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Abstract
In this work, we present a novel unfitted mesh boundary strategy in the context of the Particle Finite Flement Method (PFEM) 
aiming to improve endemic limitations of the PFEM relative to boundary conditions treatment and mass conservation. In this 
new methodology, which we called Cut-PFEM, the fluid–wall interaction is not performed by adding interface elements, as 
is done in the standard PFEM boundaries. Instead, we use an implicit representation of (all or some of) the boundaries by 
introducing the use of a level set function. Such distance function detects the elements trespassing the (virtual) contours of the 
domain to equip them with opportunely boundary conditions, which are variationally enforced using Nitsche’s method. The 
proposed Cut-PFEM circumvents important issues associated with the standard PFEM contact detection algorithm, such as 
the artificial addition of mass to the computational domain and the anticipation of contact time. Furthermore, the Cut-PFEM 
represents a natural ground for the imposition of alternative wall boundary conditions (e.g., pure slip) which pose significant 
difficulties in a standard PFEM framework. Several numerical examples, featuring both no-slip and slip boundary condi-
tions, are presented to prove the accuracy and robustness of the method in two-dimensional and three-dimensional scenarios.

Keywords PFEM · CutFEM · Cut-PFEM · Nitsche’s method · Level set methods · Mass conservation · Slip conditions

1 Introduction

The Particle Finite Element Method (PFEM) is a Lagrangian 
mesh-based strategy suitable for large-deformation prob-
lems. The method uses the standard Finite Element Method 
(FEM) for the solution of the governing equations and a fast 
remeshing procedure to guarantee the good quality of the 
FEM mesh at each computation step. Whenever a limit dis-
tortion is reached, a new discretization of the computational 
domain is created by combining the Delaunay triangulation  
(DT) [1] with a boundary-recognition strategy, the Alpha-
Shape (AS) method [2]. Since the very first works, the 
PFEM has shown its high potential in simulating complex 
free-surface fluid flows and fluid–structure interaction (FSI) 

phenomena [3–5]. The suitability of PFEM for large-defor-
mation problems was also proven in the context of non-
linear solid mechanics analysis, as shown, for instance, in 
[6, 7].

The remeshing operations carried out in PFEM, together 
with its Lagrangian description, permit tracking accurately 
the deforming domain while avoiding elements distortion. 
However, the PFEM remeshing is also responsible for per-
turbing the equilibrium configuration reached at the previous 
computational step and may affect mass conservation [8]. In 
fact, remeshing operations can change the internal elemental 
connectivities and modify the topology of the computational 
domain. Remarkably, in standard PFEM, this latter mecha-
nism occurs whenever the computational domain comes into 
contact with an external, rigid or deformable, body. This 
is because the new discretization is built over a cloud of 
points, that include not only the nodes from the previous 
mesh but also those used to discretize the external contours. 
As a consequence, the new discretization may include exter-
nal contact elements that were not present in the previous 
mesh. This fact has important consequences for the PFEM 
numerical solution. On the one hand, these contact elements 
are beneficial for the solution algorithm, because they allow 
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for modeling easily the interaction with the boundaries via 
a conforming-mesh approach. On the other hand, these ele-
ments are also responsible for introducing artificially new 
mass to the system and anticipating the actual contact time 
between the computational body and the external contours. 
In this respect, we remark that, in the standard PFEM, the 
entity of both drawbacks can be partially mitigated, though 
not completely eliminated, e.g., by adjusting the mesh size 
and by using ad–hoc definition of the alpha parameter in the 
AS method [8]. Besides, it is important to note that these 
issues are more pronounced in unsteady fluid dynamics 
problems than in solid mechanics, where custom strategies 
can be more easily employed to mitigate them [9]. Due to 
this reason, in this work, we have decided to focus on com-
putational fluid dynamics (CFD) problems.

Only very recently, the issues associated with the standard 
DT-AS remeshing procedure have been addressed in PFEM 
formulations for CFD analysis. For example, in [10], the 
authors proposed to use a level set method to minimize vol-
ume variation caused by PFEM remeshing. In [11], an auto-
matic mesh adaptation algorithm was proposed to reduce the 
error in terms of mass conservation and contact detection.

The pure Lagrangian nature of PFEM and its body-fitted 
domain representation also have implications on the bound-
ary conditions (BCs) modeling. In fact, if, on the one hand, 
such a Lagrangian conforming-mesh framework allows for 
an easy representation of no-slip conditions, both in static 
and dynamic regimes (e.g., piston motion [12]), on the other 
hand, it is less natural for applying slip conditions. These 
cases require special treatment on the boundary nodes to 
avoid topological inconveniences, such as the artificial 
leakage of fluid. This explains why only a few applications 
of PFEM to slip conditions modeling can be found in the 
literature.

A first attempt at representing free-slip BCs was done in 
[13, 14]. In these works, slip conditions were modeled by 
letting the nodes of solid walls move only until a prefixed 
distance. Once this threshold separation was reached, the 
nodes were reallocated to their original positions. The refer-
enced works showed the application of this approach only to 
simple 2D geometries. In [15], two different free-slip PFEM 
models were proposed. Both methods used the standard DT 
for boundary detection, but the contact elements were not 
treated as regular fluid elements, as is done in the standard 
PFEM. In the first approach, these contact elements were 
assigned a null viscosity to mimic slip conditions, whereas, 
in the second one, these elements were used to impose free-
slip conditions by modifying the momentum equations 
accordingly. Both approaches were proven to be suitable 
for 2D free-surface fluid analysis, but they do not solve 
the described issues on contact detection. Very recently, in 
[16] a hybrid Lagrangian–Eulerian PFEM was proposed to 
enforce non-homogeneous BCs. The Eulerian description 

was used for boundary treatment, while a Lagrangian mesh 
was used for the rest of the domain. This PFEM strategy 
method was shown to succeed in applying slip and inlet 
conditions in problems with confined domains but was not 
tested for free-surface flows.

In a deeper analysis, all the presented drawbacks of 
PFEM analysis, i.e., violation of mass conservation, antici-
pation of contact timing, and the unnatural representation 
of slip BCs, arise from the Lagrangian body-fitted nature of 
the method. For this reason, we decided to explore the use 
of an unfitted body approach in the context of the PFEM.

The most characteristic feature that distinguishes unfitted 
mesh methods from the traditional body-fitted approaches is 
the implicit representation of some (or all) of the boundaries 
of the computational domain. The implicit representation 
of the boundaries has been proven to be an extremely effi-
cient technique for dealing with arbitrary large boundary 
displacements and rotations, and complex, potentially ill-
conditioned, input geometries. This latter aspect turns into 
a competitive advantage, especially in large-scale real-life 
scenarios, such as the modeling of natural hazards, as it per-
mits bypassing any manual geometry repairing operation.

The advantages of using an unfitted description of the 
boundaries come at the price of a more complex BCs impo-
sition. This can be approached in several manners, thus 
resulting in different methods among which we highlight the 
Immersed Boundary Method (IBM) [17–20], the eXtended-
Finite Element Method (X-FEM) [21, 22], the Shifted 
Boundary Method (SBM) [23–26] and the Cut-Finite Ele-
ment Method (CutFEM), also known as Embedded Bound-
ary Method (EBM) [27]. In this regard, the CutFEM will 
be our method of choice owing to its proven capability to 
keep the accuracy and convergence rates of the formulation 
without the need to introduce neither blending elements nor 
extra degrees of freedom (DOFs).

