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Abstract
An Euler–Lagrange multicomponent, non-Newtonian Lattice-Boltzmann method is applied for the first time to model a full-
scale gas-mixed anaerobic digester for wastewater treatment. Rheology is modelled through a power-law model and, for the 
first time in gas-mixed anaerobic digestion modelling, turbulence is modelled through a Smagorinsky Large Eddy Simulation 
model. The hydrodynamics of the digester is studied by analysing flow and viscosity patterns, and assessing the degree of 
mixing through the Uniformity Index method. Results show independence from the grid size and the number of Lagrangian 
substeps employed for the Lagrangian sub-grid simulation model. Flow patterns are shown to depend mildly on the choice 
of bubble size, but not the asymptotic degree of mixing. Numerical runs of the model are compared to previous results in the 
literature, from a second-ordered Finite-Volume Method approach, and demonstrate an improvement, compared to literature 
data, of 1000-fold computational efficiency, massive parallelizability and much finer attainable spatial resolution. Whilst 
previous research concluded that the application of LES to full-scale anaerobic digestion mixing is unfeasible because of 
high computational expense, the increase in computational efficiency demonstrated here, now makes LES a feasible option 
to  industries and consultancies.

Keywords Lattice-Boltzmann · OpenLB · Anaerobic digestion, full-scale · Non-Newtonian · Euler–Lagrange

List of symbols
Δtinj  Time interval between the injection of two 

bubbles, s
Φ  Phase space
�  Sourcing term, kg m3

Ξ  Collision step, kg m3

|�̇�|  Shear rate magnitude, s−1
|�̇�|ref  Reference shear rate magnitude, s−1
�3
⋅, ⋅

  3D Kronecker delta
�t  Lattice timestep, s
�x  Lattice cell size, m
�  Finite-difference tracer field, m−3

�  Apparent dynamics viscosity, Pa s
�max  Apparent dynamics viscosity, maximum range 

value, Pa s

�min  Apparent dynamics viscosity, minimum range 
value, Pa s

�PL  Apparent dynamic viscosity before turbulence 
correction, Pa s

�  Kinematic viscosity, m2 s−1
�PL  Apparent kinematic viscosity before turbulence 

correction, m2 s−1
�ref  Reference kinematic viscosity, m2 s−1
�turb  Turbulent kinematic viscosity, m2 s−1
�  Liquid phase density, kg m−3

�  Liquid phase shear stress, Pa
�  Lattice relaxation time, s
AK  Acceleration of the Kth Lagrangian sub-grid 

particle, m s−2
C   Collision operator, kg m3

Cd  Drag coefficient
CSmago  Smagorinsky constant
FK  Total force acting on the Kth Lagrangian sub-

grid particle, N
Fa
K

  Added-mass force acting on the Kth Lagrangian 
sub-grid particle, N
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Fb
K

  Buoyancy force acting on the Kth Lagrangian 
sub-grid particle, N

Fd
K

  Drag force acting on the Kth Lagrangian sub-
grid particle, N

K  Power-law consistency coefficient, Pa sn
K  (As a subscript) Generic label to a Lagrangian 

sub-grid particle
MK  Mass of the Kth Lagrangian sub-grid particle, 

kg

Ma  Mach number
PK  Tuple representing the Kth Lagrangian sub-grid 

particle
Re  Reynolds number
Rep  Particle Reynolds number
RK  Nominal radius of the Kth Lagrangian sub-grid 

particle, m
S  Rate of shear tensor, s−1
S   Source term operator, kg m3

U  Nominal velocity scale, m s−1
UI  Uniformity index
UK  Spatial coordinate of the Kth Lagrangian sub-

grid particle, m s−1
ULB  Lattice velocity
U0

LB
  Reference lattice velocity

XK  Spatial coordinate of the Kth Lagrangian sub-
grid particle, m

Xnext
K

  Spatial coordinate of the Kth Lagrangian sub-
grid particle, approximated at the nearest lattice 
node, m

c  Mesoscopic velocity, m s−1
ci  ith discretised lattice (mesoscopic) velocity, m 

s−1

cs  Lattice speed velocity, m s−1
d  Bubble diameter, m
f  One-particle density function, kg m−3

f (1)  First-order multiscale term of the one-particle 
distribution function, kg m−3

f (eq)  Equilibrium one-particle density function, kg 
m−3

g  Acceleration of gravity, m s−2
n  Power-law index
nx  Number of lattice sites across the tank’s 

diameter
n0
x
  Reference number of lattice sites across the 

tank’s diameter
p  Pressure, Pa
s  Number of Lagrangian subcycles
t  Time, s
u  Liquid phase velocity, m s−1
usurr  Liquid phase velocity magnitude in the sur-

roundings of a rising biogas bubble, m s−1

wi  Weight of the ith component of the equilibrium 
particle distribution

x  Discretised lattice spatial coordinate, m
⋅
∗  Dimensionless version of the argument repre-

sented by the ⋅
CFD  Computational fluid dynamics
CPUs  CPU-second (i.e., number of seconds a given 

numerical simulation takes to be run, times 
number of CPU cores employed)

EU  European Union
FV  Finite-volume
LB  Lattice-Boltzmann
LES  Large Eddy simulations
TS  Total solid content
WFD  EU Water Framework Directive
WwTW  Wastewater treatment work

1 Introduction

Over the next decades, the wastewater industry will continue 
to be subjected to unprecedented challenges, as worldwide 
demands for food and clean water are expected to rise by 
50% and 30% respectively [1]. Furthermore, implementation 
of the EU Water Framework Directive (WFD) is driving an 
increase of energy consumption by up to 60% in wastewa-
ter treatment works (WwTWs) over the next 10–15 years 
[2], due to tighter discharge requirements. The wastewater-
energy link must be clearly addressed in order to mitigate, 
and adapt towards, climate change.

Since 2009, wastewater treatment works across each 
major European country have produced over 1 M tonnes 
sludge per country per year [3]. The preferred method to 
treat sludge is mesophilic (22–41 ◦ C) anaerobic digestion 
with mixing occurring through biogas injection. Through 
this process, sludge is degraded by anaerobic bacteria into 
stable digestate and biogas (a mixture of mainly methane and 
carbon dioxide). Biogas is usually directed to a combined 
heat and power unit for energy recovery. Mixing is necessary 
for correct digestion and can be responsible for anywhere 
between 17% and 73% of digester energy consumption [4]. 
This level of consumption is largely suboptimal, as experi-
mental evidence [5] shows that input mixing power can be 
reduced by to 50% without affecting the digestion process. 
To address mitigation and adaptation to climate change, it is 
therefore necessary to rethink mixing design practices and 
operation protocols, with the goal of balancing input mixing 
energy against output biogas production, rather than merely 
considering digestate quality.

Over the years, (segregated) Finite-Volume (FV) Com-
putational Fluid Dynamics (CFD) has been successfully 
employed to model gas-mixed anaerobic digesters [6–19]. 



