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Abstract
The mechanisms underlying damage in high-performance polymer nanocomposites are remarkably affected by hygrother-
mal conditions. In this study, we develop a phase-field formulation to investigate the influence of hygrothermal conditions 
on the nonlinear viscoelastic fracture behavior of epoxy resins and their nanocomposites at finite deformation. For this, the 
Helmholtz free energy, capturing the effect of temperature and moisture and nanoparticle contents, is defined based on an 
additive decomposition of the energy into an equilibrium, a non-equilibrium, and a volumetric contribution with different 
definitions under tensile and compressive loading. The coupled displacement phase-field problem is solved using a quasi-
Newton monolithic algorithm and a staggered solution scheme. Numerical examples show that the monolithic algorithm is 
more efficient. Simulations are performed to investigate the effect of temperature, deformation rate, and moisture content 
on the force–displacement response of boehmite nanoparticle/epoxy samples in benchmark numerical problems. Compar-
ing numerical predictions and experimental data for compact-tension tests shows good agreement at different nanoparticle 
contents. Also, the model’s capability to predict fracture patterns is evaluated using simulations of single-edge notched 
nanocomposite plates under tensile and shear loading.

Keywords Nanocomposite · Nonlinear viscoelasticity · Phase-field modeling · Finite element · Finite deformation

List of symbols
F, F̄  The total deformation gradient and its 

deviatoric part
F̄e, F̄i  Elastic and inelastic parts of F̄
B̄, B̄e  The total and elastic left Cauchy–

Green deformation tensors
J  The volume variation
Jm, J�, Jw  The mechanical compressibility, ther-

mal dilatation and moisture-induced 
swelling

�w, ��  The thermal expansion and moisture 
swelling coefficients

�  Absolute temperature

�np,ww  BNP volume and moisture weight 
fractions

aw, bw  Parameters to define the effect of 
moisture

�  The Cauchy stress
D  The symmetric Eulerian rate of the 

deformation tensor
L  The Eulerian gradient of velocity
�  The Helmholtz free specific energy
�±  Positive/negative parts of the free 

specific energy
�eq,�neq,�vol  Equilibrium, non-equilibrium, and 

volumetric parts of the free specific 
energy

�  The phase-field parameter
g(�)  The energetic degradation function
V̄e, R̄e  The pure deformation and rotation 

obtained from the polar decomposi-
tion of F̄e

D̄i, W̄i  The rate of stretching and spin
D̄

0

i
  The objective rate of inelastic 

deformation
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L̄i  The velocity gradient of the relaxed 
configuration

�eq,�neq  Equilibrium and non-equilibrium 
stresses

�dev,�vol  Deviatoric and volumetric parts of 
stress

�̇�i  The viscoelastic flow
�̇�i,𝛥H, 𝜏0  A pre-exponential factor, the activa-

tion energy, and the athermal yield 
stress

I1(.)  The first invariant of a tensor
X  A modified amplification factor
�eq,�neq, kv  Material parameters
∇  The gradient operator
n  The outward unit normal
b, t  The body force and boundary 

tractions
Gc  The energy release rate
l0  The length scale
H  The local history field
u  The displacement field
�u,w�  The weight functions
Nu,N�  The shape function matrices
Bu,B�  The gradient operators
K

uu
i
,K

u�
i
,K

�u
i
,K

��
i

  The tangent matrices
K̃  The approximated stiffness matrix
ℂ

�J  The tangent modulus tensor
F̂  Perturbed deformation gradient
�  A small perturbation parameter

1 Introduction

One of the main challenges in today’s engineering is struc-
tural weight reduction to provide higher performance and 
functionality for specific applications. Therefore, besides 
structural optimization, research is also focused on devel-
oping new materials with enhanced thermo-mechanical 
properties at low weight. One of these new classes of mate-
rials is polymer nanocomposites, where the functionalities 
of polymers, including low weight and high ductility, are 
combined with the nanoparticles’ unique features [37, 57]. 
Recently, boehmite nanoparticle (BNP) reinforced epoxy 
composites have been considered as one of the most prom-
ising composites in lightweight structures due to their high 
strength-to-weight ratio [31]. BNP/epoxy nanocomposites 
exhibit remarkably improved mechanical properties, includ-
ing strength and fracture toughness, compared with neat 
epoxies [7, 31].

The material innovation demands reliable models to pre-
dict the effect of external conditions (e.g., loading rate, tem-
perature, and moisture) and microstructural parameters (e.g., 

