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Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability. The way mechanical impact is transferred to the brain 
has been shown to be a major determinant for structural damage and subsequent pathological sequalae. Although finite ele-
ment (FE) models have been used extensively in the investigation of various aspects of TBI and have been instrumental in 
characterising a TBI injury threshold and the pattern of diffuse axonal injuries, subject-specific analysis has been difficult to 
perform due to the complexity of brain structures and its material properties. We have developed an efficient computational 
pipeline that can generate subject-specific FE models of the brain made up of conforming hexahedral elements directly from 
advanced MRI scans. This pipeline was applied and validated in our sheep model of TBI. Our FE model of the sheep brain 
accurately predicted the damage pattern seen on post-impact MRI scans. Furthermore, our model also showed a complex 
time-varying strain distribution pattern, which was not present in the homogeneous model without subject-specific material 
descriptions. To our knowledge, this is the first fully subject-specific FE model of the sheep brain able to predict structural 
damage after a head impact. The pipeline developed has the potential to augment the analysis of human brain MRI scans to 
detect changes in brain structures and function after TBI.

Keywords Traumatic brain injury · Finite element (FE) modelling · Magnetic resonance imaging (MRI) · Diffusion tensor 
imaging (DTI) · In vivo animal experiment

1 Introduction

Traumatic brain injury (TBI), defined as an alteration in 
brain function, or other evidence of brain pathology, caused 
by an external force [1], is a leading cause of death and dis-
ability [2]. Up to 90% of cases are in the mild severity range 
(mTBI including concussion and sub-concussive impact [3, 
4]) yet many patients report long-term impairments [5, 6]. 
The early and rapid detection of mTBI is critical for suc-
cessful patient management, therapy and rehabilitation, but 
there is currently no reliable objective method for identify-
ing those individuals who will suffer prolonged symptoms 
versus those likely to recover naturally.

A recent study identified that the type of mechanical 
impact in TBI determines the pattern of structural damage 
and neuropathological sequelae [7, 8] with finite element 
(FE) models as well as in vivo experiments. Two impacts 
with similar kinematic values (e.g. impact velocity and head 
movements) can be manifested differently, indicating the 
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complexities involved [8]. But this also indicates that char-
acterising the strain environment after head impact has the 
potential to provide clinically relevant information for TBI 
patients, to support diagnosis and prognosis.

Indeed, FE analysis has been used extensively in brain 
biomechanics, especially in neurotrauma. Since its first 
use in the 1970s as a simplified model that approximated 
the brain as a fluid-filled sphere [9, 10], the field has made 
great strides. Today’s state-of-the-art models include most 
of the major components in the brain with their correspond-
ing material descriptions implemented with sophisticated 
constitutive models. The Wayne State University Brain 
Injury Model (WSUBIM), which represents a 50th percen-
tile male human head, is capable of simulating direct and 
indirect impacts and has been validated against intercranial 
pressure [11] and brain relative motion data [12]. Mao et al. 
developed a head model as the Global Human Body Model 
Consortium (GHMBC) [13] which also represents a 50th 
percentile male human head and was validated against 35 
different loading cases from various experimental data sets 
in the literature. Kleiven et al. have developed the “KHT” 
series of brain models since early 2000 [14, 15], which have 
been used in a number of different applications including 
the investigation of the relationship with kinematic sensor 
readings [16] and multiscale analysis [17, 18]. Ji and col-
leagues have also developed and validated a high-fidelity FE 
model of the brain from MRI scans of a concussed player 
[19, 20]. This model has been used extensively in a number 
of different applications such as brain network-based mod-
els [21] and estimating vascular strains [22]. We have also 
developed a subject-specific FE model of the brain from 
high-resolution MRI images of an American football player 
and combined it with a machine-learning based approach 
for rapid prediction of brain strains [23]. Another major 
injury mechanism of TBI is blast impact, which has also 
been actively analyzed with computational models. Of note 
is the study by Tayor et al. [24] who developed and validated 
a set of modelling tool for simulating blast loading to the 
human head.

