theoretical counterparts as [18, 55]:

with

where ‖⋅‖ denotes absolute value, and � , � and � are weight-
ing coefficients. The first error term �i(x) indicates the mean 
absolute relative errors between the i-th experimental f i

exp
 

and numerical f i
model

 resonant frequencies, respectively. 
Finally, the term MACi(x) stands for the Modal Assurance 
Criterion (MAC) value between the i-th experimental and 
numerical mode shapes. The last term in Eq. (2), R(x) , sig-
nifies a classical Tiknonov ( L2 ) regularization term, which 
serves to mitigate ill-conditioning in the calibration process 
by penalizing solutions that deviate significantly from the 
reference (healthy) parameter values x0

i
 . On this basis, the 

procedure can be articulated as the ensuing constrained non-
linear minimization problem:

The optimization problem in Eq. (3) is generally non-con-
vex and, consequently, it is recommended to adopt a global 
optimization algorithm for its resolution. For this purpose, 
the PSO algorithm has been adopted using the open-source 
program Python library Pymoo [56].

2.3  Non‑intrusive surrogate modeling: Kriging

The FEMs of large-scale civil engineering structures are often 
computationally intensive, which critically undermines the 
efficiency of iterative optimization algorithms. To tackle this 

(1)J(x) =

l∑

i=1

[
��i(x) + ��i(x)

]
+ �R(x),

(2)
�i(x) =

‖‖‖f
i
exp

− f i
model

‖‖‖
f i
exp

, �i(x) = 1 −MACi(x),

R(x) =

m∑

i=1

(
x0
i
− xi

)2
,

(3)x = argmin
x∈�

J(x).

challenge, computationally efficient SMs using Kriging are 
adopted to replicate the predictions of the forward FEM with 
significantly reduced computational overhead. After selecting 
the design variables, the process of constructing a SM typi-
cally involves three consecutive steps, namely: (i) Sampling 
of the design space, (ii) Generation of the training population, 
and (iii) Construction of the SM.

Consider the previously introduced set of m design vari-
ables xi ∈ ℝ for i = 1,… ,m to be calibrated. As anticipated 
in Sect. 2.1, it is crucial for the selected model parameters 
to capture the effects of potential damage on the structure’s 
investigated response y. In this context, a SM serves as a com-
putationally efficient means of establishing a functional rela-
tionship between the selected damage-sensitive parameters 
x and the response y ∈ ℝ , as predicted by the FEM of the 
structure. When considering a non-intrusive SM, a training 
population of Ns individuals is necessary, mapping the output 
y and the design space � , often referred to as the experimental 
design (ED). This is achieved by uniformly sampling � and 
forming a matrix of design sites X = [x1,… , xNs] ∈ ℝ

m×Ns . 
Corresponding outputs yi are obtained through direct Monte 
Carlo simulations (MCS) using the forward FEM and com-
piled in an observation vector Y =

[
y1,… , yNs

]T . In this work, 
the damage-sensitive design variables pertain to the elastic 
moduli of particular regions within the FEM, referred hereaf-
ter as macro-elements. It is important to emphasize that such 
a simplified damage model is valid as long as the structure 
continues to behave as a linear time-invariant system after the 
appearance of damage. The outputs considered are the modal 
properties derived from a linear modal analysis of the FEM. 
Consequently, individual SMs must be constructed for each 
natural frequency and modal displacement associated with 
all the vibration modes considered in the model calibration. 
Specifically, if there are l selected vibration modes and nDOF 
degrees of freedom characterizing the mode shapes, a total 
of l

(
1 + nDOF

)
 SMs (per model parameterization) need to be 

developed.
From the extensive array of non-intrusive SMs available in 

the literature, the Kriging model is adopted in this work due to 
its exceptional adaptability to a diverse range of applications 
[57]. The Kriging interpolator conceptualizes the function of 
interest y(x) as the sum of a linear regression term yr(x) and a 
zero-mean stochastic process Z(x) as [58]:

Essentially, yr(x) serves as a global approximation 
for the entire design space, while Z(x) models local-
ized deviations. The regression function yr(x) relies 
on a set of p regression parameters, � =

[
�1,… , �p

]T , 
and cer tain user-def ined regression functions, 
f (x) =

[
f1(x),… , fp(x)

]T
, fi ∶ ℝ

m
→ ℝ , as yr(x) = f (x)T� 

[59]. On the other hand, the stochastic process Z(x) is 

(4)y(x) = yr(x) + Z(x).
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characterized by its covariance function Cov
[
Z(xi)Z(xj)

]
 , 

which quantifies the correlation between any two arbitrary 
data points xi and xj as:

Here �2 represents the variance of Z(x) , and r
(
xi, xj,�

)
 is 

a spatial correlation function, which is reliant on a set of 
hyper-parameters denoted as � . On this basis, the Krig-
ing predictions ŷ(x) for the response y(x) at any designated 
design site x are defined as follows:

where r(x) is a vector that contains the correlations between 
the design sites and x , defined as:

and R is a Ns × Ns positive definite matrix with components 
Rij = r

(
xi, xj,�

)
.