nanoparticle/matrix interactions) on the damage and fracture 
behavior of the nanocomposites. Continuing research activ-
ity on polymers and their composites has led to a variety 
of phenomenological or physically motivated constitutive 
models [48, 50] to elucidate their nonlinear rate- and tem-
perature-dependent behavior. Boyce et al. [12] developed 
a constitutive model based on a composite-type formula-
tion considering the microstructure of semicrystalline poly-
mers. In the model, the soft amorphous and stiff crystalline 
phases are treated as the matrix and fillers, respectively. 
Later, based on the model, Qi and Boyce [53] proposed a 
viscoelastic–viscoplastic constitutive model to capture the 
nonlinear, rate-dependent, and softening behavior of thermo-
plastic polyurethanes. Li et al. [36] introduced a physically 
based viscoelastic constitutive model for elastomers at large 
deformation, where elastomers are assumed to be cross-
linked networks with superimposed free chains. Nguyen 
et al. [48] developed and experimentally calibrated a rate-
dependent damage constitutive model for epoxy resins to 
study the nonlinear behavior of amorphous glassy polymers. 
Based on the definition of Helmholtz free energy, N’Guyen 
et al. [49] derived a thermodynamical framework for the 
thermo-chemo-mechanical couplings in polymer materials 
at finite deformation. Predicting the nonlinear stress–strain 
response of polymer nanocomposites, which also contain 
nano-scale additives, is more challenging due to the hetero-
geneous distribution of agglomerated nanoparticles in the 
matrix and complex interactions between the matrix and 
nanoparticles. Fankhänel et al. [20] presented an atomisti-
cally informed finite-element (FE) model to study the mate-
rial properties of BNP/epoxy nanocomposites. Within the 
multiscale model, the interphase properties between BNPs 
and an epoxy matrix were first characterized using molecular 
simulations. The interphase properties were then upscaled 
to the continuum scale, where the effective material proper-
ties were homogenized using FE simulations of representa-
tive volume elements of the nanocomposite. Arash et al. [6, 
7] proposed a combined simulation-experiment framework 
to calibrate a viscoelastic damage model for BNP/epoxy 
nanocomposites at finite deformation. The experimental-
numerical validation proves the predictive capability of 
the model to capture the main features of the stress–strain 
relationship of the nanocomposites, including the nonlinear 
hyperelastic, rate-dependent, and softening behavior. The 
experimental-numerical validation proves the capability of 
the model to capture the main features of the stress-strain 
relationship of the nanocomposites, including the nonlin-
ear hyperelastic, rate-dependent, and softening behavior. In 
seeking a robust parameter identification procedure, Unger 
et al. [59, 60] extended the multiscale approach to character-
ize the thermo-viscoelastic damage behavior of BNP/epoxy 
nanocomposites. These studies show that the proposed sim-
ulation-based framework allows significantly reducing the 
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number of experimental tests required for identifying the 
material parameters used in modeling polymer nanocom-
posites without significant loss in accuracy.

As explained in [15, 48], the evolution of damage in 
polymer materials at the small scales, such as microvoids 
and microcracks coalesce, leads to the birth of cracks at the 
macro-scale. The progressive evolution of damage tends to 
the localization of deformation into a narrow zone accom-
panied by a softening behavior. Therefore, the modeling 
of fracture in nanocomposites requires an accurate predic-
tion of damage initiation and propagation in the materials. 
However, FE models based on local continuum description 
of damage [6, 7] suffer from an inherent mesh dependence 
for strain softening problems [22, 47], resulting from ill-
posedness of the boundary value problem due to the loss 
of ellipticity in statics or hyperbolicity in dynamics. To 
ensure the well-posedness of the boundary value problems, 
various computational techniques have been proposed in 
the literature. The so-called regularized solutions for dam-
age and failure in materials, allowing interactions between 
neighboring material points, are among the most success-
ful. The solutions link the continuum damage mechanics to 
fracture mechanics through the coupling of a diffusion-type 
equation of nonlocal variables with the momentum balance 
equation. A nonlocal variable, such as damage, is related to 
the spatial average of the field of the variable in a certain 
neighborhood of a given point [9]. In these methods, such 
as the gradient-enhanced damage model and its variants [8, 
51, 52, 61], and the phase-field model (PFM) [3, 21, 44], 
a sharp crack is approximated by a diffuse damage band 
thanks to introducing a length-scale parameter that controls 
interactions between material points.

Generalizing Griffith’s theory, PFMs have emerged as 
variational fracture models to adequately predict the crack 
initiation, propagation, and branching [1, 2, 54, 65, 67]. In 
these models, a fracture can be revisited as the minimiza-
tion of the potential energy consisting of the stored bulk 
energy, the work of external forces, and the surface energy. 
In addition, an auxiliary variable, the so-called phase-field 
parameter, describes a smooth transition from an intact 
material to a fully broken state. PFMs have been used to 
study brittle fracture [11, 43], quasi-brittle fracture [19, 63], 
and ductile fracture [1, 42]. Among others, Msekh et al. [45, 
46] developed PFMs for clay/epoxy nanocomposites, where 
clay nanoparticles were modeled as linear elastic materi-
als embedded in a hyperelastic matrix. The models were 
also used to investigate the surface energy dissipation in the 
nanocomposites during fracture. Recently, Goswami et al. 
[25, 26] proposed a neural network algorithm for phase-
field modeling fracture in brittle materials by minimizing the 
variational energy of a system. The simulation results show 
that the crack path predicted by the proposed approach is in 
agreement with those reported in the literature. Furthermore, 