Despite such advancements, two major limitations of 
previous studies need to be highlighted. First is that only a 
limited amount of experimental data is available for model 
validation. In fact, all of the above mentioned studies used 
the same previous experimental studies [11, 12] in validating 
their models, especially by comparing relative brain motion. 
However, considering the huge variations present in brain 
structure and morphology in any given population, it is not 
ideal to compare the performance of a model with experi-
mental datasets when they are from two different subjects. 
Moreover, this has limited the use of FE models to predict-
ing the absence or presence rather than predicting the loca-
tion and/or extent of the injury. One way of mitigating this 
limitation is to use data from animal models of TBI for both 

FE model development and validation. FE models of animal 
brains for TBI exist in the literature for pig [25] and rat brain 
models [26], which provided high resolution experimen-
tal data from well-controlled TBI experiments performed 
either with controlled cortical impacts[26] or brain motion 
measurements[27, 28]. However, these experiments were 
either performed separately prior to the model generation 
or experimental data was used for some other purposes (e.g. 
histological analysis), providing only a means for indirect 
model validation.

Another limitation of current FE models in the literature 
is the difficulty of generating subject-specific models that 
reflect an individual subject’s unique geometry and mate-
rial properties—in part due to the amount of preprocessing 
and manual work required for model generation. This has 
encouraged the development of machine-learning-based 
approaches where one can bypass expensive and time-con-
suming FE analysis [23, 29]. There are some studies in the 
literature that have used multiple subject-specific FE mod-
els in their analysis, but they used rather complex mesh-
matching [30] or morphing algorithms [31] that depended 
heavily on in-house code which may not be easily repli-
cated by others for studies with a large number of subjects. 
Some studies developed a high-fidelity multiscale model for 
predicting traumatic axonal injuries[25, 32], but they either 
used the generic 50th percentile model with diffusion tensor 
images (DTI) from a public dataset or CT scans from other 
subjects for model registration. Although these models have 
greatly improved the capability of FE models, their use in 
a large human dataset is still not feasible. Indeed, all previ-
ous studies with multiple subject-specific models have used 
homogeneous brain material descriptions that, therefore, 
do not consider subject-specific material properties. Hence, 
there remains a fundamental need for a robust and rapid 
subject-specific FE model generation method tailored for 
multi-subject analysis. Moreover, in recent years, advanced 
neuroimaging modalities such as diffusion tensor imag-
ing (DTI) and susceptibility-weighted imaging (SWI) have 
shown potential for offering high-resolution brain images 
that could be used to characterize structural changes in the 
brain after head trauma [33–35]. However, uptake of this 
new information offered by advanced MRI to FE models has 
been hampered by the lack of a robust pipeline able to gener-
ate subject-specific FE models directly from MRI images.

The aim of this study to develop and validate an FE model 
of the sheep brain from advanced MRI images based on our 
TBI sheep experimental model. To the best of our knowl-
edge, this is the first validated sheep brain FE model. Specif-
ically, with our TBI sheep model, we were able to measure 
injury patterns pre- and post-impact with advanced MRI. 
We then used the pre-impact MRI images for model genera-
tion and performed the FE analysis with the same boundary 
condition as the TBI experiment for model validation. We 
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hypothesize that subject-specific FE models will display a 
complex time-varying strain distribution pattern after impact 
that matches brain injury patterns displayed in the MRI, 
highlighting the need for subject-specific information from 
advanced MRI images in FE model generation and analysis.

2  Methods

A combined MRI and computational analysis pipeline was 
developed using our animal mTBI model. First, mTBI exper-
iments were performed on our sheep TBI model. Advanced 
MRI scans including diffusion tensor images (DTI) were 
taken before and after the impact, and then used to analyse 
damage patterns with a specimen-specific FE model (Fig. 1).