Note in Eq. (6) that, once the regression model and the 
correlation function have been chosen, the Kriging interpo-
lator is exclusively governed by the regression parameters � 
and the correlation parameters � . In the scope of this study, 
second-order polynomial regression functions are used to 
delineate the trend term, while Gaussian correlation func-
tions are adopted for the stochastic term as [60]:

The hyper-parameters �k in Eq. (8) play a pivotal role in 
shaping the correlation function, potentially introducing 
anisotropy along the dimensions of x . Nevertheless, for the 
sake of simplicity, isotropic correlations are assumed in this 
study, i.e., �k = � for all dimensions in 1 ≤ k ≤ m.

With the hyper-parameters � known, it becomes possible 
to compute the trend parameters �(�) and the variance �2(�) 
as closed-form functions of � using the empirical best linear 
unbiased estimator (BLUE). Further details on this approach 
can be found elsewhere (refer e.g. to [58, 59]). On the other 
hand, estimating the hyper-parameters � often requires solv-
ing a non-linear optimization problem, with the maximum-
likelihood-estimator being a common approach. In this 
work, the iterative pattern search optimization algorithm 
implemented in the open-source Python library pydacefit 
[61] has been adopted.

2.4  Model selection by Bayesian information 
criterion

The optimization problem outlined above is critically 
determined by the fitting parameters in x . However, as 

(5)Cov
[
Z(xi)Z(xj)

]
= �2r

(
xi, xj,�

)
.

(6)ŷ(x) = f (x)T� + r(x)TR−1
[
Y − f (x)T�

]
,

(7)r(x)T =
[
r
(
�, x1, x

)
,… , r

(
�, xNs

, x
)]T

,

(8)r
(
xi, xj,�

)
=

m∏

k=1

exp

[
−�k

(
x
(k)

i
− x

(k)

j

)2
]
.

mentioned in the introduction, there is not a general pro-
cedure for making such a selection. Ideally, this selec-
tion should be conducted taking into account the potential 
failure mechanisms the structure may experience. Never-
theless, real-world structures may undergo a large variety 
of failures, and there is no general model that can repro-
duce all the different pathologies a structure may present. 
Therefore, specific models should be created for specific 
failure mechanisms. These models, organized into differ-
ent model classes MCi , should be calibrated through the 
St-Id approach outlined in Eq. (3). Afterward, a proper 
model selection approach needs to be adopted to iden-
tify the most plausible model class. In this work, we pro-
pose the use of the BIC metric as a simple yet efficient 
approach. It facilitates model comparison and selection 
by simultaneously calibrating multiple structural models, 
each representing a different damage mechanism, and eval-
uating the models’ plausibility based on their goodness of 
fit to the experimental data and their complexity (number 
of fitting parameters). The BIC is formally defined for the 
i-th model class as [62]:

where L̂i is the maximized value of the likelihood function of 
the model MCi , i.e. L̂i = p(y || x̂,MCi) with x̂ the parameter 
set that maximizes the likelihood function, y is the observed 
data, and c denotes the complexity of the model, that is num-
ber of parameters to be estimated c = m . Under the assump-
tion that the model errors in terms of frequencies and mode 
shapes are independent, and identically distributed accord-
ing to Gaussian distributions with equal variances across all 
the modes, the BIC in Eq. (9) can be rewritten as:

The terms RSSf  and RSS�
j
 in Eq. (10), corresponding to the 

residual sum of squares error in terms of frequencies and 
modal displacements, respectively, can be expressed as:

with �i
j,exp

 and �i
j,model

 denoting the j-th components of the 
i-th experimental and numerical mode shapes, respectively. 
The term �i is a normalizing constant between the experi-
mental and numerical mode shapes given by:

(9)BICi = 2 ln
(
L̂i
)
+ c ln(l),

(10)

BIC = l ln

�
RSSf

l

�
+
�
nDOF ⋅ l

�
ln

�∑nDOF
j=1

RSS
�

j

nDOF ⋅ l

�
+ c ln(l).

(11)

RSSf =

l∑

i=1

(
f i
exp

− f i
model

)2

,

RSS
�

j
=

l∑

i=1

(
�i
j,exp

− �i �
i
j,model

)2

,
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Note that the BIC metric in Eq. (10) increases as both the 
error in the predictions and the number of fitting parameters 
increase. Therefore, after obtaining the BIC values for all 
the competing models or classes, the optimal model can be 
selected as the one with the lowest value. This model selec-
tion approach aligns with Occam’s Razor principle [63], 
which posits that among a population of competing models, 
the one with the fewest assumptions and the least complexity 
is the most plausible.