some PFMs have been developed to study the rate-dependent 
fracture of solids [14, 38, 55, 65]. Shen et al. [55] derived 
phase-field formulations for fracture of viscoelastic materi-
als at small deformation. Loew et al. [38] calibrated a rate-
dependent PFM for rubbers, where the material parameters 
were extracted using uniaxial tensile and double-edge ten-
sile tests. Moreover, digital image correlation determined 
the length-scale parameter by measuring local strain at 
the crack tip. Yin and Kaliske [65] integrated a viscoelas-
tic model into a PFM to study the rate-dependent fracture 
behavior of elastomers. In this model, different from those 
proposed in [55] and [65], the crack driving force does not 
include the viscous energy dissipation. Instead, the driving 
force is defined by the elastic strain potential given by the 
equilibrium and non-equilibrium networks of the viscoelas-
tic model. Brighenti [14] proposed a PFM for elastomers 
using a statistical physics-based micromechanical model, 
which captures the rearrangement of a polymer network 
over time. Due to the non-convexity of the total potential 
energy functional with respect to the kinematic variables 
in PFMs, hindering convergence and robustness in Newton 
method-based monolithic methods, different numerical strat-
egies have been suggested to overcome the drawback [18, 
23, 28, 40, 56]. Among them, staggered solution schemes 
[11, 43] have been shown to be robust to solve the coupled 
damage-displacement governing equations, but they offer 
computationally expensive solutions.. Recently, to remedy 
the computational overheads, a quasi-Newton method-based 
monolithic algorithm has been proposed in [34, 64] as a 
robust and numerically efficient solution scheme for phase-
field fracture modeling.

As for thermoset nanocomposites, nanoparticle–polymer 
matrix interactions and ambient conditions (e.g., tempera-
ture and moisture) affect the evolution of damage [17, 30, 
60]. In this contribution, to address the open questions, we 
derive a phase-field formulation for investigating the effect 
of hygrothermal conditions on the rate-dependent fracture 
behavior of BNP/epoxy nanocomposites at finite deforma-
tion. The corresponding free specific energy is defined on 
the basis of a volumetric-deviatoric decomposition of the 
total deformation gradient, where the volumetric part is split 
into positive/negative components. Modified Guth–Gold and 
Kitagawa models are adopted to study the influence of the 
nanoparticle and moisture contents and temperature on the 
crack propagation in the polymer nanocomposites. The cou-
pled governing equations are solved using a quasi-Newton 
monolithic algorithm and a staggered solution scheme. 
Numerical examples confirm that the monolithic algorithm 
yields identical results to the staggered solution with higher 
efficiency. The effect of temperature, deformation rate, and 
moisture content on the force–displacement behavior of the 
nanocomposite samples are studied using the numerical sim-
ulation of benchmark problems. Also, the proposed model is 



776 Engineering with Computers (2023) 39:773–790

1 3

validated through the comparison of numerical predictions 
obtained from the modeling of compact-tension (CT) tests 
with experimental data.

This work is organized as follows. Sect. 2 presents a nonlin-
ear viscoelastic model describing the temperature- and mois-
ture-dependent behavior of polymer nanocomposites at finite 
deformation. The governing equations of the PFM and the 
corresponding discretized equations are provided in Sect. 3. 
In Sect. 4, the proposed PFM is validated using the numerical 
simulations, and the effect of temperature, deformation rate, 
and moisture on the fracture behavior of the nanocomposites 
is investigated. Finally, Sect. 5 summarizes the findings.

2  Constitutive model for nanoparticle/
epoxy

The stress response of a nanoparticle/epoxy system shown in 
Fig. 1 can be decomposed into an equilibrium part and a vis-
cous part to capture the nonlinear and rate-dependent behav-
ior of the material at finite deformation [7]. In the following 
section, a constitutive law, which models the nanocomposites 
as homogeneous continua by neglecting complex interactions 
between nanoparticles and the epoxy matrix, is presented. The 
approach is suitable for modeling the nanocomposites at the 
macro-scale.

2.1  Kinematics

The total deformation gradient � is multiplicatively split into 
a volumetric and a deviatoric part to define the kinematics as 
[49]

where J = det [F] and F̄ are the volume variation and the 
isochoric deformation gradient, respectively. Here, it is 
assumed that the volume variation can be decomposed into 
three terms: the mechanical compressibility Jm , the thermal 
dilatation J� , and the moisture-induced swelling Jw

(1)F = J1∕3F̄,

where

and

The proposed form for Jw to define the swelling is based on 
the simulation results presented in [16]. In the above equa-
tions, �� and �w are, respectively, the thermal expansion and 
moisture swelling coefficients, � is the absolute temperature, 
�0 is the temperature of the reference configuration, and ww 
is the moisture content. The deviatoric part of the defor-
mation gradient can also be decomposed into elastic and 
inelastic parts by introducing an intermediate configuration 
as follows  [35]:

Accordingly, the total and elastic left Cauchy–Green defor-
mation tensors, related to the reference configuration, are 
given by

and

2.2  Clausius–Duhem inequality

To derive the constitutive law coupled to the phase-field evo-
lution within the kinematic framework, we proceed with the 
Clausius–Duhem inequality for an isothermal process. Com-
bining the first and second principles of thermodynamics, the 
inequality in an Eulerian configuration reads

(2)J = JmJ�Jw,

(3)J� = 1 + ��
(

� − �0

)

,

(4)Jw = 1 + �www.

(5)F̄ = F̄eF̄i.

(6)B̄ = F̄F̄
T
,

(7)B̄e = F̄eF̄e

T
.

(8)D = � ∶ D − 𝜌�̇� ≥ 0.