717Engineering with Computers (2024) 40:715–739 

1 3

A CFD approach to design and system analysis offers mul-
tiple benefits, including a saving of time and money arising 
from avoiding lengthy and time-consuming experiments, 
and providing an insight to flow patterns which are unattain-
able from optical visualisation techniques (sludge is opaque) 
or tracer-response methods (which provide no more than a 
black-box description of the system). This progress has ena-
bled the development of structured modelling protocols to 
significantly improve energy performance of both new and 
existing full-scale digester [20]. However, limitations in 
the industrial applicability of this approach persist, as long 
simulation runtimes ( ≥ 2 days) render the deployment of the 
above-mentioned strategies excessively time-consuming. 
Furthermore, the multi-core parallel run of most common 
Finite-Volume schemes (viz., up to second-order) is ham-
pered by poor parallel performance [21], mainly due to the 
high proportion of non-scalable inter-core communication 
operations involved in solving the Poisson pressure equation 
[22]. Indeed, previous Finite-Volume models of full-scale 
anaerobic digesters [17, 20, 23] could not scale up beyond 36 
cores. As such, traditional Finite-Volume CFD cannot benefit 
from the on-going evolution of high-performance computing. 
In turn, this makes it impractical, or very time-consuming, to 
employ accurate but resource-intensive methodologies, e.g., 
the Large Eddy Simulations (LES). Indeed, no LES model for 
full-scale gas-mixed anaerobic digestion has been developed 
so far: only [24] has developed a LES Finite-Volume model 
for full-scale anaerobic digestion, but for mechanical, not 
gas, mixing, and concluded that LES is impractical due to 
the excessive computational expense required.

A potential solution to both the problems listed above 
is offered by the Lattice-Boltzmann (LB) method, a rela-
tively recent CFD alternative to the Finite-Volume approach 
with recent industrial applications comprising, among 
other things, Ball-Grid-Array encapsulation process, heat 
flux inside refrigerated vehicles, internal-combustion 
engine and 3D-printed wet-scrubber nozzle [25–28]. Lat-
tice-Boltzmann is essentially a Finite-Difference method 
equipped with tunable diffusivity [29]. Lattice-Boltzmann 
presents tangible advantages over the traditional Finite-
Volume approach, such as: (i) full explicitness free from 
internal loops, resulting in a well-defined, limited number of 
floating-point operations per timestep; and (ii) strong paral-
lelizability due to reduced non-scalable inter-core commu-
nication thanks to a formal and implementational distinc-
tion between non-local and non-linear parts of the algorithm 
and non-local access usually limited to first-neighbour cells 
only. Furthermore, the Lattice-Boltzmann method has the 
advantage over other models suitable to parallel computing 
(viz., high-order Finite-Volume, [21]), of (iii) implementa-
tional simplicity, as its structured grid approach and first-
neighbour-only non-local access allow it to avoid complex 

stencils and to implement boundary conditions in a straight-
forward manner. Multiphase models, both Euler–Euler [30] 
and Euler–Lagrange [31–35], are available. A comparison 
between a Lattice-Boltzmann LES model and its Finite-Vol-
ume counterpart applied to a internal-combustion engine 
[27] showed that the former ran 32 times faster, thus mak-
ing the usage of LES much more practical: “The faster cal-
culation speed for NWM-LES using LBM is advantageous 
to address industrial applications and to enable ‘overnight’ 
calculations that previously took weeks. Therefore, faster 
design cycles and operating condition tests are feasible”. 
Coming to anaerobic digestion, a Lattice-Boltzmann model 
for a laboratory-scale gas-mixed digester [34] has been 
shown to perform around 180 times faster than its Finite-
Volume analogue [14] whilst being able to run on ten times 
more processors without appreciable efficiency decrease. 
Thus, Lattice-Boltzmann’s superior numerical efficiency and 
parallelizability allow much finer grids than Finite-Volume 
at comparable numerical expense and runtimes, amply com-
pensating for the errors arising from the traditional lack of 
local mesh refinement, unstructured and body-fitted grids 
in the traditional Lattice-Boltzmann implementations. It is 
therefore clear that Lattice-Boltzmann models can deliver a 
significant benefit to the operation of numerical modelling 
anaerobic digestion with gas mixing.

The topic of mixing improvement in full-scale anaero-
bic digestion has been widely investigated through CFD 
despite severe limitations in validation procedure: the intrin-
sically opaque and hazardous nature of sludge, as well as 
the impracticability of taking digesters out of production 
for experimental purposes, means that no experimental data 
concerning full-scale anaerobic digesters for wastewater 
treatment are available in the literature. As a result, there are 
examples in the literature where researchers provide unvali-
dated results in full-scale anaerobic digestion [8–10, 13]; 
rely on full-scale validation conducted on black-box meas-
urements such as impeller power number [36]; or validate a 
model against flow patterns from a lab-scale setup, and then 
apply it to the full-scale [14, 17, 20, 23, 37].

Despite the advantages of CFD and, to a greater extent, 
Lattice-Boltzmann method, for anaerobic digestion model-
ling, only a limited amount of work has been dedicated to 
modelling the gas mixing processes [6, 10, 14, 17, 20, 23, 
34, 35, 38]; among this, only [34, 35] employed the Lat-
tice-Boltzmann; and finally, none reports full-scale Lattice-
Boltzmann models with gas mixing. Dapelo et al. [34] intro-
duced the first-ever multiphase Lattice-Boltzmann model for 
gas-mixed anaerobic digestion in a laboratory-scale set-up, 
and [35] demonstrated that the sub-grid Euler–Lagrange 
Lattice-Boltzmann method can be successfully employed to 
model laboratory and full-scale anaerobic digesters. In both 
[34, 35], the models were validated against laboratory-scale 
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experiments conducted by [14]. However, a knowledge 
gap persists as no Lattice-Boltzmann model for gas-mixed 
industrial-scale digesters has been reported in the literature.

Within the work reported here, the sub-grid method 
developed and validated lab-scale in [35] is used for 
the first time to model a full-scale setup reproducing a 
real wastewater treatment digester, applying the same 
approach towards validation of [14, 17, 20, 23, 37] and 
thereby filling the above-mentioned knowledge gap. Flow 
and viscosity patterns are analysed, and the degree of 
mixing is evaluated through the Uniformity Index ( UI ) 
method proposed by [9]. The effect of different model-
ling parameters on the simulation outcome is assessed. 
The results are discussed and compared to previous sec-
ond-order Finite-Volume work on a similar design [17, 
20, 23]. It is shown how the Lattice-Boltzmann method 
offers advantages over the method used therein, and has a 
clear potential to overcome the issues concerning indus-
trial applicability of CFD-based mixing-improvement 
strategies described above. Likewise, it is shown that the 
introduction of a Lattice-Boltzmann-based model makes 
the application of LES to full-scale anaerobic digestion 
practically feasible to industries and consultancies.

This paper is structured as follows. Sludge is mod-
elled in Sect.  2: the assumptions underlying the mul-
tiphase model are laid down in Sect. 2.1; then, the model 
is described within the Lattice-Boltzmann framework 
in Sects. 2.2 and 2.3; finally, the pseudocode algorithm 
is reported in Sect. 2.4. The model’s implementation in 
OpenLB is reported in Sect. 3, and a short description 
of OpenLB and the innovation it has brought in the field 
of parallel computing is offered in Sect.  3.1. then, the 
results are reported in Sect. 4, and specifically: flow pat-
terns (Sect. 4.1); grid independence (Sect. 4.2); mixing 
efficiency (Sect. 4.3); dependence of the results from the 
choice of Lagrangian subcycles (Sect. 4.4) and bubble size 
(Sect. 4.5); and scaling-up (Sect. 4.6). Then, a discussion is 
performed (Sect. 5), and conclusions are drawn (Sect. 6).

