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Abstract
Additive manufacturing enables extended freedom in designing structural components. In order to reduce manufacturing 
costs, the product quality has to be assessed early in the process. This can be done by benchmark artifacts which represent 
critical quality measures of the part in production. As yet there is no integral approach to design a benchmark artifact that 
characterizes the quality of additively manufactured components based on structural properties. As a first investigation, this 
study introduces a method to optimize the topology of a benchmark artifact that represents pre-defined critical stresses. In 
this way, structural properties of an additively manufactured part can be efficiently characterized. The approach includes a 
basic example with trivial target stresses for which a reference solution is a priori known. Non-trivial target stresses were 
investigated to present structural solutions close to application. Evolutionary optimization algorithms were used for solving 
the multi-objective formulation of the problem. An appropriate formulation of the optimization problem was identified to 
generate plausible solutions robustly. It included additional constraints to the variation of stresses in the neighborhood of the 
pre-defined stresses as well as a scaling factor of all element densities. A comparative optimization with gradient methods 
exhibited solutions inferior to the proposed approach.
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1  Introduction

1.1 � Benchmark artifacts in additive manufacturing

The design of structural components is limited by the manu-
facturing processes currently available. Additive manufac-
turing offers large possibilities which have not been achieved 
by conventional technologies like milling or casting. This 
freedom of structural design can be exploited via topol-
ogy optimization (TO) in order to conceive nearly arbitrary 
structural functions through design requirements which are 
simple to formulate [1].

A critical path of designing additively manufactured 
structures is to assess the quality of geometric and material 
properties under the condition of rapidly melted and solidi-
fied material [2–4]. This can be achieved via benchmark 

artifacts which represent critical elements of the qual-
ity measure [5–8], e.g., dimensional accuracy or surface 
roughness. Benchmark artifacts combine various elements 
for quality assessment into a single, integral test specimen, 
hence keeping manufacturing and testing effort low.

Conventionally, a batch of test specimens is fabricated 
together with the reference part and tested according to 
ASTM E8 [9] to characterize the quality based on struc-
tural properties. Taylor et al. [8] conceived a benchmark 
artifact that included standardized tensile rods as witness 
specimens to be tested separately after fabrication. Due to 
a limited design space, these witness specimens had to be 
resized to smaller dimensions than specified by the standard. 
Until now no integral benchmark artifact has been proposed 
in order to assess the quality of additively manufactured 
components regarding mechanical properties. It is crucial 
for an efficient quality characterization to further generalize 
the notion of benchmark artifacts independently from usual 
standards. Multiple quality measures must be represented 
here by a single benchmark artifact. The topology is a priori 
unknown for this artifact and has to be automatically found 
by optimization.
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1.2 � Topology optimization

Topology optimization (TO) has a wide use today, e.g., in 
the aircraft or automotive industry [1, 10]. Research acceler-
ated in the late 80 s and early 90 s with a typical optimiza-
tion problem of minimum structural compliance. Gradient 
methods were established together with an interpolation 
scheme of artificial intermediate densities by Bendsøe [11], 
which is now called the Solid Isotropic Material with Penali-
zation (SIMP) [12]. The structure is represented here by a 
ground element grid with an element-wise distribution of the 
so-called “density” which stands for an interpolated material 
volume and stiffness. Each element density has an influence 
on the objective function in the form of structural compli-
ance. Sensitivities to the element densities are used as gradi-
ent information for the optimization, commonly carried out 
via the Method of Moving Asymptotes [10, 13]. The SIMP 
method has been proven to render results for conventional 
minimum compliance problems reliably and fast.

1.2.1 � Approaches with evolutionary methods 
and multi‑objective formulations

Other TO approaches in terms of minimum compliance 
comprise evolutionary methods with heuristic structural 
element deletion, which is also known as Evolutionary 
Structural Optimization (ESO) [14], or its bidirectional 
form (BESO) with element deletion and addition [15, 16]. 
Especially the ESO approach has been criticized due to 
its non-reliable structural results and unpredictable break-
down [10, 17]. Several shortcomings could be attenuated 
by the BESO method. Despite the term “evolutionary”, 
the ESO method cannot be classified as evolutionary algo-
rithm (EA) as it does not include concepts like population, 
selection, or mutation [18].

EAs were especially applied to TO together with prob-
lem formulations which were more complex than the mini-
mum compliance problem. Multi-objective optimization 
problems cannot be readily handled by the SIMP approach 
as it typically involves only a single objective function. 
Madeira et al. [19] investigated a multi-objective mini-
mum compliance problem regarding multiple load cases 
by means of genetic algorithms, a subtype of EA. Optimal 
solutions were generated as a set of Pareto-optimal struc-
tural individuals, the so-called Pareto front. Kunakote and 
Bureerat [20] analyzed various EA with advanced objec-
tive functions. Pareto fronts were characterized by the 
hypervolume indicator [21] and a distance measure from 
a reference solution, called the generational distance.

Furthermore, the SIMP approach has its limitations 
considering complex objective functions. Hamza et al. [22] 

define the shape complexity to be minimized by TO. There 
are no analytical derivations for the sensitivity of shape 
complexity which means that non-gradient methods like 
EA have to be applied. Another complex problem formula-
tion with a lack of sensitivity information was presented 
by Guirguis and Aly [23] who involve implicit structure 
representations using level-set methods [24] together with 
objectives close to application, e.g., the welding effort.

1.2.2 � Stresses

Since the early investigations on minimum compliance 
problems via TO, additional stresses were considered due 
to finite material properties. Yang and Chen [25] performed 
a basic study of stress constraints in TO with minimum com-
pliance by means of the SIMP method. Particular challenges 
were identified as, first, the highly non-linear behavior of 
stress constraints with respect to the design variables and, 
second, the inherently high number of constraints as stresses 
are a local quantity. The first could be counteracted by a 
small move limit within the optimization process. The latter 
was relaxed by a global maximum stress function in form of 
the Kreisselmeier–Steinhauser function [26] and the p-norm 
function. Due to this continuous form, the maximum stress 
is always slightly underestimated and has to be renormalized 
[27, 28]. Duysinx and Bendsøe [29] described singularities 
occurring with stress-based constraints and zero element 
densities. They proposed the continuation method with a 
stepwise reduction of the minimum quasi-zero density in 
form of a sufficiently small positive value. Le et al. [28] 
proposed a method for local stress control to counteract 
insufficient results by a global maximum stress function. 
TO was carried out by minimizing a p-norm formulation of 
structural stresses. More general structural representations 
regarding stress constraints were investigated in terms of 
level-set methods [30, 31]. Stresses were considered in the 
TO literature as constraints or as objective functions [32].

For benchmark artifacts which characterize critical 
mechanical properties of a manufactured reference part, spe-
cific target stress states need to be reproduced by the speci-
men topology for a proper quality assessment. Target stress 
states are seen as pre-defined states the benchmark artifact 
has to incorporate. To the best of the authors’ knowledge, 
target stress states, however, have not yet been investigated 
with TO.

1.3 � Objective and concept of this study

The main objective of the presented study is to give an 
essential contribution to establish TO with target stress 
states. It provides the basis for further investigations on 
generating benchmark artifacts for the quality assessment 
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of additively manufactured components with multiple pre-
defined stresses and realistic non-trivial topologies.

Therefore, a new method is introduced which is able 
to generate a benchmark artifact in the form of a struc-
ture reproducing arbitrary pre-defined stresses, i.e., target 
stress states, under a sufficiently simple loading condition, 
e.g., a uniaxial tensile state. This paper gives insight into a 
minimal formulation of the TO problem in order to dem-
onstrate a viable set of constraints and objective functions 
for a plausible reference solution. Both structural volume 
and the error of target stress state are minimized by evolu-
tionary algorithms in a multi-objective formulation. Fur-
thermore, solutions of non-trivial target stress states close 
to application are discussed.

