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Abstract
A multi-fidelity (MF) active learning method is presented for design optimization problems characterized by noisy evalua-
tions of the performance metrics. Namely, a generalized MF surrogate model is used for design-space exploration, exploiting 
an arbitrary number of hierarchical fidelity levels, i.e., performance evaluations coming from different models, solvers, or 
discretizations, characterized by different accuracy. The method is intended to accurately predict the design performance 
while reducing the computational effort required by simulation-driven design (SDD) to achieve the global optimum. The 
overall MF prediction is evaluated as a low-fidelity trained surrogate corrected with the surrogates of the errors between 
consecutive fidelity levels. Surrogates are based on stochastic radial basis functions (SRBF) with least squares regression 
and in-the-loop optimization of hyperparameters to deal with noisy training data. The method adaptively queries new train-
ing data, selecting both the design points and the required fidelity level via an active learning approach. This is based on the 
lower confidence bounding method, which combines the performance prediction and the associated uncertainty to select 
the most promising design regions. The fidelity levels are selected considering the benefit-cost ratio associated with their 
use in the training. The method’s performance is assessed and discussed using four analytical tests and three SDD problems 
based on computational fluid dynamics simulations, namely the shape optimization of a NACA hydrofoil, the DTMB 5415 
destroyer, and a roll-on/roll-off passenger ferry. Fidelity levels are provided by both adaptive grid refinement and multi-grid 
resolution approaches. Under the assumption of a limited budget for function evaluations, the proposed MF method shows 
better performance in comparison with the model trained by high-fidelity evaluations only.

Keywords Multi-fidelity optimization · Active learning · Radial basis functions · Computational Fluid Dynamics · 
Adaptive grid refinement · Multi-grid resolution

1 Introduction

The quest for ever more innovative engineering products has 
motivated the development of highly-accurate performance 
analysis tools, often prime-principle based and therefore 
able to span a vast variety of design solutions and operating 

conditions. The need for fast, effective, and ingenious design 
decisions has stimulated the integration of these tools with 
efficient global optimization approaches into simulation-
driven design (SDD) [19] architectures. Naval architecture 
and ocean engineering are no exceptions, experiencing an 
outstanding development of computational tools to assess 
complex physical phenomena at different spatial and tempo-
ral scales [5, 32, 44], along with their integration in global 
SDD optimization approaches [11, 42].

These tools are generally computationally expensive, 
making the design- and operational-space exploration a tech-
nological and algorithmic challenge, thus preventing their 
widespread use in the industrial community. Recent work in 
the context of computational fluid dynamics (CFD) optimi-
zation showed how a hull-form optimization based on accu-
rate unsteady Reynolds Averaged Navier-Stokes (URANS) 
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solutions under realistic stochastic conditions may require up 
to 500 k CPU hours on high performance computing (HPC) 
systems, even if computational cost reduction methods are 
used [42]. Similarly, an accurate URANS-based statistically 
significant evaluation of ship maneuvering performance 
in irregular waves may require up to 1 M CPU hours on 
HPC systems [37]. Furthermore, multidisciplinary design 
optimization (MDO) problems, involving several intercon-
nected disciplines, usually require additional computational 
efforts especially for global optimization problems [21] and 
stochastic conditions [12]. Achieving global and stochas-
tic MDO still remains a challenge from the computational 
viewpoint [26].

To reduce the computational cost of SDD procedures, 
supervised machine learning methods in the form of surro-
gate models have been developed and successfully applied 
in several engineering domains [45]. With these methods, 
an approximate and easy to evaluate model of expensive 
computations is constructed based on a limited number of 
simulations. The design-space exploration and optimization 
are then performed on the surrogate model, increasing the 
efficiency of the overall SDD process.

The performance of surrogate models is problem-depend-
ent and determined by several concurrent factors, such as 
the presence of nonlinearities, the problem dimensionality, 
and the approach used for the training [23]. Therefore, in the 
last decade, the research has moved from static to function-
adaptive approaches, also known as dynamic (adaptive) sur-
rogate models [46], which are able to improve their fitting 
capability by active learning. Namely, the design of experi-
ments used for the surrogate model training is not defined a 
priori but dynamically updated, exploiting the information 
about the problem that becomes available during the analy-
sis process. Training points are dynamically added based 
on active learning criteria, with the aim of producing glob-
ally accurate representations of the desired functions with 
as few training points as possible [41]. Unfortunately, the 
active learning process is generally affected by the compu-
tational-output noise [23], which is often unavoidable when 
large systems of nonlinear partial differential equations are 
numerically solved. Active learning methods may react to 
noise by adding many training points in noisy regions, rather 
than selecting new points in unseen regions [51]. This may 
deteriorate the model quality/efficiency and needs to be care-
fully considered.

In addition to dynamic/adaptive surrogate models and 
with the aim of reducing further the computational cost 
associated with SDD, multi-fidelity (MF) approximation 
methods have been developed, aiming at combining the 
accuracy of high-fidelity solvers with the reduced com-
putational cost of low-fidelity solvers [4]. Thus, MF sur-
rogate models use mainly low-fidelity simulations and only 
a few high-fidelity simulations, used to preserve the model 

accuracy. Additive and/or multiplicative correction methods, 
also known as “bridge functions” [18], can be used to build 
MF surrogate models. Several surrogate models have been 
used in the literature with MF data, such as non-intrusive 
polynomial chaos [29], co-kriging [3] and stochastic radial 
basis functions (SRBF) [41]. In general, different fidelity 
levels may be obtained by varying the physical model, the 
grid size, and/or combining experimental data with simula-
tions. The active learning process is extended to MF analysis 
via the automatic selection of both the desired training point 
and fidelity level [41]. Most MF methods use two fidelity 
levels, nevertheless the approach can be generalized to an 
arbitrary number of fidelity levels, as shown in [40]. The use 
of MF models with noisy training data and the assessment 
of the effect of the noise associated with each fidelity level 
are still little discussed and require a rigorous assessment.

The objective of the present work is to present a gen-
eralized adaptive MF surrogate model for global design 
optimization of complex industrial problems affected by 
noisy performance evaluations. The proposed MF method 
advances the authors’ previous work by combining an arbi-
trary number of fidelity levels [40] with noise reduction and 
in-the-loop optimization of the MF surrogate model [51]. 
SRBF [46] are used in combination with an active learn-
ing method based on the lower confidence bounding (LCB), 
combining objective function prediction and associated 
uncertainty [7, 41]. Furthermore, the present formulation 
fully exploits the potential of simulation methods that natu-
rally produce results spanning a range of fidelity levels: i.e., 
URANS simulations with adaptive grid refinement [47] or 
multi-grid resolution [5].

The performance of the proposed MF method is assessed 
using four analytical test problems [25] and three SDD prob-
lems pertaining to the minimization of: (1) the drag-coeffi-
cient of a NACA hydrofoil, (2) the calm-water resistance of 
the DTMB 5415 ship model, and (3) the calm-water resist-
ance/payload ratio of a roll-on/roll-off passengers (RoPax) 
ferry, under the assumption of a limited budget for function 
evaluations. CFD computations are based on two URANS 
solvers: ISIS-CFD [32], developed at Ecole Centrale de 
Nantes/CNRS and integrated in the FINE/Marine simulation 
suite from Cadence Design Systems, for the NACA hydro-
foil and the DTMB 5415; and �navis [5, 8, 9], developed at 
CNR-INM, for the RoPax ferry. In ISIS-CFD, mesh defor-
mation and adaptive grid refinement are adopted to allow the 
automatic shape deformation. The fidelity levels are defined 
by the grid refinement ratio. In �navis, the mesh deforma-
tion is initially computed on the hull-surface grid and then 
propagated in the volume mesh. The different fidelities are 
the multi-grid levels. The problems are solved with a number 
of fidelity levels between one and four.

The remainder of this paper is organized as follows. 
Section 2 introduces the generalized multi-fidelity active 
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learning method. Section 3 describes the analytical tests and 
the SDD problems. CFD solvers and numerical setup for 
the solutions of the SDD problems are provided in Sects. 4 
and 5, respectively. The numerical results are discussed in 
Sect. 6 and, finally, conclusions and an outlook on future 
work are presented in Sect. 7.

2  Multi‑fidelity surrogate modeling

Consider an objective function f (�) , where � ∈ ℝ
D is the 

design vector of dimension D. Let the true function f (�) be 
assessed by numerical simulations sl(�) with different fidel-
ity levels l, which are considered to be affected by random 
noise:

where s1(�) denotes the highest-fidelity level, sN(�) is the 
lowest-fidelity, and {sl(�)}N−1l=2

 are the intermediate-fidelity 
levels. fl(�) is the hypothetical simulation response with-
out noise. The simulation noise for each fidelity level Nl 
is considered as realizations of zero-mean uncorrelated 
random variables. This noise will be (partially) removed in 
the surrogate models. A multi-fidelity approximation f̂ (�) 
of f (�) can then be built by hierarchical superposition of 
the lowest-fidelity surrogate model f̃N(�) and the inter-level 
errors �̃�l(�) as

For the l-th fidelity level the available simulation data is 
defined as Tl = {(��

j
, sl(�j))}

Jl

j=1
 , with Jl the training set size. 

