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Abstract
The phase-field method has been proven as a robust and computationally efficient approach to model the propagation of

fractures in brittle solids. However, the performance of this technique in the context of finite element method can be

questioned due to restrictions in the mesh structure and the element size to capture the fracture as a diffusive damaged

region. This study is dedicated to developing a methodology for finding an appropriate length-scale parameter to model the

fracturing process in a way that matches the physical character of failure in materials. The fracture process zone is chosen

as the key feature in this study to propose relationships for estimating the length-scale parameter based on the tensile

strength and cracking properties, and the robustness of the method is verified using experimental data. To employ the

phase-field method in modelling large-scale domains and complex geometries, a novel mesh refinement strategy is

developed to increase the computational efficiency based on predicting a corrected tensile strength limit depending on the

element size to capture the crack-tip effectively. The proposed mesh refinement strategy reduces the computational effort

significantly. Reliability and robustness of the developed relationships are successfully examined by simulating benchmark

cases and comparisons with physically measured data.
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1 Introduction

Modelling fracture propagation and nucleation have been

of interest among the community of the computational

mechanics for the past few decades. Several methods have

been developed in the context of the finite element method

(FEM) to trace the fracture pathways in solids. Some of

these methods such as adaptive remeshing [1] and the

cohesive zone element method [2] are highly dependent on

the mesh structure. Therefore, size and type of the elements

play important roles in the accuracy and reliability of the

crack-path predictions [3]. The well-known extended finite

element method (XFEM) can be categorised separately as

it models the fractures by adding the enrichment functions

to the elements [4]. Using XFEM, the fracture propagation

can be modelled based on the principles of the Linear

Elastic Fracture Mechanics (LEFM) and does not require

mesh refinement as long as the element size is satisfactory

for a reliable calculation of the field variables. The other

approach in the context of FEM is the phase-field method,

an energy-based approach for modelling fractures which is

conceptually aligned with Griffith’s hypothesis [5].

Along with the concept of the phase-field method, var-

ious formulations have been proposed to calculate how the

contribution of the mobilised strain energy is considered

for breaking down the solid [6]. The calculation of crack

driving force can be strain-dependent [7–9] or stress-de-

pendent [10, 11] functionals, depending on the physics of

rupture in the material. A formulation was introduced by

Miehe et al. [7] who hypothesised that the crack only forms

through the elements under tension, so the tensile part of

the strain energy is only considered via spectral
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decomposition of the strain tensor. Amor et al. [8] for-

mulated the crack driving force based on separating the

deviatoric and volumetric parts of the strain energy. Later,

stress-based formulations were introduced to the commu-

nity based on various failure criteria. The choice of stress-

based formulations restricts the degradation to only the

regions where the maximum principal stresses exceed the

tensile strength of the material [10], requiring considera-

tions with regard to the construction of an appropriate

computational mesh.

In the strain-based approach of Miehe et al. in 2010 [7],

changing the value of the length-scale parameter (l0) was

found to have a significant impact on the cracking response.

The dependency of the phase-field method on the user-de-

fined value of l0 was later resolved by Miehe et al. in 2015

[10] calculating the critical energy release rate as a function

of the length-scale parameter and tensile strength of the

material. This proposed relationship was not verified against

experimental data. It has been proved mathematically that

the response of the phase-field fracture model becomes

identical to that of the discrete fracture when l0 ! 0 [12].

From a physical perspective, Bažant correlated the length-

scale parameter to the maximum aggregate size in concrete

material by comparing the failure response of damage

models to the relevant experimental data [13]. In another

study [14], l0 has been recommended to be 2–3 times larger

than the microstructural cell size in cellular materials. Cal-

ibrating input parameters, especially length-scale parameter,

with micro- and meso-scale characteristics of cracking such

as the fracture process zone (FPZ) and tensile failure in

materials is one of the major contributions of this study.

In the phase-field fracture modelling, the finite element

(FE) mesh must be fine enough to capture the width of the

diffusive fracture effectively [15]. It has been recommended

by Miehe et al. [7] that the maximum size of quadrilateral

elements must be limited to l0=2 for the fully damaged region.

Choice of the element size has a significant effect on the error

and convergence rate of the results of the phase-field fracture

model [16]. In relatively large geometries and heterogeneous

media, using a fine-mesh structure makes the computations

too expensive, so including mesh refinement can be a feasible

solution to keep the computational effort low while main-

taining the reliability of the simulations [17]. In modelling the

phase-field fracture in heterogeneous and non-isotropic

materials, having a robust mesh refinement unit becomes vital

to capture the possible tortuosity in the crack-path and

reducing the uncertainties in predicting crack-paths [18–21].

Several studies have been conducted on developing adaptive

mesh refinement techniques which are mainly concerned with

the implementation and increasing the efficiency of the

computations [22–24]. The magnitude of the load increments

can also affect the accuracy and stability of the FE analysis

during the fracture propagation because of the stiffness

degradation due to cracking [25]. In subsequent load-steps,

there exists a critical stage when the tensile stress in the ele-

ment exceeds the strength of the material, which must be

predicted by the computational mesh in fracture modelling

tools. Previous studies on the phase-field fracture models

coupled with the mesh refinement technique have not

explicitly addressed the details of this critical stage, so we try

to introduce controlling limits in our proposed mesh refine-

ment strategy as well as the recommendations regarding its

implementation to reliably predict the stage of tensile failure

and the fracture propagation response independent from the

mesh characteristics, specifically the element size.

In this paper, we aim to improve the reliability and per-

formance of the phase-field fracture modelling, respectively,

by introducing: (i) a set of relationships based on the prin-

ciples of LEFM, allowing one to select the model input

parameters according to the physical nature of failure in the

material, and (ii) a mesh refinement strategy capable of

capturing the FPZ at the right stage of the deformation

history (when tensile failure occurs) to model the phase-field

fracture with the least computational effort. For this purpose,

we use two strain- and stress-based formulations introduced

by Miehe et al. [7, 10] for calculating the crack driving force

so that our recommendations cover different formulations in

calculating the contribution of the strain energy in the

damage evolution model. The numerical model is coupled

with a predictive h-refinement algorithm, which can track

the crack-tip effectively by estimating the extent of the FPZ

throughout the mesh. The mesh refinement strategy pro-

posed in this work is verified through a comparative

assessment between the results taken from the refined mesh

and a well-built fine-mesh structure for the simulations of

mode-I fracture propagation. As for the first purpose of this

work, we develop practical relationships for determining the

inputs of the phase-field fracture model based on the LEFM.