This paper is structured as follows: In order to demon-
strate the behavior of the proposed method, an initial basic 
approach is investigated in Sect.  2 and problem adapta-
tions are derived to improve the TO solution (Sect.  3). 
These adaptations are used for different, non-trivial tar-
get stress states which are close to application (Sect. 4). 
Afterward comparisons with gradient-type optimization 
algorithms are made for an appropriate assessment of the 
current approach in Sect. 5. Finally, results and implica-
tions for further investigations are discussed (Sect. 6). All 
symbols used throughout this paper are summarized in 
Table 1.

2 � Basic approach

2.1 � Problem formulation

It is generally possible to derive key requirements for a bench-
mark artifact in form of a test specimen described in Sect. 1.1:

(1)	 Manufacturing and testing effort are reduced if there is 
a single, integral specimen.

(2)	 Results of the specimen tests have to represent critical 
quality measures of the additively manufactured ref-
erence part. The quality measures are formulated as 
critical stresses which occur in the reference part and 
hence must similarly be present in the specimen.

(3)	 The specimen volume must be minimum for low mate-
rial and manufacturing cost.

In the following, these requirements are transferred to 
a general multi-objective formulation of the optimization 
problem

where f (c) = (

f1(c), f2(c)
)T

∈ ℝ
2 and g(c) = (

g1(c), g2(c),… , g
m
(c)

)T
∈ ℝ

m 

are objective and constraint vectors, respectively. Vector 
c =

(

c1, c2,… , cn
)T

∈ ℝ
n represents the design variables.

According to requirements (2) and (3), the objective func-
tions are the relative structural volume

and the error of stress state

respectively. Here � stands for the structural density in TO 
which scales proportionally with material stiffness E and 
determines the material distribution [12]. A density of � = 1 
indicates the full presence of material with the full stiffness 
E0 while � = 0 stands for the absence of material. Intermedi-
ate values can be interpreted as porous material or, in 2D, as 
linearly scaled material thicknesses, both with the interme-
diate stiffness E = �E0 [11, 33]. The value Ω represents the 
structural domain with spatial coordinates x , �a the actual 
stress state, and �0 the pre-defined target stress state (TSS). 
The expression ‖ ⋅ ‖ specifies the Euclidean vector norm. 
In the basic approach, constraints are only set for structural 
failure: The structural area with the TSS has to be the critical 
quality measure in the benchmark artifact and hence must 
fail first. That is why this TSS should ensure the least factor 
of safety (FoS) S:

(1)minimize f (c)subject to g(c) ≤ 0,

(2)f1(c) = V(c) =
∫

Ω
�(x, c)dx

∫
Ω
dx

(3)f2(c) = Δ�(c) = max
x∈Ω���

‖�a(x, c) − �0(x)‖,
Table 1   Symbols introduced within this paper

Symbol Description Unit

c Design variables Various
Fy Tensile force N
f Vector of objective functions None, MPa
g Vector of constraint values Various
q Penalty factor None
S Factor of safety None
t Element thickness mm
V Relative structural volume None
w� Density scaling factor None
x Spatial coordinate vector mm
� Element density None
Δ� Scalar error of stress state MPa
�a Actual stress state MPa
�xx , �yy,�xy Stress components MPa
�0 Target stress state MPa
Ω Structural domain mm2

‖ ⋅ ‖p p-norm with degree p Various
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The quantity Ω��� describes the area of the TSS, while 
Ω�ΩTSS stands for the entire structural domain except the 
TSS area (cf. Fig. 1a).

2.1.1 � Specific problem and reference solution

Based on the general problem, a specific formulation 
is proposed in form of a simple two-dimensional, grid-
ded structural domain Ω (cf. Fig. 1b). It is quadratic, and 
evenly divided in a ground element grid with 11 × 11 ele-
ments. The element densities �i serve as design variables 
c =

(

�i
)

 with 0 < 𝜌min ≤ 𝜌i ≤ 1 and i = 1,… , ne . The num-
ber of elements and thus the number of design variables is 
ne = 121 . A minimum density �min is required to avoid the 
singularity problem observed for stress-related TO prob-
lems [29]. Each element thickness ti is calculated via its 
density �i:

for the element indices i = 1,… , ne . There is a main ele-
ment (ME) at the structural midpoint representing ΩTSS . The 
neighbor elements (NE) are defined as all eight elements 
surrounding the ME.

Due to the structural discretization, the objective func-
tion values are calculated according to Eqs. (2) and (3) as

and

(4)g1(c) = max
x∈Ω���

S(x, c) − min
x∈Ω�Ω���

S(x, c) ≤ 0.

(5)ti = t0�i

(6)f1(c) = V =

∑

i �i

ne

where �a,ME represents the actual stress state in the ME. In 
two dimensions, all stress states are defined coordinate-wise 
as � =

(

�xx, �yy, �xy
)T . The constraint g1 has the specific form

where SME is the FoS in the ME and Si with i ∈ Ω�ΩTSS 
describe the FoS of all elements except the ME. The prob-
lem formulation only with constraint g1 is defined as the 
basic approach A as it includes the basic formulation of the 
objectives and a minimal set of constraints.

The specific problem incorporates a simple testing load 
in form of a uniaxial tensile force distributed over the upper 
boundary. At the lower boundary, the nodal y displacement 
is set to zero. One node at the lower boundary is addition-
ally fixed in x direction so that no rigid body motion is pos-
sible. If all densities �i are equal, the boundary conditions 
permit a pure tensile state throughout the structural domain. 
For the present study, width and height of the structural 
domain Ω are set to lx = 100mm and ly = 100mm with a 
reference element thickness of t0 = 1mm . The minimum 
density is set to �min = 10−2 . The tensile force at the upper 
boundary is Fy = 1 kN and the TSS is set to the trivial form 
�0 = (0, 50, 0)T MPa.

The advantage of the proposed specific formulation of 
the optimization problem is that there is an analytically 
derivable reference solution (RS): For both objective func-
tions f1 and f2 as well as the constraint g1 , an even den-
sity distribution �(x) ≡ �RS = f1 is expected. On the one 
hand, it is suboptimal for the ME to get lighter than the 
other elements because the stresses increase and thus the 

(7)f2(c) = Δ� = ‖�a,ME(c) − �0‖,

(8)g1(c) = SME(c) − min
i∈Ω�Ω���

Si(c) ≤ 0,

Fig. 1   Domain Ω with area ΩTSS of target stress state �0 and neighborhood ΩN : a general shape, b grid shape specific to basic approach with 
width lx and length ly . Definition of general stress state �



1269Engineering with Computers (2024) 40:1265–1288	

1 3

FoS becomes overly low. The other elements prefer getting 
lighter too. On the other hand, it is not possible for the ME 
to get denser without keeping the FoS less than that of the 
other elements. An actual tensile stress state for the RS of 
�a =

(

0,Fy∕
(

�RSt0lx
)

, 0
)T can be calculated. The reference 

Pareto front results in the form

with �min ≤ f1 ≤ f1,ref ,max . Densities of the RS are limited 
because

according to Eq. (9). The upper limit of the relative struc-
tural volume has the value f1,ref ,max = 0.2 . There is a theo-
retical maximum error of stress state of f2,ref ,max = 950MPa 
in the case that all element densities are the minimum �min . 
Table 2 lists all relevant parameters for the basic problem 
formulation.