2  Modelling of sludge

Within this work, one of the models described in [35], 
with the geometry of [17, 23] is used. It is summarised 
here for the sake of clarity.

2.1  Assumptions

Sludge is a complex mixture of organic and inorganic sol-
ids arranged in fragments of various dimensions (from col-
loid molecules to sand or gravel), water and biogas bubbles 
where gas mixing is employed. The range of inter-phase phe-
nomena include bubble–liquid (two-way) and bubble–bub-
ble (four-way) momentum transfer, solid–liquid interactions 
such as grit sedimentation and scum flotation, and complex 
liquid rheology characterised by shear thinning, shear band-
ing, yield stress and thixotropy.

To simplify the problem of modelling sludge, a sub-grid, 
two-way coupled Euler–Lagrange model with non-Newto-
nian rheology and a large-eddy-simulation turbulence model 
is introduced. The assumptions and simplifications under-
lying the choice of this model, as well as the justifications 
underpinning them, are listed as follows.

(i) Sedimentation and flotation are ignored because they 
respectively take place in years/months and days/
weeks, whilst the timescale of the mixing is up to 2 h.

(ii) Solid phase is considered as a suspension of liquid 
phase, and its effect on the latter is modelled as the 
liquid phase’s non-Newtonian pseudoplastic rheol-
ogy [39], with more complex rheological phenomena 
being ignored. In a pseudoplastic power-law model, the 
apparent viscosity � is a function of the magnitude of 
the sear rate |�̇�| , as follows:

with K and n ( 0 < n < 1 ) being respectively the con-
sistency and power-law coefficients. Although both K 
and n depend on temperature and total solids content 

(1)𝜇 = K|�̇�|n−1,

Table 1  Power-law coefficients, 
cutoffs and density of sludge at 
T=35 ◦C . From [40]

TS K n |�̇�| range �min �max Density
(%) (Pa sn) (–) (s−1) (Pa s) (Pa s) (kgm−3)

2.5 0.042 0.710 226–702 0.006 0.008 1000.36
5.4 0.192 0.562 50–702 0.01 0.03 1000.78
7.5 0.525 0.533 11–399 0.03 0.17 1001.00
9.1 1.052 0.467 11–156 0.07 0.29 1001.31
12.1 5.885 0.367 3–149 0.25 2.93 1001.73
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[40], temperature dependence is ignored as K and n are 
considered constant at the fixed temperature of 35 ◦C , 
this being the ideal temperature for mesophilic condi-
tions. Table 1 reports typical values of n and K at 35 
◦C . For the sake of simplicity, sludge density is set to 
1000 kg m−3 . Equation (1) returns unphysically high 
or low apparent viscosity values for low or high values 
of |�̇�| respectively; this is avoided in a standard way by 
introducing a minimum and maximum cutoff value for 
the apparent viscosity, �min and �max.

(iii) (iii) As reported in the following Results sections, the 
Reynolds number is found to be comprised between 
3600 and 6100, and therefore, turbulence is modelled. 
A large eddy simulation (LES) model is chosen, and 
the Smagorinsky constant CSmago is set to 0.14.

(iv) Bubble–bubble interaction, bubble coalescence and 
breakup are ignored, as they were found not to occur 
in experimental work [14]. Conversely, mixing occurs 
because of the momentum of the buoyant bubbles being 
transferred to the surrounding liquid phase. Therefore, 
the bubble–liquid interaction must be modelled; i.e. 
bubble–liquid two-way coupling is considered whereby 
momentum is transferred from the liquid phase to the 
bubbles (“forward-coupling”); and from the bubbles to 
the liquid phase (“back-coupling”).

(v) The smallest grid cells used in this work are cubes 
of 9 cm size, which are larger than the largest bubble 
diameter (5 cm). Previous work [35] showed that liq-
uid phase flow patterns can be effectively reproduced 
through a sub-grid Euler–Lagrange model, and conse-
quently, bubbles are considered as pointwise within this 
work. Bubbles are also assume to have the same density 
of air, i.e. 1 kg m−3.

2.2  Modelling and simulation: sub‑grid Euler–
Lagrange bubbly phase

The dispersed bubbly phase is modelled as a collection of 
sub-grid elements PK , or “particles” [34, 41]—one (spheri-
cal) bubble per particle. As rotational effects and deviations 
from sphericity were found to be negligible in previous work 
[14, 34], it is possible to represent each PK as a tuple of 
numbers consisting of: coordinate XK , velocity UK , accelera-
tion AK , nominal radius RK and mass MK:

At any Lattice-Boltzmann update, each PK within the 
domain is updated separately via verlet integration of New-
ton’s second law [42] over a number s of “Lagrangian sub-
cycles” with Lagrangian timestep �t∕s:

(2)PK ≡ (
XK ,UK ,AK , RK , MK

)
.

The resultant FK of the forces acting on PK is modelled as a 
sum of buoyancy Fb

K
 , added mass Fa

K
 and gravity Fd

K
:

Forward-coupling is achieved by modelling Fb
K

 , Fa
K

 and Fd
K

 
in terms of the liquid phase’s local values of the macroscopic 
fields: in [35], different models were tested, and the best 
results in terms of both convergence and numerical expense 
were achieved when the values of the liquid phase density 
and velocity fields � and u at the Kth particle’s position XK 
were determined through linear interpolation across the cells 
surrounding PK ; conversely, the value of the kinematic vis-
cosity � was approximated to the nearest cell Xnext

K
 . The same 

approach is then adopted here. For buoyancy we have:

with g being the acceleration of gravity. Added mass is given 
by:

The drag force is defined as:

As in [35], Morsi’s drag coefficient [43] Cd is used. The 
particle Reynolds number ReP is evaluated as:

2.3  Modelling and simulation: Lattice‑Boltzmann 
method for the fluid phase

The Lattice-Boltzmann model solves the one-particle den-
sity function f (x, c, t) , which is defined as the probability of 
finding one ideally pointwise and indivisible portion of fluid 
with velocity in [c, c + dc] and position in [x, x + dx] at the 
time t. The method is mesoscopic insofar as the observable 
macroscopic fields of density �(x, t) , velocity u(x, t) and 
shear stress �(x, t) are not directly resolved—rather, they 
are evaluated from f’s first three moments [44]:

(3)FK = MKAK .

(4)FK = Fb
K
+ Fa

K
+ Fd

K
.

(5)Fb
K
= −

[
4

3
�R3

K
�
(
XK

)
−MK

]
g

(6)
Fa
K
= −

1

2
�
(
XK

)4
3
�R3

K

d

dt

[
UK − u

(
XK

)]

≃ −
1

2
�
(
XK

)�
6
d3
K
AK .

(7)
Fd
K
= −

1

2
�
(
XK

)
Cd

(
ReP

)
�R2

K
|UK − u

(
XK

)
|

[
UK − u

(
XK

)]
.