The resulting inter-level error training set, used to realize the 
error surrogate �̃�l(�) , is defined as El = {(��

j
, �l(�j))}

Jl

j=1
 , with

where the generical l-th multi-fidelity surrogate is:

The choice of f̂l+1 instead of sl+1 is based on the idea that 
a significant amount of noise can be present in the sam-
pling data and that the surrogate models effectively filter 
this noise. Thus, when the filtering of noise is successful, 
the (l + 1)-th surrogate model is a better representation of the 
(l + 1)-th response than the actual simulations. However, sl+1 
is available: to ensure the most effective training process and 
considering the nature of the CFD solvers (using adaptive 
and/or multi grids), lower-fidelity simulations are added in 
all the points �j where a high-fidelity point is simulated. If 

(1)sl(�) ≡ fl(�) +Nl(�) with l = 1,… ,N,

(2)f (�) ≈ f̂ (�) = f̃N(�) +

N−1∑
l=1

�̃�l(�),

(3)𝜀l(�j) = sl(�j) − f̂l+1(�j),

(4)f̂l(�) = f̃N(�) +

N−1∑
i=l

�̃�l(�).

there is no noise, the surrogate model f̂l+1(�j) interpolates 
the data in all the training points, so the error data in the 
training points �l(�j) is exact and equal to sl(�j) − sl+1(�j).

Finally, given a surrogate modeling that provides both 
the prediction and the associated uncertainty, and assum-
ing that the uncertainties associated with the lowest-fidelity 
level Uf̃N

 and the inter-level errors U�̂�l
 are uncorrelated, the 

multi-fidelity prediction uncertainty Uf̂  reads

An example with two fidelities, without noise, is shown 
in Fig. 1.

In the present work, the term uncertainty always refers to 
the surrogate model prediction uncertainty (see Eq. 5), while 
the noise is associated with the objective function evaluation 
and intrinsically related to the fidelity level: as often hap-
pens, higher fidelities tend to be less noisy.

2.1  Active learning

The multi-fidelity surrogate model is dynamically updated 
by adding new training points following a two-step 
procedure: 

1. Identify the new training point �⋆;
2. Defining �l = cl∕c1 , where cl is the computational 

cost associated to the l-th level and c1 the computa-
tional cost of the highest-fidelity, � ≡ {U�̂�1

∕𝛽1,… , 
U�̂�N−1

∕𝛽N−1,Uf̃N
∕𝛽N} as the fidelity selection vector, and 

l∗ = maxloc(�) , add the new training point to the l∗-th 
training set Tl∗ (as well as to the lower-fidelity sets from 
l∗ + 1 up to l∗ = N).

(5)Uf̂ (�) =

√√√√
U2

f̃N
(�) +

N−1∑
l=1

U2
�̃�l
(�).
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Fig. 1  Example of MF surrogate model with N = 2 (without noise)
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The identification of the new training points is based on 
the LCB sampling method [7] with equal weight for the 
function value and the prediction uncertainty (see Fig. 2). 
It aims to find points with large prediction uncertainty and 
small objective function value. Accordingly, LCB iden-
tifies new training points by minimizing the acquisition 
function �(�)

where

and

is a penalization factor based on the distance from the exist-
ing training sets (considering all fidelities) to prevent the 
sampling of already sampled points and having matrix � ill-
conditioned (see Eq. 11). � is a coefficient here set equal to 
1E − 1 , d(�) is the distance of the point � to the closest point 
identified among all the training sets, and d0 = 5.0E − 3 is 
the minimum acceptable distance to an existing training 
point.

2.2  Least squares regression via in‑the‑loop 
optimization

The surrogate model predictions f̃ (�) are computed as the 
expected value (EV) over a stochastic ensemble of radial 

(6)�⋆ = argmin
�

[𝜓(�)]

(7)𝜓(�) = f̂ (�) − Uf̂ (�) + Px(�)

(8)Px(�) =

{
1

𝜖

d0−d(�)

d0
if d(�) < d0,

0 else

basis function (RBF) surrogate models, defined by a sto-
chastic tuning parameter, � ∼ unif[1, 3]:

with

where wj are unknown coefficients, ‖ ⋅ ‖ is the Euclidean 
norm, and �j are the RBF centers, whose coordinates are 
defined via k-means clustering [24] of the training point 
coordinates in the design space. The uncertainty Uf̃ (�) asso-
ciated with the SRBF surrogate model prediction is quan-
tified by the 95%-confidence interval of g(�, �) , evaluated 
using a Monte Carlo sampling over � [46]. Noise reduction is 
achieved by choosing a number of SRBF centers K less than 
the number of training points J  . Hence, wj are determined 
with least squares regression by solving

where � = {wj} , aij = ‖�i − �j‖� , and {(�i, s(�i))}
J

i=1
∈ T  . 

The optimal number of SRBF centers ( K⋆ ) is defined by 
minimizing a leave-one-out cross-validation (LOOCV) met-
ric [14, 22]. Let h̃i,K(�) be a surrogate model trained by all 
points but the i-th point using K centers, then K⋆ is defined 
as:

where the root mean squared error (RMSE) is defined as

(9)f̃ (�) = EV
[
g(�, 𝜏)

]
𝜏
,

(10)g(�, 𝜏) =

K⋆�
j=1

wj‖� − �j‖𝜏 ,

(11)� = (���)−1���,

(12)K⋆ = argmin
K

[RMSE(K)],
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Fig. 2  Example of the active learning method using one fidelity with-
out noise: (left) shows the initial surrogate model with the associated 
prediction uncertainty and training set; (right) shows the position of 

the new training point and the new surrogate model prediction and its 
uncertainty
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To avoid abrupt changes in the surrogate model predic-
tion from one iteration to the next one, during the active 
learning procedure the search for K⋆ can be constrained. 
In the present work, K⋆

k−1
− 2 < K⋆

k
< K⋆

k−1
+ 2 , with k 

the active learning iteration. An example with J = 6 and 
K⋆ = 3 is shown in Fig. 3.

The function which gives the lowest EV for the LOOCV 
metric is the exact objective function f (�) . Since f and h̃ are 
deterministic functions, the EV of an error-squared term in 
the RMSE measure can be expanded as

Since the noise has a zero mean, the EV in the middle 
term vanishes. Thus, the overall expected value for the error 
is minimized if h̃(�i) = f (�i) . Therefore, the LOOCV cri-
terion in Eq. 12 is a suitable measure of the quality of a 
surrogate model function. It should be noted that the pro-
posed method does not need any assumption about the noise 
distribution. The method is expected to run robustly even in 
the event of noise with no Gaussian distribution nor non-
zero mean.

(13)RMSE(K) =

√√√√ 1

J

J∑
i=1

(
s(�i) − h̃i,K(�i)

)2
.

(14)

EV
[(
s(�i) − h̃(�i)

)2]
=

EV
[(
s(�i) − f (�i) + f (�i) − h̃(�i)

)2]
=

= EV
[(
s(�i) − f (�i)

)2]
+

2EV
[(
s(�i) − f (�i)

)](
f (�i) − h̃(�i)

)
+

(
f (�i) − h̃(�i)

)2
.

3  Optimization problems

The assessment of the multi-fidelity surrogate model is 
based on four analytical tests and three CFD-based design 
optimization problems, with design space dimensions D 
ranging from 1 to 10. Problems are solved with a number 
of fidelity levels N ranging from 1 to 4. These are reason-
able numbers in multi-fidelity shape optimization, where 
several grid resolution levels and/or physical models may 
be considered.

The initial training set for each problem is based on a 
face-centered central composite design (CCF) without facto-
rial points [2], i.e., the domain center and the centers of the 
domain boundaries. Details are provided in the following 
subsections.

A deterministic single-objective formulation of the par-
ticle swarm optimization algorithm [39], is used for the 
surrogate based optimizations, as well as for the solution 
of the minimization sampling problem of Eq. 8. The active 
learning is performed with a fixed budget of function evalu-
ations: considering a normalized computational cost of a 
highest-fidelity evaluation (equal to 1), the overall compu-
tational cost CC is proportional to the training set sizes Jl 
and is defined as:

3.1  Analytical test problems

The four analytical test problems  used to assess the MF 
method [25] are an MF version of the Forrester (P1), Grie-
wank (P2), Rosenbrock (P3), and shifted-rotated Rastrigin 
(P4) functions. Table 1 summarizes the test problem equa-
tions, domain size, dimensions, reference global optimum 
position x̌ and value f (x̌) , and finally the bibliographical 
reference. Most problems have N = 3.

Artificial noise is added to the analytical problems. For 
each fidelity l a normal distributed noise �l ∈ N(0, �l) is 
defined, where �l = {0.025, 0.05, 0.10}R1 , with R1 the func-
tion range of the highest-fidelity1. Figure 4 shows an exam-
ple of the artificial noise applied to the analytical function P1 
as semi-transparent scatter. The choice of testing problems 
with a noise variance that decreases as the fidelity increases 
is based on what usually happens with the numerical solvers 
used in this paper (ISIS-CFD and �-navis), when applied to 

(15)CC =

N∑
l=1

�lJl.
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Fig. 3  Example of least squares regression by SRBF

1 Only for the P3 problem, R1 is reduced by a factor of 500, since the 
benchmark has a variation of three orders of magnitude in the consid-
ered domain yielding a noise almost impossible to filter out.
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ship hydrodynamics problems. However, in other problems 
the noise variance could be distributed differently across 
the different fidelity levels. Nevertheless, since the proposed 
approach does not make any assumption about how the noise 
variance is distributed across fidelity levels, it is expected 
that the method would run robustly even in the case where 
high-fidelity evaluations are affected by the greatest noise 
variance. In the latter case, the proper identification of the 
noise variance would be certainly computationally expen-
sive, as many high-fidelity evaluations would be needed.