2.2 � Optimization method

2.2.1 � Evolutionary algorithms and GEOpS2

Gradient-based TO methods like SIMP have been used 
extensively for stress-based problems [25, 27–30, 34, 35]. 
Gradient information can be efficiently involved via analyti-
cally derived sensitivity information. Nevertheless, original 
forms of the constraints, e.g., in Eq. (8) can be directly han-
dled via EA. That means that the direct, local form of stress-
based optimization can be applied. Gradient-based TO meth-
ods only use global [25, 29] or regional [28] approximations 
for stress evaluation in order to reduce the calculation effort 
for sensitivity analysis which is not necessary in the present 
approach. In this study, several modifications of the basic 
problem are investigated. Results are readily compared and 
a better understanding is achieved due to the direct approach 
of EA. Moreover, EA permit a broader perspective of e.g., 
expanding the number of objective functions, the type of 

(9)f2,ref
(

f1
)

=
Fy

f1t0lx
− �0,yy

(10)f1
(

f2,ref = 0
)

= f1,ref ,max =
Fy

�0,yyt0lx

design variables, and non-linear, anisotropic material models 
with defects due to additive manufacturing. Therefore, it is 
believed that EA are more appropriate throughout this study 
for establishing TO with pre-defined target stress states by 
means of simple examples.

Multi-objective optimization was carried out on Eq. (1) 
by means of GEOpS2 [36], a robust in-house optimization 
tool based on EA, which already has been successfully 
applied to complex optimization problems [37, 38].

Optimization runs involved 200 parent individuals 
with 420 children in a population. GEOpS2 uses genetic 
algorithms, evolution strategies, the Montecarlo method, 
and differential evolution for children generation. Table 3 
shows the parameters involved with children generation. 
Selection was achieved by means of the NSGA-II algo-
rithm [39] with only children involved.

Optimization stopped if 50,000 generations were calcu-
lated or the objective function values did not change less 
than 10−6 during 5000 generations. A total of five identical 
optimization runs were performed for a single configura-
tion to cover statistical variations in the results.

2.2.2 � Constraints

Constraints g were applied by a simple one-step penalty 
method. For a better compatibility with results from gradi-
ent-type optimization methods, penalized objective func-
tions f pen(c) remained continuous and differentiable via

with i = 1,… , n and

The parameter q is a penalty factor set to q = 108 . 
Penalization by means of Eq. (11) is carried out with non-
dimensional values of gpen,j in order to avoid unit problems.

(11)fpen,i(c) = fi(c) ⋅

m
∏

j=1

(

1 + qg2
pen,j

(c)
)

(12)gpen,j(c) =

{

0 for gj(c) ≤ 0,

gj(c) for gj(c) > 0.

Table 2   Parameter values of 
the basic topology optimization 
approach with a target stress 
state

Symbol Description Value

Fy Tensile force Fy = 1 kN

f1,ref ,max Maximum V  of the reference solution f1,ref ,max = 0.2

f2,ref ,max Maximum Δ� of the reference solution f2,ref ,max = 950MPa

ne Total number of structural elements ne = 121

t0 Reference element thickness t0 = 1mm

�min Minimum density �min = 10
−2

�0 Target stress state in main element �0 = (0, 50, 0)
T
MPa

Ω ∶ lx × ly Structural domain, width and height lx = 100mm , ly = 100mm
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2.2.3 � Finite element analysis

The objective function values in Eqs. (6) and (7) as well as 
the constraint in Eq. (8) were evaluated by structural analy-
sis. For this purpose, the in-house finite element (FE) solver 
FiPPS2 was used. FE analysis involved linear deformations 
and quadratic 8-node shell elements. Element densities �i 
were varied via shell thickness while material properties 
internally stayed constant.

Stresses for the formulation of f2 arose from element 
integration points and were averaged over the element. In 
order to analyze the FoS of each element for g1 , the von 
Mises stress �M was compared without loss of generality to 
the yield strength of aluminum �Y = 270MPa by means of

with the element index i = 1,… , ne.

2.2.4 � Evaluation of optimization results

All Pareto-optimal results of the multi-objective optimiza-
tion were combined to the Pareto front. Based on an arbi-
trary reference point in (f1, f2) space, the hypervolume indi-
cator (HVI) [20, 21] in the relative form

(13)
Si =

�Y

�M,i

=
�Y

√

�2
xx,i

+ �2
yy,i

− �xx,i�yy,i + 3�2
xy,i

served as a comparative performance measure. The quan-
tity f k =

(

f1,k, f2,k
)T for k = 1,… , nP with the number nP of 

parent individuals stands for the k-th point in the minimi-
zation Pareto front ordered by ascending f1 and descend-
ing f2 . The reference point f 0 =

(

f1,0, f2,0
)T was set to 

f 0 = (1, 950MPa)T . Values of f  greater than the reference 
point f 0 were not included in Eq. (14). The RS exhibits an 
HVI of about 0.968. This value was calculated numerically 
by means of nP = 200 data points evenly distributed over the 
interval f1 ∈ [�min, 0.2].

Moreover, the generational distance (GD) [20] in the rela-
tive form

with

(14)HVI =
1

f1,0 f2,0

nP
∑

k=1

(

f1,0 − f1,k
)(

f2,k−1 − f2,k
)

(15)GD =
1

nP

nP
∑

k=1

Δfmin,k

(16)

Δfmin,k =

⎧

⎪

⎨

⎪

⎩

f2,k−f2,ref (f1,k)
f2,0

for f1,k ≤ f1,ref ,max,
�

�

f1,k−f1,ref ,max

f1,0

�2

+

�

f2,k

f2,0

�2

for f1,k > f1,ref ,max

Table 3   Methods and parameter 
values for children generation

Hash # stands for "number of" 

Method Parameter description Value

Genetic algorithms
 Crossover # generated children per generation 60

# crossover points 3
 Mutation # generated children per generation 60

mutation probability 0.005
Evolution strategies
 Mutation # generated children per generation 60

mutation strength 0.2
 Discrete recombination # generated children per generation 60

# parents involved 2
# children involved 2

 Global intermediate recombination # generated children per generation 60
# parents involved 2

 Local intermediate recombination # generated children per generation 60
# parents involved 2

Monte Carlo method
# generated children per generation 60

Differential evolution
 Mutation mutation strength 0.5

# difference vectors involved 2
 Recombination crossover constant 0.5
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was used to quantify deviations from the RS in Eq. (9). Con-
vergence was assessed by means of the histories of minimum 
objective values over optimization generations.

2.2.5 � Workflow

The optimization method involves an optimization model 
based on the formulation generally described in Sect. 2.1 
and the optimizer GEOpS2. Objective values and con-
straints depend on the results of the structural analysis 
with FiPPS2, which is carried out in each objective func-
tion call. Optimization results were finally evaluated 
regarding the Pareto front, histories of minimum objec-
tive function values, HVI, GD, and the element density 
distribution of the structural individuals. Figure 2 gives 
an overview of the workflow of the proposed optimization 
method. More details about the optimization model routine 
and its interfaces to GEOpS2 and FiPPS2 are depicted in 
Fig. 3.

2.3 � Optimization results

Figure 4 shows the optimization results of the basic approach 
A according to the specific formulation. The Pareto front 
apparently cannot reach the RS. The history of both objec-
tive function values is displayed in Fig. 5. The values appar-
ently decrease even for a high number of generations. Thus, 
the convergence behavior of the optimization appears to be 
limited.

Although low errors of the stress state Δ𝜎 < 10−4 MPa 
are achieved for values of about V = 0.3… 0.4 (cf. Fig. 4), 
there are nearly random element densities �i for all individu-
als as shown in Fig. 6. The individual with the largest V  
exhibits densities of up to �i = 0.540 . Due to the constraint 
g1 , the ME has a small density �i for all individuals which 
facilitates the largest FoS in this element.