To do so, we relate the length-scale parameter to the

material properties, including the critical tensile strength,

fracture toughness, and the size of the FPZ. The proposed

relationships are tested with regard to a set of experimental

data to confirm their applicability in the phase-field fracture

model. Our results demonstrate that using the stress-based

formulation of Miehe et al. [10] for defining the crack

driving force requires the use of a corrected value for the

fracture energy and length-scale parameter based on the

critical tensile strength and the size of the FPZ.

2 Phase-field fracture modelling

In this section, mathematical formulations for modelling

brittle diffusive fractures under quasi-static loading con-

dition are given in both linear and geometrically nonlinear

FE analyses.
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2.1 Energy minimisation approach

The ratio of the change of internal energy dP to the change

of newly formed surface area dA (due to fracture propa-

gation) is known as critical energy release rate Gc ¼
dP=dA and is recognised as a material property. Francfort

and Marigo [5] proposed a novel approach for tracking the

fracture propagation based on the variational theory by

minimising the total energy functional (P), consisting of

bulk strain energy (Wbulk) and the surface energy

(Wcrack ¼
R

C
GcdA). By introducing a phase-field parameter

(d) to represent the fracture boundary (C) and the surface

energy density function c d;rdð Þ, the internal potential

energy functional can be formulated over the volume (X)

as [26]

P ¼
Z

X

WbulkdV þ Gc

Z

X

l0

2
rdj j2þ 1

2l0
1 � dð Þ2

� �

dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wcrack

ð1Þ

where the critical energy release rate Gc ¼ dP=dA is a

material property. Variation of the phase-field (damage)

parameter is governed by a Dirac-type function as

d x0ð Þ ¼ 1 � e� x0j j=l0 , where values d ¼ 0 and d ¼ 1 repre-

sent fully damaged and intact materials, respectively, and

l0 is so-called the length-scale parameter which governs

how wide the diffusive fracture is considered. Equation (1)

is re-written by affecting a degradation function g dð Þ ¼
d2 þ ke on the tensile part of the bulk strain energy [7] as

P ¼
Z

X

d2 þ ke
� �

Wþ
bulk

� �
dV þ

Z

X

W�
bulk

� �
dV

þ Gc

Z

X

l0

2
rdj j2þ 1

2l0
1 � dð Þ2

� �

dV ð2Þ

where ke � 1 is a regularisation parameter to maintain

numerical stability [7], and W�
bulk will be defined in the

following section based on the spectral decomposition of

strain and stress tensors.

2.2 Geometrically nonlinear framework

In the context of kinematics of large deformations, an

updated Lagrangian FE framework is chosen to derive the

weak forms from the internal energy functional of a frac-

turing body. The undeformed body in Euclidean space is

defined in the reference (undeformed) configuration X0 and

can undergo deformations in subsequent load steps. The

relative position of two adjacent points in the current

configuration (Xt) can be mapped over the reference con-

figuration (X0) using a mapping function as xi ¼ / Xi; tð Þ,
see Fig. 1. The Green–Lagrange strains are defined as

E ¼ 0:5 C � Ið Þ, where F X; tð Þ ¼ rX /ð Þ is the deforma-

tion gradient and C ¼ FT � F is the right Cauchy–Green

deformation tensor [27]. For the system to remain in

equilibrium, the variation of P, assuming a fixed state of

damage (d), with respect to arbitrary displacements f must

vanish as

dP C; d
� �

f½ � ¼
Z

X0

g d
� �

�
oWþ

bulk C; d
� �

oC
�DC f½ �dV

þ
Z

X0

oW�
bulk C; d
� �

oC
�DC f½ �dV

� dWext ¼
Z

X0

g d
� �

S½ �þþ S½ ��
� �

�DE f½ �dV � dWext ¼ 0

ð3Þ

where Wbulk C; d
� �

¼ g d
� �

Wþ
bulk þW�

bulk is the degraded

bulk energy, and S½ ��¼ 2oW�
bulk Cð Þ=oC is the tensile and

compressive parts of the second Piola–Kirchhoff stress

defined in the reference configuration [27]. The bulk strain

energy contributions W�
bulk Cð Þ for a compressible Neo–

Hookean material are defined as

W�
bulk Cð Þ ¼ l lnS�

1

� �2þ lnS�
2

� �2þ lnS�
3

� �2
h i

þ k
2

ln Jþð Þ2

ð4Þ

where l and k are Lame parameters. Tensile and com-

pressive stretches S�
i are formulated as

Sþ
i ¼ Si � 1þ þ 1

S�
i ¼ Si � 1� þ 1

	

ð5Þ

where S2
i are the eigenvalues of the spectral decomposition

of tensor C [27]. Cauchy stress tensors in the current

configuration Xt can be reached via the mapping function

r½ �� ¼ J�1F � S½ �� � FT, where J ¼ Fj j is the Jacobian of

Fig. 1 Kinematics of large deformation and the definition of mapping

function (/) in two-dimensional Euclidean space
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the deformation tensor [27]. In an updated Lagrangian FE

framework, the linearised form of Eq. (3) in the direction

of du is constructed over X0, while unþ1 ¼ un þ du.
Z

X0

rx fð Þ� C un; d
� �� �

�rx duð ÞdV

þ
Z

X0

g d
� �

r½ �þn þ r½ ��n
� �

� rT
x duð Þ � rx fð Þ

� �
JndV

�
Z

X0

b � f � Jn rx � duð ÞdV �
Z

oX0r

f � dTdA ¼ 0

ð6Þ

where rx is taken with respect to the moving spatial

coordinates xi at step tn, b is the body forces, and T are the

traction forces on the Neumann boundaries oX0r. In the

nonlinear analysis, the elasticity tensor C un; d
� �

is updated

iteratively to account for the variation of stiffness due to

geometrical deformations, further details are provided in

Appendix B.

2.3 Linear elastic framework

In the linear analysis, the evolution of stiffness due to

geometrical deformations is not of interest since the com-

putational domain remains unchanged. Assuming a fixed

state of damage (d), the principle of virtual work in a linear

elastic FE framework is reached by finding a stationary

position of dP ¼ 0 with respect to arbitrary displacements

f.

dP u; d
� �

f½ � ¼
Z

X0

g d
� �

� oW
þ
bulk eð Þ
oe

� de f½ �dV

þ
Z

X0

oW�
bulk eð Þ
oe

� de f½ �dV � dWext

¼
Z

X0

g d
� �

r½ �þþ r½ ��
� �

� de f½ �dV � dWext ¼ 0

ð7Þ

where e ¼ 0:5 rXuþrT
Xu

� �
is the infinitesimal strain

tensor and the energy contributions are defined below.