3  Numerical results and discussion

The effectiveness of the proposed methodology is illustrated 
through two different case studies: a theoretical and a real 
full-scale structure. The first one is a planar truss struc-
ture serving as a control case study used to appraise the 
effectiveness and limitations of the proposed model selec-
tion approach, as well as its robustness to measurement 
noise. The second case study is the Muhammad Tower in 
the Alhambra fortress, which was recently instrumented by 
García-Macías et al. [64] with a long-term dynamic-based 
SHM system. This case study offers a realistic scenario to 
assess the proposed approach in terms of damage identifica-
tion effectiveness and computational efficiency.

3.1  Case study I: 2‑D truss structure

The investigated 25-bar planar truss structure (Fig. 2) is a 
benchmark case study for damage identification investiga-
tion utilized by Thanh Cuong-Le et al. [65]. The FEM of 
the structure is defined using planar 2-nodes truss elements 
implemented in Python, leading to a total of 24 degrees of 
freedom. The mass density and the modulus of elasticity of 
the material are defined as 7500 kg/m3 and 210 GPa, respec-
tively. All the elements of the structure are defined with a 
cross-section area of 18 cm2.

(12)�i =

(
�i
model

)T
�i
exp

(
�i
exp

)T

�i
exp

.

To discretize the mode shapes, five sensors monitoring 
x and y-directions are defined at nodes n 2 , n 4 , n 6 , n 9 and 
n 10 ( nDOF = 10 ) as indicated with red arrows in Fig. 2. To 
assess the implications of limited experimental observ-
ability, analyses have been conducted considering eight 
( l = 8 ) and sixteen ( l = 16 ) modal signatures. In both cases, 
all mode shapes have been normalized to maximum unit 
displacement.

To assess the effectiveness of the proposed model selec-
tion approach, different classes of competing models with 
increasing numbers of fitting parameters have been defined. 
To this aim, the bars of the truss structure have been ranked 
according to a preliminary sensitivity analysis reported in 
Fig. 3. In this analysis, the stiffness of the bar elements of 
the structure were sequentially affected by a perturbation of 
5%, calculating the mean sensitivities in terms of frequen-
cies ( Sf  ) across the eight considered modes. The results in 
Fig. 3 guided the definition of different model classes MCi  , 
i = 1,… , 4 , incorporating an increasing number of param-
eters of decreasing mean sensitivity. Specifically, four dif-
ferent model classes have been defined as depicted in Fig. 4, 
with the stiffness multipliers ki of the bars highlighted in 
blue as the fitting parameters ( xi ). Note that these model 
classes represent nested models, wherein each subsequent 
class includes the parameters of the previous class. For the 
FEM calibration in Eq. (3), the range of variation of the 
stiffness multipliers ki is set to [0.7, 1.1], and the weighting 
factors � , � and � have been set to 1, 1, and 0, respectively, 
after manual tuning. Note that, although a value of ki greater 
than one ( x0

i
= 1 ) may lack physical meaning in the context 

of damage identification (damage typically does not increase 
the stiffness of an element), this upper limit has been 
extended to address potential ill-conditioning limitations in 
the solution and prevent the algorithm from becoming stuck 
at the upper limit. The non-linear minimization problem in 
Eq. (3) is solved using a PSO algorithm with a population 
size of 40 particles, and the convergence threshold is set 
at 1E-5 for error tolerance. It is important to remark that, 
since the heuristic PSO optimization algorithm is adopted, 
no explicit use of the sensitivity matrix is required, the previ-
ous analysis limiting to ranking the element bars.

A dense set of synthetic experimental data has been gen-
erated to assess the effectiveness of the proposed approach. 

Fig. 2  Case study I: truss 
structure. Red arrows indicate 
the position and direction of the 
sensors
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Specifically, 150 simulations have been performed for 
every model class, randomly affecting the corresponding 
bars with stiffness reductions uniformly distributed in the 
range of 0 to 20% ( ki ∼ U(0.8, 1.0) , see Table 1). Similarly 
to reference [54], to evaluate the robustness of the pro-
posed approach to the presence of noise in the measure-
ments, the modal displacements are contaminated with 
uniformly distributed random noises of increasing mag-
nitude, �ij = �ij(1 + � U(−1, 1)) , where �ij and �ij are the 

ij-th noise-free and noisy modal response, respectively, and 
� denotes the noise level. Three noise levels � = 0% , 10% , 
and 20% are considered in this study. On this basis, the pro-
posed model selection approach is applied to all the simu-
lated tests, extracting in every analysis the most plausible 
model class.