Fig. 1  a Micro-scale structure 
BNPs (gray particles) embedded 
in a epoxy matrix (blue chains). 
b Schematic of the viscoelastic 
constitutive model
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Here, D is the dissipation, � is the Cauchy stress, 
D =

1

2

(

L + L
T
)

 the symmetric Eulerian rate of the defor-
mation tensor, and �̇� is the material time derivative of the 
Helmholtz free specific energy. L = Ḟ.F−1 represents the 
Eulerian gradient of velocity. The Helmholtz free specific 
energy is defined by

where cracks are characterized by a phase-field parameter � 
varying between 0 and 1. � = 0 denotes an intact material 
and � = 1 represents a fully cracked material. The material 
time derivative of the free energy is then given by [8]

where

The pure deformation V̄e in Eqs. (11) and (12) is obtained 
from the polar decomposition of F̄e = V̄e.R̄e , and the objec-
tive rate of inelastic deformation D̄0

i
 is given by

where

The velocity gradient of the relaxed configuration L̄i can 
be additively decomposed into a symmetric tensor D̄i and 
a skew-symmetric tensor W̄i , so-called the rate of stretch-
ing and spin, respectively, such that L̄i = D̄i + W̄i . Since the 
intermediate configuration can be taken in different ways, a 
convenient form for the spin of the relaxed state without loss 
of generality is W̄i = 0 [10, 13]. By substituting Eqs. (11)-
(13) into Eq. (10), we arrive at

(9)𝜓 = 𝜓
(

B̄, B̄e, J,𝜙
)

,

(10)�̇� =
𝜕𝜓

𝜕B̄
∶ ̇̄
B +

𝜕𝜓

𝜕B̄e

∶ ̇̄
Be +

𝜕𝜓

𝜕J
J̇ +

𝜕𝜓

𝜕𝜙
�̇�,

(11)̇̄
B = LB̄ + B̄L

T −
2

3
(1 ∶ D)B̄,

(12)
̇̄
Be = L.B̄e + B̄eL

T − 2V̄eD̄
0

i
V̄e

−
2

3
(1 ∶ D)B̄e, and

(13)J̇ = J(1 ∶ D).

(14)D̄
0

i
= R̄eD̄iR̄

T

e
,

(15)D̄i =
1

2

(

L̄i + L̄
T

i

)

=
(

̇̄
Fi.F̄

−1

i

)

sym
.

Finally, introducing relation (16) into (8), we obtained the 
dissipation inequality

To proceed further, we make two assumptions based on Ger-
main’s work [24]: Dm and D� are independently positive, and 
the dissipation results from the thermodynamic flux or force 
related to the internal variable F̄i . Based on the assumptions, 
the thermodynamic force related to the flux D has to remain 
null regardless of the thermodynamic process. Therefore, the 
the stress can be split into equilibrium �eq , non-equilibrium 
�neq , and volumetric �vol terms as follows:

where superscript D denotes the deviatoric operator. The 
following terms remain in the dissipation:

Assuming that two terms in Eq. (19) are independently posi-
tive, D̄0

i
 is therefore

where �neq =
‖

‖

‖

�neq
‖

‖

‖F
 . Equation (20) is a natural choice for 

D̄
0

i
 to make the first term of Eq. (19) a positive-definite quad-

ratic form. Using Eq. (14), it can be remarked that

(16)

�̇� =

(

2B̄
𝜕𝜓

𝜕B̄
+ 2B̄e

𝜕𝜓

𝜕B̄e

+ J
𝜕𝜓

𝜕J
1

)

∶ D

−
2

3
(1 ∶ D)

(

B̄ ∶
𝜕𝜓

𝜕B̄
+ B̄ ∶

𝜕𝜓

𝜕B̄e

)

− 2

(

V̄e

𝜕𝜓

𝜕B̄e

V̄e

)

∶ D̄
0

i

+
𝜕𝜓

𝜕𝜙
�̇�.

(17)

(

� − 2𝜌

(

B̄
𝜕𝜓

𝜕B̄
+ B̄e

𝜕𝜓

𝜕B̄e

)D

− J
𝜕𝜓

𝜕J
1

)

∶ D + 2𝜌

(

B̄e

𝜕𝜓

𝜕B̄e

)D

∶ D̄
0

i

�������������������������������������������������������������������������������������������������������������
Dm

+

(

−𝜌
𝜕𝜓

𝜕𝜙
�̇�

)

�����������
D𝜙

≥ 0.

(18)
� = 2𝜌

(

B̄
𝜕𝜓

𝜕B̄

)D

�������������
�eq

+ 2𝜌

(

B̄e

𝜕𝜓

𝜕B̄e

)D

���������������
�neq

+ J
𝜕𝜓

𝜕J
1

���
�vol

,

(19)
2𝜌

(

B̄e

𝜕𝜓

𝜕B̄e

)D

���������������
�neq

∶ D̄
0

i
− 𝜌

𝜕𝜓

𝜕𝜙
�̇� ≥ 0.

(20)D̄
0

i
=

�̇�i
𝜏neq

�neq,
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and the viscoelastic flow �̇�i is defined by the Argon model 
[62]

where kb is the Boltzmann constant. The model is charac-
terized by a pre-exponential factor �̇�0 , the activation energy 
�H , and the athermal yield stress �0 . Recently, Unger et al. 
[60] showed that the Argon model leads to a good agreement 
with experimental data in a wide range of temperatures. Sub-
stituting Eq. (21) into Eq. (15) gives

where ��
neq

= R̄e

T
�neqR̄e . From Eq. (19), the evolution of 

damage is an energy dissipation process (i.e., −𝜌𝜕𝜓

𝜕𝜙
�̇� ≥ 0 ). 