The analytical test problems are selected to be repre-
sentative of complex real-world problems and challenging 
from the optimization viewpoint. They are characterized 

by several local minima and adjacent regions of strong 
gradients and flatness, as shown in Figs. 4 and 5. Further-
more, the different fidelity levels are modeled to never 
have a coincident global minimum among them. Finally, 
P3 and P4 are arbitrarily scalable in the number of dimen-
sions, and P4 also in the number of fidelities.

3.2  NACA hydrofoil

This problem addresses the drag coefficient minimization of a 
NACA four-digit airfoil. The following minimization problem 
is solved

where � is the design variable vector, CD and CL are respec-
tively the drag and lift coefficient. The equality constraint on 
the lift coefficient is necessary to compare different geome-
tries at the same lift force (equal to the weight of the object), 
since the drag depends strongly on the lift.

The simulation conditions are: velocity U = 10 m/s, chord 
c = 1 m, and fluid density � = 1, 026 kg∕m3 , with a chord 
based Reynolds number Re = 8.41 ⋅ 106.

The hydrofoil shape (see Fig. 6) is defined by the general 
equation for four-digit NACA foils [28]. The upper ( yu ) and 
lower ( yl ) hydrofoil surfaces are computed as

(16)
minimize f (�) = CD(�)

subject to CL(�) = 0.6

and to � ≤ � ≤ �,

Table 1  Analytical benchmark problems

Test Formulation Domain D x̌ f (x̌) References

P1 f1(x) = [(6x − 2)2] sin(12x − 4) + �1 x ∈ [0, 1] 1 0.7572 –6.0207 [17]
f2(x) = 0.75f1(x) + 5(x − 0.5) − 2 + �2 [30]
f3(x) = 0.5f1(x) + 10(x − 0.5) − 5 + �3 [16]

P2 f1(�) =
∑�

j=1
x2
j
∕25 −

∏�

j=1
cos

�
xj∕

√
j
�
+ 1 + �1

� ∈ [−6, 5] 2 [0, 0] 0.0000 [1]

f2(�) = −
∏�

j=1
cos

�
xj∕

√
j
�
+ 1 + �2

[16]

f3(�) =
∑�

j=1
x2
j
∕20 −

∏�

j=1
cos

�
xj∕

√
j + 1

�
− 1 + �3

[16]

P3 f1(�) =
∑�−1

j=1
[100(xj+1 − x2

j
)2 + (1 − xj)

2] + �1
� ∈ [−2, 2] 2,5,10 [1,… , 1] 0.0000 [35]

f2(�) =
∑�−1

j=1
[50(xj+1 − x2

j
)2 + (−2 − xj)

2] −
∑�

j=1
0.5xj + �2

[16]

f3(�) = (f1(�) − 4 −
∑�

j=1
0.5xj)∕(10 +

∑�

j=1
0.25xj) + �3

[35]

P4 f1(�) =
∑�

j=1
(z2

j
+ 1 − cos (10�zj))

� ∈ [−0.1, 0.2] 2,5,10 [0.1,… , 0.1] 0.0000 [52]

fi(�) = f1(�) + er(�,�i) + �i,                       i = 2,… ,N [52]
� = R(𝜃)(� − �⋆) where R is a n-D rotation matrix
er(�,�i) =

∑�

j=1
a(�i) cos

2 �(�i)zj + b(�i) + �,    i = 2,… ,N [52]

and a(�i) = Θ(�i) , �(�i) = 10�Θ(�i) , b(�i) = 0.5�Θ(�i) [52]
and Θ(�i) = 1 − 0.0001�i [52]
with � = {10000, 5000, 2500} , �⋆ = {0.1,… , 0.1}� , � = 0.2 [25]
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Fig. 4  Analytical test problem P1
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Fig. 5  Analytical test problems: from top to bottom P2 , P3 , and P4 with D = 2 (without noise); from left to right f1 , f2 , and f3 (high-, medium-, 
and low-fidelity)

0.0 0.2 0.4 0.6 0.8 1.0
x/c [−]

−0.05

0.00

0.05

0.10

0.15

y
/c

[−
]

NACA 4− digit
camber line

Fig. 6  NACA 4-digit hydrofoil



3190 Engineering with Computers (2023) 39:3183–3206

1 3

with � = arctan(dyc∕d�) and

where � is the position along the chord, c the chord length, yc 
the mean camber line, p the location of the maximum cam-
ber, m the maximum camber value, t the maximum thick-
ness, and yt the half thickness:

In this work, three design spaces are defined. For D = 1 , 
� = {m} with m ∈ [0.025, 0.065] ; the thickness and maxi-
mum camber position are fixed at t = 0.030 and p = 0.4 . For 
D = 2 the design variables vector is defined as � = {t,m} with 
t ∈ [0.030, 0.120] and m, p like for D = 1 . Finally, for D = 3 
the design variables are � = {p, t,m} with p ∈ [0.25, 0.70] and 
m and t as per D = 2.

Tests are run with one, two, and three fidelity levels 
( N = 1, 2, 3 ). The optimization budget is fixed at CC = 45 for 
all design spaces.

3.3  DTMB 5415 model

The SDD problem concerns the hull-shape optimization of the 
DTMB 5415 destroyer considering the free water surface. The 
shape of the DTMB 5415 destroyer is optimized for minimal 
resistance ( RT ). The optimization problem reads

where Lpp,0 = 5.72 m (model scale) is the original length 
between perpendiculars. The ship is at even keel, with 
Froude number Fr = 0.30 and Re = 1.18 ⋅ 107 . The Lpp con-
straint is automatically satisfied by the shape modification 
method.

The modified geometries ( � ) are produced by the linear 
superposition of D orthonormal basis functions ( � ) on the 
original geometry ( �0 ), as follows

(17)

⎧⎪⎨⎪⎩

�u = � − yt sin �

�l = � + yt sin �

yu = yc + yt cos �

yl = yc − yt cos �

(18)

yc =

⎧
⎪⎪⎨⎪⎪⎩

m

p2

�
2p

𝜉

c
−

�
𝜉

c

�2
�
, 0 ≤ 𝜉 < pc

m

(1 − p)2

�
(1 − 2p) + 2p

𝜉

c
−

�
𝜉

c

�2
�
, pc ≤ 𝜉 ≤ c

(19)
yt =5t(0.2969

√
� − 0.1260�+

− 0.3516�2 + 0.2843�3 − 0.1015�4).

(20)
minimize f (�) = RT (�)

subject to Lpp(�) = Lpp,0
and to � ≤ � ≤ �,

(21)�(�, �) = �0(�) + �(�, �),

with

where � are the geometry Cartesian coordinates, whereas 
−1.25 ≤ {xk}

D
k=1

≤ 1.25 and {�
k
}D
k=1

 are the reduced design 
variables and the eigenfunctions, respectively, provided by 
the design-space augmented dimensionality reduction pro-
cedure described in [36]. Details about the original design 
space definition can be found in [38]. In this work, two 
design variables are used.

The optimization is performed with N = 1 , 2, and 3 
fidelity levels. For the initial sample plan (only for this 
problem), CFD simulations for all fidelities were run in 
the center of the domain, and with each design variable at 
either −1 or +1.

3.4  RoPax ferry

The optimization of the RoPax ferry pertains to the mini-
mization of the resistance over the ship displacement ( ∇):

The design variable vector is defined as two geometrical 
parameters of the aftship: � = {ABL,DF} , with the aft-
body length ABL ∈ [0.3, 0.61315] and the draught factor 
DF ∈ [0.8, 1.2] , respectively. The original ship hull coordi-
nates are in the domain center.

The analysis is performed for a straight-ahead advance-
ment, with the ship at even keel condition. The operational 
speed is 19 kn (at full scale). Computations are performed 
at model scale (scale factor � = 27.14 ), with Fr = 0.245 
and Re = 1.017 ⋅ 107 , which corresponds to a water density 
� = 998.2 kg/m3 , kinematic viscosity � = 1.105 ⋅ 10−6 m 2
/s, and gravitational acceleration g = 9.81 m/s. Free water 
surface effects are considered.

The parametric geometry of the RoPax is realized with 
the computer-aided design environment integrated into the 
CAESES software by FRIENDSHIP SYSTEMS AG. The 
deformation of the hull surface is obtained by imposing 
the design variable values into the parametric model in 
CAESES. A surface grid of the RoPax ferry (i.e. the grid 
discretizing the hull surface) provides the displacement of 
the nodes on the hull surface.

The next step is the interpolation of the deformation 
vector from the surface grid to the volume grid. This is 
done in two steps: (1) the deformation of the hull surface 
is interpolated from the CAESES surface grid onto the 
patches on the hull surface of the hydrodynamic volume 
grid (the interpolation is performed using a system of 

(22)�(�, �) =

D∑
k=1

xk� k(�),

(23)
minimize f (�) = RT (�)∕∇(�)

subject to � ≤ � ≤ �.
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RBFs); (2) the deformation of the hull surface is propa-
gated in the volume grid (vertices are moved along the 
coordinate lines normal to the surface, with the displace-
ment of the nodes decaying with the distance).

The optimization is performed with N = 4 fidelity 
levels.

4  CFD solvers

CFD simulations for the NACA hydrofoil and the DTMB 
5415 are performed with the URANS solver ISIS-CFD 
developed at ECN – CNRS [32], available in the FINE/
Marine computing suite from Cadence Design Systems. 
The hydrodynamics performance of the RoPax is assessed 
by the URANS code �navis developed at CNR-INM [5, 
8, 9].