2.1  Animal experiment

All animal experiments were approved by the University 
of Auckland’s Animal Ethics Committee and conducted in 
accordance with the New Zealand Animal Welfare Act 1999. 

Our ovine TBI model has been previously described [36]. 
Dry mixed breed Romney ewes (3 years old) were accli-
mated to a standard pellet diet with food and water supplied 
ad libitum for at least 1 week prior to the experiment. On 
the day of the experiment general anesthesia was induced 
by i.v. thiopental sodium (15 mg/kg) and maintained by 
(2–3%) isoflurane following intubation. After baseline MRI 
imaging, with anaesthesia maintained at all times, the ani-
mal was brought out of the MRI machine and placed in the 
sphinx position, with its head supported with a pillow to 
allow natural recoil movement. An acute impact that con-
stituted a mild TBI was delivered Using a  CASH® Special 
Concussion stunner (Accles & Shelvoke Ltd, UK) with a 
1 grain cartridge which produces ~ 76 J of impact energy 
from a circular impactor (ø = 25 mm). This resulted in non-
penetrating injury from a direct impact with unconstrained 
head motion comparable to previous ovine models of TBI 
[37, 38]. The stunner was positioned perpendicular to the 
area between the horn buds, centered above the midsagit-
tal plane. This resulted in an impact to the superior frontal 
area of the cerebrum (Fig. 1). Post-impact, the animal was 

Fig. 1  Overall framework for MRI-based specimen-specific computa-
tional analysis of mTBI. Top shows the experimental procedure, the 
middle row shows the type of analysis performed with advanced MRI 

images and the bottom shows the FE model generated from the MRI 
and the cross-sectional view on the coronal and transverse planes
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returned to the MRI machine for a second round of scanning, 
which was identical to the baseline sequence.

2.2  MR imaging

The MR scanning was performed using a 3 T Siemens 
(MAGNETOM Skyra, Erlangen, Germany), 32 channel head 
coil. Multiple MRI sequences were acquired, including T1 
MPRAGE and diffusion MRI both of which were used in 
the FE model generation. Diffusion MRI data were acquired 
with the following imaging parameters: FOV = 17.4, matrix 
size: 128 × 128, 70 slices, voxel size = 1.4 × 1.4 × 1.4 mm, 
TR/TE/flip-angle = 12 s/91 ms/90°, 2 b values with b = 0 s/
mm2, 64 with b = 2000s/mm2, scan time = 4:28 min. T1 
MPRAGE data were acquired with the following param-
eters: FOV = 23 cm, matrix size: 256 × 256, 120 slices, voxel 
size = 0.9 × 0.9 × 0.9 mm, TR/TE/flip-angle = 2 s/3.5 ms/9°, 
scan time = 4:40 min. FLAIR images were also acquired 
with TR/TE/flip-angle = 5.5  s/95  ms/150°, inversion 
time = 1.91, matrix size: 256 × 256, 30 slices, voxel 
size = 0.6 × 0.6 × 3.3 mm, Echo Train length = 17.

2.3  Image analysis

Images were analysed using FSL (FMRIB software library, 
http:// fsl. fmrib. ox. ac. uk/ fsl/, version 6.0). Due to the chal-
lenges in manually segmenting MRI images [39], we used 
an established automated methods. First the initial T1-W 
scan (Fig. 2A) was used to extract the brain using Brain 
Extraction Tool (BET) in FSL, which accurately segment 
MRI head images into brain and non-brain parts [40]. After 
the brain was extracted (Fig. 2B), we used a method called 
FAST (FMRIB’s Automated Segmentation Tool), which 
segments MR images of the brain into different tissue types 
such as white matter, grey matter or CSF, while perform-
ing correction for spatial intensity variation in the MR 
images (Fig. 2C). It is based on a hidden Markov random 
field model and an associated Expectation–Maximization 
algorithm [41] and has been quantitatively evaluated for its 
accuracy [42].