W�
bulk eð Þ ¼ k

2
tr e½ �2�
D E

þ ltr e2

 �

� ð8Þ

The principle of virtual work for the linear elastic setting

is constructed as
Z

X0

rX fð Þ� g d
� �

½C� �rX duð ÞdV �
Z

X0

f � bdV �
Z

oX0r

f

� TdA

¼ 0

ð9Þ

where C is the unchanged fourth-order elasticity tensor for

linear elastic material.

2.4 Damage evolution model

The internal potential energy of the system (P) is min-

imised with respect to the phase-field parameter dð Þ to

obtain the weak form of the damage evolution model.

Hiring a staggered approach for the energy minimisation, a

fixed state of the displacements (u) is considered, and a

stationary position of dP ¼ 0 with respect to arbitrary

damage x is searched using the weak form of the damage

evolution model as

dP u; dð Þ x½ � ¼
Z

X0

2
H

Gc
dð Þ x½ �dV þ l0

Z

X0

rXx � rXdð ÞdV

�
Z

X0

1 � dð Þ
l0

x½ �dV

� l0

Z

oX0

x½ �rXd � NdA ¼ 0

ð10Þ

where Neumann boundary conditions rXd � N ¼ 0 are

applied on all the boundaries oX0, and H is a history field

defined in the following to ensure the irreversibility of

fracture [7].

H ¼ max
T 2 0;t½ �

Wþ
bulk u; Tð Þ ð11Þ

In this study, we consider two formulations, namely the

strain-based H1 and the stress-based H2 criteria, to form the

crack driving force (H=Gc) to be used in the crack evolu-

tion weak form (Eq. 10). The H1 criterion, proposed by

Miehe et al. in 2010 [7], is defined for both cases of non-

linear and linear elasticity as

HNonlinear
1 ¼ max

T 2 0;t½ �
l
X3

i¼1

lnSþ
i Tð Þ

� �2þ k
2

ln J Tð Þþ
� �2

 !

ð12Þ

Hlinear
1 ¼ max

T 2 0;t½ �

k
2

tr e Tð Þ½ �2þþltre2 Tð Þþ
� 


ð13Þ

The second criterion H2 is the stress-based one, pro-

posed by Miehe et al. in 2015 [10], which is defined in the

following. Cracking occurs if and only if the condition
P

ri
2
þ [ r2

c is satisfied for the element, where rc is the

critical tensile stress of the material.

H2 ¼ max
T 2 0;t½ �

X3

i¼1

ri Tð Þ2
þ

r2
c

� 1þ � r2
c

2E0

 !

ð14Þ
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In the above equation, ri Tð Þ are the principal Cauchy

stresses in time (obtained via spectral decomposition of the

undegraded Cauchy stress tensor r), and E0 ¼
l0 2l0 þ 3k0ð Þ= k0 þ l0ð Þ is the effective young modulus in

plane-strain condition. Note that l0 ¼ l� k ln Jð Þ and k0 ¼
k in the case of finite elasticity, while k0 ¼ k and l0 ¼ l in

the linear elasticity case.

2.5 Numerical algorithm

The FE formulations presented previously have been

implemented in MATLAB for modelling phase-field frac-

ture propagation. In this study, the PDE-toolbox in

MATLAB has been used for mesh generation and refine-

ment [27]; the built-in function ‘‘generateMesh’’ is used to

construct two-dimensional FE mesh structures using first-

order 3-noded elements, and ‘‘refinemesh’’ is used to per-

form h-refinement on the coarse elements, see Sect. 4 for

further details on the refinement strategy. Matrix forms of

the damage evolution model and the mechanical equilib-

rium in both linear and geometrically nonlinear FE anal-

yses are implemented in MATLAB, and the global system

of equations is solved using the built-in function ‘‘ml-

divide’’. Employing a staggered approach [7], displace-

ment and damage fields are solved in an iterative manner,

where i is the iteration counter (for convergence in the

damage field d
ið Þ

nþ1) in each load-step: (nþ 1). The problem

is solved for displacements and damage (u; d) in the fol-

lowing algorithm:

1. Set the initial values for damage and displacements

from the converged results of the previous load-step:

(n), i.e. u
i¼0ð Þ

nþ1 ¼ un and d
i¼0ð Þ

nþ1 ¼ dn.

2. Applying Dirichlet and Neumann boundary conditions

and forming the vector of external forces.

3. Starting the iterative solver: i ¼ iþ 1

4. Set d
ið Þ

nþ1 ¼ d
i�1ð Þ

nþ1 fixed and solve for u
ið Þ

nþ1 via satisfying

weak forms of the principle of virtual work: Eqs. (6) or

(9), depending on having nonlinear or linear analyses,

respectively. Note that an internal iterative approach in

solving for displacements u
ið Þ

nþ1 is required for the case

of nonlinear FE analysis [29].

5. Set u
ið Þ

nþ1 fixed and solve for d
ið Þ

nþ1 via satisfying the

weak form of damage evolution model, Eq. (10).

6. Check whether the mesh refinement is required (details

are provided in Sect. 4). For each element in every

iteration (i), if rp1 [ req
c :

a. Yes: perform h-refinement and go to 3.

b. No: go to 7.

7. Check the convergence in the damage field in two

subsequent iterations using the absolute convergence

criterion [29]. If d
ið Þ

nþ1 � d
i�1ð Þ

nþ1

�
�
�

�
�
�\�d:

a. Yes: exit.

b. No: go to 3.

In all the simulations performed in this paper, the

acceptable tolerance in the damage field, denoted as ed, has

been chosen as ed = 10–7. Additionally, to prevent the risk

of an endless loop when using an extremely small tolerance

value, a maximum limit for the number of iterations (i) is

set. The mesh refinement is performed for the critical

coarse element (identified as explained in Sect. 4) by

adding an extra node (extra degrees of freedom) on the

longest boundary of the targeted element. Nodal values of

damage and displacements for the newly added degrees of

freedom are calculated using a linear interpolation of the

nodal values between which the added node is placed, (h-

refinement approach) [29]. The mesh refinement is imple-

mented in each iteration, and the mechanical equilibrium is

satisfied after each cycle of refinement, ensuring the sta-

bility of the new mesh structure.