The obtained classification results are depicted in Fig. 5 
for the three considered noise levels, assuming observabil-
ity of 8 or 16 vibration modes. Notably, the classification 
consistently improves as the number of fitting parameters 
decreases. This trend is attributed to the fact that the BIC 
penalizes model complexity, which becomes dominant over 
the prediction error when dealing with similar model param-
eterizations, as in this case with nested models. In such cir-
cumstances of limited experimental observability, adhering 
to the Occam’s Razor principle, simpler models with fewer 
parameters that offer comparable prediction accuracy to 
more complex models are preferably selected. Indeed, note 
that as the number of experimental observations increases 
from the top (8 modes) to the bottom (16 modes) rows in 
Fig. 5, the classification results for the four model classes 
consistently improve. These results demonstrate that, in the 
context of limited experimental evidence, achieving accurate 

Fig. 3  Ranking of the truss 
members of case study I accord-
ing to mean sensitivity in terms 
of resonant frequency

Fig. 4  Model classes MC1 (a) to MC4 (d) for case study I: truss structure

Table 1  Definition of the bars affected by the four defined model 
classes, as well as the synthetic damage scenarios for Case Study I: 
Truss structure

Model Class Members Damage condition

MC1 1, 6 0–20% reduction in the elastic 
modulus

MC2 1, 3, 4, 6 0–20% reduction in the elastic 
modulus

MC3 1, 2, 3, 4, 5, 6 0–20% reduction in the elastic 
modulus

MC4 1, 2, 3, 4, 5, 6, 7, 12 0–20% reduction in the elastic 
modulus



Engineering with Computers 

classification of complex models becomes increasingly 
challenging as their complexity increases. Furthermore, the 
results in this figure highlight the role of noise contamina-
tion in the measurements, resulting in minimum successful 
classification rates dropping from 52% to 34% when eight 
modes are observable, and from 63% to 49% when sixteen 
modes are considered in the analysis.

Finally, Fig. 6 presents the unit-normalized probability 
distribution functions ( PDF ) of the fitting errors evalu-
ated in terms of the objective function in Eq. (1). In this 

figure, the global errors obtained by selecting the most 
plausible model at every iteration are also depicted with 
thick gray lines. Note that, in most cases, regardless of 
the noise level and the number of observable modes, the 
proposed model selection approach tends to yield low-
concentration errors. These results suggest the potential 
of the proposed multi-class St-Id approach for compre-
hensive model-driven damage identification, especially in 
structures prone to different failure mechanisms requiring 
multiple parameterizations.

Fig. 5  Successful classification 
rates [%] considering increasing 
noise levels ( � = 0% , 10% , and 
20% ) and experimental evidence 
(8 and 16 modes) for case study 
I: truss structure

Fig. 6  Unit-normalized prob-
ability distribution functions 
( PDF ) of the fitting errors in 
terms of the objective function 
J(x) considering increasing 
noise levels ( � = 0% , 10% , and 
20% ) and experimental evidence 
(8 and 16 modes) for case study 
I: truss structure
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3.2  Case study II: Muhammad tower

The second case study applies the methodology proposed 
in Sect. 2 to one of the towers of the Alhambra fortress, the 
Muhammad tower (Fig. 7a) in Granada, Spain. The tower, 
originally constructed in the 13th-century under the rule 
of Muhammad II, served a defensive purpose, controlling 
access to the palaces. It is seamlessly integrated into the 
walls of the Alhambra Fortress, positioned between the 
Tower of the Cube and the Mexuar Palace. The structure has 
1.3–1.9 m thick walls and rises to a height of 11.6 m above 
the floor, featuring an approximately rectangular cross-
section (6.6 x 9.0 m). Constructed primarily with rammed 
earth (RE) and brick masonry, the tower has two vaulted 
floors and a rooftop terrace enclosed by a 0.80 m tall parapet 
and 1.2 m tall battlements. The three levels of the tower are 
connected by masonry staircases at the south–west façade 
of the tower. The tower’s foundations rest upon a geologi-
cal formation of conglomerates with intercalated sands and 
clays from the Pliocene and Lower Pleistocene, known as 
the Alhambra Formation. Despite there is evidence of mul-
tiple alterations over the centuries, official documentation of 
restoration efforts did not commence until the 1950s, when 
extensive restoration work was carried out after a prolonged 
period of neglect. This included the underpinning and sta-
bilization of the tower’s foundations, a project led by the 
architect Francisco Prieto-Moreno Pardo in 1975.