Diffusion images, acquired using spin-echo EPI sequence, 
were processed using FDT (FMRIB's Diffusion Toolbox). 
First, localized geometric distortion was removed with topup 

and eddy tools from FDT. Then diffusion tensor informa-
tion at each voxel was obtained with DTIFIT for our further 
analysis. These diffusion parameters include radial diffusiv-
ity (RD), mean diffusivity (MD), fractional anisotropy (FA), 
and axial diffusivity (AD), and FA color-coded with principal 
eigenvector direction (color FA). Then, all this information 
is transferred to a text file using a custom Matlab script (V. 
R 2018, The Math Works, Inc., Columbia, MD). The result-
ing file contains the exact location of each voxel and all other 
structural (cerebellum, cerebrum, and brain stem, white matter, 
grey matter, CSF) as well as diffusion information (FA, MD, 
AD, RD, and color FA that represent the principal diffusion 
direction) and was used when assigning different material 
properties to individual elements in the FE model as described 
later (Fig. 3).

2.4  FE model generation and material property 
descriptions

A high-fidelity FE model of sheep TBI has been developed 
directly from MRI. First the MRI segmentations of the skull 
and the whole brain were exported as surface models. This 
was then turned into a high-resolution hexahedral mesh 
using an automated algorithm that uses the free-form defor-
mation technique for matching the outer geometry of a solid 
mesh to a given cloud of datasets. Specifically, our method 
is made up of two steps: (1) generation of a template mesh 
from which subject-specific meshes can be generated and 
(2) free-form deformation (FFD) of the template mesh to 
deform the template mesh to subjects’ dataset from medi-
cal images such as CT or MRI [43]. FFD method involves 
embedding a mesh to be customized (called slave mesh) 
inside a wrapper mesh (called host mesh). The host mesh is 
deformed according to an objective function to minimize the 
distance between control points in the ‘least-square’ sense 
and pass the deformation to the slave mesh. The control 
points can be placed both on the host and the slave meshes. 
The objective function is then expressed as the following:
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Fig. 2  MRI processing and 
segmentation. A T1-W image 
of the sheep head B Extracted 
brain from T1-W image with 
BET, C Segmented brain tissues 
with FAST. Blue: Grey matter, 
Orange: white matter; Yellow 
CSF. All images are coronal 
images

http://fsl.fmrib.ox.ac.uk/fsl/


3929Engineering with Computers (2022) 38:3925–3937 

1 3

where zd are the geometric coordinates of data points 
d placed on the slave mesh, wd is a weight for each data 
point, u

(
�1d, �2d

)
 are the corresponding mesh points from 

the host meshes which is obtained via interpolation with 
the basis function un . One unique feature that differentiates 
our approach to other FFD methods is the inclusion of a 
Sobolev smoothing term Fs

(
un
)
 for additional control over 

the deformation of the host mesh given below:

where �i(i = 1⋯ 3) are the three arc-lengths, �i(i = 4⋯ 6) 
are the three curvatures in the �1,�2,�3 directions, respec-
tively, and �i(i = 7⋯ 9) are the three surface area terms for 
faces (�1−�2) , (�2−�3) and (�3−�1) , while �10 is related to the 
volume, which ensures the shape of the original volume is 
not too distorted after fitting so that the customized mesh is 
not anatomically distorted. We have used this method exten-
sively in the past in subject-specific FE model generation 
for various tissues and joints such as the Achilles tendon 
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and the hip joint [44–46]. We applied this to the brain in 
this study. The number of elements for the template mesh 
was determined after mesh convergence analysis and the 
resulting total number of elements was 321,070 consisting 
of 343,874 nodes. This was then deformed using the FFD 
described above to generate a subject-specific model by 
deforming the template mesh to the segmented MR dataset.

We have also incorporated major tissue types in the 

brain model—the skull (both compact and spongy bones 
separately), dura mater, pia mater, cerebrospinal fluid and 
the brain tissue. The material properties used are given in 
Table 1.