To satisfy the inequality, when �̇� > 0 , 𝜕𝜓
𝜕𝜙

< 0 , and when 
�̇� = 0 , ��

��
= 0.

Here, the midpoint method is used to numerically obtain 
the inelastic deformation gradient at the end of a time incre-
ment, that is

To calculate the elastic deformation gradient at the midpoint, 
it is required to find the total deformation gradient at the 
midpoint. This is done by taking the average of the deforma-
tion gradient at the start and end of the increment

2.3  Phenomenological viscoelastic model coupled 
with a phase‑field description

Following the additive decomposition of the free energy 
proposed in [1], the overall free energy of the material can 
be decomposed into an equilibrium �eq , a non-equilibrium 
�neq , and a volumetric part �vol as:

where

(21)D̄i =
�̇�i
𝜏neq

R̄e

T
�neqR̄e,

(22)�̇�i = �̇�0 exp

[

𝛥H

kb𝛩

(

(

𝜏neq

𝜏0

)5∕6

− 1

)]

,

(23)̇̄
Fi =

�̇�i
𝜏neq

��
neq

F̄i,

(24)F̄
t+

dt

2

i
= F̄

t

i
+

dt

2
̇̄
F
t
i
,

(25)F̄
t+dt

i
= F̄

t

i
+ dt ̇̄F

t+
dt

2

i
.

(26)F̄
t+

dt

2 =
F̄
t
+ F̄

t+dt

2
.

(27)𝜓
(

B̄, B̄e, J,𝜙
)

= g(𝜙)𝜓+
0

(

B̄, B̄e, J
)

+ 𝜓−
0

(

B̄, B̄e, J
)

,

and

The Heaviside step function is defined as

The energetic degradation function g(�) captures the evolu-
tion of the strain energy versus the phase-field parameter and 
satisfies the following conditions:

The conditions prescribe a monotonic decreasing behavior 
during the fracture evolution. To prevent crack propagation 
under compression, the volumetric strain energy does not 
change when J < 1 in Eqs. (28) and (29).

Here, the equilibrium �eq and non-equilibrium �neq parts 
of the free energy are defined by the neo-Hookean hyper-
elastic model as

and

where I1(⋅) = tr[⋅] is the first invariant of the tensor. The 
material parameters �eq and �neq depend on temperature, 
BNP volume fraction �np , and water content ww

Assuming that BNPs are well-dispersed rigid particles in 
the epoxy matrix, the Guth–Gold model is adopted by which 
the effective stiffness of particle-filled solids is obtained by 
⟨E⟩ = XEm [27]. The amplification factor X is typically a 
function of fillers’ volume fraction and distribution. So far, 
some attempts of various levels of sophistication have been 
conducted to incorporate the effect of particle/matrix inter-
actions on the effective modulus of polymer composites. 
Most of these models suggest a polynomial series expansion 
for the amplification factor. Here, a modified Guth–Gold 
model is proposed to account for uniformly distributed nano-
particles and moisture content as follows:

(28)𝜓+
0
= 𝜓eq

(

B̄
)

+ 𝜓neq

(

B̄e

)

+ H(J − 1)𝜓vol(J),

(29)�−
0
= (1 − H(J − 1))�vol(J).

(30)H(x) =

{

0, x < 0

1, x ≥ 0
.

(31)g(0) = 1, g(1) = 0, g�(�) ≤ 0 and g�(1) = 0.

(32)𝜌0𝜓eq =
1

2
𝜇eq

(

𝜈np,𝛩,ww

)(

I1
(

B̄
)

− 3
)

,

(33)𝜌0𝜓neq =
1

2
𝜇neq

(

𝜈np,𝛩,ww

)(

I1
(

B̄e

)

− 3
)

,

(34)�eq

(

�np,�,ww

)

= X
(

�np,ww

)

�0
eq
(�),

(35)�neq

(

�np,�,ww

)

= X
(

�np,ww

)

�0
neq

(�).

(36)X =
(

1 + awww + bww
2
w

)

(

1 + 3.5�np + 18�2
np

)

.
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In Eq.  (36), the effect of moisture content on the mate-
rial behavior is included based on the experimental data 
reported in the literature [16]. Accordingly, moisture 
absorption results in volumetric swelling, which in turn 
leads to an epoxy network with higher structural mobility 
and lower stiffness. However, the modulus is partially recov-
ered beyond a certain moisture content. This effect can be 
explained by type II bound water [66]. Compared with the 
mobile water (no hydrogen bond) and type I bound water 
(forming one hydrogen bond), type II bound water molecules 
form two hydrogen bonds with epoxy chains. As a result, 
more type II water binds with the polymer chains during the 
water absorption process, resulting in higher cross-linking 
and stiffness partially retrieving. In this study, we choose 
a widely used model and modified the model to capture 
the effect of BNPs and water molecules as well-dispersed 
particles in an epoxy system.The modified amplification 
factor proposed in this work is a first step to capture the 
stress–strain behavior of BNP/epoxy nanocomposites under 
hygrothermal conditions.

To consider the effect of temperature on the material 
properties, a modified Kitagawa model proposed by Unger 
et al. [60] is utilized with the following equations:

The volumetric part of the free energy �vol is also defined by

where  the  bulk  modulus  is  assumed to  be 
kv =

(

2 − exp
[

�
(

� − �ref

)])

X
(

�np
)

k0
v
 . The corresponding 

stresses are then obtained from

where

and

(37)�0
eq
= �0

eq,ref

(

2 − exp
[

�
(

� − �ref

)])

,

(38)�0
neq

= �0
neq,ref

(

2 − exp
[

�
(

� − �ref

)])

.