4.1  ISIS‑CFD

ISIS-CFD is an incompressible unstructured finite-volume 
solver for multi-fluid flow. The velocity field is obtained 
from the momentum conservation equations and the pres-
sure field is extracted from the mass conservation con-
straint transformed into a pressure equation. These equa-
tions are similar to the Rhie and Chow SIMPLE method 
[33] but have been adapted for flows with discontinuous 
density fields. Free-surface flow is simulated with a con-
servation equation for the volume fraction of water, dis-
cretized with specific compressive discretization schemes. 
The method features sophisticated turbulence models, such 
as an anisotropic EASM model and DES models.

The unstructured discretization is face-based. While all 
unknown state variables are cell-centered, the systems of 
equations used in the implicit time stepping procedure are 
constructed face by face. Therefore, cells with an arbi-
trary number of arbitrarily-shaped constitutive faces are 
accepted. The code is fully parallel using the message 
passing interface (MPI) protocol. A detailed description 
of the solver is given by [32]. Information on the interface-
capturing scheme can also be found in [49].

Computational grids are created through adaptive grid 
refinement [47, 48], to optimize the efficiency of the solver 
and to simplify the automatic creation of suitable grids. The 
adaptive grid refinement method adjusts the computational 
grid locally, during the computation, by dividing the cells of 
an original coarse grid. The decision where to refine comes 
from a refinement criterion, a tensor field C(x, y, z) computed 
from the flow. The tensor is based on the water surface posi-
tion and on second derivatives of pressure and velocity, 
which gives a crude indication of the local truncation errors. 

The grid is refined until the dimensions �p,j ( j = 1, 2, 3 ) of 
each hexahedral cell p satisfy

The refinement criterion based on the second deriva-
tives of the flow is not very sensitive to grid refinement 
[48], so the cell sizes everywhere are proportional to the 
constant threshold Tr.

For the MF optimization, grid adaptation is used to 
take into account the need for several fidelities. The inter-
est of this procedure is that different fidelity results can 
be obtained by running the same simulations and simply 
changing the threshold Tr . Thus, it is straightforward to 
automate the MF simulations.

4.2  �navis

�navis is a general purpose URANS solver based on a 
finite-volume discretization, with variables co-located at 
the cell centers. Turbulent stresses are taken into account 
by the Boussinesq hypothesis; several turbulence models 
(both algebraic and differential) are implemented. The free 
surface is taken into account through a single-phase level 
set algorithm [5, 8].

To treat complex geometries or bodies in relative 
motion, the numerical algorithm is discretized on a block-
structured grid with partial overlap, possibly in relative 
motion [10, 53]. This approach makes domain discretiza-
tion and quality control of the computational grid much 
easier than with similar discretization techniques imple-
mented on structured grids with adjacent blocks. Unlike 
standard multi-block approaches, grid connections and 
overlaps are not trivial and have to be calculated in the 
pre-processing phase. The coarse/fine grain parallelization 
of the RANS code is obtained by distributing the struc-
tured blocks among available distributed and/or shared 
memory processors (nodes); shared memory capability 
(threads) is used mainly for do-loop parallelization. Pre-
processing tools, which allow an automatic subdivision 
of structured blocks and their distribution among the pro-
cessors, are used for load balancing. The communication 
between the processors for the coarse grain paralleliza-
tion is obtained using the standard MPI library, whereas 
the fine grain parallelization (shared memory) is achieved 
through the open message passing library. The efficiency 
of the parallel code has been examined in earlier research, 
showing satisfactory results in terms of acceleration for 
different test cases [6].

The solver uses a full multi grid—full approximation 
scheme (FMG–FAS), with an arbitrary number of grid 
levels. In the FMG–FAS approximation procedure, the 

(24)‖Cp�p,j‖ = Tr.
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solution is computed on the coarsest grid level first. Then, 
it is approximated on the next finer grid and the solution is 
iterated by exploiting all the coarser grid levels available 
with a V-Cycle. The process is repeated up to the finest 
grid level. Thus, the procedure provides multi-fidelity data 
without any additional computational cost. More details 
on the code implementation and applications can be found 
in [5, 8, 9, 15].

5  Problem setups

The setups for each CFD-based design optimization prob-
lem are described in the following subsections.

5.1  NACA hydrofoil

The computational domain runs from 11c in front of the 
leading edge to 16c behind the hydrofoil and from −10 
to 10c vertically. Dirichlet conditions on the velocity are 
imposed, except on the outflow side which has an imposed 
pressure. The hydrofoil surface is treated with a wall law 
and y+ = 60 for the first layer. Turbulence is modeled with 
the standard k − � SST model [27]. To obtain the same 

lift for all geometries (see Eq. 16), the angle of incidence 
� for the hydrofoil is adjusted dynamically during the 
simulations.

Up to three fidelity levels are used. The initial com-
putational grid has 2654 cells, the refinement threshold 
value Tr is set equal to 0.1, 0.2, and 0.4 from highest- 
to lowest-fidelity. This results in a cell size ratio of 4 : 1 
between the refined fine and coarse grids. The final grids 
(G) have about 12.8 k, 5.7 k, and 3.7 k cells, respectively 
(see Fig. 7). Highest- to lowest-fidelity simulations require 
about 17, 9, and 5 minutes, respectively, of wall-clock time 
to converge. The resulting computational cost ratios are 
about �2 = 0.5 and �3 = 0.3.

5.2  DTMB 5415 model

Simulations of the DTMB 5415 are performed on half geom-
etries. The domain runs from 1.5Lpp in front of the bow to 
3Lpp behind the stern, up to 2Lpp laterally, and from −1.5Lpp 
to 0.5Lpp vertically. Dirichlet conditions on the velocity are 
imposed on the inflow and side faces, pressure is imposed on 
the top, bottom, and outflow side. The hull is treated with a 
wall law and y+ = 60 for the first layer. Turbulence is mod-
eled with k − � SST.

Fig. 7  NACA hydrofoil computational grids (G) for ISIS-CFD; from left to right G1 (12.8 k cells), G2 (5.7 k cells), and G3 (3.6 k cells)

Fig. 8  The different steps of the ISIS-CFD grid creation for the DTMB 5415 optimization
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The grids for the simulation of different geometries are 
obtained through grid deformation. Each simulation starts 
from the same original grid (see Fig. 8a). The grid is divided 
in layers around the hull. For each geometry �(�, �) , the dis-
placement of the hull faces with respect to �0(�) is propa-
gated through these layers [13]. The displacements are mul-
tiplied with a weighting factor which goes from 1 on the 
hull to 0 on the outer boundaries, so that the latter are not 
deformed (see Fig. 8b). The original grid is coarse, since 
deforming these is easier and safer than for fine grids. The 
final grid, including all the refinement at the free surface, is 
created using adaptive refinement (see Fig. 8c).

The initial grid has 130 k cells. The thresholds for the 
simulations with different fidelities are Tr = 0.0145 , 0.0072, 
and 0.0036 from coarse to fine. This implies a 4 : 1 cell size 
ratio between the coarsest and finest grids and results in 
approximately 240 k, 860 k, and 3.4 M cells respectively. 
On a 20-core workstation, the computations take about 1.2 
h, 4 h, and 19 h each. The resulting computational cost ratios 
are about �2 = 0.21 and �3 = 0.06.

5.3  RoPax ferry

The computational grid is composed of 54 blocks, for a total 
of about 5.4 M cells for the finest grid (only half of the 
domain is discretized); the domain extends to 2 Lpp in front 
of the hull, 3 Lpp behind, and 1.5Lpp on the side; a depth of 
2 Lpp is imposed.

The Spalart–Allmaras turbulence model is used [43]. 
Wall-functions are not adopted, therefore y+ ≤ 1 is ensured 
at the wall. On solid walls, the velocity is set equal to zero 
and a zero normal gradient is enforced on the pressure field; 
at the (fictitious) inflow boundary, the velocity is set to the 
undisturbed flow value and the pressure is extrapolated from 
the inside; the dynamic pressure is set to zero at the outflow, 
whereas the velocity is extrapolated from inner points. On 
the top boundary, which remains always in the air region, 
fluid dynamic quantities are extrapolated from inside.

Four grid levels are used (see Fig. 9, from coarser to finer: 
G4, G3, G2, and G1), each obtained from the next finer grid 
with a refinement ratio equal to 2, resulting in �2 = 0.125 , 
�3 = 0.0156 , and �4 = 0.002.

6  Numerical results

The optimization results are assessed by three error met-
rics [39]. Knowing the position of the global optimum �̌ , 
these metrics characterize the normalized error in the design 
space, the objective function space, and Euclidean distance 
in the normalized � − f (�) hyperspace, respectively:

where � is the array of the design variables (normalized to 
a unit hypercube), �⋆ is the location of the optimum of the 
approximation to f, and R1 is the range of the highest-fidel-
ity level computed considering the initial training set. The 
error metrics Ex and Ef  evaluate design and goal accuracy, 
whereas the aggregate metric Et evaluates accuracy bal-
ancing the performance quantification of the method when 
optima are in very flat or very peaky portions of the design 
space. It may be noted that Eq. 26 uses an evaluation of the 
objective with the highest fidelity level at the point �⋆ identi-
fied by the surrogate as the global optimum.