3 Setting up the input parameters
in the phase-field method

Calculation of strain- and stress-based history fields (H1

and H2; respectively) depends on the elemental quantities

(i.e. strain and stress values over the Gauss integration

points) and can be affected by the size and order of the

element. In this section, a formulation will be proposed that

relates the length-scale parameter (l0) to the material

properties and the micro-mechanical behaviour of the

cracking in brittle materials. The length-scale parameter

(l0) is correlated with the FPZ such that the boundary of

which can be captured by the diffusive phase-field fracture

over the elements. We rely on the principles of LEFM that

define the maximum and minimum principal stresses

around the crack-tip in plane-strain condition, respectively,

as [30]

rp1 ¼ KIffiffiffiffiffiffiffiffi
2pr

p cos
h
2

1 þ sin
h
2

� 


ð15Þ

rp2 ¼ KIffiffiffiffiffiffiffiffi
2pr

p cos
h
2

1 � sin
h
2

� 


ð16Þ

where KI is the stress intensity factor for mode-I fracture,

and (r; h) are polar coordinates, origin of which is set on

the crack-tip. As r ! 0, the principal stresses become

singular, and the material enters a plastic state around the
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crack-tip, so-called the FPZ, the boundaries of which can

be formulated using Von Mises yield criterion.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp1 � rp2

� �2þ rp3 � rp2

� �2þ rp3 � rp1

� �2
q

\rc 8r[ rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp1 � rp2

� �2þ rp3 � rp2

� �2þ rp3 � rp1

� �2
q

	 rc 8r
 rc

8
<

:

ð17Þ

The critical radius rc, defined below, separates the

plastic region inside the FPZ from the elastic stress regime

[30].

rc hð Þ ¼ K2
Ic

4pr2
c

3

2
sin2 hþ 1 � 2mð Þ2

1 þ cos hð Þ
� �

ð18Þ

In the above equation, KIc is the mode-I critical stress

intensity factor (fracture toughness) and Gc ¼ K2
Ic=E0 [30].

It can be understood from the above relationship that a

material with higher tensile strength implies a smaller size

for the FPZ, equally meaning the requirement for a smaller

value of l0 in modelling the phase-field fracture. In order to

visualise the dependency of rc hð Þ on rc, the boundary of

rc hð Þ associated with different values of rc is plotted in

polar coordinates in Fig. 2, assuming constant values of

E = 210 GPa, m = 0.3, and Gc = 2.7E-3 kN/mm. The

maximum value of the FPZ’s half-width is recognised by

rFPZ ¼ rc �p=2ð Þj j.
On the one hand, there must exist Gauss integration

points (equivalent to one element for the case of the first-

order 3-noded elements in this study) inside the imaginary

FPZ around the crack-tip to capture the maximum principal

stresses rp1 that are higher than the tensile strength of the

material (i.e. tensile failure). On the other hand, the max-

imum acceptable size for the crack-tip element must be

kept as hel ¼ l0=4 to ensure the independency of the

solution from the computational mesh. In Appendix A, we

have shown that setting the element size to hel ¼ l0=4

guarantees the independency of the solution from the mesh

while keeping the computational cost at an optimum level.

Therefore, we hypothesise that l0 can be chosen based on

the size of FPZ (rFPZ). To ensure capturing high stresses

(rp1 [ rc) in the FPZ, rc hð Þ ¼ l0=4 is substituted into

Eq. (18). The re-arranged form of Eq. (18) is written below

as a recommendation to calculate the length-scale param-

eter as

l0 ¼ GcE0 1:5 sin2 bþ 1 � 2mð Þ2
1 þ cos bð Þ

h i
= pr2

c

� �

ð19Þ

where b depends on the element shape (e.g. b = 60� for the

first-order 3-noded element) ensuring that the whole area of

the element fits inside the FPZ, see Fig. 2. Equation (19) is

recommended to be used in setting up the value of l0 in the

phase-field model when employing H2-criterion in calcu-

lating the crack driving force in the damage model. If the

length-scale parameter is decided to be chosen regardless

of the material properties, due to computational limitations,

a corrected value of the tensile strength (rPF
c ), that is cal-

culated using Eq. (20), must be implemented into Eq. (14)

for calculating H2 in the damage model to avoid errors in

the cracking response of the body.

rPF
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GcE0
pl0

1:5 sin2 bþ 1 � 2mð Þ2
1 þ cos bð Þ

h ir

ð20Þ

It is evident that rPF
c ¼ rc if the length-scale parameter

is selected using Eq. (19).

By re-arranging Eq. (20), we also recommend using the

following relationship to calculate the fracture energy GPF
c

based on the experimentally measured value of the tensile

strength rc, while using H2 criterion in the damage evo-

lution model.

GPF
c ¼ pr2

cl0

E0 1:5 sin2 bþ 1 � 2mð Þ2
1 þ cos bð Þ

h i ð21Þ

The above equation can be used in the phase-field model

if the length-scale parameter is chosen with regard to the

size of FPZ (i.e. l0 ¼ 4rFPZ). The FPZ’s half-width (rFPZ)

can be estimated using techniques such as the acoustic

emission (AE) tomography and laser holography [31].

The applicability of the proposed relationships,

Eqs. (19–21) are tested with regard to experimental data in

Sect. 5.2.
Fig. 2 Demonstration of the FPZ boundary for different values of the

critical tensile strength rc in polar coordinates (r; h)
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4 Mesh refinement strategy

The refinement strategy is built upon two obligations:

(i) tracking the FPZ to provide satisfactory element size

around the crack-tip, and (ii) minimising the computational

cost while maintaining the reliability.

4.1 Refinement due to the maximum principal
stresses in the FPZ

First, we consider the results achieved from the reference

element size hRef
el ¼ l0=4 as the reliable acceptable answer.

In Fig. 3a, it is seen that the maximum principal stress rp1

for the reference-size (hRef
el ) crack-tip element grows with

the increase of the crack-mouth opening displacement

(CMOD) and exceeds the tensile strength rc at a point that

is named ‘‘the critical stage’’. The rate of growth of rp1

decreases as the size of the crack-tip element increases, so

the maximum principal stress can be underestimated in the

elements with the size greater than hRef
el ¼ l0=4. Hence, we

assign a corrected value of the tensile strength limit to any

element whose size is larger than hRef
el . To calculate the

corrected tensile strength limit, we must find out to what

extent the element size hel would affect the stress rp1 in the

coarse-sized element. In Fig. 3a, the evolution of the

maximum principal stress taken from the simulations in

which the size of the crack-tip element is coarser than hRef
el

is plotted with respect to CMOD. The resulted values of the

maximum principal stress from coarse-size elements

equivalent to the actual tensile strength rc on the reference-

size element curve are found for multiple cases of hel in

Fig. 3a. The analyses are repeated for different values of l0,

and scattering the results of req
c =rc with respect to

dimensionless values hel=l0 results in the curve presented in

Fig. 3b. The formulation on the curve fitted to the results in

Fig. 3b gives us the relationship between cpredict
r ¼ req

c =rc
and hel=l0 as

cpredict
r ¼ e�4 hel=l0ð Þ þ 0:7e�0:35 hel=l0ð Þ; ð22Þ

allowing one to estimate the equivalent tensile strength

limit in the elements whose sizes are larger than hRef
el . Thus,

the mesh refinement takes place in those elements, in

which rp1 [ cpredict
r � rc.