Within a research project devoted to the risk assessment 
of the tower after the seismic swarm occurred between Feb-
ruary and August 2021, the tower was instrumented by the 
authors with a continuous vibration-based SHM since Janu-
ary until March 2022. The monitoring system comprised 8 
high-sensitivity piezoelectric accelerometers (PCB393B31, 
μ 5% 10.0 V/g, broadband Resolution: 1 μ g rms and ±0.5 g 
pk) installed on the three main levels of the tower, labeled 
with A1 to A8 as sketched in Fig. 7b. This configuration 
was intended to characterize the rigid diaphragm motions 
of the floors and the global torsional rotations of the tower. 
The acceleration signals were recorded by a data acquisition 
system (DAQ) model LMS SCADAS, and stored in separate 

data files containing 30-min-long records with an acquisition 
frequency of 200 Hz. Environmental data were also acquired 
with a sampling frequency of 10 min by a nearby meteoro-
logical station, including the air temperature, relative humid-
ity, wind speed, and atmospheric pressure.

Through automated OMA, the modal signatures of the 
tower were continuously extracted, as reported in [64]. 
Figure 8a displays the frequency tracking of the first three 
global modes of the tower during the monitoring period 
from January 10th to March 31st, 2022, comprising a total 
of 3233 acceleration records. This study focuses solely on 
the first three global modes of the structure (Fx, Fy and Tz), 
with local modes induced by the motion of the battlements 
of the terrace being disregarded (refer to reference [64] for 
an in-depth discussion). Fy and Fx correspond to first-order 
bending modes in the N–S and W–E directions of the tower, 
respectively, while Tz is the first torsional mode of the tower, 
as shown in Fig. 8b. The detailed views in Fig. 8a also reveal 
the presence of significant daily oscillations, suggesting the 
influence of environmental factors in the tower’s global 
modes, especially in Fx. Furthermore, it is worth noting 
that there were periods when the monitoring system was 
disrupted due to electrical power shortages, occurring during 
mid-January to mid-February and twice in March.

For the generation of the multi-class digital model of the 
tower, we retrieved the ABAQUS FEM (Fig. 9) developed 
and calibrated in our previous work [64]. Specifically, the 
model encompasses the main body of the tower with linear 
springs representing the constraints exerted by the surround-
ing walls of the fortress. The elastic modulus and mass den-
sity of the material were calibrated through linear sensitivity 
analysis of a comprehensive FEM that considered the sur-
rounding walls, serving as the base model for developing a 
more computationally efficient FEM of the main body of the 
tower, adopted herein. In the latter, the stiffness of the linear 
springs, replacing the surrounding walls, was tuned manu-
ally (for further details, refer to Section 6.2 in [64]). The 
resulting FEM yielded a maximum relative error in terms of 
resonant frequencies of 2.11% as reported below in Table 2, 
which is assumed sufficient for the generation of the SMs in 

Fig. 7  Views of Muhammad 
Tower (left: photo taken from 
Mirador del Rey Chico; right: 
photo taken from the Patio de 
la Madraza de los Príncipes; 
Source: legadonazari.blogspot.
com; from December 17th 
2022) (a). Plan and elevation 
views of the tower and sensors 
layout (b) 
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this work without requiring further (computationally inten-
sive) heuristic calibration. This model was meshed using 
solid C3D8 linear elements with a mean dimension of about 
20 cm, resulting in a total of 105,922 nodes and 555,883 
elements. Note that this numerical model is computationally 
intensive, requiring approximately 3 min to complete a lin-
ear modal analysis. Therefore, the use of a computationally 
efficient SM becomes imperative to solve the inverse model 
calibration problem in Eq. (3).

The initial reference FEM is used to generate different 
model classes representing distinct failure mechanisms. 
To this aim, two different synthetic damage scenarios 
have been defined after non-linear simulation analyses. In 
both cases, the simulation consists of four sequential steps 
involving: (i) gravity loading; (ii) incremental imposed 
displacements; (iii) release of imposed displacements; 
and (iv) modal analysis using linear perturbation. The first 
damage scenario represents a pushover analysis along the 
NS direction. In this case, a parabolic profile of imposed 
displacements is applied to the tower until a maximum 
top displacement of 1.7 cm is reached. The second sce-
nario simulates a condition of differential foundational 
settlement. In this case, a linear profile of displacements 

covering an area of 6.3 m 2 (12.3%) is imposed at the foun-
dation until achieving a maximum settlement of 0.7 cm. 
The non-linear behavior of the RE is simulated using the 
Concrete Damage Plasticity (CDP) model implemented in 
ABAQUS, considering the constitutive properties reported 
in [64]. This model allows reproducing the cracking- and 
crushing-induced losses of stiffness through two scalar 
fields dt and dc ( dc, dt = 0 undamaged, and dc, dt = 1 fully 
damaged), as well as to reproduce the damage-induced 
effects upon the modal properties of the tower through lin-
ear perturbation analysis. In this work, since tensile crack-
ing dominates over compression crushing, compression-
induced stiffness losses are disregarded. The crack patterns 
obtained for the two simulated scenarios are reported in 
Fig. 10a and b for the pushover analysis and the differ-
ential settlement simulation, respectively. Table 2 shows 
the frequency decays and MAC values with respect to the 
initial FEM (undamaged) for each damage scenario.