In the absence of a reference optimum (as often occurs in 
SDD problems), a different set of design-sensitive metrics 
are employed. These metrics quantify design point location 
and objective function, respectively:

(25)Ex ≡
‖�⋆ − �̌‖√

N
,

(26)Ef ≡
f (�⋆) − f (�̌)

R1

,

(27)Et ≡

√
E2
x
+ E2

f

2
,

Fig. 9  RoPax ferry grids (bow detail): from left to right G1, G2, G3, and G4
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where �0 is the original objective function value, meaning 
that Δx evaluate the distance of the global optimum posi-
tion from the original design in the design variable space, 
whereas Δf  provides the objective function variation with 
respect to the parent design. Additionally, the prediction 
error is used to quantify the error of the surrogate model in 
predicting the minimum value:

Whenever different fidelities are tested, the single fidelity 
surrogate model is based on the highest-fidelity level availa-
ble, the two-fidelity surrogate model is based on the highest- 
and the lowest-fidelities, whereas intermediate-fidelity levels 
are added for three- and higher-fidelity surrogate models.

(28)Δx ≡
‖�⋆ − �0‖√

N

(29)Δf ≡
f (�⋆) − f (�0)

f (�0)
,

(30)Ep =
f̂ (�⋆) − f (�⋆)

R1

,

6.1  Analytical test problems

The computational cost of the analytical test problems is 
negligible, therefore an artificial computational cost is 
defined as �1 = 1 , �2 = 0.2 , and �3 = 0.1 . The performance 
of the method is assessed using N = 1, 2, 3 fidelity levels. 
A computational budget equal to 40 + 5D is used. Since 
the noise is synthetically added to the analytical functions 
by a numerical generator of random numbers, a statistical 
analysis [16] is performed varying the seed of the ran-
dom number generator. For each problem, problem size, 
and number of fidelities 50 repetitions are performed. The 
statistics of the three metrics (for the maximum compu-
tational cost) are reported in Table 2 and discussed using 
box plots. The box plot shows the q1 , q2 (median), and 
q3 quartiles, while the lower and upper whiskers extend 
to the most extreme data points not considered outliers. 
Defining the inter-quartile range (IQR) as IQR = q3 − q1 , 
the outliers are those values greater than q3 + 1.5IQR or 
less than q1 − 1.5IQR.

Figure 10 shows the results for the problem P1 . For all 
the metrics the lowest median is achieved with N = 3 . Fur-
thermore, as the number of fidelities increases the IQR 

Fig. 10  Analytical test problem P1 : from left to right Ex , Ef  , and Et

Fig. 11  Analytical test problem P2 , from left to right Ex , Ef  , and Et
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decreases. Finally, with N = 3 the median is always closer 
to q1 than to q3.

For the problem P2 (see Fig.  11), overall the MF 
( N = 2, 3 ) surrogate models achieve better results than 
the HF ( N = 1 ) surrogate. Specifically, the median of the 
MF surrogates is lower than the HF surrogate and also the 
IQR is smaller. Finally, the results for N = 2 and N = 3 are 
very close, with N = 3 achieving slightly better results than 
N = 2 , see Table 2.

Figure 12 shows the metrics for the P3 problem with 
D = 2, 5, 10 (from top to bottom). For D = 2 the N = 1, 2 
surrogates have negligible IQR, this is due to the fact that 
they use many high-fidelity function evaluations (namely 
50 and 45, respectively) and that the noise for the high-
fidelity function is small. Therefore, the active learning 

method is only slightly disturbed by the training set noise 
and performs an almost equal sampling for each repetition. 
Differently, when N = 3 a non-negligible IQR is shown 
since the lowest-fidelity function has a smaller range and 
the active learning method is, therefore, more affected by 
the training set noise. For D = 2 the HF ( N = 1 ) surrogate 
achieves the best performance. For D = 5 the IQR is sig-
nificant for all the surrogates, in particular, N = 3 shows 
the largest IQR but also the minimum median value for 
all the metrics. Finally, for D = 10 the MF surrogate with 
N = 3 shows the smaller median value for Ex and Et and 
the smaller IQR for all the metrics. The values of Ef  do 
not reflect the magnitude of the position error Ex because 
of the peculiar shape of the Rosenbrock function, which 

Fig. 12  Analytical test problem P3 , from left to right Ex , Ef  , and Et , from top to bottom D = 2, 5, 10
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is characterized by a long and flat valley extending from 
the neighborhood of the global minimum.

Finally, Fig.  13 shows the error metrics for the P4 
problem with D = 2, 5, 10 (from top to bottom, respec-
tively). For D = 2 and D = 5 the MF surrogate with N = 2 
achieves the lowest Et error, whereas the smallest IQR 
is achieved by N = 1, 3 surrogates for D = 2, 5 , respec-
tively. For D = 10 the MF ( N = 2, 3 ) surrogates achieve 
the smallest Et values, where N = 3 shows a larger IQR 
than N = 2.

Table 2 summarizes the median of the surrogate models 
performance for the analytical problems. Overall, the MF 
( N = 2, 3 ) surrogate models outperform the HF ( N = 1 ) sur-
rogate model especially when D > 2 . Furthermore, the MF 

surrogate model with N = 3 outperforms the MF surrogate 
model with N = 2 in most of the cases.

6.2  NACA hydrofoil

For this problem a reference global minimum from a 
high-fidelity optimization is available [31], which is 
�̌ = [0.3776, 0.3333, 0.0000] with f (�̌) = 7.2116E − 3.

Figures 14 and 15 show the global surrogate model pre-
diction with D = 1, 2 , respectively, at the final iteration of 
the active learning procedure. The active learning method 
is able to identify the global minimum region for all cases 
( N = 1, 2, 3 ). For D = 1 , using a single-fidelity surrogate 
model (see Fig. 14, left) the noise in the CFD outputs is 
negligible. Differently, the use of two fidelities (see Fig. 14, 

Fig. 13  Analytical test problem P4 , from left to right Ef  , Ex , and Et , from top to bottom D = 2, 5, 10
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center) introduces a significant amount of noise (due to 
the low-fidelity CFD outputs), negatively affecting the MF 
prediction. Finally, with an intermediate-fidelity level (see 
Fig. 14, right) the noise is still present, but it is filtered out 
more effectively by the addition of a less noisy intermediate 
fidelity model. The improvement of the MF surrogate model 
prediction when adding fidelities can be associated with 
the different number of optimal RBF centers (see Eq. 12) 
used for the lowest fidelity: K∗ = 20 and 13, for N = 2 and 
3, respectively. A similar behavior is found for D = 2 (see 
Fig. 15).

Table 3 summarizes the results for the NACA hydro-
foil optimization problem. The error metrics for D = 1, 2, 3 
are comparable. Although the lowest errors are generally 
achieved by the HF ( N = 1 ) surrogate model, the MF 
( N = 2, 3 ) surrogate models achieve very similar values 
although the numerical noise in the MF training sets is 
significantly higher than in the HF training set. This shows 
that the proposed approach is effective in filtering out the 
numerical noise. Furthermore, N = 3 always outperforms 
N = 2.

Table 2  Analytical 
test problems, summary of the 
results

Test D N CC Median [Ex]% Median [Ef ]% Median [Et]% Median [J1] Median [J2] Median [J3]

P1 1 1 45 50.5 33.9 45.1 45 – –
1 2 45 2.87 2.70 2.79 27 – 183
1 3 45 0.98 0.34 0.73 10 85 182

P2 2 1 50 4.42 6.27 5.59 50 – –
2 2 50 2.68 2.25 2.56 26 – 235
2 3 50 2.65 2.08 2.38 8 113 184

P3 2 1 50 24.3 10.4 18.7 50 – –
2 2 50 46.55 0.49 32.9 45 – 55
2 3 50 27.3 0.79 19.3 20 101 101
5 1 65 6.70 4.96 5.55 65 – –
5 2 65 6.67 1.80 4.83 52 – 138
5 3 65 6.39 0.59 4.54 15 165 167
10 1 90 27.7 6.08 19.7 90 – –
10 2 90 24.9 8.07 18.6 72 – 182
10 3 90 23.1 6.45 17.3 44 137 199

P4 2 1 50 47.2 2.18 33.5 50 – –
2 2 50 45.5 2.79 32.2 9 – 410
2 3 50 46.8 2.42 33.1 7 34 357
5 1 65 59.74 6.16 42.5 65 – –
5 2 65 59.45 7.05 42.3 16 – 490
5 3 65 59.7 5.66 42.4 15 25 441
10 1 90 64.2 52.1 59.8 90 – –
10 2 90 62.9 17.7 45.8 27 – 620
10 3 90 63.3 14.1 45.8 26 40 554
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Fig. 14  NACA hydrofoil, surrogate models and associated prediction uncertainty for D = 1 ; from left to right N = 1, 2, 3



3198 Engineering with Computers (2023) 39:3183–3206

1 3

An analysis of the noise behavior in the simulations is 
given in Fig. 16, which shows the evolution of the drag for a 
systematic variation of the foil thickness over a small range. 
The drag on adaptively refined grids is compared with a sys-
tematic series of grids created directly by the Hexpress grid 
generator. These results confirm that for this case, the noise 
is mostly due to the adaptive refinement procedure, since the 
grids without adaptation produce a much smoother behavior. 
These oscillations in the forces are related to small changes 
in the topology of the adapted grids (i.e. cells, especially in 
the boundary layers and at the leading edge, which are either 
refined or not depending on small changes in the hydrofoil 
geometry). Also, the dynamic adjustment of the foil angle 
of attack depends, within the tolerances of the algorithm, 
on the history of the forces. Thus, if the history of the grid 
refinement is different, the converged angle of attack may 

vary, even if the final grid topology is the same. This makes 
it difficult to identify a single cause for the noise.