The highest HVI is 0.921 (optimization 2) compared to 
0.968 of the RS (cf. Fig. 7) while the least GD reaches a 
value of 0.0321 (optimization 1). It is noticeable that the 
GD does not decrease monotonously over the optimization 
process. Especially optimization 2 exhibits a considerable 
peak at around generation 29,000. This can be ascribed to 
the optimization method which finds new Pareto-optimal Fig. 2   Proposed optimization method: optimizer GEOpS2 carries out 

the numerical topology optimization. The optimization model inter-
acts with finite element solver FiPPS2 and generates objective  func-
tion values f  . Stopping criteria are checked after each generation

Fig. 3   Workflow of the optimization model. Bold arrows at the top 
and the bottom represent the interface with the overall optimization 
process
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individuals with the lowest relative structural volume but a 
relatively high error of stress state. Consequently, the GD 
increases while a new least objective function value has been 
found (cf. Fig. 5, upper part).

3 � Adapted approach

Since the basic approach A cannot produce results 
which resemble the RS, further modifications have to be 
included. An adapted approach is presented in this section 

Fig. 4   Pareto fronts of the basic 
approach A after 50,000 genera-
tions. Five identical optimiza-
tion results (opt.) are displayed 
versus the reference solution 
(ref.)

Fig.5   History of the minimum 
objective function values of the 
basic approach A
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Fig. 6   Typical structural solutions of the basic approach A: a Low 
relative structural volume V = 0.0695 and high error of stress state 
Δ� = 195.6MPa (optimization 2). b Intermediate V = 0.1811 

and Δ� = 21.6MPa (optimization 3). c High V = 0.292 and low 
Δ� = 3.75 ⋅ 10

−5
MPa (optimization 1)

Fig. 7   History of the hypervol-
ume indicator (HVI) and the 
generational distance (GD) of 
the basic approach A
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Table 4   Overview of modifications in the adapted approach

Label Modification Type

A Basic approach, no modification –
B Relaxed constraint on factor of safety: only needs to be minimum in main element and neighborhood Constraints
C Standard deviation of stress states in main element and neighborhood must be smaller than ��,lim = 5MPa Constraints
D Δ� is calculated as the averaged p2-norm of the stress states in main element and neighborhood Objective function
E Scaling factor w� equally applied to all densities, densities out of limits are “healed” (write-back to limits) Design space
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in which constraints g , the formulation of objective func-
tions f  , and the design space c are extended. Table 4 gives 
an overview of all single modifications that are presented 
in the following sections.

3.1 � Modified constraints

A promising possibility to enhance the convergence behavior 
of the optimization is to relax the active constraints. This can 
be done by searching the minimum FoS not only in the TSS 
domain ΩTSS but also in its neighborhood ΩN represented 
by the NE. Hence, the constraint in a modification B can 
be stated as

In order to ensure a valid stress state and to avoid numeri-
cal dependencies, the stresses in the ME and its NE have to 
be as even as possible. That is why the modification C is 
introduced which limit the standard deviation of the actual 
stress states �a of the ME and its NE. An additional con-
straint is given for the elements in ΩTSS ∪ ΩN by

with ne,N as the number of elements including ME and NE, 
�a,k as the actual stress state in element k , and �a,ME as the 
actual stress state of the ME. In the following, the limit is 
set to ��,lim = 5MPa.

(17)g1,B = max
Ω���∪ΩN

S(c) − min
Ω�(Ω���∪ΩN)

S(c).

(18)g2,C =

�

1

ne,N

�ne,N

k=1
‖�a,k − �a,ME‖

2
− ��,lim

3.1.1 � Optimization results

Figure 8 shows the Pareto fronts of all optimizations with 
modifications B and C. Compared to the basic approach 
A (cf. Fig. 4), only structural individuals with high rela-
tive volumes of greater than V = 0.2 are generated. Single 
individuals reach very low errors of stress state Δ� in both 
modifications. Lower HVI and higher GD than in the basic 
approach indicate a hampering influence of the additional 
constraints (cf. Table 5).

Modification B exhibits larger variations between each 
optimization run. The structural solution with the least 
error of stress state Δ� is illustrated in Fig. 9a. The central 
area of the ME and its NE is dominated by low-density 
elements. The overall density distribution appears to be 
more even and to have higher values than in the basic 
approach.

The additional constraint in modification C apparently 
leads to elements with nearly equal densities in the ME 

Fig. 8   Pareto fronts of modifications B and C after 50,000 generations. Five identical optimization results are displayed versus the reference 
solution

Table 5   Minimum objective function values, hypervolume indicator 
(HVI), and generational distance (GD) for the basic approach A and 
modifications B, and C after 50,000 generations

Minimum objective function values and mean values of HVI and GD 
with one standard deviation are displayed

Label minf1 minf2/MPa HVI GD

A 0.0695 3.75 ⋅10–5 0.911 ± 0.008 0.0384 ± 0.0070
B 0.208 3.32 ⋅10–8 0.741 ± 0.052 0.0697 ± 0.0479
C 0.218 5.88 ⋅10–7 0.752 ± 0.030 0.0562 ± 0.0255
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with neighbors (cf. Fig. 9b). The outer structure has in 
return a distribution with a density range larger than the 
basic approach.

3.2 � Modified objective functions

Another way to enhance the optimization results is modify-
ing the basic formulation of the objective functions. Only the 
objective function f2 is changed in a way so that the error of 
stress state is assessed slightly differently. It is intended that 
optimization results are fully comparable to the basic approach 
and effectively no new optimization problem was formulated. 
In modification D, both domains ΩTSS and ΩN are included into 
calculating Δ� by the averaged p2-norm

3.2.1 � Optimization results

Figure 10 presents the Pareto fronts of all optimization runs 
for modification D. Individuals are achieved with low rela-
tive volume V  similar to the basic approach. Least errors 
of stress state Δ� stay significantly higher. Resulting indi-
viduals of modification D with the least error of stress state 
Δ� are shown in Fig. 11a. The Pareto fronts of modifica-
tion D resemble the RS better than modifications B and C 
(cf. Fig. 8). Solutions with lower Δ� tend to values of V  

(19)f2,D(c) = Δ� =

�

1

ne,N

�ne,N

k=1
‖�a,k(c) − �0‖

2.

Fig. 9   Structural solutions 
with least errors of stress state: 
a Modification B, V = 0.424 , 
Δ� = 3.32 ⋅ 10

−8
MPa 

(optimization 1). b Modi-
fication C, V = 0.303 , 
Δ� = 5.88 ⋅ 10

−7
MPa (optimi-

zation 4)

(a) (b) 

1 

0 

Fig.10   Pareto fronts of modifi-
cation D after 50,000 genera-
tions. Five identical optimiza-
tion results are displayed versus 
the reference solution
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less than in modifications B and C but still greater than the 
expected minimum at V = 0.2 . There are individuals which 
outperform the Pareto front of the RS, which appears gener-
ally implausible in light of the derivation in Sect. 2.1 and 
indicates that the modified objective function f2 is not fully 
equivalent to the basic formulation. To this effect, appendix 
A gives a more detailed explanation.

It is believed that implausible solutions in modification 
D are highly grid-dependent and will not play an important 
role when further refining the structural representation of the 
benchmark artifact (cf. appendix A).

3.3 � Modified design space

Modification E extends the design space by a scaling factor 
w� ∈

[

10−2, 102
]

 which acts on all given densities �i . That 
means that the new design space has one more design vari-
able than the original one. This approach is supposed to gen-
erate more structural solutions close to the RS.

This modification involves density healing by writing 
density values back to the domain limits [�min, 1] if they 
were violated.

3.3.1 � Optimization results

Modification E achieves very good approximations of the 
RS, indicated by a high HVI close to the reference value 
of 0.968 (cf. Table 6). Objective function values decrease 
with a high convergence rate as shown in Fig. 12 exempla-
rily. This modification is the only one that did not exploit 
the maximum number of 50,000 generations, but converged 
earlier. Thus, low values for f1 and f2 have been obtained.