4.2 Refinement due to the increase
of the surface energy

Accumulation of the elastic strain energy in the element

causes the surface energy to grow and reach the maximum

possible value Gc=2l0, which is equivalent to when damage

is d = 0. For the crack-tip element, the evolution of

c d;rdð Þ with respect to CMOD is plotted in Fig. 4 for both

criteria H1 and H2 for formulating the history field in the

damage evolution model. The evolution of c d;rdð Þ is

calculated incrementally in subsequent steps that can be

divided into two states, which we call sub-critical and

super-critical. In super-critical state, full degradation of the

element is potentially inevitable, and an acceptable size for

the element is mandatory to allow for the full degradation

of the element. The critical values of damage (dcritical) are

equal to 0.65 and 0.78 for H1 and H2 criteria, respectively,

according to Fig. 4. The mesh refinement must be

Fig. 3 a shows the stress history of the crack-tip element with respect to CMOD to find the equivalent tensile strength limit req
c for different

element sizes (red circles); b shows the function cpredict
r with respect to hel=l0
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performed to satisfy the condition hel 
 l0=4 for those

elements in which d\dcritical.

4.3 Reliability of the mesh refinement strategy

In Fig. 5a, the load–displacement responses of various

coarse mesh structures under refinement are compared to

that of the reference mesh structure with no refinement,

indicating an acceptable compatibility and the capability of

the mesh refinement strategy in generating response curves

close to the reference result. The evolution of damage,

surface energy density, and principal stresses for the crack-

tip element in various mesh structures with different initial

element sizes with respect to CMOD are plotted in Fig. 6.

The proposed refinement strategy can effectively match the

elemental responses of the refined mesh structures with that

of the reference fine-mesh (hRef
el ¼ l0=4). It is seen in

Fig. 6a that lowering the element size further than l0=4

would result in capturing higher stresses; however, the

point of failure (fully degradation) is of our interest for a

reliable prediction of the start of fracture propagation. This

critical point of failure is the same for the mesh structures

with element size lower than hRef
el ¼ l0=4. As mentioned in

the introduction, some refinement strategies suggest limits

only based on the increase of the surface energy c (e.g.

performing the refinement when c in an element exceeds a

certain limit [24]). The results of damage evolution and

load–displacement curves are shown in Fig. 7 for the case

where a c-limit is set for identifying the elements that

require refinement. Having c-limit only can result in

unnecessary remeshing in regions far away from the crack-

tip delaying the fracture nucleation, especially when the

initial coarse element is too larger than the targeted ele-

ment size. Comparing the results taken from the refinement

method proposed in this study (Figs. 5 and 6) to the case of

c-limit only (Fig. 7) confirms the reliability of our mesh

refinement strategy in simulating the fracture propagation

with no delay.

4.4 CPU runtime and performance
of the method

To demonstrate the computational efficiency of the pro-

posed mesh refinement algorithm, we present the infor-

mation on the CPU runtime for shear and tensile

benchmark examples in Fig. 8a (the relevant information

of the boundary value problems are presented in Appendix

A for brevity). The numerical model has been implemented

and run in MATLAB, and the CPU core used by the

machine is Intel i7-9800 3.00 GHz processor. The simu-

lations are once done for the ideal fine-mesh structures with

no refinement involved (see Fig. 8c, e), and the same

problem is solved for coarse mesh structures undergoing

multiple cycles of mesh refinement (see Figs. 8d, f)

assuming different sizes for the initial element (hinitial
el ).

Figure 8a shows that applying the proposed mesh refine-

ment strategy reduces the CPU runtime by 65–85%

depending on the initial element size used in the domain.

As a general recommendation, the initial element size in

the range 3l0\hinitial
el \9l0 could be taken as an optimum

choice because the final number of degrees of freedom do

not change significantly by choosing element size larger

than 4l0, although the number of calls for the refinement

unit would increase by choosing the initial element size

larger than 9l0 for the modelled benchmark examples, see

Fig. 8b.

5 Numerical simulations and comparisons

Several illustrative examples are presented to test the

validity and capabilities of the presented numerical

framework for modelling fractures. The presented

methodology for setting up the input parameters is verified

by comparing the ensuing numerical results to the experi-

mental data of the fracture toughness.

5.1 Symmetric and asymmetric bending tests

We first setup the symmetric bending test to compare the

load–displacement response curves resulted from the non-

linear FE analysis to the results provided by Miehe et al.

[7] and Ambati et al. [32]. The geometry, as shown in

Fig. 9, is built using the same dimensions used in [7], and

Fig. 4 The evolution of the crack surface energy density and damage

parameter for H1 and H2 criteria for the crack-tip element having the

reference size hRef
el ¼ l0=4
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the material properties k = 12 GPa, l = 8 GPa, Gc = 0.5

N/mm, and l0 = 0.06 mm are chosen same as the values

presented in [7, 32]. The initial geometry and the final

deformed mesh structure are illustrated in Figs. 9a, b. As

can be seen, the displacement-controlled loading (uy) is

applied on the top boundary of the beam. The state of

damage (fracture pattern) is depicted in Fig. 9c, and the

refined mesh in the vicinity of the initial notch is magni-

fied, where the stretched elements in the Lagrangian mesh

can be seen. The vertical reaction forces obtained from

Fig. 5 a shows the load–displacement response for the coarse mesh structures undergoing mesh refinement. b–d show three mesh structures

before and after cracking with different initial element size
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nonlinear analyses are plotted with respect to the imposed

vertical displacement on top of the beam in Fig. 10 for the

case analyses of using H1 and H2 criteria, where an

acceptable agreement can be seen between our results and

those in the literature [7, 32]. We acknowledge that our

results show a small discrepancy from the results of

Ambati et al. [32] because of the consideration of geo-

metrical nonlinearity in this study during the application of

incremental loading, compared to the linear FE analysis

(kinematics of small strains) in [32]. The response curve of

the case analysis where H2 criterion is used shows a higher

peak value compared to that of H1 criterion. When

employing H2 criterion in the damage model, the damaged

zone becomes restricted to evolve over the elements in

which the maximum principal stress exceeds the tensile

strength limit. In the analysis case of using H1 criterion, the

damage parameter can potentially evolve in every element

when the level of strain energy increases, so the captured

peak load is generally lower than that of the H2 criterion, as

a greater region in the continuum has been damaged. It is

also seen in Fig. 10 that Miehe et al. [7] have reported a

significantly lower peak load because of the consideration

of dissipation energy (e.g. dissipation in the form of heat)

in their model, which is neither considered in the work of

Ambati et al. [32] nor in our formulations.