Three different model classes, each with three fitting 
parameters, have been defined as reported in Fig. 11. The 
first model class MC1 represents a general-purpose para-
metrization (equivalent to the single parametrization used 

Fig. 8  Modal tracking the first three global resonant frequencies of the Muhammad Tower from January 10th until March 31st 2022 (a) and the 
experimental mode shapes (b) from reference [64]

Fig. 9  Three-dimensional FEM 
the Muhammad tower (a), and 
y-z (b) and x-z (c) sections 
(originally developed in [64])
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in [64]), in which the main body of the tower is discre-
tized through three macro-elements M i  along its height 
(Fig. 11a). The other two parameterizations are defined 
based on the two non-linear simulation analyses outlined 
above. Specifically, the model classes MC2 and MC3 repro-
duce the earthquake-induced damage in the N–S direc-
tion of the tower and the differential settlement of the 
foundation, as illustrated in Fig. 11b, c, respectively. In 
these cases, the macro-elements M i  have been defined by 
grouping sets of elements affected by the corresponding 
damage scenario ( dt > 0.9 ) and forming the main devel-
oped cracks. Across these three discretizations into macro-
elements M i  , the fitting parameters have been defined as 
stiffness multipliers (ki, i = 1, .., 3) affecting the elastic 
moduli of the corresponding elements.

Given the large computational cost of the FEM param-
eterizations, it becomes indispensable to replace them by 
Kriging SMs compatible with continuous St-Id. The input 
and output variables of the Kriging meta-models are the 
stiffness multipliers ki of the corresponding macro-ele-
ments and the modal signatures (resonant frequencies 
and mode shapes) of the tower, respectively. The stiffness 
multipliers are assumed to be uniformly distributed within 
domains of variation 𝔻 =

{
x ∈ ℝ

3 ∶ 0.7 ≤ ki ≤ 1.1
}

 , 
𝔻 =

{
x ∈ ℝ

3 ∶ 0.5 ≤ ki ≤ 1.1
}

 ,  a n d 
𝔻 =

{
x ∈ ℝ

3 ∶ 0.4 ≤ ki ≤ 1.1
}
 , for the three model classes 

MC1 , MC2 , and MC3 , respectively, as defined above in 
Fig.  11. Note that these variation ranges are consider-
ably large, with 0.7, 0.5, and 0.4 meaning reductions of 
30%, 50%, and 60% of the elastic modulus of the affected 

Fig. 10  Crack patterns 
simulated by non-linear static 
analyses: Scenario 1 - pushover 
analysis in the N–S direction 
(a), and Scenario 2 - differen-
tial vertical settlement of the 
foundation (b)

Table 2  Frequency decays and MAC values with respect to the 
undamaged condition for the simulated damage scenarios in the 
Muhammad Tower. The experimental model signatures were by auto-

mated OMA of the first 30 min of ambient vibrations recorded on 
January 10, 2022 10:00 a.m

Undamaged FEM Scenario 1 Scenario 2

 Mode No Experimental 
f
i
 [Hz]

f
i
 [Hz] Rel. Error [%] MAC f

i
 [Hz] Decay [%] MAC f

i
 [Hz] Decay [%] MAC

1 4.42 4.47 1.10 0.99 4.38 −1.97 1.00 4.38 −2.01 0.98
2 7.32 7.31 −0.14 0.95 7.21 −1.37 1.00 7.27 −0.55 0.99
3 9.79 10.00 2.11 0.96 9.76 −2.35 1.00 9.95 −0.50 0.97

Fig. 11  Model classes defined 
for the FEM of the Muhammad 
Tower: a MC1 , b MC2 , and c 
MC3



Engineering with Computers 

macro-elements, respectively. The maximum value in the 
three domains of variation ( � ) has been defined as 1.1 in 
the three model classes. Similar to the previous case study, 
this value is established to address potential issues related to 
ill-conditioning. Additionally, having an upper limit above 
1.0 (nominal stiffness, x0

i
= 1, i = 1, .., 3 ) becomes funda-

mental to accommodate the EOC-induced oscillations in the 
resonant frequencies of the tower, as previously reported in 
Fig. 8 (a).