3.4 � Combined modifications

Despite high variations in the least values of f1 and f2 for 
all optimization runs, the reference Pareto front is met very 

well for the combinations C + E and C + D + E (cf. Fig. 13). 
The combined modifications C + E achieved the analytic 
minimum of Δ� at V = 0.2 with low deviations in V  . The 
additional modification D seems to reduce the variation 
of feasible solutions since the Pareto fronts are consider-
ably narrower as shown in Fig. 10b. Thus, higher minimum 
objective values f1 and f2 are obtained (cf. Table 6). Due to 
larger deviations of V  close to the minimum Δ� at V = 0.2 , 
the GD values are more scattered with a high standard devia-
tion. Figure 11b and c prove that the expected structural RS 
could be achieved very well in both combinations.

4 � Problem formulation close to application

While Sects. 2 and 3 described a problem formulation with a 
trivial pre-defined tensile TSS, this section uses stress states 
different from the global tensile loading of the benchmark 
artifact. This step generalizes the purpose of the artifact to 
reproduce arbitrary pre-defined stresses under a common 
testing load.

     
(a) (b) 

1 

0 

 

 

 

(c) 

Fig. 11   Structural solutions with least errors of stress state: a Modification D, V = 0.268 , Δ� = 0.493MPa (optimization 3). b Modification 
C + E, V = 0.208 , Δ� = 1.668 ⋅ 10

−4
MPa (optimization 2). c Modification C + D + E, V = 0.1993 , Δ� = 0.253MPa (optimization 2)

Table 6   Minimum objective function values, hypervolume indicator 
(HVI), and generational distance (GD) for the modifications D, E, 
C + E, and C + D + E after 50,000 generations

Minimum objective function values and mean values of HVI and GD 
with one standard deviation are displayed

Label minf1 minf2/MPa HVI GD

D 0.0289 0.493 0.943 ± 0.010 (5.91 ± 5.30) 
⋅10–3

E 2.70 ⋅10–3 1.512 ⋅10–4 0.964 ± 0.001 0.1361 ± 0.0515
C + E 2.96 ⋅10–3 1.668 ⋅10–4 0.951 ± 0.024 (2.06 ± 0.51) 

⋅10–3

C + D + E 0.0223 0.253 0.952 ± 0.010 (0.995 ± 1.703) 
⋅10–3
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4.1 � Adaptations to the problem formulation

Compressive stress �0 = (−50, 0, 0)T MPa and shear stress 
�0 = (0, 0, 50)T MPa are now considered as non-trivial 
pre-defined TSS. All y displacements of the nodes at the 
upper boundary of the FE model are now coupled in order 
to achieve a uniform boundary condition especially for 

asymmetric solutions. Specimen areas with zero density 
are expected so that stress relaxation is necessary to avoid 
stress singularities [28, 29]. Therefore, minimum density 
is set to �min = 10−6 and element stresses and FoS are not 
considered for densities lower than a limit �lim = 10−2 . 
Other parameters for optimization remain the same as in 
the basic approach.

Fig. 12   History of the minimum 
objective function values of 
modification E

Fig. 13   Pareto fronts of modifications C + E and C + D + E after 50,000 generations. Five identical optimization results are displayed versus the 
reference solution
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4.2 � Expected topologies

In contrast to the trivial tensile TSS in Sects. 2 and 3, there 
is no exact reference solution for the TSS considered in this 
section. Only plausible expected topologies can be assumed 
as shown in Fig. 14. Besides the minimum objective func-
tion values achieved, expected topologies are used for a 
qualitative validation of the optimization results.

4.3 � Optimization results

Figure 15 illustrates results with non-trivial TSS for the 
basic approach A. While there is no clear topology for the 
optimization solutions with compressive TSS (cf. Fig. 15a), 
shear TSS form a plausible topology on grid-level rudimen-
tarily. It is expected that this solution highly depends on the 
element grid resolution.

The combined modification C + E yielded results for the 
trivial tensile TSS closest to the reference solution. So it 
was identified as most efficient in that case. It is depicted 
in Fig. 16, that modification C + E also leads to optimiza-
tion solutions for non-trivial TSS that resemble the expected 
topologies in large part. However, solutions do not seem to 
be generated robustly as it also produces solutions with a 
density distribution close to a uniform plate (cf. Fig. 16a). 

Furthermore, errors of stress state are noticeably high with 
values of up to Δ� = 47.7MPa . Table 7 reveals that the 
main stress component of the target stress is principally 
achieved—even though on a considerably lower level. The 
main part of the errors may be ascribed to the large tensile 
component still present.

The combined modification in the form C + D + E was 
identified to yield more stable optimization results while 
featuring a slightly different formulation of the objective 
function (cf. Eq. (19)). Topologies are closer to the expected 
solutions in Fig. 14 than with the combined modification 
C + E (cf. Fig. 17). Topologies with compressive TSS exhibit 
again high errors of larger than Δ� = 49.8MPa as shown in 
Table 7. In contrast, shear TSS can be achieved particularly 
better.

Minimum objective function values together with the 
HVI are summarized in Table 7. For compressive TSS, 
combination C + D + E has minimum values for f1 higher 
than combination C + E. This partially confirms results from 
trivial tensile TSS in Sect. 3.4that modification D reduces 
the variation of optimization results (cf. Fig. 13). In contrast, 
modification D has a positive effect on minimum objective 
values f2 for shear TSS, as already seen in the actual stress 
state of the main element.

Fig. 14   Expected topologies for 
non-trivial target stress states 
(highlighted): a Compressive 
target stress. b Shear target 
stress

Fig. 15   Structural solutions 
with least errors of stress state 
for basic approach A: a Com-
pressive target stress, V = 0.382 , 
Δ� = 5.66 ⋅ 10

−3
MPa (optimi-

zation 2). b Shear target stress, 
V = 0.233 , Δ� = 0.01391MPa 
(optimization 2)
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Histories of minimum objective function values f1 and 
f2 for non-trivial TSS and the combined modification 
C + D + E are shown in Fig. 18. Minimum f1 exhibits very 
small decreases for high generation numbers with both TSS. 
Also minimum f2 retains nearly the same value. Shear TSS 
facilitate a constant decrease in minimum f2 thus constantly 
improving the error of stress state Δ� . It is clear that no 
convergence is achieved especially for optimization runs 2, 
3, and 5 (cf. Fig. 18b, bottom).

5 � Comparison with gradient methods

5.1 � Gradient‑type optimization approach

In this section, gradient-type algorithms are applied to the 
optimization problem formulated in Eq. (1). Non-trivial 
TSS from Sect. 4 are considered. Results are compared 
to the respective optimization with EA. Optimizations 
investigated for the following comparison of EA and gra-
dient-type algorithms include the basic formulation (A) 
and basically those modifications that generated plausible 

Fig. 16   Structural solutions with least errors of stress state for modi-
fication C + E, which was most efficient for the tensile target stress 
state: a Compressive target stress, V = 0.899 , Δ� = 45.9MPa (opti-

mization 1). b Compressive target stress, solution with plausible 
topology, V = 0.610 , Δ� = 47.7MPa (optimization 3). c Shear target 
stress, V = 0.623 , Δ� = 44.4MPa (optimization 3)

Table 7   Minimum objective 
function values, according 
actual stress states of the main 
element, and hypervolume 
indicator (HVI) for the basic 
approach A and modifications 
C + E and C + D + E with non-
trivial target stress states after 
50,000 generations