For illustrative purposes and testing the accuracy of the

proposed mesh refinement algorithm, we simulate the

cracking of an asymmetric bending test where the beam

includes circular imperfections as experimentally intro-

duced by Bittencourt et al. [33] and numerically simulated

by [7, 32] using phase-field method, while setting k = 12

GPa, l = 8 GPa, Gc = 1 N/mm, and l0 = 0.01 mm. In the

experiment [33], two configurations are considered for the

length of the initial notch (a) and its distance from the

Fig. 6 a shows the effect of mesh refinement on the prediction of the

maximum principal stress at the crack-tip. b elucidates the role of

mesh refinement on the evolution of surface energy density at the

crack-tip element. c and d are the damage evolution history at the

crack-tip element related to H1 and H2; respectively
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centre of the beam (b), see Fig. 11a, and the experimental

observations are depicted in Figs. 11b, c. Using our

developed numerical model, the experimental observations

of crack patterns can be acceptably reproduced in the

Fig. 7 The results when the mesh refinement is performed when c[ 3Gc=8l0, as proposed by [24]. a shows the load–displacement response, and

b depicts the delay in damage evolution in this case

Fig. 8 a and b shows the effect of choosing the initial element size

hinitial
el on the performance and compares the runtime, the total DOFs,

and the number of times calling the mesh refinement unit. c, e are the

ideal mesh structures; d, f are the refined coarse mesh structures for

tensile and shear tests, respectively.
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simulations as depicted in Fig. 12. The crack pattern

observed in the experiments (Fig. 11b) has been replicated

successfully using the H2 criterion in the damage evolution

model as demonstrated in Fig. 12b. According to Fig. 12c,

it is found that moving the notch towards the centre and

extending its length has caused a significant reduction in

the peak load resisted by the structure before rupture

(failure due to cracking).

5.2 Setting up the input parameters with regard
to the experimental measurements

To verify the applicability of the relationships proposed in

Sect. 3 regarding selecting the input parameters to be used

in the phase-field fracture modelling, we use experimental

data of Brazilian disk, cracked chevron-notched Brazilian

disk (CCNBD) and semi-circular bending (SCB) tests of

rock specimens. We particularly benefit from the SCB test

in the simulations to re-calculate mode-I fracture toughness

(KIc) to be compared with the experimentally measured

value of KIc. The SCB test is initially introduced by Chong

and Kuruppu in 1984 to determine the fracture toughness in

Fig. 9 a, b depicts the beam bending boundary value problem (BVP) and the initial and deformed mesh structures after refinement (geometry

dimensions in mm), and c is the crack pattern (damage state)

Fig. 10 The vertical reaction forces with respect to the imposed

displacements uy, taken from our nonlinear FE analysis
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rock materials based on the maximum load capacity Pmax

of the semi-circular specimen and geometrical character-

istics as [34]

KIc ¼
Y0Pmax

ffiffiffiffiffiffi
pa

p

BD
ð23Þ

Y 0 ¼ �1:297 þ 9:516
S

D
� 0:47 þ 16:457

S

D

� 


b

þ 1:071 þ 34:401
S

D

� 


b2 ð24Þ

where B is the width of the specimen, D ¼ 2R, b ¼ a=R

and S is the distance between two supports. To test the

proposed relationship in Eq. (21) on defining the fracture

energy based on the FPZ size and the tensile strength of the

material, we set up the SCB-test simulations using the

experimental data provided by Dutler et al. [35], listed in

Table 1. We investigate whether our simulations would

output similar Pmax if the relationships in Sect. 3 are

employed. Therefore, the values of GPF
c = 0.01034 N/mm,

calculated using Eq. (21), and l0 ¼ 4rFPZ ¼ 9 mm are

given to the model as inputs. The load–displacement

response curves are plotted in Fig. 13a, and the crack-

pattern is shown in Fig. 13b, noticing that our simulation is

Fig. 11 a is the geometry used

for asymmetric bending test

with holes [7] (dimensions in

mm). b, c show the

experimental observations by

[34] for two different

configurations of notch length

and notch distance from the

centre of the beam

Fig. 12 Our numerical results of the simulations of asymmetric

bending test with holes next the notch. a, b depict the crack-paths for

the notch configurations (a = 1.5 mm and b = 5 mm) and (a = 1 mm

and b = 6 mm), respectively; c is a comparison between load–

displacement responses of these two configurations

Table 1 Material properties of granodiorite SCB samples [35]

Parameter Name Value unit

E Young’s modulus 21 GPa

m Poisson’s ratio 0.20 –

B Width of specimen 39.3 mm

S Span length (between supports) 58.4 mm

a Length of the initial notch 17–20 mm

R Radius 39.4–41.7 mm

rc Brazilian tensile strength 6.73 MPa

rFPZ Half-width of the FPZ 2.25 mm

Pmax Peak load during the test 1410 N
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in plane strain condition (B = 1 mm). The peak load taken

from Fig. 13a for the H2 criterion is Pmax = 36.13 N, which

is very close to the experimental measurement

Pmax=B = 35.87 N/mm, (B = 39.3 mm in the experiment).

This comparison can confirm that our recommendation for

estimating GPF
c and using the FPZ size for the length-scale

parameter (l0 ¼ 4rFPZ) when hiring H2 criterion is mean-

ingful and can be used in engineering applications.

CCNBD tests are conducted on five cores with different

diameters taken from Aberpergwm and Dove’s Nest shale

formations, for which the experimental load–displacement

curves are shown in Fig. 14c. These response curves are

used to estimate the elastic material properties (E; m) using

FE simulations. Experimentally measured values of mode-I

fracture toughness from CCNBD tests, using the ISRM

method [36], are listed in Table 2 for all samples. The

experimental data (E; m;KIC) in Table 2 are then used as

inputs for modelling the phase-field cracking of the SCB-

test simulations. We use the H2 criterion in the model and

vary the user-defined length-scale parameter. Having user-

defined values for l0, Eq. (20) is employed to set an

appropriate value for the tensile strength limit to be used in

the phase-field model (rPF
c ), while the fracture energy is

calculated as Gc ¼ K2
Ic=E0. We then simulate the SCB-test

models and re-calculate KIc based on the numerical results

of the peak load (Pmax). Numerically calculated values of

KIc, from Eq. (23), are then compared to the experimental

values in Fig. 15 for different values of l0. It is concluded

that Eq. (20) provides an appropriate value for rPF
c to be

used as a reliable input in the model. These results confirm

Fig. 13 Load–displacement

response of SCB specimen

using H1 and H2 criteria in the

context of the phase-field

method, and the crack-pattern

(dimensions in mm)

Fig. 14 a shows CCNBD test

setup, b is the boundary value

problem (BVP) used for

calculating elastic properties,

and c shows the load–

displacement curves from

CCNBD tests
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the applicability of the proposed method and the relation-

ships in Eqs. (19–21) in practical engineering problems to

calibrate the input parameters in the presented phase-field

fracture modelling framework [37].