The CutFEM is based on identifying the elements inter-
sected by unfitted boundaries. Accordingly, the elements 
of the mesh can be classified into two types: those entirely 
filled with fluid, requiring no special treatment, and those 
partially filled (i.e., intersected by unfitted boundaries). In 
short, the CutFEM works by enhancing such partially filled 
(or intersected) elements with a subintegration procedure 
and a variational (weak) imposition of the BCs. The purpose 
of the subintegration procedure is to reallocate the elements’ 
integration points in accordance to the unfitted boundaries, 
making possible to consider only the portion of the compu-
tational mesh that is occupied by the fluid. To what concerns 
the BCs imposition, we shall note that in the CutFEM case, 
the use of standard (i.e., strong) techniques is not sufficient 
as some of (or all) the boundaries of the problem may lie 
inside the elements owing to the unfitted nature of the mesh. 
In this context, variational BCs imposition methods are 
required to keep the enforcement of the problem constraints 
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on the real boundaries, something that results in optimal 
convergence and accuracy properties.

Hence, our idea is to combine the conventional PFEM 
with the CutFEM approach, giving rise to the so-called Cut-
PFEM. In this new approach, the interaction of the fluid with 
the boundaries can be modeled in an unfitted mesh fash-
ion, i.e., the BCs are imposed variationally over the current 
mesh and not geometrically by creating contact elements. 
The boundary terms are imposed after the evaluation of a 
distance function that becomes negative whenever a fluid 
node reaches the (virtual) rigid contours.

This approach allows us not only to avoid using con-
tact elements and all the associated drawbacks (increase of 
volume and anticipation of contact time) but also to eas-
ily model slip conditions. All these advantages of the Cut-
PFEM versus the standard PFEM will be discussed and 
proved extensively in this work.

We also remark that the Cut-PFEM approach is compat-
ible with the other methods proposed in the literature to 
improve PFEM remeshing [10, 11]. Furthermore, as will be 
shown in this work, it can be used together with the standard 
PFEM body-fitted approach which can be still convenient for 
the imposition of some BCs, such as wave-maker devices.

The remainder of the paper is structured as follows. In 
Sect. 2, we introduce in a simple and schematic way the con-
cept and representation of unfitted boundaries. In Sect. 3, we 
present the governing equations of the problem. In Sect. 4, 
we introduce the variational form making special emphasis 
on the new boundary terms. In Sect. 5, we give the fully 
discretized and linearized form of the governing equations. 
In Sect. 6, we describe the scheme of subintegration used 
for the intersected elements. In Sect. 7, we recall the main 
concepts and basic algorithm of PFEM remeshing procedure 
and we highlight the particularities of this scheme when it is 
employed in an unfitted domain representation. In Sect. 8, 

we summarize the Cut-PFEM solution strategy, also pro-
viding pseudocoded algorithms. In Sect. 9, we validate the 
proposed Cut-PFEM approach through the solution of three 
benchmark problems. Key aspects of the method, such as 
mass preservation skills, slip conditions modeling, and 
robustness of the algorithm, are deeply discussed. Finally, 
in Sect. 10, we provide some concluding remarks and we 
discuss potential future developments in the framework of 
Cut-PFEM.

2  Unfitted boundaries’ representation

The representation of unfitted boundaries is one of the core 
features of the proposed Cut-PFEM methodology. In this 
section, we describe the basics for the implicit representation 
of unfitted boundaries as well as how this approach can be 
applied within a PFEM framework.

First, it is important to note that the implicit representa-
tion of a surface boundary is commonly achieved by the use 
of a discrete level set function [28]. This function is built by 
calculating a signed distance from each node of the compu-
tational mesh to the unfitted boundaries, thus meaning that 
the zero-distance isosurface becomes the implicit represen-
tation of the boundary in question. Hence, points that lie in 
the interior/exterior of the computational domain feature a 
positive/negative distance value. A direct consequence of 
this approach is that the elements that are intersected by any 
unfitted boundary will necessarily have both positive and 
negative distance values at their nodes.

To clarify these concepts, let us consider the simple 2D 
geometry plotted in Fig. 1, assimilable to a dam-break sce-
nario, as an example for the discussion at hand. Our objec-
tive is to solve this problem using the unfitted representa-
tion of some of its boundaries. For the sake of generality, 

Fig. 1  Graphical representation of an unfitted 2D mesh. a Descrip-
tion of the problem, being the grey solid pattern the fluid mass and 
the dashed one the vertical and horizontal walls. b Hypothetical Cut-
FEM discretization of the problem. The grey dashed lines and round 
markers represent the computational background mesh. The solid 

grey vertical line represents a standard body-fitted boundary. The 
black lines and cross markers depict the unfitted boundary auxiliary 
mesh from which the level set is to be computed. c Distance field that 
implicitly represents the unfitted horizontal wall. The thin dotted line 
highlights the zero isosurface of the level set
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we model the bottom wall as an unfitted boundary while 
we treat the vertical one as a standard body-fitted PFEM 
wall. Nonetheless, we highlight that there is no technical 
limitation in this regard, so all the boundaries could be 
perfectly solved using an unfitted representation. Figure 1 
shows a possible discretization for the problem accord-
ing to this new representation. As it can be observed, the 
discrete version of the problem involves two separate 
meshes: a volume mesh (grey lines in Fig. 1), that rep-
resents the fluid domain, and an auxiliary surface mesh 
(black lines in Fig. 1), which serves only to describe the 
unfitted boundaries. The volume mesh, commonly referred 
to as the background mesh, is where the governing equa-
tions are solved. The boundaries of this mesh align with 
those of the computational domain for the standard body-
conforming boundaries (left vertical wall) but do not so 
for the unfitted ones (bottom horizontal wall). To what 
concerns the auxiliary surface mesh, sometimes denoted 
as the skin mesh, it is important to clearly state that it has 
neither computational nor topological requirements, mean-
ing that any triangulation (e.g., stl meshes featuring entity 
duplications, gaps, and overlaps) can be perfectly used.

By focusing on the unfitted contour, one can observe that 
the elements at the bottom of the volume are cut by the aux-
iliary mesh discretizing the horizontal wall. Hence, the idea 
is to implicitly describe such intersections in terms of the 
background mesh using a level set (distance) function. In this 
simple example, in which the unfitted boundary can be ana-
lytically described by the equation y = 0 , the distance field 
� can be analytically computed at each i-node of the back-
ground mesh as �i = yi . This expression results in the contour 
field plotted in Fig. 1. Considering that blue and red colors 
denote the positive and negative distance nodes, respectively, 
the white color band necessarily contains the zero isosurface 
of the distance (highlighted by a dotted line in Fig. 1) that 
implicitly represents the unfitted horizontal wall.

In very simple scenarios, like the one previously described, 
the distance function can be easily described with an analytical 
function. However, this is unlikely the case when dealing with 
real-life problems as these potentially entail more complex 
geometrical patterns that require the use of a level set cal-
culation algorithm. Although this sort of algorithm is more 
related to the computer graphics community, in the following, 
we briefly describe the steps of a feasible implementation for 
our target application. First, it is needed to select the elements 
of the background mesh that are candidate to be intersected 
by the skin ones. This procedure can be efficiently achieved 
by building an octree-based search structure on top of the skin 
auxiliary mesh. Once it is found that a background mesh ele-
ment is intersected, the intersection plane can be built from the 
intersections of the element’s edges with the boundary entities. 
Then, the level set values are computed as the minimum dis-
tance from each node to the reconstructed intersection plane.

Last but important, we shall remark that in a PFEM sim-
ulation, the mesh nodes move according to the Lagrangian 
solution of the governing equations. Consequently, the dis-
tance function requires recurrent computation. In the case of 
implicit schemes applied to large-deformation problems, such 
as the ones analyzed in this work, the distance function must 
be updated at each time step.