However, the noise is proportional to the numerical errors 
of the simulations: it is most pronounced on the coarsest grid 
and disappears rapidly as the adapted grids become finer. In 
addition, based on a rough estimation of the grid conver-
gence for the two series, the adapted grids produce similar 
accuracy as non-adapted grids with four to five times more 
cells, thanks to the excellent capturing of the flow around 
the leading edge on the adapted grids (see Fig. 8), that is 
essential to obtain the right forces for a lifting hydrofoil. 
Thus, the main benefit of the adaptive refinement here is a 
gain in efficiency for the CFD simulation.

Finally, even in the Hexpress-only grids, jumps in 
the drag can be observed when the topology of the grids 
changes. However, these jumps are less frequent than for the 
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Ĉ
D
(×

10
−
3
)[
−
]

0.0 0.2 0.4 0.6 0.8 1.0
x1 [−]

0.0

0.2

0.4

0.6

0.8

1.0

x
2
[−

]

T1 T2 T3

7.00

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

Ĉ
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Fig. 15  NACA hydrofoil, surrogate models (top) and associated prediction uncertainty (bottom) for D = 2 : from left to right N = 1, 2, 3

Table 3  NACA hydrofoil 
optimization problem, summary 
of the results

D N CC Ex% Ef% Et% J1 J2 J3

1 1 45 0.10 0.14 0.17 45 – –
1 2 45 0.07 0.11 0.13 14 – 103
1 3 45 0.04 0.11 0.12 7 10 104
2 1 45 0.00 0.03 0.03 45 – –
2 2 45 0.27 0.95 0.99 6 – 130
2 3 45 0.02 0.08 0.08 7 19 96
3 1 45 0.05 0.41 0.41 45 – –
3 2 45 0.21 0.59 0.63 14 – 104
3 3 45 0.09 0.52 0.53 9 14 95
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adaptively refined grids and thus, much harder to predict. It 
may actually be preferable to have noise everywhere, which 
can be filtered with a procedure like the one described in this 
paper, rather than apparently smooth CFD results but with 
some unpredictable local jumps.

6.3  DTMB 5415 model

For this problem, a reference solution is not available, there-
fore only the Eqs. 28 and 29 are used as metrics.

Figure 17 shows the surrogate models with N = 1, 2, 3 
and the associated prediction uncertainty for the DTMB 
5415 optimization problem. The MF method with N = 3 
identifies two minimum regions in the neighborhood of 
(0.15, 0.75) and (0.65, 0.2). However, an inspection of the 
actual highest-fidelity data reveals that the first optimum 
may be a numerical artifact of the surrogate model. Nev-
ertheless, the active learning procedure correctly ignores 
the upper-right and lower-left corners, where the predic-
tion uncertainty is high, but the objective function value 
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Fig. 16  NACA hydrofoil, drag coefficient as a function of t for 
c = 0.0475 and p = 0.475 . The drawn lines are adapted grids 
(ADR, G3=3.6 k, G2=5.4 k, G1=11.8 k, and G0=36.3 k cells), the 
dashed lines are Hexpress-only grids (HEX, G3=14.4 k, G2=24.5 k, 
G1=37.4 k, and G0=52.8 k cells)

Table 4  DTMB 5415 and 
RoPax SDD problems, 
summary of the results

Problem D N CC x1 x2 Δx% Δf% |Ep|% J1 J2 J3 J4

DTMB 5415 2 1 24.0 0.5728 0.0828 29.9 –3.9 0.71 24 – – –
2 2 20.5 0.4244 0.3066 14.7 –3.5 9.07 7 – 225 –
2 3 23.5 0.5506 0.1330 26.2 –4.5 1.73 16 18 62 –

RoPax 2 4 9.38 0.9158 1.0000 46.0 –12.7 10.8 8 9 10 50
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Fig. 17  DTMB 5415, surrogate models prediction (top) and associated uncertainty (bottom); from left to right N = 1, 2, 3
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is high too. The optimization results are summarized in 
Table 4. It may be noted that for N = 2 not all the avail-
able budget is used since the active learning process was 
prematurely terminated. The numerical noise of the low-
fidelity evaluations was forcing the sampling to cluster 
samples in previously sampled areas without improving 
the surrogate model, which made further simulations use-
less. For N = 1 the lowest prediction error is achieved, 
this is expected since the high-fidelity evaluations are less 
affected by numerical noise. However, for the MF with 
N = 3 , the introduction of an intermediate fidelity level 
has significantly reduced the prediction error of the sur-
rogate model. Finally, the largest reduction of the total 
resistance is achieved with N = 3 . The optimal hull shape 
is compared to the original in Fig. 18, whereas Fig. 19 
shows the original and optimized wetted area. It is worth 
noting that the optimized hull has a completely dry stern.

Figure 20 (left) compares the pressure distribution along 
the optimal and the original hull surfaces. The optimized 
hull has a stronger pressure gradient along the hull, but the 
low pressure zone is mostly perpendicular to the flow direc-
tion, so it has little influence on the drag. Figure 20 (right) 
shows the wave elevation of the original and optimized hull, 

which indicates the main reason for the resistance reduction. 
The optimal geometry has a bulge behind the stern which 
creates a second bow wave, out of phase with the first one. 
The two waves cancel, which produces a flattened free-sur-
face in comparison with the original hull. This indicates that 
the single-speed optimum shape is dependent on the Froude 
number Fr: since the wavelengths change with Fr, they do 
not cancel in off-design conditions.

Like for the NACA hydrofoil, a sensitivity analysis is per-
formed to assess the noise in the CFD data for the DTMB 
5415. Figure 21 shows the resistance variation for a small 
change in x2 at fixed x1 = 0 (i.e. close to the optimum), for 
the three fidelities used, confirming the noise presence in the 
CFD data. As for the hydrofoil problem, there is less noise 
for the medium grid than for the coarse grid. In the fine-grid 
solutions, the noise appears to be even less. However, the 
curve has a discontinuous slope at x2 = −0.825.

Moreover, for this more complex case, while the noise 
is still related to topology changes in the adapted grids, it 
is possible to identify distinct sources for the noise. For the 
lowest-fidelity data, the noise is mostly associated with mod-
ifications in the position and the smearing of the wave sys-
tem. For example, Fig. 22 (left) shows random fluctuations 

Fig. 18  DTMB 5415, comparison of hull shapes

Fig. 19  DTMB 5415, mass-fraction on the hull-surface; original (top) and optimized (bottom), along with a stern detail (right)
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in the thickness and the position of the volume fraction dis-
continuity in the first trough and the shoulder wave. Since 
the amount of wetted surface has a large influence on the 
drag, these changes in the waves explain the oscillations 
in the forces. Figure 22 (center and right) shows that this 
perturbation behaves like the noise for the hydrofoil: the 
finer the grid, the smaller the oscillations. The stern wave 
crest in Fig. 23 shows similar oscillations. The gradient 
change in the fine grid solutions is explained by the stern 
wave too (see Fig. 23, right): a topology change occurs at 
x2 = −0.825 close to the stern, where a double wave ridge 
with a small wetted patch on the transom is replaced by a 

single, shallower ridge with less wetting. On the coarse grid, 
this effect is absent (see Fig. 23, left).

The transom is oriented normal to the flow, so even a 
small change in wetted surface here has a large influence on 

Fig. 20  DTMB 5415, comparison of the original (top) and optimized (bottom) hull shapes; hull-surface pressure (left) and wave elevation pat-
tern (right)
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Fig. 21  DTMB 5415, resistance sensitivity to x2 variation ( x1 = 0)

Fig. 22  DTMB 5415, bow wave: from top to bottom x2 = −0.85 , −0.825 , −0.8 , from left to right G3, G2, G1

Fig. 23  DTMB 5145, stern wave pattern: from top to bottom 
x2 = −0.85 , −0.825 , −0.8 , −0.8 , from left to right G3, G2, G1
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the resistance. This may imply that the optimum for this case 
is located around the transition from partially wetted to dry 
transom flow—just like the optimum for the NACA hydro-
foil occurs when the incoming flow is aligned with the cam-
ber line. However, the effect likely depends on the choice of 

the optimization problem: for a higher Froude number, the 
transom would remain dry for all geometries.

This topology change in the highest-fidelity simulations, 
which probably occurs in a more or less chaotic way depend-
ing on small changes in the mesh, is an explanation of why 
the LCB sampling requests a large number of highest-fidel-
ity data points close to the optimum. While this may seem 
wasteful, it is required to filter the noise in the highest-fidel-
ity data, so this behavior indicates that the algorithm adapts 
itself to the requirements of the data.

6.4  RoPax ferry

As for the DTMB 5415 SDD problem, no reference solution 
is available for the RoPax SDD one, therefore the surrogate 
performance is assessed by Eqs. 28 and 29.

Figure 24 shows the MF surrogate model (with N = 4 ) 
and the associated prediction uncertainty. The method iden-
tifies two minimum regions in the neighborhood of (1.0, 1.0) 
and (0.9, 0.75). The active learning is strictly focused on 
the global minimum region and the overall surrogate model 
prediction uncertainty is low. Table 4 summarizes the results 
of the SDD procedure. The MF surrogate model provides a 
prediction error at the minimum close to 10% and an objec-
tive function improvement equal to 12.7%.

The original and the optimized hull stations are compared 
in Fig. 25: the optimized hull is characterized by a reduc-
tion of the submergence of the stern region and a less pro-
nounced bulbous bow. As a consequence, surface pressure 
fields and wave patterns of the ship advancing straight ahead 
are significantly different in comparison to the original. In 
particular, the optimized hull shows a dry stern vault, with a 
reduction of the wetted area as a consequence (see Fig. 26). 
Furthermore, the wave pattern of the optimized shape high-
lights a less pronounced wave throat and a stronger rooster 
tail, as shown in Fig. 27.