(39)�0�vol =
1

2
kv
(

�np
)

(

J2
m
− 1

2
− ln

[

Jm
]

)2

,

(40)
{

� = g�dev + �vol J < 1,

� = g�dev + g�vol J ≥ 1,

(41)�dev = J−1
(

𝜇eqB̄
D
+ 𝜇neqB̄

D

e

)

,

(42)�vol =
1

2
kvJ

−1
�

(

Jm −
1

Jm

)

1.

3  Phase‑field model at finite deformation

To evaluate the predictive capability of the proposed mate-
rial model, we use the model to develop a PFM formulation 
for nanoparticle/polymer composites. This section presents 
a variational phase-field formulation for fracture at finite 
deformation. In the following, to show the procedure of 
analysis, we derive the continuum mechanics incremental 
scheme and FE equations.

3.1  Problem field description

The strong form of the boundary value problem in spatial 
description for the coupling between displacement u and 
phase-field variable � can be written as

with the following boundary conditions:

where l0 is the length scale that controls the width of the 
diffuse crack, � = �t ∪ �u , b represents the vector of body 
forces, n is the outward unit normal vector on the boundary 
�  of the body Ω , t is the traction force, and ud represents the 
prescribed displacements at the boundary �u . To take into 
account the effect of BNP content on the fracture evolution 
in the nanocomposites, the energy release rate is taken to be 
Gc = X

(

�np,ww

)

G0
c
 . Following Miehe et al. [44], H is the 

local history field of maximum positive reference energy 
defined by:

which prevents the healing of cracks when the source term 
�+
0

 decreases. Here, a monotonically decreasing degradation 
function g(�) , satisfying conditions presented in Eq. (31), is 
chosen [29]

where k is a small positive parameter introduced for ensuring 
for the stability of the solution [44].

It should be noted that the propagation of cracks in the 
benchmark tests investigated in the present study takes 
a few minutes to a few days depending on the displace-
ment rate. While moisture diffusion into a specimen and 
the degradation of its mechanical properties due to water 

(43)

{

�.� + b = 0
Gc

l0
� − Gcl0�� = −g�(�)H

in �,

(44)

⎧

⎪

⎨

⎪

⎩

�.n = t on �t,

u = ud on �u,

∇�.n = 0 on � ,

(45)H(t) = max
𝜏∈[0,t]

𝜓+
0

(

B̄, B̄e, J
)

,

(46)
g(�) =

(

ag − 2
)

(1 − �)3 +
(

3 − ag
)

(1 − �)2 + k; ag≥0,
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absorption takes some weeks to some months [16]. It 
implies that moisture diffusion and crack propagation can 
be considered decoupled phenomena physically.

3.2  Finite‑element formulation

To derive the governing equations in weak form, the 
weighted residual approach is used. Thus, Eq. (43) is mul-
tiplied by weight functions and integrated over � as

and

Using the divergence theorem and imposing the boundary 
conditions �.n = t and ∇�.n = 0 presented in Eq. (44), the 
weak form of the governing equations can be written as 
follows:

Employing the Bubnov–Galerkin method, the displacement, 
the phase-field field, and the corresponding weight functions 
are discretized in each element

where the shape function matrices Nu and N� interpolate 
the nodal values u and � , respectively, and Bu and B� are 
the gradient operators for the displacement and the nonlo-
cal equivalent strain, respectively. The same shape functions 
interpolate the nodal values of the weight functions �u and 
�� . Substituting the relations into the weak formulation of 
the governing equations yields

which have to hold for any choice of �u and �� . The discre-
tized equations can therefore be rewritten as

(47)∫�

�u.(�.� + �)d� = 0 ∀ �u ∈ H1
0
(�),

(48)
∫�

w�

(

g�(�)H +
Gc

l0
� − Gcl0��

)

d� = 0 ∀ w� ∈ H1(�).

(49)∫�

��u ∶ �d� = ∫�

�u.�d� + ∫�

�u.�d� ,

(50)∫�

(

w�g
�(�)H +

Gc

l0
w�� + Gcl0∇w�.∇�

)

d� = 0.

(51)

�h = �u�, �h
u
= �u�u, wh

� = ����, �h = ���,

��h
u
= �u�u, ∇wh

� = ����, ∇�h = ���,

(52)∫�

�T
u
�T
u
�d� = ∫�

�T
u
�T

u
�d� + ∫�

�T
u
�T

u
�d� ,

(53)
∫�

�T
�

(

g�(�)H�T
� +

Gc

l0
�T

���� + Gcl0�
T
����

)

d� = 0,

The equations can then be expressed in terms of external and 
internal nodal forces as

where

3.3  Consistent incremental‑iterative scheme

By linearizing Eq. (56) at iteration i + 1 with respect to the 
previous iteration i, a consistent tangent stiffness is obtained 
as follows:

The linearized equations are finally summarized as follows:

where

(54)∫�

�T
u
�d� = ∫�

�T
u
�d� + ∫�

�T
u
�d� ,

(55)
∫�

(

g�(�)H�T
� +

Gc

l0
�T

���� + Gcl0�
T
����

)

d� = 0.