Mean values of HVI with one standard deviation are displayed

Label �0/MPa min�
a,ME

/MPa minf1 minf2/MPa HVI

A (−50, 0, 0)
T (

−50.0, 4.81 ⋅ 10−3, 1.172 ⋅ 10−4
)T 0.0335 5.66 ⋅10–3 0.930 ± 0.017

C + E (−50, 0, 0)
T

(−5.51, 11.49,−0.1428)
T 0.01476 45.9 0.893 ± 0.012

C + D + E (−50, 0, 0)
T (

−3.38, 17.80, 2.91 ⋅ 10−3
)T 0.1145 49.8 0.801 ± 0.031

A (0, 0, 50)
T (

3.34 ⋅ 10
−3
, 6.69 ⋅ 10

−3
, 50.0

)T 0.01146 0.01391 0.954 ± 0.013

C + E (0, 0, 50)
T

(−0.376, 16.97, 9.02)
T 0.01005 44.4 0.912 ± 0.004

C + D + E (0, 0, 50)
T

(2.16, 14.07, 50.5)
T 0.1187 16.1 0.803 ± 0.049

Fig. 17   Structural solutions 
with least errors of stress state 
for modification C + D + E: 
a Compressive target stress, 
V = 0.736 , Δ� = 49.9MPa 
(optimization 3). b Shear 
target stress, V = 0.396 , 
Δ� = 16.10MPa (optimiza-
tion 2)
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results in Sect. 4. Modification E with a global density 
scaling factor w� represents a mechanism to change ele-
ment densities simultaneously. It appears to be helpful 
especially for EA as a heuristic optimization method 
with stochastic differential element density changes. It is 
believed that simultaneous, directional density changes 
are inherent to gradient-based optimization methods and 
a scaling factor w� is not necessary for comparison.

5.1.1 � Adapted optimization problem

All applied optimization algorithms only permit a single 
objective function fSO . Therefore, both objective functions 
f1 and f2 from multi-objective optimization are combined to

with the weighting factors w1 = 10 and w2 = 1 . Units 
are neglected for evaluating fSO . Constraints are penal-
ized by means of a six-step penalty method according to 
the basic formulation as in Eq.  (11) with a sequence of 
q ∈

{

1, 10, 102, 103, 104, 108
}

.
Gradient-based optimization runs start from uniform ini-

tial element density distribution with V = 0.1 . These den-
sity distributions do not necessarily fulfill all optimization 
constraints at the beginning. In order to exhibit a non-zero 

(20)fSO = w1f1 + w2f2

gradient information at every point of the design space, the 
discontinuous minimum function in Eq. (8) is replaced by 
the continuous Kreisselmeier–Steinhauser function [25, 26]

with r = 10.
FoS for low element densities are penalized via

as a continuous and differentiable form of stress relaxation 
[28, 29]. Index i represents the considered elements. The 
penalty factor q is set to q = 105 . Equation (22) has the pur-
pose to discard the FoS of elements with very low densities 
through high penalization. With that, these elements are not 
wrongly critical for the constraint in Eq. (8).

5.1.2 � Optimization algorithms

The optimization library NLopt [40] offers a wide variety 
of algorithms from which four gradient-based ones are 
selected: LBFGS [41], MMA [13], SLSQP [42], and TNew-
ton [43]. The optimization model subroutine is designed in a 

(21)min Si(c) → −
1

r
ln
∑

i
exp

(

−rSi(c)
)

(22)Si,pen
(

𝜌i
)

=

{

Si
(

𝜌i
)

for 𝜌i ≥ 𝜌lim,

Si
(

𝜌i
)

+ q
(

𝜌lim − 𝜌i
)2

for 𝜌i < 𝜌lim.

Fig. 18   History of the minimum objective function values for non-trivial target stress states with modification C + D + E: a Compressive target 
stresses. b Shear target stresses
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way that different optimizers can be connected easily. For the 
investigations in this section, the same model was optimized 
by gradient-based methods in NLopt replacing evolutionary 
algorithms in GEOpS2 (cf. Fig. 2).

Relative function value and argument tolerances are both 
set to 10–7. Optimization stops if changes fall below this 
value. Algorithms LBFGS, MMA, SLSQP, and TNewton are 
limited to a maximum iteration number of 50,000.

5.1.3 � Sensitivity analysis

Efficiency is not prioritized in the actual study. That is why 
sensitivities are calculated by means of forward difference 
quotients with an absolute interval length of 10–8.

Nevertheless, sensitivities for Eqs.  (7) and (8) are 
derived for an easier classification of the actual problem. 
If f2(c) = f2

(

�a,ME(c)
)

 , then the derivative with respect to 
the design variable c is

where the last term contains well-known sensitivities of 
the stress components as described by Holmberg et al. [34] 
and Deng et  al. [35]. With g1(c) = g1

(

SME(c), Si(c)
)

 and 
i ∈ Ω�ΩTSS sensitivities result in

It is obvious, that �g1∕�c not only depends on c but 
also on the specific position of the ME, i.e., the specific 
element in the FE model. Thus, sensitivities can only be 
evaluated analytically if target stresses are determined in 
a subdomain ΩTSS that is constant throughout optimiza-
tion. Calculation of FoS always includes element stresses 
� , so that

with j as the index of considered elements. Again, sensi-
tivities of stress components are already described in lit-
erature [34, 35]. Possible efficient solution methods involve 
the adjoint method provided that the number of actual con-
straints stays low [34].

5.2 � Optimization results and comparison 
to evolutionary algorithms

All results from gradient-based TO are listed in Table 8 
and compared to the solution from EA by means of 
GEOpS2. Gradient TO reaches feasible solutions only 

(23)
�f2

�c
=

�f2

��a,ME

��a,ME

�c
,

(24)
�g1

�c
=

�g1

�SME(c)

�SME

�c
+
∑

i

�g1

�Si(c)

�Si

�c
.

(25)
�Sj

�c
=

�Sj

��j

��j

�c

with the basic approach A. It seems that the additional 
constraint in modification C is too strict for proper solu-
tion generation. The TSS is achieved very well for the 
basic approach A and modification C by nearly all gradi-
ent TO algorithms. Especially results of minimum f1 and 
f2 from modification C and C + D are overall better than 
in optimizations with EA, although no feasible solutions 
have been found. Results from EA tend to exhibit higher 
specimen volumes V  than from gradient-based algorithms. 
This trend attenuates when the TSS is also achieved better 
by means of EA with modification C + D and target shear 
stresses. 

Maximum iteration numbers are displayed in Table 8 as 
well. Very high numbers in EA indicates, that the overall 
calculation effort is much higher for TO with EA than with 
gradient-based algorithms. This finding can be put in per-
spective by the fact that EA enable global optimization with 
a considerably better final solution finding in the presence 
of several constraints.

Figure 19 presents feasible structural solutions from gra-
dient-based TO with the basic approach A. The algorithm 
SLSQP offered the least single-objective function value fSO 
while meeting all constraints properly. Structural solutions 
for compressive and shear TSS are shown in Fig. 19a and 
c, respectively. They resemble the expected topologies in 
Fig. 14 rather less well and hint at basic features only at 
the grid element scale. Especially for target compressive 
stresses, the algorithm MMA offers a clearer structural solu-
tion close to the expected one (cf. Fig. 19b).

6 � Discussion and outlook

6.1 � Appropriate formulation of the optimization 
problem

A method for topology optimization was presented that 
incorporates a pre-defined stress state, i.e., a target stress 
state, by means of evolutionary algorithms. Both the error 
Δ� of the target stress state and the relative structural vol-
ume V  were minimized. In a first step, various extensions 
and modifications on constraints, objective functions, and 
the design space were investigated for a trivial tensile TSS 
in order to find a solution which resembles the reference 
solution available for this formulation. The RS was defined 
as a solution with all equal element densities. The regarding 
Pareto front was derived to the form in Eq. (9).