(8)ReP =
2RK|Uk − u

(
XK

)
|

�
(
Xnext
K

) .
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f’s continuity equation in the phase space Φ(x, c) takes the 
name of the Boltzmann equation:

The “collision operator” C  is a source-sink term, modelling 
the effect of f of inter-particle collisions taking place within 
the cube [x, x + dx] between t and d + dt . Under the diluted 
gas assumption (which is considered to hold in the work pre-
sented here), only binary collisions are accounted for in C  . 
Under the widely-adopted Bhatnagar–Gross–Krook (BGK) 
hypothesis [45], collisions occur isotropically and induce a 
relaxation of f towards an equilibrium distribution f (eq) with 
relaxation time �:

The equilibrium distribution is the Maxwell equilibrium 
distribution [44]:

where velocity and density are evaluated through Eqs. (9) 
and (10), and cs is the speed of sound.

Simulations consist of trajectories on the discretized 
phase space, with constant timestep �t . The phase space 
Φ(x, c) is discretized as follows. The (spatial) discretized 
computational domain is defined as a 3D cubic lattice, 
with �x being the distance between two first-neighbouring 
sites. The discretized velocity space is generated by a set of 
vectors 

{
c0, … , cq−1

}
 not mutually independent. c0 is the 

zero vector; the others point from one lattice site to its first 
neighbour and have module �x∕�t ; or to its second neighbour 
neighbour and have module 

√
2 �x∕�t ; or to its third (module √

3 �x∕�t ). The different choices of discretization are 
conventionally labelled through a tag DdQq: d represents the 
spatial dimension (in this work, 3); q the number of vectors 
spanning the velocity space. In place of f (x, c, t) we now 

(9)� =∫ f dc;

(10)�u =∫ f c dc;

(11)𝜌u⊗ u =𝜎 + ∫ f c⊗ c dc.

(12)
(
�t + c ⋅ ∇

)
f = C

[
f
]
.

(13)C
[
f
]
= −

f − f (eq)

�
.

(14)f (eq)(x, t) ∶= �(x, t)

(
1

2�c2
s

)3∕2

exp

{
−
[u(x, t)]2

2c2
s

}
,

have the discretized set fi(x, t) , where the latter is defined as 
the probability of finding one portion of fluid at the lattice 
site x with velocity ci at the time t. The zeroth, first and 
second moments of f (Eqs. 9, 10 and 11) are evaluated as 
summations, in place of integrals, over the velocity set:

Using a discretized velocity space induces a discretization 
error—however, this error source can be removed if the 
Maxwell equilibrium function (Eq. 14) is written as a linear 
combination of Hermite polynomials. To ensure density and 
momentum conservation, only the Hermite polynomials up 
to the second order are needed [44]. As such, the discretized 
equilibrium function reads as:

The values of the weights are set in a standard way depend-
ing of the specific DdQp lattice. Similarly, the speed of 
sound is defined as:

The application of Eqs. (9) and (10) [44] allows evalua-
tion of the macroscopic fields and recovery of the adiabatic 
dynamics with a Mach-number-dependent compressibility 
error of Ma2 . If the BGK assumption (Eq. 13) is adopted 
the Boltzmann Eq. (12) is discretized into the Lattice-Boltz-
mann equation:

Implementation of Eq. (20) is split into two steps: a local, 
non-linear collision:

and a linear, non-local streaming:

(15)� =
∑

i

fi;

(16)�u =
∑

i

fi ci;

(17)𝜌u⊗ u =𝜎 +
∑

i

fi ci ⊗ ci.

(18)f
(eq)

i
= wi �

[
1 +

u ⋅ ci

c2
s

+

(
u ⋅ ci

)2
− c2

s
u2

2c4
s

]
.

(19)cs ∶=
1√
3

�x

�t
.

(20)fi
(
x + ci �t, t + �t

)
= fi(x, t) −

fi(x, t) − f
(eq)

i
(x, t)

�
.

(21)Ξi(x, t) = fi(x, t) −
fi(x, t) − f

(eq)

i
(x, t)

�
;
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A multiscale (“Chapman-Enskog”) expansion shows that the 
Lattice-Boltzmann Eq. (20) reproduces the incompressible 
Navier–Stokes equations under the limit Ma ≪ 1 [44]. Pres-
sure and kinematic viscosity take the values:

Non-Newtonian rheology and turbulence are accounted for 
following [34, 35]. The relaxation time is treated as a field 
�(x, t) rather than a parameter; its value is stored alongside 
fi(x, t) and initialised at the first timestep by inverting the 
second of Eqs. (23) using a bespoke reference value �ref 
for the kinematic viscosity (see Sect. 3). � is then updated 
locally at every timestep before the collision phase (Eq. 21), 
as follows: 

1. Power-law rheology is modelled as in [46].The rate of 
shear tensor S�� ≡ 1

2

(
��u� + ��u�

)
 is evaluated locally 

from the second momentum of the first-order multiscale 
term of f, defined as f (1)

i
 [44]: 

 Dynamic viscosity �PL(x, t) and, consequently, kin-
ematic viscosity �PL ≡ �PL∕� are obtained from the 
power-law Eq. (1) through the substitution: 

 and then � is recalculated from the second of Eq. (23), 
with �PL being used instead of �.

2. Smagorinsky turbulence is modelled as in [47]. The 
shear rate magnitude |�̇�| is calculated after power-law 
correction by reapplying Eqs. (24) and (25). The Sma-
gorinsky closure with CSmago = 0.14 is then applied in 
order to compute the turbulent linematic viscosity: 

(22)fi
(
x + ci, t + �t

)
= Ξi(x, t).

(23)p ∶= �c2
s
, � ∶= c2

s

(
� −

�t

2

)
.

(24)

S(x, t) = −
1

2𝜌 c2
s
𝜏(x, t)

∑

i

f
(1)

i
(x, t) ci ⊗ ci

≃ −
1

2𝜌 c2
s
𝜏(x, t)

∑

i

[
fi(x, t) − f

(eq)

i
(x, t)

]
ci ⊗ ci.

(25)��̇�� ≡ √
2 S ∶ S,

 The final value of � is then calculated by inverting once 
more the second of Eq. (23), with �turb in place of �.

The momentum transfer from bubbles to liquid phase (viz., 
back-coupling) can be included by modifying the Lattice-
Boltzmann Eq. (20) through a general procedure, due to [48]: 
a momentum source term due to a body force is added to the 
Lattice-Boltzmann Eq. (20):

and consequently, the collision Eq. (21):

where the source term Si is a function of a particle-depend-
ent forcing term �:

For the specific case of implementing the back-coupling, 
[35] proposed different models. The best performing in 
terms of convergence and numerical expense consisted of 
equating the forcing � (in Eq. 29) to −FK (in Eq. 4) to the 
most near cell from PK , and summing over the particles 
and the number of Lagrangian subcycles occurring within a 
Lattice-Boltzmann update:

Finally, Eq. (16) is modified as follows:

(26)𝜈turb = 𝜈PL + CSmago|�̇�|.