3  Governing equations

The fluid dynamics problem is governed by the balance of 
linear momentum and mass-conservation equations. As it is 
customary in the PFEM, the problem is solved in the Updated 
Lagrangian framework [3]. After denoting the computational 
domain as Ω and the total time as T, the problem to be solved 
can be expressed as 

 Here, � and � are the fluid density and bulk modulus, v and p 
are the velocity and pressure fields, g is the volume accelera-
tion (i.e., gravity), ∇⋅ is the divergence operator in current 
configuration and � is the Cauchy stress tensor, which is 
defined as

� is the effective (i.e., apparent) viscosity of the fluid and d′ 
is the deviatoric part of the deformation rate tensor d , which 
is computed from the velocity field as

being ∇ the gradient operator in the current configuration. 
We note that Eq. 1b is solved including a small compress-
ibility to allow the explicit computation of pressure [29, 30]. 
Such compressibility is controlled by � , implying that the 
standard incompressible divergence-free form is recovered 
as � → ∞.

The governing equations are completed by the correspond-
ing BCs, which are applied on the computational domain 
boundary �Ω = Γ . More specifically, Γ is defined as the 
union of the two disjoint sets ΓD (the Dirichlet boundary) 
and ΓN (the Neumann boundary), such that ΓD ∪ ΓN = Γ and 
ΓD ∩ ΓN = � . Hence, the BCs for the Eq. 1 are 

(1a)�
�v

�t
− ∇ ⋅ � − �g = 0 in Ω × (0, T] ,

(1b)−
1

�

�p

�t
+ ∇ ⋅ v = 0 in Ω × (0, T].

(2)� = 2�d�(v) − pI .

(3)d�(v) =
1

2

(
∇v + ∇vT

)
−

1

3
(∇ ⋅ v)I ,

(4a)P(v − v̄) = 0 on ΓD × (0, T] ,

(4b)� ⋅ n − t̄ = 0 on ΓN × (0, T] ,
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 being v̄ and t̄ the prescribed wall velocity and traction to 
be imposed on ΓD and ΓN , respectively. As usual, n denotes 
the outward unit normal vector of the boundary. P is a 
matrix projection operator that allows us to conveniently 
define the two different Dirichlet BCs that we are consider-
ing in this work. The former is the standard pure stick (also 
known as no-slip) condition and can be straightforwardly 
obtained using the identity matrix as projection operator, 
that is P = I . The latter is the pure slip (i.e., no penetra-
tion) boundary condition, which only constrains the velocity 
in the direction perpendicular to the wall. This is achieved 
by setting the projection operator to the normal projection 
matrix, such that P = Pn = n⊗ n.

4  Variational form

Let us first define the notation

for the scalar and vector L2(Ω)-inner products on the interior 
of Ω and

for the boundary ones on Γ . Complementary, we also 
extend the previously described notation for the bounda-
ries to distinguish the Dirichlet body-fitted boundaries, 
henceforth denoted as ΓD� , from the unfitted ones, which 
we denote as Γ� . Hence, from now on, we will consider 
that ΓD� ∪ Γ� = ΓD and ΓD� ∩ Γ� = � . We also introduce the 
functional spaces V ∶= H

1

0
(Ω) (i.e., the space of functions in 

H
1(Ω) vanishing on ΓD� ) and Q ∶= L2(Ω)∕ℝ (i.e., the space 

of square-integrable functions in ℝ ) for the velocity and 
pressure approximations.

Before getting into the details of the variational form, it 
is important to recall that the conventional BCs imposition 
technique employed in the standard body-fitted PFEM is no 
longer suitable for the unfitted boundaries. This is due to 
the fact that there are no DOFs located over Γ� , something 
that precludes the use of a strong Dirichlet imposition at 
the algebraic level. Hence, the conditions over Γ� necessar-
ily need to be enforced by using variational (weak) imposi-
tion techniques. Among the different approaches to weakly 
impose the Dirichlet constraints, in this work, we opt for 
Nitsche’s method [31]. A complete discussion, including 
consistency and stability analyses as well as error esti-
mates, of the application of Nitche’s method to the impo-
sition of general BCs in the Poisson model problem can 
be found in [32]. We also refer the reader to [33, 34] for a 
detailed analysis of the stability and convergence properties 

(a, b)Ω = ∫Ω

ab and (a, b)Ω = ∫Ω

ab

⟨a, b⟩Γ = ∫Γ

ab and ⟨a, b⟩Γ = ∫Γ

ab

of Nitsche’s method applied to Stokes and Navier–Stokes 
(Oseen) problems. A similar discussion but for the slip and 
Navier-slip BCs can be found in [35, 36]. Complementary, 
the modified Nitsche approaches presented in [37, 38] also 
deserve a mention.

The previously defined functional spaces allow us to 
define the variational form as follows. Find u ∈ V  and 
p ∈ Q , such that

for all w ∈ V and q ∈ Q.
At this point, it is important to stress that in addition to 

the standard Navier–Stokes volumetric terms, the variational 
problem that we solve includes a set of boundary terms that 
are crucial for the Cut-PFEM. Taking this into account and 
with the aim of simplifying the forthcoming discussion, let 
us start by identifying each of the contributions in Eq. 5. 
Hence, we define the boundary fluxes 

 as well as the volume contribution

which altogether allow us to write the variational form above 
(Eq. 5) in a more compact form as

The fΓN
 and fΓ�

 boundary contributions come from the inte-
gration by parts of the stress term, while f BC

Γ�

 collects the 
Nitsche terms required for the weak imposition of Dirichlet 
BCs on Γ� . In the following subsections, we discuss the 
nature of these boundary terms as well as their role in the 
Cut-PFEM.

4.1  Boundary traction

The boundary traction term coming from the integration 
by parts of the stress divergence is customarily employed 

(5)

�
w, 𝜌

𝜕v

𝜕t

�
Ω
+
�
∇w, 2𝜇d�

�
Ω
− (∇ ⋅ w, p)Ω − (w, 𝜌g)Ω

−

�
q,

1

𝜅

𝜕p

𝜕t

�

Ω

+ (q,∇ ⋅ v)Ω − ⟨w, t̄⟩ΓN

− ⟨w, (2𝜇d�(v) − pI) ⋅ n⟩Γ𝜙
+ 𝛽⟨w,P(v − v̄)⟩Γ𝜙

− ⟨�2𝜇d�(w) − qI
�
⋅ n,P(v − v̄)⟩Γ𝜙

= 0

fΓN
= −⟨w, t̄⟩ΓN

,

fΓ𝜙
= −⟨w, (2𝜇d�(v) − pI) ⋅ n⟩Γ𝜙

,

f BC
Γ𝜙

= 𝛽⟨w,P(v − v̄)⟩Γ𝜙
− ⟨�2𝜇d�(w) − qI

�
⋅ n,P(v − v̄)⟩Γ𝜙

,

fΩ =
(

w, ��v
�t

)

Ω
+
(

∇w, 2�d′
)

Ω − (∇ ⋅ w, p)Ω

− (w, �g)Ω −
(

q, 1
�
�p
�t

)

Ω
+ (q,∇ ⋅ v)Ω ,

fΩ + fΓN
+ fΓ�

+ f BC
Γ�

= 0 .
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for the imposition of Neumann BCs on ΓN . As it can be 
observed in Eq. 5, this can be equivalently done in the Cut-
PFEM method, either by setting an external traction t̄ on 
fΓN

 or by simply neglecting such contribution (i.e., t̄ = 0 ) to 
effectively enforce a traction-free behavior.