The basic approach A without any modifications, as 
described in Sect. 2, is not able to generate solutions in the 
expected form: Densities have a wide range and a stochas-
tic distribution. Additional constraints as in modifications 
B and C seem to impair the convergence behavior. As a 
result, Pareto fronts stay in a region of high V  whereas the 
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basic approach A reaches yet a much larger portion of the 
objective function space. One reason for this may be that 
more element densities are indirectly controlled by the FoS 
(modification B) or the stresses (modification C) and design 
possibilities become less for the outer element densities.

A modified objective function in modification D is aimed 
at involving not only the central ME but also its NE by merg-
ing all local actual stress states to a single error formula-
tion. It was intended not to modify the overall optimization 
problem but to achieve better results that are comparable to 
the basic approach A. Densities in the considered area of the 
ME with its NE tend to be more even but the outer distribu-
tion stays similarly stochastic as the solution of the basic 
approach A. Modification D also exhibits implausible solu-
tions which are better than the RS leading to very low GD 

values. As it can be ascribed to the discrete element grid (cf. 
appendix A), this modification is not generally discarded.

The density scaling factor w� introduced for modification 
E improves the solution quality of the optimization consider-
ably with Pareto fronts close to the RS and fast convergence. 
The reason may lie in the feature of w� to favor solutions 
with low density variation. It seems that the optimization 
approach can utilize this feature well so that objective func-
tion values converge very fast. It is thus believed that two 
modifications are at least necessary for optimizing a bench-
mark artifact in the way presented in this study: On the one 
hand, the neighborhood of the ME must be constrained so 
that a smooth transition between the stresses of adjacent 
elements is obtained. On the other hand, the design space 
has to be extended in order to favor solutions with an even 
density distribution. A modified formulation of the objective 

Table 8   Comparison of 
optimization by means of 
different gradient-based 
optimization algorithms 
and evolutionary algorithms 
(GEOpS2): objective function 
values and iteration/generation 
number

Individuals with least errors of stress state are considered for optimization with evolutionary algorithms. 
Optimizations without feasible results are marked italic. Starred “yes*” under solution feasibility stands for 
present optimization runs with infeasible solutions but with a negligibly small constraint violation

Mod. �0 Algorithm f
SO

f1 = V f2 = Δ�/MPa Feasible 
solution?

# iterations 
/generations

A (−50, 0, 0)
T
MPa GEOpS2 3.83 0.382 5.66⋅10–3 Yes 50,000

LBFGS 3.92 0.392 3.69⋅10–6 Yes 613
MMA 3.63 0.363 7.02⋅10–4 Yes 1344
SLSQP 2.46 0.246 8.99⋅10–4 Yes 1425
TNewton 2.64 0.264 5.35⋅10–4 Yes 2920

C + E (−50, 0, 0)
T
MPa GEOpS2 54.9 0.899 45.95 Yes* 50,000

C LBFGS 2.96 0.290 0.0545 No 490
MMA 4.51 0.451 6.56⋅10–5 No 309
SLSQP 2.70 0.270 1.546⋅10–4 No 3027
TNewton 40.7 0.157 39.1 No 437

C + D + E (−50, 0, 0)
T
MPa GEOpS2 56.7 0.690 49.8 Yes 50,000

C + D LBFGS 52.6 0.351 49.1 No 885
MMA 5.53 0.422 1.307 No 1871
SLSQP 52.2 0.557 46.6 No 1170
TNewton 62.4 0.201 60.4 No 3050

A (0, 0, 50)
T
MPa GEOpS2 2.34 0.233 0.01391 Yes 50,000

LBFGS 5.11 0.472 0.391 Yes 386
MMA 3.09 0.309 4.06⋅10–4 No 319
SLSQP 1.652 0.155 0.1052 Yes 1752
TNewton 1.780 0.178 1.621⋅10–3 No 2375

C + E (0, 0, 50)
T
MPa GEOpS2 50.6 0.623 44.4 Yes* 50,000

C LBFGS 3.62 0.362 2.15⋅10–6 No 299
MMA 4.87 0.487 5.95⋅10–5 No 531
SLSQP 1.975 0.197 1.765⋅10–3 No 1818
TNewton 4.08 0.161 2.47 No 868

C + D + E (0, 0, 50)
T
MPa GEOpS2 20.1 0.396 16.10 Yes 50,000

C + D LBFGS 5.78 0.240 3.38 No 1372
MMA 8.35 0.440 3.95 No 4221
SLSQP 51.1 0.460 46.5 No 695
TNewton 47.8 0.240 45.4 No 8151
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function as in modification D is optional and has advantages 
in generating robust results (cf. Sect. 4.3).

6.2 � Transfer to real benchmark artifacts

Findings from the optimization problem with trivial ten-
sile TSS were successfully transferred to problems with 
non-trivial TSS, which are closer to application and can 
be related to real benchmark artifacts more easily. On the 
one hand, non-trivial TSS are achieved well by the basic 
approach A and less accurately for the combined modifica-
tions C + E and C + D + E (cf. Table 7). On the other hand, 
plausible topologies are only reliably found if both ME and 
NE are considered in the formulation of the objective func-
tions (modification D) and the constraints (modification C). 
This indicates, that the basic approach A generates results 
that are highly grid-dependent and difficult to interpret. 
Modifications D and E help to mitigate grid-dependency.

Displacement views in Fig. 20 unveil two basic mecha-
nisms each for compressive and shear TSS that help to 

generate the pre-defined stresses: On the one hand, the com-
pressive stress state can be ascribed to the structural O-shape 
as clearly depicted in the expected topology in Fig. 14a and 
lightly indicated in Fig. 20a. The global tensile load is redi-
rected by the diagonal bar structures in the corners of the 
design space in order to compress the horizontal middle 
structure. Furthermore, dense structural parts in the mid-
dle left and right ensure, that the transverse contraction in 
this area is less than above and below. Relative horizontal 
displacements to the middle area are the result. On the other 
hand, shear stress is produced in the middle area by two 
shifted legs primarily via eccentric loading (cf. Fig. 20b). 
In addition, slightly slanted parts of the legs produce a load 
shift in x direction that distorts the middle area horizontally.

Structural solutions of TO as shown in Fig. 14 seem not 
only to minimize stresses but also include specific func-
tionalities. These do not directly influence overall material 
stiffness or stresses, as it is seen in classical TO with mini-
mum compliance and stress constraints. For example, the 
structural solution with target shear stress, as displayed in 
Fig. 20b, must offer a stiff, vertical main leg but also must 

Fig. 19   Structural solutions of gradient-based optimization with 
target compressive and shear stress states: a Modification A 
with algorithm SLSQP, target compressive stress, V = 0.246 , 
Δ� = 8.99 ⋅ 10

−4
MPa (least objective function value fSO ). b Modi-

fication A with algorithm MMA, target compressive stress, solution 
with plausible topology, V = 0.363 , Δ� = 7.02 ⋅ 10

−4
MPa . c Modi-

fication A with algorithm SLSQP, target shear stress, V = 0.155 , 
Δ� = 0.1052MPa (least objective function value fSO)

Fig. 20   Displacements of struc-
tural solutions with least errors 
of stress state for modification 
C + D + E. The deformed area 
of target stress states is framed 
by dashed lines: a Compres-
sive target stress, V = 0.736 , 
Δ� = 49.9MPa (optimiza-
tion 3), scale factor 1000. b 
Shear target stress, V = 0.396 , 
Δ� = 16.10MPa (optimization 
2), scale factor 100. Functional 
cut-outs are marked by dotted 
ellipses
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feature a well-defined cut-out to facilitate leg bending and 
the subsequent x displacement. Similar structural features 
have been reported for TO with compliant mechanisms [44]. 
Consequently, pre-defined TSS can be considered a class of 
TO problem which uses compliant mechanisms to achieve a 
quantitatively specific functional target.