(27)
fi
(
x + ci, t + �t

)
=fi(x, t) −

fi(x, t) − f
(eq)

i
(x, t)

�

+
(
1 −

1

2�

)
Si(x, t)

(28)
Ξi(x, t) =fi(x, t) −

fi(x, t) − f
(eq)

i
(x, t)

�

+
(
1 −

1

2�

)
Si(x, t),

(29)Si ∶= wi

[
ci − u

c2
s

+

(
ci ⋅ u

)
ci

c4
s

]
⋅�.

(30)� = −
∑

s

∑

K

FK �3
x,Xnext .

(31)�u =
∑

i

fi ci +
1

2

∑

i

Si ci.
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2.4  Simulation algorithm

The model follows Algorithm 1 below.

3  Numerical experiments: setup

A cylindrical digester with an inclined base as [17, 23] is 
simulated (Fig. 1). A series of 12 nozzles, placed at equal dis-
tances along a circular manifold above the sloped bottom of 
the tank, is considered. Table 2 reports the geometric details. 
Mixing occurs through a circular manifold of 12 rectangular 
leaf-sparger nozzles with an equivalent diameter dnoz . A set of 
material numbers is defined to facilitate boundary condition 
treatment—in other words, a n integer is assigned to a given 
portion of computational domain. Following Fig. 1b, c, mate-
rial number 0 is assigned to out-of-domain cells which do not 
undertake any lattice operation; 1 to the bulk and is subjected 
to lattice update but not to boundary conditions; 2 to the wall 
and floor boundaries and is subjected to both lattice update 
and bespoke boundary conditions; 3 to the liquid phase’s free 
surface and is subjected only to bespoke boundary conditions.

The Reynolds number Re is evaluated as:

The reference velocity U is the theoretical asymptotic ris-
ing bubble velocity, obtained by imposing a static balance 
between buoyancy and drag force using Morsi’s model [43], 
multiplied by a heuristic correction set to 0.25 [35]. The 

(33)Re =
U dnoz

�ref
.

reference kinematic viscosity �ref is evaluated through sub-
stitution of the reference shear rate |�̇�|ref onto the rheology 
characteristic Eq. (1), with the former being defined as the 
shear rate occurring around an asymptotically rising bubble:

because the velocity of the portion of liquid phase surround-
ing a rising bubble usurr is negligible if compared to the 

(34)|�̇�|ref =
U − usurr

2d
≃

U

2d

Table 2  Details of the digester geometry, from [17, 23]

Sludge feed inlet is located on a side wall, at a height h/4 below the 
top sludge level. Courtesy of Severn Trent Water Ltd

External diameter D
ext

14.63 m
Diameter at the bottom of the frustum D

int
1.09 m

Cylinder height h 14 m
Frustum height h

0
3.94 m

Distance of original nozzle series from axis R
1

1.83 m
Distance of new nozzle series from axis R

2
5.49 m

Distance of nozzles from bottom h
noz

0.3 m
Leaf sparger’s equivalent diameter d

noz
9.35 cm

Gas flow rate per nozzle q
noz 2.3585 10−3 m3

s
−1
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asymptotic rising bubble velocity U. Re was found to span 
between 3600 (15 mm bubble diameter) and 6100 (50 mm 
bubble diameter).

The simulations are performed on D3Q27 cubic lat-
tices with linear dimension nx spanning from 30 to 160 
lattice sites across the diameter Dext , respectively cor-
responding to total numbers of cells spanning from 
27,344 to 4,271,774. The dimensionless velocity 
ULB ≡ �x∕�t ⋅ 1 s∕m is set according to diffusive scaling:

with U0
LB

= 0.15 and n0
x
= 60 . Simulated time spans between 

600 and 3600 s . Free-slip boundary condition is defined for 
the top free surface (material number 2), and Bouzidi no-slip 
for walls and bottom (material number 1). The maximum 
values of y+ around the walls are found to be 30, 13 and 5 for 
2.5%, 5.4% and 7.5% TS respectively, and the average value 

(35)ULB = U0
LB

n0
x

nx
,

x

y

14.63 m

14
 m

3.
94

 m

(a) 3D illustrative view. The nozzle manifold is in blue.

(b) Material numbers, front wiew (c) Material numbers, top wiew

Fig. 1  Computational domain
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were respectively 4, 0.16 and 0.08; as such, no wall function 
is implemented. At the initial timestep, the fluid phase is 
quiescent and no bubbles are present in the system. Bubbles 
of diameter 15 < d < 50 mm are introduced in the computa-
tional domain (viz., a new tuple PK is defined) one at a time, 
at a position hnoz above the sloping base of the tank. The time 
interval between two bubble injection is defined as follows:

As Δtinj is in general not a multiple of �t , bubbles are in 
practice injected at the first subsequent timestep. The bub-
bles crossing the liquid surface are deleted.

3.1  OpenLB and Lattice‑Boltzmann 
for platform‑transparent saturation of modern 
HPC machines

The Lattice-Boltzmann is particularly suitable for extreme- 
and exa-scale simulations of fluid flows [49, 50] as, contra-
rily to conventional numerical techniques, close-to-optimal 
speedups are reachable. For example, LES of fluid flows in 

(36)Δtinj =
�d3

6 qnoz
.

an injector with Lattice-Boltzmann-implemented in OpenLB 
(www. openlb. net) allow a speedup of 32 (simulation) and 
424 (meshing) compared to Finite-Volume implementations 
in OpenFOAM (www.openfoam.org) on a similar setup with 
fixed accuracy [27].

The open-source C++ Lattice-Boltzmann framework 
OpenLB (https:// www. openlb. net/) has been continuously 
developed since 2006. Krause (IANM/MVM/KIT). OpenLB 
contains a broad range of LBM implementations for several 
classes of partial differential equations (PDEs) for transport 
multi-physics including initial, boundary, and coupling 
methods [51]. Besides highly efficient simulations of tur-
bulent, reactive, particulate and thermal fluid flow models, 
even coupled radiative transport or melting and conjugate 
heat transfer are realizable [27, 52–55].

Specifically designed for large scale data generation, 
OpenLB supports efficient and platform-transparent execu-
tions, both on single-instruction-multiple-data (SIMD, vec-
torization) central processing units (CPUs), and general-
purpose graphical processing units (GPGPUs) [56]. This is 
augmented by virtual memory manipulation and automatic 
code generation in order to reduce the arithmetic load per 
kernel [57], saturating the available memory bandwidth on 
current CPU and GPU targets [58]. The parallel efficiency 
of OpenLB was recently evaluated at up to perfect 1.0 (weak 
scaling) and very good 0.94 (strong scaling) on the HoreKa 
supercomputer (https:// www. scc. kit. edu/ diens te/ horeka. php, 
66/Top500 June 2022) at SCC (KIT), using both CPU-only 
and accelerated GPU partitions (Fig. 2). At the moment, a 
peak amount of 1.3 × 1012 grid cell updates per second is 
realizable on 128 accelerator nodes with 4x NVIDIA A100 
GPUs each.

4  Numerical experiments: results

The simulations are run on one 40-core Lenovo ThinkSys-
tem SR65 CPU. The computational expense spans between 
500 and 45,000 CPUs (cumulative figure summed across the 
cores), depending on the run. OpenLB (www. openlb. net) 
version 1.3 [51, 59], a generalistic open-source library for 
parallel Lattice-Boltzmann modelling, equipped with opti-
mized load-balancing strategies [60] and a vectorised A–A 
streaming algorithm [61], is used.