Furthermore, it is important to bear in mind that the inter-
polation of w is not zero on Γ� or, in other words, that w 
vanishes on ΓD� but is no longer zero on Γ� (i.e., on the inter-
face cuts). Therefore, it is required to add the boundary trac-
tion contribution fΓ�

 on Γ� . We highlight this as a difference 
with respect to the conventional PFEM, in which the bound-
ary traction is omitted in all the Dirichlet boundaries.

4.2  Weak Dirichlet BCs imposition

As it can be observed in Eq. 5, the Nitsche-based Dirichlet 
BCs imposition f BC

Γ�

 is composed of two terms. The first one 
reading 𝛽⟨w,P(v − v̄)⟩Γ𝜙

 is nothing but a penalty term scaled 
by the penalization parameter � , which we define as

being h a characteristic element size and Δt the time incre-
ment. We note that � needs to be dimensionally consist-
ent with the formulation to be solved, in our case the 
Navier–Stokes equations. Besides this, it is designed to scale 
according to different flow magnitudes to be suitable for a 
wide range of flow scenarios and thus reduce the formulation 
dependency on the user-defined constant �.

The second Nitsche contribution in f BC
Γ�

 , namely 
⟨�2𝜇d�(w) − qI

�
⋅ n,P(v − v̄)⟩Γ𝜙

 , is commonly referred to as 
the symmetric counterpart of the boundary flux (traction). 
Its role is to enhance the stability of the formulation and to 
reduce the dependency on �.

Remark 1 In this work, we have assumed that only Dirichlet 
BCs are imposed on the unfitted boundaries Γ� . However, 
we shall remark that there is no technical limitation in this 
regard. Hence, the presented methodology could perfectly be 
extended to more complex wall models, such as Robin-type 
BCs (e.g., Navier-slip [36]).

5  Discrete form and solution strategy

The discrete domain is obtained from the partition of Ω 
into a set of non-overlapping elements. It is important to 
mention that only simplicial elements with linear v and p 
approximations are used in this work (linear triangles in 
2D and linear tetrahedra in 3D). It is known that this inter-
polation does not satisfy the well-known inf-sup or LBB 

(7)� = �

�
�

h
+ �‖v‖ + �h

Δt

�
,

condition and thus requires the use of stabilization tech-
niques. Among the many successful approaches that can 
be found in the literature, such as the streamline upwind 
Petrov–Galerkin (SUPG) [39], the Galerkin/least-squares 
(GLS) [40] or the variational multiscales (VMS) family of 
techniques, featuring the algebraic subgrid scales (ASGS) 
[41–43] and orthogongal subscales (OSS) [44–46], in 
this work, we chose the finite increment calculus (FIC) 
[47–50]. In this regard, we note that owing to the seg-
regated resolution strategy that we use, we only require 
the continuity equation to be stabilized [47]. As these 
extra terms are not of special interest for the focus of this 
work, and considering that any alternative to the FIC can 
be equivalently used, we decided to omit the stabilization 
terms from the discussion at hand. Nevertheless, we refer 
the reader to [51] for a detailed description of the deriva-
tion and implementation of the FIC stabilization used in 
this work.

Following the approach presented in [47], we use an itera-
tive two-step segregated strategy for the resolution of the 
governing equations in Eq. 1. Hence, at each iteration k of 
the strategy, a first linearized momentum equation is solved 
to obtain the velocity increment Δṽk+1 . Then, this correc-
tion is applied to the nodal velocities and the FIC-stabilized 
continuity equation is solved to obtain p̃k+1 and update the 
material response for the next iteration. Assuming a generic 
time discretization with a time step increment Δt together 
with the previously described finite element discretization, 
results in solving the algebraic problem

with the left-hand side (LHS) ij-nodal contributions being 
computed at each iteration k as

as well as the residual right-hand side (RHS) i-node 
contributions

and

in which v̇j and � are the j-node acceleration vector and the 
Voigt representation of the stress tensor, respectively, com-
puted at the previous iteration k. As usual, Ni and Bi denote 

(8)
(
K +K𝜙

)
Δṽk+1 = r + r𝜙

(9)
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Δt
NiNjdΩ + ∫Ω
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(10)
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dΓ ,
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the i-node shape function and strain matrices, which for the 
simplified 2D case are

The tensor C is the constitutive matrix in Voigt notation, 
computed as

in the simplified 2D case. Pv
n
 is an auxiliary matrix to do the 

normal projection of � in Voigt notation. For the 2D case, 
the components of Pv

n
 are

Similarly, P� denotes the discrete version of P . Hence, for 
the 2D pure stick case

while for the pure slip one

Once Eq. 8 is solved, the kinematics are updated according 
to the Δṽk+1 . Then, the current iteration pressure is obtained 
by solving the FIC-stabilized discrete continuity equation

with

The matrix Mn is the equivalent to Mij but considering the 
previous step time increment Δtn . Similarly, pn corresponds 
to the previous step pressure solution. Vector m is an aux-
iliary array for the calculation of the divergence in Voigt 
notation, and S� and f�,k+1 are stabilizing terms arising from 
the FIC methodology described in [51].

Last but important, the solution of iteration k + 1 must be 
completed by updating the material response, that is to say 
� , C and � (in the non-Newtonian case), with the recently 
obtained values ṽk+1 and p̃k+1.

Ni =

�
Ni 0

0 Ni

�
and Bi =
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�Ni

�x
0
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�y

�Ni

�x

⎤⎥⎥⎥⎦
.

C =

⎡⎢⎢⎣

�Δt +
4�

3
�Δt −

2�

3
0

�Δt −
2�

3
�Δt +

4�

3
0

0 0 �

⎤
⎥⎥⎦

Pv
n
=

[
nx 0 ny
0 ny nx

]
.
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1 0
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,

P𝜙 = n⊗ � =

[
nxnx nxny
nynx nyny
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.

(12)
(
M + S𝜏

)
p̃k+1 = Mnp̃n −QT ṽk+1 + f𝜏,k+1 ,

(13)Mij = ∫Ω

1

�Δt
NiNjdΩ and Qij = ∫Ω

BT
i
mNjdΩ .

Remark 2 For a standard Newtonian case, C is constant and 
can be computed once from the material parameters � and 
� . Conversely, in the non-Newtonian case, C is obtained 
from the previous iteration material response (i.e., effective 
viscosity), meaning that C = C(�k, �) . Please refer to [52] 
for more details on non-Newtonian fluid modeling with a 
similar PFEM formulation.

Remark 3 We remark that the standard Nitsche imposition 
presented in Eq. 5 has been slightly modified after the intro-
duction of the segregated solution strategy. More specifi-
cally, in the mass-conservation problem (Eq. 12), we have 
neglected the contribution of the Nitsche stability term, i.e., 
⟨qn,P(v − v̄)⟩Γ𝜙

 . In this respect, we note that the impact of 
this term over the overall solution is expected to be negligi-
ble, since the difference v − v̄ tends to zero (or is of the order 
of the residual tolerance) after the convergence of the veloc-
ity step. This means that our Nistche imposition terms effec-
tively turn into 𝛽⟨w,P(v − v̄)⟩Γ𝜙

− ⟨2𝜇d�(w) ⋅ n,P(v − v̄)⟩Γ𝜙
.

6  Subintegration

After having established the role of the distance function 
in characterizing the domain boundaries (as discussed 
in Sect. 2), it becomes evident that certain elements will 
extend into both the interior and exterior of the computa-
tional domain. To ensure accurate computations, it is crucial 
to distinguish between these two regions and integrate the 
previous variational terms only inside the computational 
domain. This is achieved through a procedure called subin-
tegration, which adjusts the position of the integration points 
in the intersected elements according to the position of the 
level set. Skipping such subintegration procedure would not 
only imply the addition (or subtraction) of some mass to the 
system but also a deterioration in the formulation accuracy 
rates.