The bow wave of the optimized hull is similar to the origi-
nal, with the crest for the optimized shape slightly higher 
and retarded due to the reduced length and the increased 
height of the bulbous bow (see Fig. 25).

7  Conclusions and future work

A method was presented and discussed based on a gener-
alized multi-fidelity surrogate model and active learning, 
for design-space exploration and global optimization with a 
limited budget of function evaluations. The method is able 
to leverage an arbitrary number of fidelity levels and it is 
intended to keep a high effectiveness also in presence of 
training data affected by numerical noise, as often occurs 
with CFD-based evaluations.
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Fig. 24  RoPax ferry,  MF surrogate  prediction (top) and associated 
uncertainty (bottom)

Fig. 25  RoPax ferry, original (black lines) and optimized (blue-
dashed lines) shapes  with the free-surface line (FS)
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The proposed method is based on stochastic radial basis 
functions with least squares regression and in-the-loop 
optimization of the surrogate hyperparameters. The MF 
approximation is obtained with an additive correction of 
a low-fidelity trained surrogate with the surrogate of the 
errors between consecutive fidelities. The surrogate model 
is dynamically updated by an active learning procedure 
that automatically queries new samples at a specified fidel-
ity. The sampling method is based on the LCB approach 
and considers the benefit-cost ratio associated with using 
different fidelity sources.

The method was tested on a set of four analytical test 
problems, a NACA hydrofoil optimization, the DTMB 
5415 hull-form optimization, and the hull-form optimiza-
tion of a RoPax ferry. The assessment of the MF surrogate 

model performance was performed based on its ability to 
identify the optimum position and the error between the 
verified predicted minimum and the real global optimum 
(when available).

Based on the current test cases, the following conclu-
sions can be drawn: 

1. The use of an MF surrogate model is more convenient 
than a surrogate model based on HF only. In the analyti-
cal tests the MF surrogate model overall achieves lower 
errors than the HF surrogate. In most cases, the use of 
three fidelities ( N = 3 ) provides lower errors than the 
use of two fidelities. The advantage of using MF sur-
rogate models as opposed to HF surrogates is more sig-
nificant when the problem dimensionality (D) increases. 
Indeed, as the design space dimension increases the pre-
diction uncertainty increases at the corners of the design 
space. This is because the distance of the corners from 
the initial training points increases with the dimension. 
With a larger uncertainty at the corners, it is more likely 
that the active learning method places new samples at 
the corners. This is expected to favor the multi-fidelity 
approach over the single-fidelity since the former per-
forms most of the exploration with low-fidelity data. 
Based on the aggregate metric Et , the MF surrogate 
models always outperformed the HF surrogate model 
for D = 5 and D = 10 . Considering the NACA hydrofoil 
problem the MF surrogate model with three fidelities 
achieves lower error values than with two fidelities. The 
reason for this is that the extra fidelity levels add robust-
ness, providing more reliable noise filtering. Increasing 
the number of fidelity levels could potentially provide 
even better performance. Nevertheless, this should be 

Fig. 26  RoPax ferry, non-dimensional hull-surface pressure and wave patterns. Colors represent non-dimensional pressure levels

Fig. 27  RoPax ferry, non-dimensional wave patterns. Colors repre-
sent non-dimensional wave elevation
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carefully assessed on a case-by-case basis consider-
ing the trade-off between accuracy and computational 
cost associated with additional fidelity levels. Indeed, 
cheaper models may lead to significant computational 
cost reduction but may be too inaccurate, thus mislead-
ing the MF method. Differently, fidelity levels with 
higher accuracy may have a quite high-computational 
cost, thus not increasing significantly the overall effi-
ciency.

2. The active learning process of the MF surrogate allows 
for a wider exploration of the design space, compared 
to using the HF only, as SDD problems show. This is 
because, in general, the lower the fidelity, the higher the 
associated noise (see e.g. Figs. 16 and 21). Therefore, 
the surrogate model prediction uncertainty associated 
with the lowest fidelity is higher and distributed over 
a wider region of the design space. For this reason, the 
combination of LCB with the MF method provides a 
wide exploration of the whole design space (see Figs. 14 
and 15).

3. The proposed active learning method tends to cluster 
training points in the most noisy regions of the design 
space (see e.g. Figs. 14, 15, and 17). This is due to the 
use of LCB (see Eq. 8) with a regressive model for noisy 
data. The prediction uncertainty associated with this 
model does not vanish at the training points. As a conse-
quence, training point neighborhoods may be identified 
as promising regions to add new points through Eq. 8. 
This improves the noise identification in noisy regions, 
but at the same time it prevents a wider exploration of 
the design space with more evenly distributed training 
points. A proper trade-off between noise identification 
and design space exploration should therefore be care-
fully addressed.

4. Even if the adaptive grid refinement and the multi-grid 
resolution methods cannot be directly compared, they 
perfectly fit the MF method philosophy and formulation. 
They represent a good example of simulation methods 
that naturally produce results spanning a range of fidel-
ity levels and therefore represent a natural fit for MF 
methods.

Future work includes the assessment of alternative active 
learning approaches through: (a) different definitions of the 
prediction uncertainty in the presence of noise, to address 
the question of training points clustering [50]; (b) the defi-
nition of dynamic weights for the objective function and 
prediction uncertainty, whose values are based on the overall 
and remaining budget of function evaluations, to achieve 
a better balance of the exploration and exploitation of the 
region of the minimum during the entire optimization pro-
cess. Finally, the possibility of selecting the number of RBF 
centers via clustering metrics, such as the within-cluster 

sums of squares [20] or the silhouette [34], will be addressed 
as an alternative to the leave-one-out cross-validation 
metrics.

Acknowledgements CNR-INM is partially supported by the Office of 
Naval Research through NICOP grant N62909-18-1-2033, adminis-
tered by Dr. Woei-Min Lin, Dr. Elena McCarthy, and Dr. Salahuddin 
Ahmed of the Office of Naval Research and Office of Naval Research 
Global, and the EU funded project HOLISHIP (HOLIstic optimisa-
tion of SHIP design and operation for life cycle), grant agreement N. 
689074. The development of the methodology is conducted in col-
laboration with the NATO STO AVT task group on ”Goal-driven, 
multi-fidelity approaches for military vehicle system-level design” 
(AVT-331).

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Abdullah JM, Ahmed T (2019) Fitness dependent optimizer: 
inspired by the bee swarming reproductive process. IEEE Access 
7:43473–43486

 2. Ait-Amir B, Pougnet P, El Hami A (2015) Meta-model develop-
ment. In: El Hami A, Pougnet P (eds) Embedded mechatronic 
systems 2. Elsevier, Amsterdam, pp 151–179

 3. de Baar J, Roberts S, Dwight R, Mallol B (2015) Uncertainty 
quantification for a sailing yacht hull, using multi-fidelity kriging. 
Comput Fluids 123:185–201

 4. Beran P.S, Bryson D, Thelen A.S, Diez M, Serani A (2020) Com-
parison of multi-fidelity approaches for military vehicle design. 
In: AIAA AVIATION 2020 FORUM, p 3158

 5. Broglia R, Durante D (2018) Accurate prediction of complex free 
surface flow around a high speed craft using a single-phase level 
set method. Comput Mech 62(3):421–437

 6. Broglia R, Zaghi S, Muscari R, Salvadore F (2014) Enabling 
hydrodynamics solver for efficient parallel simulations. In: 2014 
International Conference on High Performance Computing & 
Simulation (HPCS) IEEE, pp 803–810

 7. Cox DD, John S (1992) A statistical method for global optimiza-
tion. In: [Proceedings] 1992 IEEE International Conference on 
Systems, Man, and Cybernetics, IEEE, pp 1241–1246

 8. Di Mascio A, Broglia R, Muscari R (2007) On the application 
of the one-phase level set method for naval hydrodynamic flows. 
Comput Fluids 36(5):868–886

http://creativecommons.org/licenses/by/4.0/


3205Engineering with Computers (2023) 39:3183–3206 

1 3

 9. Di Mascio A, Broglia R, Muscari R (2009) Prediction of hydro-
dynamic coefficients of ship hulls by high-order Godunov-type 
methods. J Mar Sci Technol 14(1):19–29

 10. Di Mascio A, Muscari R, Broglia R (2006) An overlapping grids 
approach for moving bodies problems. In: Proceedings of 16th 
Int. Offshore and Polar Engineering Conference, San Francisco, 
California, USA

 11. Diez M, Campana EF, Stern F (2018) Stochastic optimization 
methods for ship resistance and operational efficiency via CFD. 
Struct Multidiscip Optim 57(2):735–758

 12. Diez M, Peri D, Fasano G, Campana EF (2012) Hydroelastic 
optimization of a keel fin of a sailing boat: a multidisciplinary 
robust formulation for ship design. Struct Multidiscip Optim 
46(4):613–625

 13. Durand M (2012) Light and flexible fluid/structure interaction, 
application to sailing boats. Theses, Ecole Centrale de Nantes 
(ECN). https:// hal. archi ves- ouver tes. fr/ tel- 01203 748

 14. Fasshauer GE, Zhang JG (2007) On choosing “optimal’’ 
shape parameters for RBF approximation. Numer Algorithms 
45(1–4):345–368

 15. Favini B, Broglia R, Di Mascio A (1996) Multi-grid acceleration 
of second order ENO schemes from low subsonic to high super-
sonic flows. Int J Num Methods Fluids 23:589–606