6 Conclusion

In this study, we used the principles of LEFM and proposed

practical relationships for setting up the input parameters in

the phase-field fracture model such as the length-scale

parameter and fracture energy based on the physically

measurable material properties. Characteristics of the

fracture process zone. The proposed method on choosing

the input parameters was tested by comparing the results of

the SCB-test simulations to the experimental data on the

fracture toughness of shale rock specimens, showing a

strong compatibility and confirming the reliability of the

proposed relationships. The proposed method of selecting

the input parameters can be employed in modelling diffu-

sive fracture propagation and damage nucleation in engi-

neering applications such as hydraulic fracturing in

unconventional reservoirs.

Second, a novel mesh refinement strategy for detecting

the elements around the crack-tip which are close to their

tensile failure limit was developed to be used in the phase-

field fracture models to increase the reliability and reduce

the computational cost of the simulations. The refinement

strategy relies on capturing the FPZ by predicting the

critical stresses in coarse-size elements. According to the

numerical results, refinement is critical elements must be

done to reduce the element size to l0=4 for having a reliable

simulation. Due to the large dimension and possible com-

plexities of the real-world engineering problems, it would

be computationally more efficient to use a coarse mesh

structure initially and to constantly perform mesh refine-

ment as the fracture propagates. Depending on the

boundary value problem and the size of the geometry, and

the initial element size, the proposed mesh refinement

algorithm can reduce the computational effort by 50–70

percent. Based on the analysis done for evaluating the

performance, increasing the initial element size can con-

tribute to reducing the computational cost up to a certain

level, and the optimum recommended element size for the

initial coarse mesh structure is recommended to be 3–9

times larger than the length-scale parameter. Reliability of

the mesh refinement strategy and correctness of the

implementation have been tested successfully by simulat-

ing complex cracking scenarios, the results of which are

compatible with the experimental observations.

Appendix A

Two benchmark examples, which are originally presented

by Miehe et al. [7], are presented here for the purpose of

model verification as well as for conducting the mesh

sensitivity analysis.

Tensile test benchmark example

A single-notch square domain is subjected to the imposed

tensile displacements on the top boundary while fixed at

the bottom, as shown in Fig. 16. By increasing the dis-

placements, the elastic strain energy is being mobilised,

Table 2 Material properties of the shale samples for CCNBD tests

Sample Diameter (mm) Thickness (mm) 2a0(mm) 2a1(mm) Peak load (kN) E; mð Þ KIC(MPa:
ffiffiffiffi
m

p
)

1 67.66 24.76 15.40 38.60 12.792 80GPa, 0.35 2.041

2 61.68 23.72 17.81 38.67 6.735 45GPa, 0.35 1.314

3 49.53 17.82 15.14 35.38 3.016 30GPa, 0.35 1.042

4 47.35 18.29 14.65 35.64 3.353 35GPa, 0.35 1.301

5 54.57 19.55 8.98 35.02 7.408 60GPa, 0.35 1.884

Fig. 15 The values of fracture toughness calculated from the

simulations of the SCB test compared with experimental values

(scattered)

Engineering with Computers (2023) 39:3973–3992 3987

123



and the phase-field fracture starts propagating at the crack-

tip towards the right boundary. In this example, we use the

material properties E = 210 GPa, Poisson’s ratio m = 0.3,

and the fracture energy Gc = 2.7E-3 kN/mm and choose

the length-scale parameter l0 = 15E-3 mm. The element

size along the expected crack-path is set as hel and is

smaller than everywhere else in the domain to capture the

diffusive fracture effectively. The load–displacement

response curves for two different sizes of hel are plotted in

Fig. 17. Increasing the element size hel results in an over-

estimation of the load capacity (i.e. the peak value of the

load–displacement curve) as well as a delay in the crack

nucleation stage (the rupture of the domain). The captured

load capacity is sensitive to the element size hel, so the

problem is solved for different sizes, and the mesh sensi-

tivity analysis is plotted in Fig. 18. According to this, the

maximum acceptable element size is identified to be hel ¼

l0=4 to ensure the mesh-independency condition. It is also

seen from Fig. 18 that the maximum principal stress of the

crack-tip element keeps increasing with reducing hel fol-

lowing a rate of
ffiffiffiffiffiffiffiffiffiffi
1=hel

p
, which is also compatible with the

theory of LEFM on appearing singular stresses by getting

closer to the crack-tip [30], see Eq. (15).

Shear test benchmark example

Setting the material properties to those used in the tensile

test, the same single-notch square domain is modelled here

while subjected to shearing lateral displacements (ux) on

the top boundary. The purpose of simulating the shear test

is to examine the capability of the developed model and the

mesh refinement strategy. We also investigate the effect of

the crack driving force formulation on the failure response

Fig. 16 a shows the boundary value problem defined in [7] (dimen-

sions in mm); b is the final crack pattern developed in the body; c is

the mesh structure in the region where the crack is expected to form;

d, e depict the geometry around the crack-tip before and after

formation of the crack. The length of the initial notch is a0 = 0.5 mm
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of the domain. The lateral load–displacement response

curves related to H1 and H2 criteria on defining the crack

driving force are plotted and compared to the results of

Miehe et al. [7] as well as to the results of the ideal fine-

mesh structures having the element size (hel ¼ l0=4), see

Fig. 19. Setting a lower limit for the maximum allowable

iteration itermax in the simulation reduces the propagation

speed because the energy minimisation cannot be done

completely (no complete convergence in the damage field)

in a single load–step, and the load–displacement curve

drops in a smoother manner. Using the H2 criterion results

in a sharper decrease of the tolerated load after the

nucleation stage (see Fig. 19b), while employing H1 cri-

terion causes a smoother reduction of the load, as shown in

Fig. 19a. The crack patterns are the same for both cases,

although a larger area of the domain is affected by damage

when using H1 criterion (see Fig. 19c, d).

Appendix B

Weak forms are linearised to be numerically implemented

for the case of two-dimensional plane-strain finite element

analysis.