Figure 2 describes the subintegration procedure for a 
sample triangle intersected by an unfitted boundary. Fig-
ure 2a presents the configuration of the example. As it can 
be observed, the element conformed by the nodes 1, 2, and 
3 is intersected by the zero isosurface of the level set (black 
dashed line), resulting in a portion of the element outside the 
computational domain (white region) and a “wet” portion 
belonging to Ω (grey region) where the governing equations 
are to be evaluated. The first step of the subintegration is to 
virtually split the intersected triangle (tetrahedron in 3D) 
into sub-triangles (sub-tetrahedra in 3D) in accordance to 
the position of the level set. It is important to stress that this 
is a virtual subdivision, meaning that no modification in the 
mesh connectivity is done. Figure 2b depicts the splitting 
for the present example. As can be noted, the splitting starts 
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by finding which are the intersection points between the ele-
ment edges and the level set, something that can be easily 
done from the nodal values of the distance function. Specifi-
cally, for the current triangle, we find intersection points A 
and B for edges 1–3 and 2–3, respectively. This results in a 
splitting pattern conformed by the sub-triangles 1AB, 12B, 
and 3AB (green, red, and blue regions in Fig. 2b). Once the 
splitting is completed, the position of the “new” integration 
points (round markers in Fig. 2c) can be computed as usual 
using a Jacobian transformation from the standard isopara-
metric triangle to the sub-triangles in the splitting. In this 
regard, we note that only the integration points belonging 
to sub-triangles lying on Ω (green and red sub-triangles in 
the example) should be considered as the other ones (blue 
sub-triangle in the example) are outside the computational 
domain. Similarly, the integration points over the interface 
can be also obtained (triangle markers in Fig. 2c) by doing 
the Jacobian transformation from the standard isoparametric 
line to the intersection AB.

For the sake of completeness, in Fig. 3, we also retake 
the toy problem presented in Sect. 2 to describe how the 
subintegration procedure is applied to two elements with 
a different splitting pattern. Finally, it is worth mentioning 
that even though, in Figs. 2 and 3, we show the procedure 
for the standard 2nd order Gauss integration rule, the very 
same technique can be equally applied to any other integra-
tion order/rule.

7  Remeshing algorithm

The PFEM is a Lagrangian finite element method that 
employs an efficient remeshing strategy to address mesh 
distortion when solving problems involving large deforma-
tions. The mesh reconstruction algorithm of PFEM consists 
of three main steps: 

Fig. 2  Steps of the subintegration for an intersected element. a Con-
figuration of a sample intersected element. The black dashed line 
represents the unfitted boundary, while the grey shadowed region 

denotes the “wet” region occupied by the fluid. b Virtual splitting of 
the intersected elements. c Reallocation of Gauss points in the “wet” 
portion of the element

Fig. 3  Graphical representation of the subintegration strategy. The 
grey dashed lines in the left figure depict the mesh, while the grey 
solid one does so for the body-fitted boundary. The dashed black 
line represents the unfitted boundary. The two right figures depict 
the location of the integration points for the elements highlighted in 

cyan and orange. The circle dots show the integration points for the 
area (volume) integrals and triangle ones do so for the boundary ones. 
Complementary, the grey dotted line denotes the auxiliary splitting 
edges
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1. Elimination of elements: Removing elements from the 
previous distorted mesh and maintaining the nodes.

2. Delaunay triangulation: Performing Delaunay triangula-
tion [1] over the nodes of the previous mesh.

3. Boundary recognition: Identifying the actual boundaries 
using the Alpha-Shape method [2].

For more in-depth information about the PFEM remesh-
ing algorithm, refer to [53]. The same remeshing algorithm 
described above is also utilized in Cut-PFEM. However, as 
we will explain later, the proposed method allows for the 
mitigation of certain drawbacks associated with the standard 
PFEM.

In [8], it was shown that the remeshing strategy employed 
in PFEM can introduce artificial topological changes and 
variations in volume within the computational domains. 
These undesired effects primarily arise from the combina-
tion of Delaunay triangulation and the Alpha-Shape method. 
These processes not only have the potential to alter the con-
nectivity within the internal domain but can also add or 
remove elements at the external boundaries of the compu-
tational domain. Notably, the addition of elements that con-
nect the fluid free surface with the rigid boundaries is the 
mechanism through which PFEM detects contact with the 
external boundaries.

Figures 4a–c and 5a–c provide a graphical representa-
tion of how contact detection is performed within the PFEM 

framework. Delaunay triangulation is carried out over a 
point cloud that encompasses not only the nodes of the pre-
vious fluid mesh but also nodes representing the discretiza-
tion of the rigid boundaries. In Fig. 4a–c, the fluid remains 
separated from the rigid boundaries, as none of the contact 
elements within the convex hull formed by the Delaunay 
triangulation meet the Alpha-Shape criterion. In contrast, in 
the scenario depicted in Fig. 5a–c, the fluid has approached 
the rigid boundaries closely enough that some of the ele-
ments connecting the fluid and the rigid nodes remain, as 
they fulfill the Alpha-Shape control.

These illustrations clearly show that this contact detec-
tion algorithm has two main drawbacks. First, it results in 
an anticipation of the timing of physical contact. Second, it 
artificially introduces new elements into the computational 
domain, violating mass conservation. The relevance of both 
these inconveniences depends on the mesh size, as discussed 
in [8].

In Cut-PFEM, these two inherent drawbacks of PFEM 
remeshing are alleviated by the fact that the rigid contours 
are solely virtual, and therefore, they are not considered 
during the remeshing step. This is visually demonstrated 
in Figs. 4d–f and 5d–f, where we represent the virtual 
boundary with a dashed line. The Delaunay triangula-
tion is conducted solely over the fluid nodes, resulting in 
a smaller convex hull compared to the one created by the 
standard PFEM strategy. This approach helps to prevent the 

Fig. 4  Remeshing steps in standard PFEM and Cut-PFEM for a non-contact situation
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generation of contact elements that underlie the topologi-
cal issues described earlier. Unlike the standard PFEM, the 
contact between the fluid and rigid boundaries is not guar-
anteed through geometry but rather by the imposition, in a 
weak form, of the Nitsche boundary terms, as presented in 
the previous sections.

Another significant advantage of Cut-PFEM mesh han-
dling is that the boundary nodes are treated like any other 
nodes within the mesh. This means that they can be safely 
engaged in standard procedures for adding or removing 
nodes to enhance mesh quality, as discussed in [53]. This 
is in contrast to the standard PFEM, where boundary nodes 
require special treatment to prevent numerical issues such 
as artificial fluid leakage [53]. This improved behavior of 
Cut-PFEM over the conventional PFEM is even more clear 
in the presence of local mesh refinement or when slip BCs 
are considered [13, 15].

Remark 4 In a Cut-PFEM framework, fluid–solid detach-
ment is modeled as in the standard PFEM, i.e., the contact 
elements are removed from the mesh when they do not fulfill 
the AS check anymore [8]. This procedure induces a mass 
loss whose magnitude is, therefore, analogous for PFEM and 
Cut-PFEM solution schemes. Nevertheless, we also remark 
that the use of slip boundary conditions has shown to be 
helpful in reducing this mass-conservation issue [10, 13], 
and these conditions are treated more easily in Cut-PFEM 
than in PFEM.