Random samples have been uniformly generated across 
the domains of variation ( � ) using the quasi-random 
sequence of Sobol. Specifically, two EDs have been gener-
ated: one of 160 samples for training the SMs and another 
independent validation set of 200 samples. The sizes of these 
EDs were determined based on the convergence analyses 
reported in our previous work (refer to [64]). For each indi-
vidual in the EDs, the modal signatures are obtained by per-
forming a forward evaluation of the 3D FEM. As indicated 
above, only the first three global modes of the tower are 
considered in the analysis. Consequently, a total of 27 SMs 

are constructed for each model (3 resonant frequencies plus 
8 × 3 modal displacements). The comparison between the 
predictions of the SMs and the forward FEMs is shown in 
Fig. 12. This figure depicts the forward evaluations of the 
first three resonant frequencies by the 3D FEM versus the 
predictions of the SMs for the three model classes. In this 
figure, to appraise the quality of the SMs in estimating the 
mode shapes of the tower, a metric JMAC,i , which accounts 
for the median value of the 1 −MAC values between the i− th 
experimental mode shape �i

exp
 and the prediction by the SMs 

�i
model

 in the validation set, is introduced as:

The minimal dispersion of data points in Fig. 12 around the 
diagonal lines provides strong confirmation that the SMs 
are formed with a high degree of accuracy. This is further 
supported by the values of the coefficients of determination 
R2 , which are all close to one, as well as the low values of 
the root-mean-squared-errors (RMSE) and JMAC,i metrics 

(13)JMAC,i = med
{
1 −MAC

(
�i
exp

,�i
model

)}
.

Fig. 12  Comparison between 
the predictions of the forward 
FEM and the Kriging SMs for 
the Muhammad Tower: MC1 
(a), MC2 (b), MC3 (c)
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on the order of 10−4 for all the model classes. It is impor-
tant to emphasize that the average evaluation time of the 
resulting multi-class digital model is 1.68 min (the three 
model classes), representing a 44% reduction compared to 
that of the forward FEM. Such high computational efficiency 
is critical for their applicability within a continuous SHM 
scheme as shown hereafter.

Once the SMs have been constructed with accuracy, 
the multi-model SL damage identification approach previ-
ously introduced in Sect. 2.1 is applied to the experimental 
time series of modal features extracted from January 10th 
until March 31st 2022. Prior to the St-Id, the multiple linear 
regression (MLR) model previously defined in reference [64] 
has been retrieved and used to minimize the effects of EOC 
in the time series of resonant frequencies previously reported 
in Fig. 8. In that work, correlation analyses with environ-
mental data revealed that the most effective combination of 
predictors for the MLR model comprised air temperature 
AT, humidity H, and derived quantities, including AT2 , H2 , 
and moving averages of AT with time windows of 48 (1 day) 
and 1344 (1 month) data points. For the training of the MLR 
model, and given the restricted quantity of monitoring data 
available, the training period was set from January 10th until 
February 27th 2022 (2200 data points). After construction, 
the cleansed time series of resonant frequencies were deter-
mined by adding the average resonant frequencies within the 
training period to the residuals between the experimental 
data and the MLR model predictions (for further details, 
readers are referred to Section 6.1 in [64]).

Since the tower experienced no damage during the moni-
toring period, a set of synthetic damage scenarios has been 
generated to test the proposed multi-model SL damage 

identification approach. These scenarios are defined based 
on the previously reported frequency decays in Table 2, 
which were determined from the non-linear simulation of 
the forward FEMs. Specifically, the frequency decays are 
incorporated to the time series of resonant frequencies after 
March 7th 2022 (beyond the training period for the MLR 
model). Given that the considered damage scenarios have 
minimal impact on the tower’s mode shapes (as indicated by 
the MAC values in Table 2), the time series of experimen-
tal modal displacements remained unaltered. On this basis, 
the non-linear minimization problem outlined in Eq. (3) is 
solved using the PSO algorithm with a swarm of 50 parti-
cles and an error tolerance of 1E-5. In the regularization 
term from Eq. (1), the reference vector of design variables 
is defined as x0 = [1, 1, 1]T for the three model classes. 
This reference vector, x0 , characterizes the scenario where 
the macro-elements M i  possess their undamaged nominal 
Young’s moduli (i.e. ki = 1 , i = 1,… , 3 ). In the inverse 
model calibration, the weighting coefficients � , � and � in 
Eq. (1) in Sect. 2.1 have been set to 1, 2 and 2, respectively, 
after manual tuning.