The brain tissue was modelled using the hyper-viscoelas-
tic fiber-reinforced anisotropic model using the formulation 
by Gasser, Ogden and Hozapfel (GOH) [48] to incorporate 
white mater structural anisotropy. This model has been 
used to describe the anisotropy of the brain by a number of 

Fig. 3  DTI images of the sheep brain. A FA map, B color FA map, C, D white matter fiber orientation distribution function overlaid on the vox-
els

Table 1  Different materials incorporated in our model

Tissue Material description Material parameters References

Inner & outer compact 
bones in the skull

Linear elastic Young’s modulus = 15 GPa and Poisson’s ratio = 0.22, den-
sity = 2 kg/dm3

Kleiven (2002) [14]

Spongy bone in the skull Linear elastic Young’s modulus = 1 GPa and Poisson’s ratio = 0.24, density = 2 kg/
dm3

Kleiven (2002) [14]

CSF and ventricles Ogden μ = 20 kPa, α = 2 and bulk modulus = 50 MPa Ghajari et al. (2017) [47]
Dura mater Linear elastic Young’s modulus = 31.5 MPa and Poisson’s ratio = 0.45, den-

sity = 1.13 kg/dm3
Kleiven (2002) [14]

Pia mater Linear elastic Young’s modulus = 11.5 MPa and Poisson’s ratio = 0.45, den-
sity = 1.13 kg/dm3

Kleiven (2002) [14]



3930 Engineering with Computers (2022) 38:3925–3937

1 3

previous works [49–51]. In this material formulation, the 
strain energy function W is defined as the following:

where W is the strain energy per unit volume, G is the shear 
modulus, K is the bulk modulus, J is the determinant of 
deformation gradient, k1 and k2 are the parameters related 
to the fiber stiffness. The last term in Eq. (1) was from the 
GOH [37] form with one fiber family, where:

which characterizes the deformation of the fibers with the 
fiber dispersion parameter k and the function Ĩ4𝛼 defined as 
the following:

where C̃ is the isochoric part of the right Cauchy-Green 
strain tensor and n0� is the fiber direction unit vector in the 
undeformed configuration. The viscoelastic behavior was 
incorporated with the following relaxation function:

The fiber dispersion parameter in the GOH model has 
been linked with FA measures from diffusion MRI by 
Giordano and Klevin [50] using the following relationship:

We have used this relationship as well as the GOH 
material law to describe the anisotropy of the brain tissue 
and have linked it with the FA measurements from MRI 
(Table 2).
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The viscoelastic behavior was modelled with a relaxation 
function that was added to the second Piola–Kirchhoff stress 
as the following:

where S is the elastic stress derived from W in Eq. (1) and 
G is the relaxation function described with the following 
discrete relaxation spectrum:

The viscoelastic parameters as well as other parameters 
for the GOH were obtained from Kleiven and Giordano 
[52].

Each element was automatically assigned with the 
material property that corresponds to the MRI voxel 
information using the in-house python code. This is based 
on the automatic material assignment algorithm that we 
developed for assigning bone materials to FE models 
from CT scans [53]. This has been successfully used in 
assigning different material information to different ele-
ments for various types of FE models in the past [23, 44, 
46, 54, 55].

This works by searching for the closest voxel to the ele-
ment of interest by aligning the FE model in the MRI coor-
dinates. This way the correspondence between elements in 
the FE model and MRI voxels are established, allowing us to 
assign subject-specific material properties as well as geom-
etry from the MRI scans of the subject (Fig. 4).

Dynamic simulation was performed with FEBio (www. 
febio. org) with the boundary condition that mimics the 
actual load application from the experiment described 
above. The contact between the brain and meninges layers 
was modelled with frictionless contact to accurately model 
the deformation and movements between these two tissues 
upon impact application.