Finite element matrix form of the principle
of virtual work (finite strains)

The principle of virtual work (Eq. 6) is adapted to an

updated Lagrangian nonlinear finite element framework by

approximating the displacements and weighting functions

over iso-parametric elements as uh ¼ Nu uf g and fh ¼
Nu cuf g; respectively, where uf g ¼
u1

x1
u1

x2
u2

x1
u2

x2
u3

x1
u3

x2

� �T
are the vector of nodal

displacements and Nu is the matrix of shape functions for

the first-order 3-noded element. In the nonlinear finite

element analysis, the elasticity tensor of the element is

affected by the deformations in the Lagrangian mesh.

Hence, the system of equations is solved in an iterative

manner by updating the global stiffness matrix with respect

to the updated nodal coordinates xi. The finalised dis-

placement field unþ1 is resulted from the displacements of

the previous step un and incremental displacements Du kð Þ
nþ1

of the subsequent iterations at the step (nþ 1) as [29]

Fig. 17 The load–displacement responses for a specific case of

length-scale l0 = 15E-3 mm and different mesh sizes hel (both linear

and nonlinear results are shown). The response curves are compared

to results of [7, 37]

Fig. 18 Variation of the load capacity and the captured maximum

principal stress due to the crack-tip element size hel for a fixed length-

scale parameter l0 = 15E-3 mm
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unþ1 ¼ un þ
Xkmax

k¼1

Du kð Þ
nþ1 ðB � 1Þ

where k is the number of iterations satisfying for the con-

vergence of Du kð Þ
nþ1. The matrix form of Eq. (6) is derived in

the following to solve for Du kð Þ
nþ1 iteratively [29], given a

fixed state of damage dnþ1:

cuf gT
R

X0

BT
uC

k�1ð Þ
nþ1 Bu Du kð Þ

nþ1

n o
dV þ cuf gT

R

X0

BT
u

r
k�1ð Þ
nþ1

h iT
� I

� �

Bu Du kð Þ
nþ1

n o
J
k�1ð Þ
nþ1 dV ¼

cuf gT
Z

X0

NT
uq0G JndV þ cuf gT

Z

oX0r

NT
u Tnþ1f g dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
external forces : Rnþ1

� cuf gT
Z

X0

BT
u r

k�1ð Þ
nþ1

n o
J
k�1ð Þ
nþ1 dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
internal forces : F

k�1ð Þ
nþ1

ðB � 2Þ

The test function is f ¼ Nu cuf g, rT � I½ �mnpq¼ rqndmp,

and the fourth-order tensor C
k�1ð Þ

nþ1 is defined as [27]

Cmnpq ¼ g dnþ1

� �

k

J
k�1ð Þ

nþ1

dmndpq þ
l� k ln J

k�1ð Þ
nþ1

� �

J
k�1ð Þ

nþ1

dmpdnq þ dmqdnp

� �
2

4

3

5

ðB � 3Þ

where m; n; p; q ¼ 1; 2; 3, d is the Kronecker delta, and

je � 1 is set to avoid the numerical instability caused by

Cmnpq ¼ 0½ � in fully damaged elements. Matrix Bu is the

derivative of the shape function matrix Nu with respect to

the current coordinates, defined in the following [28].

Fig. 19 a, b show the horizontal reaction forces at the bottom of the domain with respect to ux applied on the top boundary for criteria H1 and

H2. c, d depict the crack pattern and affected region by damage for criteria H1 and H2, respectively.
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Nu½ �2�6¼
N1 0 N2 0 N3 0

0 N1 0 N2 0 N3

� �

ðB � 4Þ

Finite element matrix form of the principle
of virtual work (small strains)

For the linear elastic analysis, the problem can be solved in

one iteration, and the matrix form of Eq. (9) can be derived

as [28]

cuf gT

Z

X0

BT
s C½ �Bs unþ1f gdV ¼ cuf gT

Z

X0

NT
uqGdV

þ cuf gT
Z

oX0r

NT
u Tnþ1f gdA

ðB � 6Þ

where C is the fourth-order tensor of elasticity, and Bs is

the derivative of shape function matrix Nu in the small

strain framework [28].

C½ � ¼ g dnþ1

� � kþ 2l k 0

k kþ 2l 0

0 0 l

2

4

3

5 ðB � 7Þ

Bs½ �3�6

¼
oN1=oX1 0 oN2=oX1 0 oN3=oX2 0

0 oN1=oX2 0 oN2=oX2 0 oN3=oX2

oN1=oX2 oN1=oX1 oN2=oX2 oN2=oX1 oN3=oX2 oN3=oX1

2

6
4

3

7
5

ðB � 8Þ
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4. Moës N, Dolbow J, Belytschko T (1999) A finite element method

for crack growth without remeshing. Int J Numer Meth Eng

46(1):131–150

5. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an

energy minimization problem. J Mech Phys Solids

46(8):1319–1342

6. Bilgen C, Weinberg K (2019) On the crack-driving force of

phase-field models in linearized and finite elasticity. Comput

Methods Appl Mech Eng 353:348–372

7. Miehe C, Welschinger F, Hofacker M (2010) Thermodynami-

cally consistent phase-field models of fracture: variational prin-

ciples and multi-field FE implementations. Int J Numer Meth Eng

83(10):1273–1311

Bu½ �4�6¼

oN1=ox1 0 oN2=ox1 0 oN2=ox1 0

0 oN1=ox2 0 oN2=ox2 0 oN3=ox2

oN1=ox2 0 oN2=ox2 0 oN3=ox2 0

0 oN1=ox1 0 oN2=ox1 0 oN3=ox1

2

6
6
4

3

7
7
5 ðB � 5Þ

Engineering with Computers (2023) 39:3973–3992 3991

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


8. Amor H, Marigo J-J, Maurini C (2009) Regularized formulation

of the variational brittle fracture with unilateral contact: numer-

ical experiments. J Mech Phys Solids 57(8):1209–1229

9. Zhang X, Sloan SW, Vignes C, Sheng D (2017) A modification of

the phase-field model for mixed mode crack propagation in rock-

like materials. Comput Methods Appl Mech Eng 322:123–136

10. Miehe C, Schänzel L-M, Ulmer H (2015) Phase field modeling of

fracture in multi-physics problems. Part I. Balance of crack sur-

face and failure criteria for brittle crack propagation in thermo-

elastic solids. Comput Methods Appl Mech Eng 294:449–85.

11. Zhou S, Zhuang X, Rabczuk T (2019) Phase field modeling of

brittle compressive-shear fractures in rock-like materials: a new

driving force and a hybrid formulation. Comput Methods Appl

Mech Eng 355:729–752

12. Bellettini G, Coscia A (1994) Discrete approximation of a free

discontinuity problem. Numer Funct Anal Optim

15(3–4):201–224
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