Remark 5 The Cut-PFEM only deals with elements and 
thus requires an ad-hoc procedure for the treatment of the 

isolated nodes that may be created during the PFEM remesh-
ing [53]. A possibility is to fix these nodes in a strong form, 
something that might result in boundaries represented by a 
collection of fixed nodes, as happens in the standard PFEM. 
Alternatively, these nodes can be removed, together with 
their kinematics, from the cloud of points. However, we 
highlight that such removal does not affect all the isolated 
nodes, but only the (typically) small portion of them reach-
ing virtual walls. In this work, we opted to remove the iso-
lated nodes as these have a minimal effect on the examples 
we are solving.

8  Solution algorithm

Aiming at further clarifying the discussion at hand, in this 
section, we present two algorithms. In the first one (Alg. 1), 
we describe the steps of the Cut-PFEM simulation strategy. 
For each time step, these can be summarized in remesh-
ing, distance function calculation, and non-linear solution 
strategy loop. The second algorithm (Alg. 2) details one of 
the steps in Alg. 1, the assembly of the linear momentum 
problem (Eq. 8). In this regard, we note that we omitted the 
continuity problem algorithm as it would be almost identical 
to Alg. 2.

Finally, we shall mention that a complete open-source 
implementation of the Cut-PFEM presented in this work can 
be found in Krato s Multi physi cs [54, 55]. For both pre- and 
post-processing, we use the GiD simul ation software [56, 57].

Fig. 5  Remeshing steps in standard PFEM and Cut-PFEM for a contact situation

https://github.com/KratosMultiphysics/Kratos
https://www.gidsimulation.com/
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9  Numerical examples

9.1  Falling cylinder in a viscous fluid

In this test, we consider the gravity-induced motion of a cyl-
inder in a channel filled with a viscous fluid. The solid body, 
at rest at the beginning, is expected to undergo an acceler-
ated motion until it reaches an asymptotic terminal velocity. 
Due to the narrowness of the channel and the high viscosity 
of the fluid, the problem dynamics are greatly influenced by 
the interaction of the fluid with the lateral walls. The central 
importance of the BCs and the availability of an analytical 
solution for the terminal velocity of the solid motivate the 
resolution of this test in the proposed Cut-PFEM validation. 
It is worth noting that this test also involves fluid–struc-
ture interaction (FSI) phenomena between the viscous fluid 
and the cylinder. These aspects, which we highlight are not 
the focus of this work, are handled using the well-assessed 
PFEM–FEM monolithic FSI strategy presented in [14]. 
The interaction between the solid circle and the fluid is 
performed using the standard PFEM body-fitted approach. 
However, our focus is on the lateral boundaries of the chan-
nel which are treated in an unfitted manner in the Cut-PFEM 
spirit.

For practical purposes as well as to ease the comparison 
to the reference work [58], we consider the gravity accel-
eration g = 9.81 m/s2 acting in the horizontal direction, as 
shown in Fig. 6. In [58], the same problem was solved con-
sidering slip conditions using an Immersed Finite Element 
Method (IFEM). The cylinder has radius r = 2.5 mm and 
is located at the central point of the channel, whose width 
is L = 40 mm. A mesh of mean size h = 0.50 mm has been 
used in the zone around the solid object and h = 0.75 mm in 
the rest of the domain.

The fluid has viscosity � = 0.1 Pa ⋅ s and density 
�f = 1000 kg/m3 . The solid cylinder has Young modulus 
E = 107 Pa, Poisson ratio � = 0.35 , and density �s = 1200 
kg/m3 . Under these conditions, the deformations experi-
enced by the solid during its motion can be neglected, thus 
making it possible to estimate the terminal velocity of the 
solid ( vend ) using the analytical solution for a free-falling 
rigid cylinder proposed in [59]. According to this work, the 
terminal velocity of a cylinder within a channel with pure 
slip walls can be computed as

For the sake of a more complete validation and comparison, 
the same test has been solved considering both slip and no-
slip BCs on the lateral rigid walls. For the no-slip case, our 
reference solution is the one obtained in [14] using the same 

(14)vend =

(

�s − �f
)

gr2

4�

(

ln
( L
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)
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( r
L

)4
)

.

FSI approach used here but with a standard PFEM body-
fitted formulation.

The time evolution of the cylinder vertical velocity 
obtained with slip and no-slip BCs is shown in Fig. 7a and 
b, respectively. As depicted in Fig. 7, the results show a 
significant difference between the slip and no-slip bound-
ary models, highlighting the crucial role of the BCs in this 
problem. Additionally, for both the no-slip and slip cases, 
we observe that the Cut-PFEM results practically overlap 
with the reference solutions, proving the accuracy of the pro-
posed methodology for the modeling of the BCs. This strong 
agreement with the reference solution is further substanti-
ated by the results depicted in Figs. 8 and 9, which illustrate 
the velocity field solution at the final time instant, t = 1.5 s , 
for the no-slip and slip cases, respectively.

This example is also employed to assess the sensitivity of 
the Cut-PFEM solution to the penalty constant � (Eq. 7). For 
this purpose, we solved the same problem while considering 
a wide range of penalty constants, spanning five orders of 
magnitude from the smallest to the largest values. For this 
analysis, we focus on the no-slip solution only.

We initially examine the effect of � choice on the lin-
ear system’s conditioning by monitoring the number of 
iterations required by the iterative linear solver to converge, 
both with and without a preconditioner. In this study, we 
utilized a bi-conjugate gradient (BiCG) iterative solver and 
an incomplete LU factorization (ILU0) as preconditioner. 
Figure 10a illustrates the number of iterations of the linear 
solver obtained for various penalty coefficient values. The 
graphs demonstrate that when the preconditioner is used, the 
number of iterations remains limited across the entire range 
of the analyzed penalty coefficients. Instead, without a pre-
conditioner, the number of iterations significantly increases 
for � = 104 , although it remains nearly constant for all the 
other tested values of the penalty coefficient, remarkably 
ranging from � = 100 to � = 104 . To complete the penalty 
parameter analysis, we also monitor its impact on the solu-
tion accuracy. Figure 10b displays the final cylinder velocity 
(at t = 1.5 s) for the same range of penalty coefficients. The 
graph reveals that the solution is practically identical for 
the tested values of � (the percentage difference between 
the maximum and the minimum velocity values is smaller 
than the 0.1%).

We shall remark that this study evidences the robustness 
of the method, as it enables the use of a wide range of pen-
alty coefficient values without impacting the solving scheme, 
both in terms of the quality of the linear system and solution 
accuracy.
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9.2  Non‑Newtonian flow

In this second test, we model the flow of a mass of liquefied 
sand, which is modeled as a non-Newtonian fluid. The study 
of this type of free-surface flow is pertinent to various real-
world situations and engineering challenges. These include 
predicting the runout of geophysical flows like mudflows or 
debris flows, as well as assessing the slump of fresh concrete 
or cement pastes to determine their workability. Despite the 
difference in scale between the two mentioned problems, in 
both scenarios, the interaction between the mobilized mate-
rial and the underlying surface plays a crucial role in the 
problem’s dynamics. Additionally, it is essential to minimize 
mass variations induced by the numerical model, which 
could significantly affect the results. As explained in previ-
ous sections, this latter aspect presents a notable challenge 
within a standard PFEM framework, which requires the 
creation of new elements to detect contact with the external 
boundaries. Consequently, this test is particularly valuable 
for evaluating the accuracy and relevance of the proposed 
Cut-PFEM strategy.