Geometry interpretation is a pivotal challenge for trans-
ferring the TO results to real structural parts. Especially 
intermediate material densities must be converted into dis-
crete material. Previous approaches use micro-voids [11], 
density thresholding or contouring [12], and lattice struc-
tures adapted to requirements of additive manufacturing 
[45]. In this study, geometries of benchmark artifacts are 
proposed by means of simple material contouring based on 
the expected functionality. Examples of geometry deriva-
tion are shown in Fig. 21. Due to the fact that TO solutions 
exhibit intermediate densities, the final benchmark artifact 
geometry must be further post-processed in order to fulfill 
both the objective in Eq. (7) and the primary constraint in 
Eq. (8).

Additional steps for improvement may reduce uncertain-
ties in geometry derivation of real benchmark artifacts. They 
include mesh-independent structural parametrizations with 
a high-resolution element grid, penalization of intermediate 
densities in a SIMP-like manner, and elastic boundary con-
ditions close to the final specimen geometry. Moreover, the 
optimization results may be improved by manufacturability 
constraints in order to generate topologies that are easier to 
be produced by additive manufacturing [1, 47]. Last, influ-
ences of the specific TSS value �0 and the constraint limit 
��,lim on the structural solution should be investigated, as 
these parameters were defined rather arbitrarily in the actual 
study.

6.3 � Optimization performance compared 
to gradient methods

Gradient methods achieved overall good results in reach-
ing the TSS even for non-trivial formulations, which were 
better than in optimizations with EA. The MMA algorithm 
generated a topology close to the expected one for compres-
sive TSS. However, feasible structural solutions were found 
via gradient-based algorithms only for the basic approach 
A. Modifications in the formulation of the constraints (C) 
or the objective functions (D) hence could not be handled 
appropriately. It is assumed that pre-defined stresses lead 
to highly non-convex objective functions due to non-linear 
relationships between design variables and the error of pre-
defined stresses [25]. Gradient-based optimization only finds 
local optima which lie close to the initial guess. In this way, 
it cannot be guaranteed that a feasible solution is found by 
gradient-based algorithms. Nevertheless, a very small itera-
tion number compared to optimization with EA indicates 
that TO can be performed generally much more efficiently 
by gradient methods, as already reported by Guirguis et al. 
[48].

EA generated feasible solutions throughout owing to a 
global optimization approach. Furthermore, the exact local 
form of the primary constraint in Eq. (8) was considered 
in contrast to the continuous approximation in terms of 
Eq. (21) for the gradient-based approach. This was possible 
for EA with no additional effort as sensitivity calculation 
was not necessary. However, a low convergence rate was 
observed. Even in the modifications with the fastest con-
vergence at least about 10,000 generations are necessary to 
prove that a steady solution has been found. It is known 
from literature that TO with EA does not feature fast con-
vergence or convergence at all [10, 20]. Generated results 
must be therefore seen as optimized approximations rather 
than optimal solutions. Moreover, EA can hardly handle a 
large number of design variables [20, 22]. Both lead to slow 

Fig. 21   Transfer of structural solutions to real benchmark artifacts in terms of material contouring. Resulting geometry as a combination of the 
optimized topology and a standard tensile test specimen according to ISO 6892–1 [46]: a Compressive target stress. b Shear target stress
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optimization and rather large-spread results. Moreover, EAs 
involve shortcomings in terms of a strongly limited number 
of design variables. Especially high-resolution element grids 
only can go along with a grid-independent structural para-
metrization with rather less design variables. In addition, 
multiple optimization runs are necessary in TO via EA in 
order to ensure a proper solution finding process in view 
of inherent heuristic methods. Together with a low conver-
gence, calculation effort stays considerably high.

The TO problem presented in the actual study describes 
a special case of the general formulation in Sect. 2.1. This 
special case may serve as a basis for further investigations of 
problems regarding an advanced application which includes 
more objective functions, discrete design variables, and non-
linear, anisotropic material models especially for additive 
manufacturing. For example, gradient-based TO methods 
have limitations if the position of the TSS is optimized as 
well. EA promises to find proper solutions even for com-
plex formulations of objective functions and constraints. 
Advanced problem formulations will furthermore fore-
ground trade-offs between Pareto-optimal structural solu-
tions from an engineering perspective, e.g., where small 
errors of stress state are prioritized over small specimen 
volumes. This kind of trade-off is only possible with a multi-
objective formulation of the TO problem which is currently 
not fully approachable by means of classical gradient-based 
methods.

A future perspective could be to combine reliable solu-
tion finding of optimization with EA and efficient sizing of 
element densities by means of gradient-type methods. EA 
would suggest partially converged structural solutions as a 
precursor to an efficient finalization with gradient methods. 
The calculation effort would be clearly lower than with EA 
alone but could still utilize its global optimization proper-
ties. Robust and efficient solution finding of realistic shapes 

will make an essential contribution to an application of the 
proposed TO method to benchmark artifacts for additively 
manufactured components.

Appendix

Analysis of implausible optimization results 
appeared in modification D

Figure 10 shows the Pareto front of modification D. It fea-
tures solutions which are locally better than the RS defined 
in Eq. (9), which appears to be implausible. In order to 
explain these solutions, a more detailed analysis is made 
by a simplified model in form of a tensile bar with five seg-
ments of equal lengths and the respective cross-sectional 
areas (cf. Fig. 22a). Both structures have the same relative 
structural volume V  , but the cross-sectional areas Ai vary. 
The bars are loaded by a tensile force Fy that yields the sim-
ple tensile stresses

Segment 3 stands for the ME where segments 2 and 4 are 
NE and contribute to the calculation of the error of stress 
state Δ� as well, according to Eq. (19). In order to stay close 
to the RS of the plate structure, the parameter values are 
Fy = 1 kN , �0 = 50MPa , and l = 100mm , and, in case I , 
A0 = Ai = 10mm2 for i = 1… 5 . The relative structural vol-
ume is V = A0∕Amax = 0.1 for a maximum cross-sectional 
area of Amax = 100mm2.

According to modification D in Eq. (19), a simplified for-
mulation Δ�S is derived:

(26)�y,i =
Fy

Ai

.

Fig. 22   a Simplified structural model to demonstrate the charac-
teristics of implausible solutions. The relative structural volume 
stays constant in both cases I and II . Segments with cross-sectional 
areas A2 to A4 contribute to the calculation of the error of stress 

state. b Modification D with an implausible solution, V = 0.0675 , 
Δ� = 84.9MPa (optimization 3). The area is marked where densities 
are accumulated around the main element
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The initial solution I lies on the RS with V = 0.1 and 
Δ� = 50MPa . These simplified formulations help to under-
stand the consequences of case II : The cross-sectional areas 
of segments 1, 3, and 5 are reduced by ΔA while the areas of 
segments 2 and 4 grow by 3ΔA∕2 for a constant volume V  . 
Figure 23 shows Δ�S for modification D as well as the basic 
approach over the relative area change ΔÃ = ΔA∕A.

Modification D exhibits simplified errors of stress 
state Δ�S below the reference optimality from the RS for 
ΔÃ ∈ [0, 0.23] . This is because it incorporates averaging 
methods which favor large volume accumulations around 
the ME in the neighboring analysis area. The ME still keeps 
the largest FoS while the stresses in the NE are considerably 
reduced. The averaging process consequently leads to an 
objective function value Δ�S less than the value on the RS. 
Figure 22b shows an optimization result of modification D 
with an objective function value better than the RS. The area 
is marked where densities are accumulated around the ME.
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