4.1  Flow patterns

Figure 3 shows snapshots of flow patterns at different times 
( t = 300 and 600 s) for different values of TS. The numbers 
around the plots and in all the following refer to the spatial 
coordinates as Fig. 1a. Qualitatively, high-velocity narrow 
areas, with velocity directed vertically upwards, are observed 

(a) Scalability of OpenLB 1.5 on HoreKa (multi-GPU execution MPI & CUDA) up
to the max. number of nodes allocatable [58]. Throughput in giga (109) lattice

(cells) updates per second (GLUPs) on the y-axis, for resolutions (N per coordinate
axis) labeled on the right.

(b)Q-Criterion iso-contours of GPU-based 3D turbulent nozzle flow simulation
using 2.5 billion cells [58]. Colours indicate velocity magnitude from low (blue) to

high (orange).

Fig. 2  OpenLB scaling-up on HoreKa

http://www.openlb.net
https://www.openlb.net/
https://www.scc.kit.edu/dienste/horeka.php
http://www.openlb.net
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above the nozzle locations; this corresponds to the drag 
effect exerted by rapidly-rising bubbles to the liquid phase. 
As the rapidly-rising flow approaches the liquid surface, it 
is deviated in a radial direction and then, as it approaches 

the walls, downwards. The flow is finally directed towards 
the rising columns, forming a toroidal vortex. Smaller-scale 
structures are also present, indicating the turbulent nature 
of the flow. The snapshots display fluctuations over time 

(a) 2.5% TS sludge, t = 300 s (b) 2.5% TS sludge, t = 600 s

(c) 5.4% TS sludge, t = 300 s (d) 5.4% TS sludge, t = 600 s

(e) 7.5% TS sludge, t = 300 s (f) 7.5% TS sludge, t = 600 s

Fig. 3  Flow patterns and vortex position, n
x
= 80 , 50mm bubble size
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around this general description; this is in agreement with 
the fact that turbulence is modelled through LES. The large-
scale flow patterns remain practically unchanged irrespective 
of the value of TS: the only qualitative aspect that varies 

depending of the value of TS is the relative prominence of 
the small-scale structures connected to turbulence; such 
structures tend to smooth out as the TS increases. This is in 

(a) 2.5% TS sludge, x coordinate (b) 2.5% TS sludge, y coordinate

(c) 5.4% TS sludge, x coordinate (d) 5.4% TS sludge, y coordinate

(e) 7.5% TS sludge, x coordinate (f) 7.5% TS sludge, y coordinate

Fig. 4  Vortex coordinates over time, n
x
= 80 , 50mm bubble size. Solid lines: instantaneous values. Dashed lines: averages, computed from 200 

s onwards. Dotted lines: statistical standard errors computed from adapted standard deviations, computed from 200 s onwards
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agreement with the fact that Re decreases (and therefore, the 
flow is less turbulent) as TS increases.

A quantitative description is offered by the coordinates of 
the vortex. For every timestep, the vortex is found by searching 
the x–y position minimizing the velocity magnitude within the 

square window [3.0, 6.5m] × [9.5, 13.0m] starting from an 
initial guess of (5.0, 11.0m) . The resulting vortex position is 
marked with a red cross in the snapshot of Fig. 3, and tracked 
over time in Fig. 4. As in the case of the flow patterns, the 
vortex position oscillates around an average value, as expected 

(a) 2.5% TS sludge, t = 300 s (b) 2.5% TS sludge, t = 600 s

(c) 5.4% TS sludge, t = 300 s (d) 5.4% TS sludge, t = 600 s

(e) 7.5% TS sludge, t = 300 s (f) 7.5% TS sludge, t = 600 s

Fig. 5  Apparent viscosity over characteristic viscosity, n
x
= 80 , 50mm bubble size
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from a LES model. For all the TS values, the stationary-oscil-
lating regime is reached after an initial transient period of 
around ∼ 200 s . Both the average and the statistical standard 
error (the latter being computed on the same number of sam-
ples for all the runs) have similar values for all the values of 
TS, thereby confirming the qualitative observation of unchang-
ing large-scale flow patterns irrespective of the value of TS.

In Fig. 5, snapshots of the apparent viscosity are reported. 
The viscosity patterns become more evident and less uniform 
as TS rises, indicating a more prominent power-law behaviour 
for higher values of TS.

4.2  Grid independence

The grid independence test is reported in Fig. 6. The test is 
performed over the vortex coordinate, with the average being 
taken for each run by averaging between the instantaneous 
values for 200 s ≤ t ≤ 600 s and errorbars as in Fig. 4. The 
curves display rapid oscillations. Despite this, a best fit against 
a function of the type f

(
nx
)
= a + b∕nx + c∕n2

x
 shows that the 

values oscillate around an approximatively horizontal asymp-
tote for nx ≳ 80 , with a relative error (defined as the absolute 
value of the relative difference between the datum and the 
series’ last value) comprised between 0.2 and 2%. It is there-
fore possible to consider the results as grid independent for 
nx > 80 , and the value of nx = 80 is chosen for all the other 
runs reported in this work as the best compromise between 
accuracy and numerical expense.

(a) Averaged vortex x position (b) Averaged vortex y position

(c) Relative error on averaged vortex x position (d) Relative error on averaged vortex y position

Fig. 6  Averaged vortex position and relative error, 2.5% TS sludge, 50mm bubble size. Average performed for t ≥ 200 s
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4.3  Uniformity Index

In [20, 23], the uniformity index ( UI ), as introduced in [9], 
was found to be the best single-number quantitative criterion 
to assess mixing. Given a numerical macroscopic scalar field 

(“tracer”) � evolving according to an advection–diffusion 
equation with zero diffusivity:

(37)�t� + (u ⋅ �)� = 0,

(a) Tracer at t = 0 s, nx = 80 (b) Tracer at t = 10 s, nx = 80

(c) Tracer at t = 300 s, nx = 80 (d) Tracer at t = 600 s, nx = 80

(e) Uniformity index over time, nx = 80 (f) Uniformity index for different nx

Fig. 7  “Sparse” results, 2.5% TS sludge, 50mm bubble size
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Fig. 8  “Ball” results, 2.5% TS 
sludge, 50mm bubble size

(a) Tracer at t = 0 s, nx = 80 (b) Tracer at t = 10 s, nx = 80

(c) Tracer at t = 300 s, nx = 80 (d) Tracer at t = 600 s, nx = 80

(e) Uniformity index over time, nx = 80 (f) Uniformity index for different nx

(g) Relative error on the uniformity index for different nx
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(a) Flow patterns and vortex position, 20 Lagrangian
subcycles

(b) Flow patterns and vortex position, 400 Lagrangian
subcycles

(c) Viscosity patterns, 20 Lagrangian subcycles (d) Viscosity patterns, 400 Lagrangian subcycles

(e) Tracer, “Ball” results, 20 Lagrangian subcycles (f) Tracer, “Ball” results, 400 Lagrangian subcycles

Fig. 9  Flow patterns, vortex position, viscosity patterns and tracer for different numbers of Lagrangian subcycles at t = 3600 s . 2.5% TS sludge, 
n
x
= 80 , 50mm bubble diameter
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the uniformity index is defined in a cubic lattice as:

with ⟨⋅⟩ being the average over the lattice sites. As a conse-
quence of how it is defined, the value of UI varies between 
0 for perfect mixing to 1 for complete inhomogeneity. The 
tracer � is solved through an explicit Finite-Volume method 
as in [62]. The first-order upwind scheme for the advection 
term is preferred over the central second-order for the sake 
of numerical stability. No negative-diffusivity correction is 
set [62].