Three different analyses were performed. First a fully 
subject-specific analysis was performed with the model that 
contains both subject-specific geometry and material prop-
erties. This was compared with the post-impact MRI scan 
for model validation. After that, the model was modified to 
examine (1) the importance of having subject-specific mate-
rial properties; (2) the importance of incorporating sliding 
movements between the brain and the skull. The first was 
examined using a homogeneous material property com-
monly used in a majority of brain FE models [14, 30, 47]. 
The second was examined by modifying the contact con-
straints from frictionless to tied contact, which essentially 
eliminates sliding between the brain and skull.

(8)S(t) = S
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Table 2  FA ranges and 
corresponding k values for GOH 
material

FA range k value

0.0–0.2 0.3333
0.2–0.3 0.2732
0.3–0.4 0.2500
0.4–0.5 0.2273
0.5–0.6 0.2000
0.6–0.7 0.1667
0.7–0.8 0.1282
0.8–0.9 0.0769
0.9–1.0 0.0000

http://www.febio.org
http://www.febio.org
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3  Results

The post-impact MRI scans show two locations where 
brain changes occurred after mechanical impacts. Among 
the MRI sequences we tested, Fluid Attenuated Inversion 
Recovery (FLAIR) images showed the brain damage pat-
terns most clearly (Fig. 5). The most prominent injury can 
be seen immediately underneath the area where the impact 
was delivered. Although it was not a penetrating impact, 
this area initially received the most energy which resulted 
in the contusion in the area. Another area of damage 

appeared diagonally opposite the location where the major 
damage occurred. This indicates that the movements and 
deformation from the initial impact also caused secondary 
movement and subsequent contusion in areas away from 
the location of the impact, resulting in contrecoup brain 
injury.

The size of the damage area was quantified using the ITK-
SNAP’s segmentation tool [56], which is was measured to be 
550.94mm3 when the coup and contrecoup injuries are com-
bined. This is about 0.4% of the total cerebrum volume. The 
size and locations of damage sites are shown in 3D in Fig. 6.

Fig. 4  Material property assignments from T1-W and DTI images. Starting with brain segmentation from T1-W image, DTI map was obtained 
which was used to assign each element in the FE model with corresponding materials the FA values

Fig. 5  FLAIR images of pre- and post-impact. The views from the location of impact and its neighbouring regions are shown. The area of brain 
damages can be seen directly underneath of the impact location as well as the contrecoup location
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Our specimen-specific FE model was able to predict 
the brain damage patterns shown by FLAIR MR images 
accurately. The initial peak strain appeared right under-
neath of the location of impact application. The peak strain 
then shifted towards the area where the contrecoup injury 
occurred, diagonally opposite to the area of the initial impact 
application. In particular, the incorporation of different tis-
sue types in the brain (CSF, meninges and brain white and 
gray matter) as well as the FA dependent anisotropy incor-
porated with the GOH material description allowed a tissue 
specific strain distribution pattern that matched closely with 
the experimental results (Fig. 7).

The strain distribution pattern displayed complex patterns 
where peak strain moved from the initial impact location 

down to the contrecoup area. Subsequently, the peak strain 
travelled towards the ventricular region of the brain, indicat-
ing that other regions of the brain, not shown in the MRI, 
might also have sustained damage (Fig. 8).

However, this pattern was only evident when the spa-
tially varying GOH material was used. With the homoge-
neous Ogden material property often used in other brain 
FE models, the strain pattern was more diffusively dis-
sipated from the locations of impact and failed to predict 
the contrecoup injury seen in the GOH model as well as in 
the MRI scans. Moreover, the overall strain magnitude was 
smaller than GOH model and more concentrated around 
the area of impact with a slower dissipation of strains dur-
ing the simulation time (Fig. 9).