(56)�u
int

= �u
ext

and �
�
int

= �
�
ext,

(57)�u
int

= ∫�

�T
u
�d�,

(58)�u
ext

= ∫�

�T
u
�d� + ∫�

�T
u
�d� ,

(59)

�
�
int

= ∫�

(

g�(�)H�T
� +

Gc

l0
�T

���� + Gcl0�
T
����

)

d�,

(60)�
�
ext = �.

(61)�u
ext

= �u
int,i

+ ��u
int
,

(62)�
�
ext = �

�
int,i

+ ���
int
.

(63)
[

�uu
i

�
u�
i

�
�u
i

�
��
i

] [

��i+1
��i+1

]

=

[

�u
ext

�
�
ext

]

−

[

�u
int,i

�
�
int,i

]

,

(64)�uu
i

= ∫�

�T
u

(

��

��

)

�ud� + ∫�

�T
u
��ud�,

(65)�
u�
i

= ∫�

�T
u

(

��

��

)

��d�,

(66)�
�u
i

= ∫�

�T
�

(

g�
�H

��

)

�ud�,
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Generally, two approaches have been suggested to solve the 
phase-field–displacement system of equations: simultane-
ously solving � and � (monolithic algorithm) and sequen-
tially solving � and � as coupled staggered fields. However, 
it is known that monolithic schemes poorly perform in solv-
ing Eq. 63, since the energy functional is non-convex with 
respect to the unknowns [11]. This non-convexity causes the 
Jacobian matrix in the Newton method to become indefi-
nite, preventing convergence and robustness in monolithic 
solutions. On the other hand, although staggered algorithms 
are relatively robust, the time increment must be adequately 
small to prevent deviating from the equilibrium path. To 
make a trade-off between robustness and efficiency, a mono-
lithic solution scheme based on the Broyden–Fletcher–Gold-
farb–Shanno (BFGS) algorithm has been proposed in the 
literature to solve the system of coupled equations [34, 64]. 
In this work, the BFGS method presented in the following 
section is considered as the primary solution scheme.

3.4  The Broyden–Fletcher–Goldfarb–Shanno 
algorithm

In quasi-Newton methods, the stiffness matrix is replaced by 
an approximation of the stiffness �̃ . The approximated stiff-
ness matrix satisfies the quasi-Newton equation as follows:

where

The quasi-Newton method is an algorithmic secant method 
based on the series of successive approximations to the 
solution, which finds the root of nonlinear equations using 
the current and previous iteration steps. In the BFGS 
quasi-Newton method, the approximated stiffness matrix is 
updated by its predecessor and a correction matrix of rank 2

(67)

�
��
i

= ∫�

J−1
(

�T
�

(

g��H +
Gc

l0

)

�� + Gcl0�
T
���

)

d� and

(68)�i =

[

�u
ext

�
�
ext

]

−

[

�u
int,i

�
�
int,i

]

.

(69)�̃�� = ��,

(70)�� =

[

��i+1
��i+1

]

and

(71)�� = �i+1 − �i.

(72)�̃ = �̃i −

(

�̃i��
)(

�̃i��
)T

��T�̃i��
+

����T

��T��
.

It can be shown that a symmetric and positive-definite ini-
tial guess �̃0 leads to the symmetric and positive-definite 
updated one [39]. Therefore, since the stiffness matrix in 
Eq. 63 is not necessarily symmetric and positive-definite, 
an uncoupled stiffness matrix is taken as the initial guess

In the above equation, �uu
0

 is symmetric and positive-
definite. Also, ���

0
 is symmetric and positive-definite for 

an appropriate length-scale parameter. Accordingly, the 
approximated stiffness matrix given by the BFGS algo-
rithm is symmetric and positive-definite. It should be noted 
that although the off-diagonal inter-field coupling terms 
have been dropped in Eq. 73, the approximation 72 couples 
the � and � fields. This is not the case for Newton-based 
monolithic algorithms adopted for solving weakly coupled 
problems.

The BFGS algorithm along with a line search method 
helps to prevent divergence of equilibrium iterations 
resulting from the inexact stiffness matrix. Therefore, the 
solution is updated as follows:

where the multiplier s is chosen in the way that component 
of � in the search direction is zero with a tolerance

Here, convergence is assumed to be achieved if both the 
residual and solution correction controls are met, that is

where g�
max

 is the largest residual in the balance equations for 
the displacement field ( � = u ) and the phase-field ( � = � ), 
g̃� is the overall time-averaged flux for the displacement and 
phase-field obtained during the current time step including 
the current increment, c�

max
 is the largest correction to the 

field variable � given by the current iteration, and �zmax is 
the largest incremental change to the corresponding solution 
variable in the current time increment. Here, the tolerances 
are taken to be �g = 0.01 and �c = 0.01 . The implementation 
of the BFGS algorithm is outlined in Table 1.

3.5  Consistent tangent moduli based 
on the Jaumann‑Zaremba stress rate

To integrate the viscoelastic model into the incremen-
tal-iterative FE framework, the tangent modulus tensor 

(73)�̃0 =

[

�uu
0

�

� �
��
0

]

.

(74)�i+1 = �i + s��,

(75)��T�i+1 = 0.