 16. Ficini S, Iemma U, Pellegrini R, Serani A, Diez M (2021) Assess-
ing the performance of an adaptive multi-fidelity gaussian process 
with noisy training data: a statistical analysis. In: AIAA AVIA-
TION 2021 FORUM, p 3098

 17. Forrester AI, Sóbester A, Keane AJ (2007) Multi-fidelity optimi-
zation via surrogate modelling. Proc R Soc A Math Phys Eng Sci 
463(2088):3251–3269

 18. Han ZH, Görtz S, Zimmermann R (2013) Improving variable-
fidelity surrogate modeling via gradient-enhanced kriging 
and a generalized hybrid bridge function. Aerosp Sci Technol 
25(1):177–189

 19. Karlberg M, Löfstrand M, Sandberg S, Lundin M (2013) State of 
the art in simulation-driven design. Int J Prod Dev 18(1):68–87

 20. Ketchen DJ, Shook CL (1996) The application of cluster analysis 
in strategic management research: an analysis and critique. Strat 
Manag J 17(6):441–458

 21. Leotardi C, Serani A, Iemma U, Campana EF, Diez M (2016) A 
variable-accuracy metamodel-based architecture for global MDO 
under uncertainty. Struct Multidiscip Optim 54(3):573–593

 22. Li X, Gao W, Gu L, Gong C, Jing Z, Su H (2017) A cooperative 
radial basis function method for variable-fidelity surrogate mod-
eling. Struct Multidiscip Optim 56(5):1077–1092

 23. Liu H, Ong YS, Cai J (2018) A survey of adaptive sampling for 
global metamodeling in support of simulation-based complex 
engineering design. Struct Multidiscip Optim 57(1):393–416

 24. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans 
Inform Theory 28(2):129–137

 25. Mainini L, Serani A, Rumpfkeil MP, Minisci E, Quagliarella D, 
Pehlivan H, Yildiz S, Ficini S, Pellegrini R, Di Fiore F, Bryson 
D, Nikbay M, Diez M, Beran PS (2022) Analytical benchmark 
problems for multifidelity optimization methods. arXiv preprint 
arXiv: 2204. 07867

 26. Martins JR, Lambe AB (2013) Multidisciplinary design optimiza-
tion: a survey of architectures. AIAA J 51(9):2049–2075

 27. Menter FR (1994) Two-equation eddy-viscosity turbulence mod-
els for engineering applications. AIAA J 32(8):1598–1605

 28. Moran J (2003) An introduction to theoretical and computational 
aerodynamics. Courier Corporation, North Chelmsford

 29. Ng LWT, Eldred M (2012) Multifidelity uncertainty quantification 
using non-intrusive polynomial chaos and stochastic collocation. 
In: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural 
dynamics and materials conference, structures, structural dynam-
ics, and materials and co-located conferences

 30. Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity 
surrogates. Struct Multidiscip Optim 55(3):1029–1050

 31. Ploé P, Lanos R, Visonneau M, Wackers J (2017) Bayesian strate-
gies for simulation based optimisation and response surface crea-
tion using a single tool—application to hydrofoil optimisation. In: 
Proceedings of Innov’Sail 2017. Lorient, France

 32. Queutey P, Visonneau M (2007) An interface capturing 
method for free-surface hydrodynamic flows. Comput Fluids 
36(9):1481–1510

 33. Rhie CM, Chow WL (1983) A numerical study of the turbulent 
flow past an isolated airfoil with trailing edge separation. AIAA J 
17:1525–1532

 34. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. J Comput Appl Math 
20:53–65

 35. Rumpfkeil MP, Beran PS (2020) Multi-fidelity, gradient-
enhanced, and locally optimized sparse polynomial chaos and 
kriging surrogate models applied to benchmark problems. In: 
AIAA Scitech 2020 Forum, p 0677

 36. Serani A, Diez M (2018) Shape optimization under stochastic 
conditions by design-space augmented dimensionality reduction. 
In: 19th AIAA/ISSMO Multidisciplinary Analysis and Optimiza-
tion Conference (MA &O), AVIATION 2018. Atlanta, USA, June 
25–29. p3416

 37. Serani A, Diez M, van Walree F, Stern F (2021) URANS analysis 
of a free-running destroyer sailing in irregular stern-quartering 
waves at sea state 7. Ocean Eng 237:109600

 38. Serani A, Fasano G, Liuzzi G, Lucidi S, Iemma U, Campana EF, 
Stern F, Diez M (2016) Ship hydrodynamic optimization by local 
hybridization of deterministic derivative-free global algorithms. 
Appl Ocean Res 59:115–128

 39. Serani A, Leotardi C, Iemma U, Campana EF, Fasano G, Diez 
M (2016) Parameter selection in synchronous and asynchronous 
deterministic particle swarm optimization for ship hydrodynamics 
problems. Appl Soft Comput 49:313–334

 40. Serani A, Pellegrini R, Broglia R, Wackers J, Visonneau M, 
Diez M (2019) An adaptive N-fidelity metamodel for design and 
operational-uncertainty space exploration of complex industrial 
problems. In: Proceedings of the 8th International Conference on 
Computational Methods in Marine Engineering (MARINE 2019), 
pp 177–188

 41. Serani A, Pellegrini R, Wackers J, Jeanson CE, Queutey P, Vison-
neau M, Diez M (2019) Adaptive multi-fidelity sampling for CFD-
based optimisation via radial basis function metamodels. Int J 
Comput Fluid Dyn 33(6–7):237–255

 42. Serani A, Stern F, Campana EF, Diez M (2022) Hull-form sto-
chastic optimization via computational-cost reduction methods. 
Eng Comput 38:2245–2269

 43. Spalart PR, Allmaras SR (1991) A one-equation turbulence model 
for aerodynamic flows. AIAA Paper 92-0439

 44. Stern F, Wang Z, Yang J, Sadat-Hosseini H, Mousaviraad M, 
Bhushan S, Diez M, Sung-Hwan Y, Wu PC, Yeon SM et al (2015) 
Recent progress in CFD for naval architecture and ocean engineer-
ing. J Hydrodyn 27(1):1–23

 45. Viana FAC, Simpson TW, Balabanov V, Vasilli T (2014) Special 
section on multidisciplinary design optimization: metamodeling 
in multidisciplinary design optimization: how far have we really 
come? AIAA J 52(4):670–690

 46. Volpi S, Diez M, Gaul N, Song H, Iemma U, Choi KK, Campana 
EF, Stern F (2015) Development and validation of a dynamic 
metamodel based on stochastic radial basis functions and uncer-
tainty quantification. Struct Multidiscip Optim 51(2):347–368

 47. Wackers J, Deng G, Guilmineau E, Leroyer A, Queutey P, Vison-
neau M (2014) Combined refinement criteria for anisotropic 
grid refinement in free-surface flow simulation. Comput Fluids 
92:209–222

https://hal.archives-ouvertes.fr/tel-01203748
http://arxiv.org/abs/2204.07867


3206 Engineering with Computers (2023) 39:3183–3206

1 3

 48. Wackers J, Deng G, Guilmineau E, Leroyer A, Queutey P, Vison-
neau M, Palmieri A, Liverani A (2017) Can adaptive grid refine-
ment produce grid-independent solutions for incompressible 
flows? J Comput Phys 344:364–380

 49. Wackers J, Koren B, Raven HC, Ploeg AVD, Starke AR, Deng 
GB, Queutey P, Visonneau M, Hino T, Ohashi K (2011) Free-
surface viscous flow solution methods for ship hydrodynamics. 
Arch Comput Methods Eng 18:1–41

 50. Wackers J, Pellegrini R, Diez M, Serani A, Visonneau M (2022) 
Improving active learning in multi-fidelity hydrodynamic optimi-
zation. In: 34th Symposium on Naval Hydrodynamics

 51. Wackers J, Pellegrini R, Serani A, Diez M, Visonneau M (2019) 
Adaptive multifidelity shape optimization based on noisy CFD 
data. In: Proceedings of the 2019 International Conference on 
Adaptive Modeling and Simulation (ADMOS 2019). El Campello 
(Alicante), Spain, 27–29 May

 52. Wang H, Jin Y, Doherty J (2017) A generic test suite for evo-
lutionary multifidelity optimization. IEEE Trans Evol Comput 
22(6):836–850

 53. Zaghi S, Di Mascio A, Broglia R, Muscari R (2015) Application 
of dynamic overlapping grids to the simulation of the flow around 
a fully-appended submarine. Math Comput Simul 116:75–88. 
https:// doi. org/ 10. 1016/j. matcom. 2014. 11. 003

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.matcom.2014.11.003

	A multi-fidelity active learning method for global design optimization problems with noisy evaluations
	Abstract
	1 Introduction
	2 Multi-fidelity surrogate modeling
	2.1 Active learning
	2.2 Least squares regression via in-the-loop optimization

	3 Optimization problems
	3.1 Analytical test problems
	3.2 NACA hydrofoil
	3.3 DTMB 5415 model
	3.4 RoPax ferry

	4 CFD solvers
	4.1 ISIS-CFD
	4.2 navis

	5 Problem setups
	5.1 NACA hydrofoil
	5.2 DTMB 5415 model
	5.3 RoPax ferry

	6 Numerical results
	6.1 Analytical test problems
	6.2 NACA hydrofoil
	6.3 DTMB 5415 model
	6.4 RoPax ferry

	7 Conclusions and future work
	Acknowledgements 
	References