Figure 7 shows the evolution of the tracer � over time 
up to t = 600 s, when � being initialised to 0 almost 
everywhere, and to 1 in single cells evenly distributed 

(38)UI ∶=
1

2 ⟨�⟩ ⟨�� − ⟨�⟩ �⟩ ,

throughout the computational domain (Fig. 7a). This initial 
condition is labelled as “Sparse”. After 10 s from the start 
of the simulation (Fig. 7b), the positions of the pockets 
with non-zero � remain unaltered, showing that the flow 
patterns have not yet developed enough to displace them 
away from their original positions. However, numerical 
diffusion is evident, and no improvement is observed when 
negative anti-diffusion is set—this is the reason why anti-
diffusion is not set in the work reported here. As a result, 
despite the evolution towards homogenisation (Fig. 7c, d) 
and decrease of the uniformity index (Fig. 7e), the latter 
displays an evident grid dependence with its value at given 
timesteps depends on grid size (Fig. 7f), as numerical dif-
fusion depends on �x [62].

In Fig. 8, another initial condition for the scalar tracer 
� is proposed, under the name of “Ball”. � is initialised 

(a) Vortex x position, t = 3600 s (b) Vortex y position, t = 3600 s

(c) Uniformity index, “Ball” results (d) Uniformity index, “Sparse” results

Fig. 10  Dependence on number of Lagrangian subcycles, n
x
= 80 , 2.5% TS sludge, 50mm bubble size
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(a) Flow patterns and vortex position, 15mm bubble
diameter

(b) Flow patterns and vortex position, 50mm bubble
diameter

(c) Viscosity patterns, 20mm bubble diameter (d) Viscosity patterns, 50mm bubble diameter

(e) Tracer at t = 840 s, “Sparse” results, 20mm bubble
diameter

(f) Tracer at t = 840 s, “Sparse” results, 50mm bubble
diameter

Fig. 11  Flow patterns, vortex position, viscosity patterns and tracer for different bubble sizes at t = 840 s . 2.5% TS sludge, n
x
= 80 , 100 Lagran-

gian subcycles
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to 0 everywhere and to 1 in a sphere sideways (Fig. 8a), 
around the location of the inlet [17, 23]. At the start of the 
run, the bulk of non-zero concentration field appears to be 
advected downwards by the flow patterns with marginal dif-
fusion phenomena (Fig. 8b), until the tracer finally starts 
to be spread across the computational domain, after being 
brought in contact with the rising bubble column (Fig. 8c, 
d). Only at that point does the uniformity index start to fall 
significantly (Fig. 8e). This description is in agreement with 
[23], where new sludge just injected into the system finds 
itself in a position analogous to the scalar tracer described 
here and in the cited article, and initially undertakes only a 
poor level of mixing.

The observation of negligible diffusion phenomena 
(Fig. 8b) is corroborated by the analysis of the behaviour 
of the uniformity index for different values of nx (Fig. 8f) 

(a) Vortex x position, t = 840 s (b) Vortex y position, t = 840 s

(c) Uniformity index

Fig. 12  Dependence on bubble size. “Sparse” results, n
x
= 80 , 2.5% TS sludge

Fig. 13  Strong scaling, 2–12 nodes, each with 40 CPUs
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fitted against a function of the type 
∑

n n
−n
x

 , 0 ≤ n ≤ 4 , and 
the corresponding relative error (Fig. 8g). Despite oscilla-
tions, a clear horizontal trend is observed at all the time 
snapshots for nx ≥ 80 , in agreement with the conclusions of 
Sect. 4.2. Above that threshold, the uniformity index appears 
to converge to approximately second order, and its relative 
error falls below 5%. This observation: (i) indicates that 
the “Ball” configuration is less affected by numerical dif-
fusivity than the “Sparse”, and is therefore the most suitable 
to investigate the model’s behaviour under variation of its 
parameters; and (ii) further confirms mesh independence for 
nx ≥ 80 wherever the initial conditions allow one to ignore 
numerical diffusivity.

4.4  Lagrangian subcycles

Figure 9 reports qualitative snapshots, taken at 3600 s , of 
flow patterns, viscosity and scalar tracer field � , for two 
different numbers of Lagrangian subcycles (viz., 20 and 
400). No qualitative difference between the results of the 
different numbers of Lagrangian timesteps can be identi-
fied. Further, in Fig. 10, vortex position and the value of 
the uniformity index at different times are reported as a 
function of the number of Lagrangian subcycles, for both 
the “Sparse” and “Ball” initial conditions. A best fit of 
the form UI =

∑
i ais

−n , 0 ≤ i ≤ 2 , is reported. Apart from 
local oscillations attributable to noise, the relevant param-
eters are observed to be independent from the number of 
Lagrangian subcycles, within a relative error of ∼ 10−2.

4.5  Bubble size

Figure 11 reports qualitative snapshots, taken at 840 s , of 
flow patterns, viscosity and scalar tracer field � , for two 
different bubble sizes (viz., 15 and 50 mm ). Flow patterns 
snapshots (Fig. 11a, b) display qualitatively more intense 
flow patterns in simulations with smaller bubble size. The 
latter also present a more prominent presence of small-scale 
structures, indicating a higher level of turbulence. Con-
versely, viscosity flow patterns (Fig. 11c, d) and final tracer 
� distribution (Fig. 11e, f) are not found to be affected by 
the choice of bubble size.

From these observations, it can be argued that smaller 
bubbles manage to mix the system faster thanks to more 
intense flow patterns and turbulence intensity, whilst the 
final level of mixing remains unaffected. This picture is con-
firmed by the quantitative picture (Fig. 12). The vortex posi-
tions (Fig. 12a, b) do not provide relevant information due 
to the large uncertainty bars. However, the uniformity index 
(Fig. 12c), for early timesteps (140 s) clearly shows that 
smaller bubble sizes produce lower UI values, with a dif-
ference of UI value between 50 and 15 mm bubble sizes of 
0.083, corresponding to around 18% of 15 mm bubble size’s 

UI value. This difference decreases for further timesteps, 
with the relative error at the final timestep being below 10−2.

4.6  Scaling‑up

A strong scaling-up test was performed (Fig. 13) on up 
to 12 Intel Xeon Gold Skylake cores, each containing 40 
CPU cores. The simulations were run selecting nx = 320 
(corresponding to over 32,113,000 cells), 50 mm bubble 
size, for 60 s simulated time. The scale-up clearly shows an 
increasing trend throughout the whole range of number of 
cores, with a loss of efficiency of less than 25% at the highest 
number of cores. Such loss of efficiency is likely due to the 
non-scalable inter-core communication taking place at the 
streaming phase; and to the Lagrangian particles. Indeed, 
within OpenLB, a Lagrangian particle is simulated by the 
CPU core responsible for the subdomain where the given 
particle is located; this means that non-scalable operations 
occur when a particle crosses a subdomain division as its 
data are communicated from the target to the destination 
CPU; and asymmetric load balancing occurs when the par-
ticles are not distributed uniformly throughout the compu-
tational domain (which is the case for the simulation work 
described within this article).