The problem is based on the experimental test presented 
in [60]. At the beginning, the material is retained by a 

vertical wall and has initial height H = 26.7 cm and length 
L = 32 cm, as shown in Fig. 11. The material starts moving 
after the removal of the wall, which is assumed to occur 
instantaneously. Following [61], the saturated sand is mod-
eled as a Bingham fluid with the following material prop-
erties: density � = 1600 kg/m3 , dynamic viscosity � = 300 
Pa s and yield shear �0 = 50 Pa. To address the well-known 
numerical challenges associated with this non-Newtonian 
model, we employ the same regularized model as the one 
used in [52]. The regularization parameter used for the Bing-
ham model is m = 1000 s. In the reference work [61], no-slip 
BCs were applied to both the horizontal and vertical walls 
using a standard PFEM approach. In this study, we maintain 
the same choice of BCs but employing the Cut-PFEM for 
their modeling. The penalty constant � of Eq. 7 has been set 
equal to 10.

A mesh convergence study has been also performed by 
running the test with five different refinement levels, corre-
sponding to an average element size of 0.04 m, 0.02 m, 0.01 
m, 0.005 m, and 0.0025 m.

Figure 12 shows the Cut-PFEM results obtained with the 
finest mesh ( h = 0.0025 m) at six time instants. The velocity 
contours are plotted over the deforming configuration of the 
non-Newtonian fluid. The pictures show that the mobilized 
material undergoes a sudden acceleration after the instan-
taneous wall removal. After 1 s, the material slows down 
sensibly and the velocity progressively reduces. The pictures 
also show that, due to the use of no-slip boundary condi-
tions, part of the material keeps stuck to the vertical wall 
until the end of the simulation.

Figure 13 depicts the time evolution of the front position 
x-coordinate of the moving material. The Cut-PFEM results 
are plotted together with the experimental observations of Fig. 6  Falling cylinder in a viscous fluid. Problem description

Fig. 7  Falling cylinder in a viscous fluid. Time evolution of the ver-
tical velocity of the cylinder. a No-slip solutions obtained with the 
proposed Cut-PFEM and the standard body-fitted PFEM. b Slip solu-

tions obtained with Cut-PFEM and IFEM from [58], and terminal 
velocity computed analytically using Eq. 14 according to [59]
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[60], the numerical results obtained in [61], and the results 
of the standard PFEM. We note that the PFEM results have 
been obtained using the same two-step FIC-stabilized for-
mulation as the Cut-PFEM but with the customary PFEM 
no-slip body-fitted BCs. Both Cut-PFEM and PFEM results 
plotted in the graph have been obtained considering a mean 

mesh size h = 0.0025 m. A good agreement is found among 
the three distinct numerical formulations, while the experi-
mental observations exhibit a slight divergence, particularly 
during the initial phase of the test. This discrepancy between 
the numerical and experimental results may arise from the 
assumption in the numerical tests that the retaining vertical 

Fig. 8  Falling cylinder with no-slip BCs on the lateral walls. Velocity field at t = 1.5 s obtained with Cut-PFEM and PFEM

Fig. 9  Falling cylinder with slip BCs on the lateral walls. Velocity field at t = 1.5 s obtained with Cut-PFEM and IFEM from [58]

Fig. 10  Falling cylinder with no-slip BCs on the lateral walls. Sensitivity analysis of the penalty constant � defined in Eq. 7. a Mean number of 
iterations of the linear solver with and without preconditioner for different values of � . b Final velocity for different values of �
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wall is removed instantaneously, or it could be attributed to 
the inadequacy of the Bingham model and relative param-
eters in representing the real material [61]. Nevertheless, 
these results confirm the accuracy of the proposed numerical 
strategy, also in a non-Newtonian flow scenario.

It is particularly interesting to note that, despite the global 
results of PFEM and Cut-PFEM are very similar for a fine 
mesh, the front-advancing mechanism provided by the two 
approaches is quite different. To emphasize this point, we 
display in Fig. 14 the details of the contact zone between the 
fluid and the basal surface for both the standard PFEM and 
the Cut-PFEM approaches. As explained in the previous sec-
tions, the standard PFEM necessarily creates new elements 
that connect the front of the fluid with the fixed nodes repre-
senting the basal surface. In contrast, in the Cut-PFEM, the 
walls are virtual, meaning that the fluid nodes move freely 
until their distance value becomes negative, at which point 
the no-slip BCs are weakly applied, as described earlier.

The primary consequence of this distinct treatment of 
no-slip BCs pertains to the mass-conservation properties of 
the two schemes. In this regard, the Cut-PFEM consistently 
outperforms the standard PFEM, because it does not require 
the construction of new elements to model fluid–solid con-
tact interactions. This is corroborated by the graphs in 
Fig. 15a, which illustrate the time evolution of accumulated 
volume variations resulting from remeshing for three differ-
ent meshes obtained using the Cut-PFEM and the standard 
PFEM. In terms of absolute value, the volume variation due 
to remeshing in Cut-PFEM is always smaller than in PFEM. 
Remarkably, even the results obtained with the Cut-PFEM 
coarsest mesh ( h = 0.01 m) outperform those obtained with 
the PFEM finest mesh ( h = 0.0025 m).

Figure 15a also reveals distinct convergence behaviors 
in the two approaches. In the PFEM, convergence occurs 
from above, meaning that with finer meshes, the increment 
of volume due to remeshing decreases. Conversely, in Cut-
PFEM, convergence happens from below, as finer meshes 
result in a smaller loss of volume due to remeshing. This dif-
fering behavior can be attributed to the distinct mechanisms 
of volume alteration that occur during PFEM remeshing, 
as explained in detail in [8]. In this specific test, two main 
sources contribute to the volume variation: the elimina-
tion of excessively stretched elements on the free surface 
of the fluid, and the creation of new elements connecting 
the fluid front and the solid base. The former contribution, 
which leads to a volume loss, affects both the PFEM and the 
Cut-PFEM, instead, the latter one, which induces volume 
gain, only occurs in the standard PFEM. By comparing the 
volume conservation curves plotted in Fig. 15a, it appears 
clear that the volume-gain mechanism of creating new ele-
ments in the fluid front is predominant in this test. All this 
also explains why Cut-PFEM exhibits an overall volume 
loss, while PFEM results in a positive volume variation. 

We remark that the volume-loss mechanism associated 
with fluid–solid detachment [8] also affects the mass con-
servation, but, in this test, its magnitude is relatively low 
versus the two mechanisms described before. Furthermore, 
as already explained in Remark 4, the fluid–solid detach-
ment mechanism affects the mass conservation of PFEM 
and CUT-PFEM in the same way. For these reasons, we can 
neglect its contribution in the comparison of the two PFEM 
solution schemes.

Figure 15b shows the final runout x-coordinate obtained 
with Cut-PFEM and PFEM with five different mesh sizes. 
Combining these results with those of Fig. 15a, we note the 
close correlation between the lack of mass conservation and 
the overall numerical solution. In the standard PFEM, the 
additional mass in the system introduced by the remeshing 
operations makes the fluid front advance artificially. Instead, 
in Cut-PFEM, the opposite situation occurs. In both cases, 
the effects of remeshing reduces progressively with mesh 
refinement. We also note that, considering the same mesh 
size, the error of Cut-PFEM results versus the expected solu-
tion (i.e., the one obtained with the finest mesh) is smaller 
than the one obtained with PFEM.

The advantages of using Cut-PFEM extend beyond 
improved mass conservation performance. As discussed 
in the previous section, the Cut-PFEM results in a much 
simpler application of slip BCs. In the preceding example, 
these conditions were examined in the context of confined 
flow. However, within a PFEM framework, it is valuable to 
investigate their functionality in flows involving free sur-
faces, such as the one in this test. To achieve this, we analyze 
the same problem in a three-dimensional geometry while 
applying slip BCs to the lateral walls. Furthermore, to dem-
onstrate the flexibility of the Cut-PFEM strategy that allows 
combining standard body-fitted and unfitted boundaries, we 
model the lateral walls with slip BCs using Cut-PFEM and 
the basal surface with no-slip boundaries using the standard 
PFEM technique. The width of the channel equals the initial 
height, that is 26.7 cm.