Fig. 6  Quantification of damages incurred from the mechanical insults

Fig. 7  FE simulation results matching the FLAIR image taken post-impact. The locations of high peak strains correspond to the areas in the 
brain where contusion occurred after the impact
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When sliding between the brain and skull was not 
allowed, using a tied contact condition between the skull 
and the brain, the strain transfer pattern was more gradual 
and downwards from the superior part of the brain, rather 
than showing a peak underneath the impact location. This 
also predicted much less strain concentration on the con-
trecoup area (Fig. 10) indicating that the sliding movement 
between brain and skull plays an important role in the 
subsequent injury patterns.

4  Discussions

The aim of this study was to develop a new method to 
combine advanced MRI with subject-specific FE models 
to perform in-depth analysis of brain injury patterns after 
TBI. This was achieved using the advanced MRI images 
that we collected from our TBI sheep experiment [36] and 
developing a new method to generate subject-specific FE 
models of the brain directly from MRI scans. The animal 

Fig. 8  Detailed strain map after the head impact around the regions 
of the brain where the damage was predicted. The top row shows the 
coronal view while the bottom row shows the transverse view. The 

numbers in the column represent the distance away from the impact 
site in the anterior direction

Fig. 9  Simulation results with 
Ogden homogeneous material. 
The areas with high strains are 
concentrated around the impact 
area with much slower and 
smaller strain dissipation to the 
other areas
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was MRI scanned before and after impact delivery to 
measure changes in brain structures. FLAIR MRI scans 
showed contusion near the site of impact delivery, and to 
the countercoup region diagonally opposite to the impact 
delivery site. The FE model generated with pre-impact 
MRI scans predicted this pattern of damage well but 
also revealed high strain areas were also present in other 
regions of the brain. These results highlight the value of 
the FE model for a more in-depth analysis of the patterns 
of brain damage after head impact.

An interesting finding from our study was the importance 
of incorporating spatially varying subject-specific material 
descriptions in the FE analysis of TBI. We have used the 
material description introduced by Giordano and colleagues 
[52] where they established the relationship between the 
MRI DTI index (FA) with the material coefficient in the 
GOH model [48]. Using this relationship as well as our ele-
ment material assignment technique, we were able to assign 
different material parameters for each element depending 
on the corresponding MRI DTI index. This way, our model 
captured the subject-specificity for both geometry and mate-
rial properties, which turned out to be an important factor for 
accurate prediction of brain damage patterns after TBI. This 
was made possible by having an analysis framework that is 
fully based on MRI images of the animal. The geometry 
of the brain and skull were obtained from the segmented 
T1-W images, while the DTI images provided the FA values 
and directions, which allowed a spatially varying material 
descriptions specific to the subject to be incorporated.

The importance of having subject-specific information 
in FE analysis, especially in the case of tissue damage or 
injury have long been recognized [43, 44], yet it has not 
become as widespread in brain injury analysis due to the 
complexity of brain FE models. Ji and colleagues performed 
geometrically subject-specific FE analysis on concussed ath-
letes using their MRI scans [30]. They used mesh-matching 
that combines an affine registration with B-spline nonrigid 
registration to deform the baseline model to the subjects’ 
MRI scans. However, subject-specific material proper-
ties as well as internal structures were not incorporated in 
these models. Li and colleagues developed an anatomically 
detailed subject-specific model of the brain [31]. They used 
a mesh-morphing technique for morphing the MRI scans, 
from which subject-specific models were generated. This 
allowed them to incorporate internal structures and their 
inter-subject variability. However, they also did not use 
spatially varying material descriptions, but rather used the 
homogenous from their previous study [14]. The method that 
we developed defer from these two previous studies. First, 
the mesh generation technique that we used is based on Free-
Form Deformation [57], which we have used extensively in 
generating subject-specific models of various organs and tis-
sues as a part of Physiome Project [58, 59]. This has recently 
been translated into an open-source python library, which 
we have used in our subject-specific model generation [60]. 
Second, our model uses heterogeneous material descriptions 
which obtained the spatially varying characteristics from the 
MRI scans. Based on our experience in using CT images for 