5  Discussion

The results reported in Sect. 4.2 show that the flow pat-
terns are grid independent for nx ≳ 80 . However, the noise 
manifesting itself as oscillations in Fig. 6 makes the deter-
mination of the order of convergence challenging. Similar 
considerations hold for the uniformity index: once the grid-
dependent effect of numerical diffusion is singled out, UI 
displays grid independence for a similar value of nx ≳ 80 , 
with analogue considerations about noise (Fig. 8f).

The results reported in Sect. 4.4 indicate that the simula-
tions are independent of the number of Lagrangian subcy-
cles. As such, the number of Lagrangian subcycles remains 
a non-physical tuning parameter, to be tuned depending on 
the particular application and the specific bubble size, to 
strike the best balance between numerical expense (i.e., the 
numerical expense is proportional to the number of Lagran-
gian subcycles), and stability (i.e., the Lagrangian solver 
becomes unstable if the number of Lagrangian timesteps 
falls below a threshold dependent on specific application 
and bubble size).

In Sect. 4.5, bubble size is shown to affect flow the pat-
terns and the transient evolution of the uniformity index, but 
not the final value of UI—or in other words, the prediction 
of steady-state mixing quality. This is in agreement with the 
observations on the same geometry, applying a second-order 
Finite-Volume Reynolds-Averaged-Navier–Stokes model 
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with Reynolds-stress turbulence model and the same power-
law rheology model, on OpenFOAM 2.3.0 (www.openfoam.
org/version/2-3-0) [17, 20, 23].

Overall, the Lattice-Boltzmann predictions of flow pat-
terns, uniformity index and degree of mixing produced by 
the numerical work presented here are in agreement with 
observations from the above-mentioned Finite-Volume CFD 
work [17, 20, 23]. However, the Lattice-Boltzmann model 
presented here offers two critical advantages over the previ-
ous Finite-Volume, specifically:

 (i) Numerical efficiency. Lattice-Boltzmann runs with 
nx = 80 need around 10,500 CPUs to run over grids 
of 536,171 cells for 600–3600 s simulated time, for 
a specific resource usage of 5.4–33⋅10−6 CPUs per s 
per cell. In contrast, the Finite-Volume analogue took 
around 13,500,000 CPUs for running over a grid of 
394,400 cells for 300 s simulated time on 36 Intel 
Xeon E5-2690 v3 Haswell (2.6 GHz) cores, for a 
specific resource usage of 0.11 CPUs per s per cell. 
This makes the Lattice-Boltzmann model over 1000 
times faster than the Finite-Volume model previously 
used in the literature to solve this problem. Similarly, 
the LES simulations performed in [24] for a full-
scale mechanically-mixed digester were conducted 
on 188,289 cells for around 60 s simulated time and 
took 1,205,200 CPUs, for a specific resource usage of 
0.11 CPUs per s per cell—the same value as [17, 20, 
23]. Although the present Lattice-Boltzmann work 
and the previous Finite-Volume are conducted on 
different machines, the large performance difference 
between this and the previous models, as well as the 
similarity in performance between [17, 20, 23] and 
[24], allow us to confidently rule out any detrimental 
effect attributable to differences in hardware.

 (ii) Resolution. Lattice-Boltzmann’s best balance 
between numerical efficiency and precision was 
found to be nx = 80 , for 536,171 cells (Sect. 4.2). 
By contrast, the same balance returned 98,420 cells 
for a �∕6 wedge of the computational domain in the 
Finite-Volume model. This shows that the Lattice-
Boltzmann model comfortably allows much finer 
grids than the Finite-Volume, thereby producing 
much more detailed predictions. In fact, the Lattice-
Boltzmann model allowed a level of detail of the 
flow patterns, especially concerning smaller-scale 
turbulent patterns (Fig. 11a, b), which would be 
unachievable in the Finite-Volume results reported in 
[17, 23] because of the above-mentioned difference 
in numerical efficiency and Finite-Volume’s scaling-
up problems [22].

 (iii) Scaleup. Scaling-up performance is discussed in 
Sect.  4.6. Despite the limiting factors discussed 

therein, the strong-scaling plot (Fig.  13) clearly 
shows an increasing trend, without reaching a plateau 
at 480 cores (it was not possible to perform simula-
tions with more cores due to hardware limitations). 
This constitutes a notable improvement over previous 
Finite-Volume models, as the plateau was previously 
reached at 36 cores [17, 23].

Considering the usage of cache memory. Lattice-
Boltzmann methods are memory-intensive: the model 
presented here uses 32 floats per lattice cell, much more 
than the previous Finite-Volume (which uses 5 floats per 
cell). This high memory usage does not usually pose a 
limitation to numerical performance as access to cache 
memory is fast—and indeed, it did not pose a limitation 
to the performance of the runs descripted here. However, 
care should be taken in checking that the available cache 
memory can meet a run’s memory requirement, before per-
forming the run itself. OpenLB maps the computational 
domain into a lattice, or SuperLattice object, which 
is in turn divided into sub-lattices, or BlockLattice 
objects. Each BlockLattice is loaded onto the cache 
memory of a single CPU [51]. As such, increasing the 
number of cores usually resolves possible problems of 
shortage of memory. Considering the effectiveness of this 
strategy in preventing memory over-usage, and consider-
ing that memory usage does not constitute a bottleneck to 
numerical performance, we did not perform a comparison 
between memory usage of the model presented here, and 
its Finite-Volume predecessors [17, 23].

6  Conclusions

A Lattice-Boltzmann LES model of a full-scale, biogas-
mixed anaerobic digester has been presented for the first 
time. Scaleup, convergence and the effects of bubble size 
and number of Lagrangian subcycles on the model predic-
tions concerning the digester’s hydrodynamics have been 
assessed.

A comparison between Lattice-Boltzmann and Finite-
Volume on an analogue applications shows that the for-
mer is over 1,000 times more computationally efficient, 
allows resolution of flow patterns in much more detail, 
and allow a feasible, resource-effective usage of LES in 
anaerobic digestion modelling for the first time. Thus, the 
work presented here is a comparison between two specific 
models being used to solve a problem of significant inter-
est and relevance to the wastewater industry. It should 
not be considered as a benchmark in a strict sense—such 
benchmark work would require tests on a wide range of 
models being conducted on the same hardware running 
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under the same conditions, and is out of the scope of this 
research. Notwithstanding this limitation, it can be con-
cluded that the Lattice-Boltzmann is a more convenient 
modelling choice for full-scale gas mixing in anaerobic 
digestion, than the most common second-order Finite-
Volume approaches.

Industries and consultancies will be able to use the 
results described here as guidance to improve full-scale 
digesters’ mixing efficiency via UI maximization. In this 
respect, the code used here will be available in a future 
official release of the OpenLB package.
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