Fig. 11  Two-dimensional flow of a non-Newtonian material. Problem 
description
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Figure 16 presents four images of the 3D analysis. Quali-
tatively, we can say that the velocity contour field proves a 
satisfactory modeling of the lateral walls slip BCs.

To quantitatively assess the accuracy of the slip BCs, 
we compare in Fig. 17 the 2D results obtained solely with 
PFEM with the 3D ones obtained using the Cut-PFEM to 

model the slip BCs on the lateral walls. More specifically, 
we plot the position of the free surface obtained for the 
2D and the 3D case at the same time instants considered 
in Fig. 17. For the 3D results, we represent the position of 
the free surface of the central section. The graph reveals a 
strong agreement between the 2D and 3D results, meaning 
that there is no wall shear effect in the solution or, in other 
words, that the slip BC effectively turns into a symmetry 
condition as expected. This confirms the accuracy of the 
Cut-PFEM in modeling pure slip BCs and demonstrates its 
effective performance in 3D problem-solving.

9.3  Water dam break

The objective of this final test is to prove that the proposed 
Cut-PFEM can be reliably employed in scenarios involving 
strong impacts. To this end, we examine a water dam-break 
test and its subsequent impact on a vertical wall. In par-
ticular, we take as reference the work presented in [62], a 
well-established benchmark for validating free-surface fluid 
solvers. Figure 18 illustrates the initial geometry of the 2D 
analysis. At the beginning, the water column has height 
H = 29.2 cm and width L = 14.6 cm. We apply no-slip BCs 
to all rigid contours. An average mesh size h = 0.25 cm and 
a time step duration Δt = 10−4 s have been used. For the 
no-slip boundaries, a penalty constant � = 10 (Eq. 7) has 
been used.

Fig. 12  Two-dimensional flow of a non-Newtonian material. Velocity field at six different time instants obtained with Cut-PFEM. No-slip BCs 
are applied on the contours

Fig. 13  Two-dimensional flow of a non-Newtonian material. Time 
evolution of the x-coordinate of the front of the mobilized material. 
The graph shows the experimental observations from [60], numerical 
results from [61], together with the results of a standard PFEM and 
the proposed Cut-PFEM approach
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In Fig. 19, we compare our Cut-PFEM numerical solution 
alongside experimental observations at four different time 
intervals. The images show a notable agreement between the 
experimental data and our numerical simulations, affirm-
ing the suitability of Cut-PFEM for analyzing complex free 
surface problems, including violent impacts.

Additionally, we present in Fig. 20 the time evolution of 
the x-coordinate of the wavefront position prior to impact 
with the vertical wall. The plot includes the Cut-PFEM 
results together with the solution obtained using the stand-
ard PFEM, as well as the numerical and experimental results 
documented in [62]. Notably, all the numerical results 
closely align with each other but consistently show higher 
values compared to the experimental solution. This overes-
timation is a common characteristic of various numerical 

methods applied to this test and is generally attributed to the 
representation of retaining wall removal, which is instanta-
neous in numerical simulations.

Finally, it is also noteworthy that in the PFEM, the wave-
front moves slightly faster than in the Cut-PFEM. This minor 
difference can be attributed to the PFEM mechanism of cre-
ating new elements at the front, which is completely avoided 
in the Cut-PFEM. Nevertheless, the solutions of PFEM and 
Cut-PFEM exhibit a high degree of similarity, as evinced by 
Fig. 21. Such resemblance underscores a significant advan-
tage of the proposed Cut-PFEM approach, given that the 
standard PFEM is a well-established approach for simulating 
complex fluid–structure interaction mechanisms and violent 
impacts [53].

Fig. 14  Two-dimensional flow of a non-Newtonian material. Detail of the contact zone of the PFEM and the Cut-PFEM analyses (results at 
t = 0.5 s)

Fig. 15  Two-dimensional flow of a non-Newtonian material. a PFEM and Cut-PFEM time evolution of accumulated volume variations due to 
remeshing for three different mean mesh sizes h. b Final front position obtained with CUT-PFEM and PFEM for five different meshes
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10  Conclusions

In this work, we have presented a new PFEM approach using 
unfitted boundary meshes. The method combines the fully 
Lagrangian description of PFEM with an implicit represen-
tation of boundaries, proper of the well-known CutFEM. 
In this unfitted solution algorithm, the boundary elements 
are recognized via the computation of a distance function, 

and the necessary boundary conditions are applied using 
Nitsche’s method. The resulting unfitted PFEM strategy, 
which we have named Cut-PFEM, has proven to be a reli-
able tool for solving complex free-surface fluid problems 
and to improve intrinsic limitations of the standard body-
fitted PFEM. In particular, thanks to its virtual represen-
tations of the boundaries, the Cut-PFEM circumvents the 
artificial creation of contact elements performed in the 
standard body-fitted PFEM and the consequent violation 

Fig. 16  Three-dimensional flow of a non-Newtonian material. Velocity field at four different time instants obtained with Cut-PFEM considering 
slip BC on lateral walls and standard no-slip BCs on the rest of boundaries

Fig. 17  Two-dimensional flow of a non-Newtonian material. 2D 
PFEM and midplane 3D Cut-PFEM comparison of the free-sur-
face position at four time instants. 3D Cut-PFEM results have been 
obtained with pure slip (symmetry) BCs in the lateral walls Fig. 18  Collapse of a water column. Problem description
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of mass conservation. Furthermore, Cut-PFEM allows for 
a natural application of slip boundary conditions without 
requiring any extra ad-hoc treatment as it is typically done in 
body-fitted PFEM. The mentioned advantages of Cut-PFEM 
versus standard PFEM are thoroughly demonstrated via the 

solution of three benchmark problems, involving complex 
situations and phenomena, such as free-surface flows, vio-
lent impacts, and non-Newtonian fluids. A sensibility analy-
sis of the Nitsche’s penalty parameter used in the imposi-
tion of the boundary conditions has been also presented. 

Fig. 19  Water dam break. Results obtained with Cut-PFEM versus experimental observations from [62]
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In all situations, including 3D simulations, the accuracy 
and robustness of the Cut-PFEM have been proven both for 
slip and no-slip conditions. To conclude, we would like to 

remark that the main objective of this work was to verify 
the accuracy and robustness of the Cut-PFEM and to prove 
its better performance versus the standard PFEM in specific 
situations, such as mass conservation associated with con-
tact detection and slip condition modeling. However, from 
a broader perspective, the advantages of Cut-PFEM can be 
much more relevant. Indeed, the method represents a fertile 
ground for the numerical simulation of challenging engi-
neering problems. On the one hand, upgrading the current 
implementation with a level set calculation algorithm will 
make possible addressing problems involving complex (non-
analytical) and possibly ill-conditioned boundaries (e.g., stl 
meshes coming from real topographies), such as large-scale 
natural hazards simulations. On the other hand, one can fur-
ther develop the proposed technique to be able to embed 
shell-like bodies, enabling thus the resolution of complex 
FSI phenomena involving thin structures and fluids with free 
surfaces. Both topics have been considered out of the scope 
of this paper and will be considered for future work.

Fig. 20  Water dam break. Time evolution of wavefront position

Fig. 21  Water dam break. Velocity field obtained with Cut-PFEM and the standard PFEM for two time instants
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