Fig. 10  Strain patterns when 
sliding between brain and the 
bone were not allowed. More 
direct transfer of strains from 
the site of impact can be seen



3935Engineering with Computers (2022) 38:3925–3937 

1 3

incorporating spatially varying bone density into FE models 
[53], we have developed a method that can identify MRI 
voxels that belong to each FE element and assign corre-
sponding FA values to each element. This allowed us to have 
a completely subject-specific FE model of the brain – both in 
terms of geometry and material properties. One of the major 
strengths of our model is that it can be applied to any other 
subjects or species if we are given their MRI scans. Another 
strength is the fairly automated pipeline for model genera-
tion. Rather than using multiple different software tools, our 
pipeline is made up of our own custom python code based 
on a publicly available python library [60], which can be 
scripted for fast model generation in a study with a large 
number of subjects.

Our study also used a unique experimental dataset for 
TBI FE models. Currently available FE models in the litera-
ture all used the same experimental dataset for model vali-
dation [11, 12]. Although these datasets are instrumental 
in providing quantitative data for model validation in terms 
of brain motion and pressure, it is not ideal to compare the 
performance of a subject-specific FE model to a dataset 
collected from a different cadaveric head. Moreover, this 
restricted the use of the FE model to predicting the presence 
or absence of TBI and/or injury threshold rather than injury 
locations or patterns. Therefore, we have performed our 
own in vivo animal experiment with our sheep TBI model 
[36] including advanced MRI scanning pre- and post-
impact. This allowed us to measure the changes in the brain 
structure by analysing pre- and post-impact MRI scans. Our 
scans display the changes in the brain, especially the signs 
of contusion in specific areas—sites of impact and coun-
tercoup injury. This provided a qualitative data for model 
validation in our study.

Animal models of TBI have been used in the past for 
FE analysis especially for the piglets [25] and rat brains 
[26] but none of them used pre- and post-impact MRI for 
model generation and validation at the same time. Moreo-
ver, there are benefits of using the adult sheep brain as a 
model of TBI including the comparable size to the human 
brain, their gyrencephalic brain structure and the presence of 
well-developed meninges [61].Considering that our pipeline 
can be easily customised and scaled to human brains, the 
benefits of using a large animal model for mTBI as well as 
their comparability to human brains gives us confidence that 
models generated from human MRI will have an equivalent 
high level of accuracy.

There are a number of limitations in our study. First is 
the use of human brain material properties in our model. 
Although we have characterized brain material properties 
from our experiment, we could not use this as this was based 
on a brain slicing technique that is different to the MRI vox-
els. As a result, we could not incorporate a specific sheep 
brain material property. This means that the strain magnitude 

predicted by the model cannot be used in establishing an 
injury threshold for sheep. However, the pattern that our 
model predicted showed good qualitative match with the 
post-impact MRI scans, giving us confidence about our 
model performance. Second limitation is that only qualita-
tive validation was performed as we compared the strain pat-
tern with post-impact MRI images. Future work will include 
more quantitative comparison between MRI images and 
model to determine the best MRI indices for damage pre-
diction in human TBI. Finally, unlike other well-established 
automatic mesh generation method that generates all hex 
mesh with the clear boundaries between different materials 
in a single domain [62], we differentiate different materials 
by assigning each element with its corresponding material 
using the subject’s MR images. Although our approach can 
be numerically more efficient, if one needs to impose contact 
interfaces between different materials, our method cannot 
be used. This feature will be incorporated into our future 
studies.

In conclusion, we have developed a novel pipeline that 
combines FE analysis with MRI imaging for fully subject-
specific analysis. We have applied this to our mTBI sheep 
model and developed a first validated sheep brain FE model. 
The developed pipeline is general enough to be applied to 
various different species including human brains. We will 
perform both human brain analysis as well as other animal 
analysis for comparative studies to characterize the injury 
mechanisms of mTBI.
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