Figure 13 displays the time series of the identified stiff-
ness multipliers ki for the three model classes when consid-
ering the first synthetic damage scenario. Furthermore, this 
figure also furnishes the corresponding probability distribu-
tion functions (PDFs) of the data-points in both the train-
ing and the damaged periods. It is evident in these results 
that the stiffness multipliers ki of the three model classes 
exhibit acute decays after the introduction of damage. These 
results highlight the risks associated with single-model St-Id 
applications, which provide no means for assessing the plau-
sibility of the damage identification results. This can lead 

Fig. 13  Time series of identified 
stiffness multipliers k

i
 of macro-

elements M 
i
 , i = 1,… , 3 for the 

three model classes, MC1 (a), 
MC2 (b), and MC3 (c), defined 
in the Muhammad Tower under 
the synthetic damage Scenario 
1. The subfigures on the right-
hand side depict the corre-
sponding probability density 
functions (PDFs) of the data 
points during the training period 
(dashed lines) and the damage 
period (solid lines)
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to misinterpretations of the affected regions, undermining 
the subsequent decision-making. In contrast, the proposed 
model selection approach allows for the comparison of com-
peting models, providing a measure of plausibility of the 
different considered failure mechanisms. To illustrate this, 
the time series of BIC values obtained from January 10th 
to March 31st, 2022, for the three model classes under the 
synthetic damage scenarios 1 and 2 are shown in Fig. 14a 
and b, respectively. It is evident in these figures that, prior to 
introducing the damage-induced frequency decays, the BIC 
values are nearly identical across the three model classes, 
indicating that the three models are equally probable. Nev-
ertheless, after the introduction of the damage-induced 
frequency decays after March 7th 2022, the model classes 
exhibit noticeable distinct BIC values. Specifically, it is clear 
that for the first damage scenario (Fig. 14a), MC2 exhibits 
the lowest BIC value, which agrees with the forward FEM 
used for generating the synthetic damage. Similarly, MC3 
is selected as the most plausible model with the lowest BIC 
value for damage scenario 2 (Fig. 14b). Therefore, these 
results demonstrate the effectiveness of the proposed proce-
dure for conducting multi-class damage identification.

4  Concluding remarks

This work has presented a novel supervised damage iden-
tification approach that exploits the concept of multi-class 
digital models. In contrast to classical single-model FEM 
updating, the proposed approach simultaneously calibrates 
several models, with the basic premise of each one repro-
ducing distinct failure mechanisms. Then, a straightfor-
ward model selection approach, which analyzes the BIC 
values of the competing models, allows for the identifi-
cation of the most plausible model to explain the dam-
age condition. The efficacy of the proposed approach has 

been appraised through two different case studies, includ-
ing a numerical benchmark case study and a real histori-
cal tower. In both case studies, the presented numerical 
results and discussion have evidenced the potential of the 
proposed methodology for identifying multiple damage 
pathologies. The first case study has been used to assess 
the effectiveness of the proposed approach in the presence 
of noise. Additionally, a discussion on the implications 
of limited experimental evidence has been included. The 
second case study has illustrated the feasibility of the field 
implementation of the proposed methodology through the 
use of computationally efficient surrogate models (SMs). 
The presented results and discussion have demonstrated 
the potential of the proposed approach for long-term full 
damage identification (detection of the damage pathology, 
localization, and quantification) through a series of syn-
thetic damage scenarios generated via non-linear simula-
tions. The key findings of this work can be summarized 
as follows:

• The investigated benchmark case study has highlighted 
that the use of the BIC values as the criterion for model 
selection tends to favor simpler model parameterizations 
with a reduced set of parameters, as a direct consequence 
from Occam’s Razor principle. Future developments 
should address the consideration of more sophisticated 
model selection approaches, possibly accounting for 
the probability of occurrence of the considered failure 
mechanisms.

• The simultaneous calibration of multi-class digital mod-
els is a powerful technique for improving damage iden-
tification, providing not only an assessment of the model 
parameters but also a means to gauge the plausibility of 
the inference. The compatibility of the St-Id of multiple 
competing models has been made possible thanks to the 
consideration of computationally inexpensive SMs.

Fig. 14  Time series of BIC val-
ues for the three model classes 
MC

i
 defined in the Muhammad 

Tower for two synthetic damage 
scenarios: a pushover analysis, 
and b and differential founda-
tional settlement
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• Through synthetic damage scenarios generated via non-
linear simulations, the presented results have demon-
strated the potential of the proposed methodology for 
full damage identification. This includes the detection 
of the damage pathology by measuring its plausibility, 
precise localization of damage within the structure, and 
accurate quantification of its extent.

The proposed multi-class supervised damage identifica-
tion approach has the potential to significantly influence 
decision-making in structural maintenance, representing an 
important breakthrough for the extensive technology transfer 
of St-Id. In future research, efforts should focus on incorpo-
rating larger parameter spaces and exploring more numerous 
populations of competing models. Additionally, an exciting 
opportunity to extend this concept can be found in the utili-
zation of advanced Bayesian techniques. Incorporating these 
approaches has the potential to provide more robust frame-
works for solving the model selection problem, accounting 
for the intrinsic uncertainties in the model parameters. This 
may ultimately bolster the reliability of the damage identi-
fication, providing the subsequent decision-making process 
with a probabilistic assessment of the location and extension 
of the damage.
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