(76)g�
max

≤ �gg̃
� and

(77)c�
max

≤ �c�zmax,
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ℂ
�J =

��

��
 needs to be explicitly specified. However, a 

closed-form calculation of the tangent tensor is not a 
straightforward task. Here, we use an efficient numeri-
cal approximation of the tangent moduli proposed by Sun 
et al. [58]. In this approach, by perturbing the deformation 
gradient, the tangent moduli for the Jaumann rate of the 
Cauchy stress are accurately approximated by a forward 
difference of the Cauchy stresses. The Jaumann rate of the 
Cauchy stress can be expressed as

The linearized incremental form of Eq. (78) is then obtained 
from

To numerically calculate components of ℂ�J , Eq. (79) is 
perturbed by applying small perturbations to components 
of �D and �W tensors. Here, �Wij and �Dij tensors with 
perturbed (i,j) components are expressed as

and

where the corresponding perturbed �Fij is obtained from 
perturbing its (i,j) component as [41]

(78)▽

� = �̇ −W� − �WT = ℂ
𝜎J ∶ D.

(79)�� − �W� − ��WT = ℂ
�J ∶ �D.

(80)�Wij =
1

2

(

�FijF
−1 −

(

�FijF
−1
)T
)

,

(81)�Dij =
1

2

(

�FijF
−1 +

(

�FijF
−1
)T
)

,

(82)𝛥Fij =
𝜖

2

(

ei ⊗ ejF + ej ⊗ eiF
)

,

where � is a small perturbation parameter. By substituting 
Eq. (82) into Eqs. (80) and (81), we have

It is noteworthy that �D has six independent components due 
to its symmetry. Therefore, the choice of (i,j) would be (1,1), 
(2,2), (3,3), (1,2), (1,3), and (2,3). The perturbed deforma-
tion gradient F̂ij can then be written as

Using Eq. (85), �� is approximated by the forward differ-
ence of the perturbed and unperturbed Cauchy stresses

Substituting Eqs. (83), (84), and (86) into Eq. (79) gives

Using Eq. (87), the numerical approximation of the tangent 
moduli is finally obtained as

where ℂ�J
ij

 represents the components of the tangent modulus 
tensor ℂ�J calculated by the perturbation of �Fij.

(83)�Wij = 0,

(84)𝛥Dij =
𝜖

2

(

ei ⊗ ej + ej ⊗ ei
)

.

(85)F̂ij = F + 𝛥Fij.

(86)𝛥� ≈ �
(

F̂ij

)

− �(F).

(87)�
(

F̂ij

)

− �(F) ≈ ℂ
𝜎J
ij

∶
𝜖

2

(

ei ⊗ ej + ej ⊗ ei
)

.

(88)ℂ
𝜎J
ij

=
1

𝜖

[

�
(

F̂ij

)

− �(F)
]

,

Table 1  BFGS algorithm for the 
system of coupled equations

1. Initialize the iteration process.
(a) Set initial parameters: i = 0.
(b) Initial stiffness matrix K̃0, z0.

2. Loop on i for equilibrium.
(a) Compute search direction δz using Eq. (69).
(b) Line search and solution vector update:

i. Compute G(0) = δzT g(zi)
ii. Loop over s ∈ sk = {1, 2, 4, 8, 16}

– Compute G(s) = δzT g(zi + sδz)
– IF G (s) ≤ STOL∗G (0) THEN go to step iii
– IF the sign of G (s) changes THEN

Finer adjustment of s ∈ sk−1, sk using the accelerated secant method (Illinois algorithm [39])
ENDIF

iii. Update the solution using Eq. 74
(c) Equilibrium check using Eqs. (76) and (76)

– IF the convergence criteria are achieved THEN EXIT
(d) Increment iteration counter: i = i+ 1
(e) Stability check

i. Compute the condition number c =
√

sG(0)
G(0)−G(s)

ii. IF c > ccrit ≈ 5 THEN
– Take previous quasi-secant matrix K̃i = K̃i−1
– go to 2a

(f) Update the stiffness matrix using the BFGS algorithm (see Eq. (72))
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4  Fracture experiments and numerical 
simulations

In the following section, the potential of the quasi-New-
ton method-based monolithic algorithm in achieving 
convergence and reducing the computation time of the 
rate-dependent fracture of solids is first investigated. The 
numerical results of CT tests of BNP/epoxy samples are 
then compared with the experimental data to identify the 
material parameters required for the proposed PFM. Next, 
the effect of hygrothermal conditions and deformation rate 
on the fracture behavior of the polymer nanocomposites is 
studied. Finally, the model’s capability in predicting frac-
ture patterns is qualitatively assessed using single-edge 
notched tests.

4.1  Experiments

To prepare the nanocomposite specimens, BNPs are first 
mixed with an epoxy resin. The epoxy system chosen in 
this study is a commercially available amine-cured epoxy 
system from Olin Epoxy, namely the epoxy resin of type 
AIRSTONE 880E and the hardener of type AIRSTONE 
886H with an epoxy–hardener mixing ratio of 100:31 by 
weight. A dispersion process is then conducted to break up 
nanoparticle agglomerates under mechanical shear loading 
using a three-roll mill (Exakt, 80E). The dispersion process 
ensures that nanoparticles are well dispersed in the epoxy 
matrix. The mixture is next de-gassed at room temperature 
and poured into a mold for curing nanocomposite plates. 
The curing process is performed at 353 K for 5 h. The mass 
density and glass-transition temperature of the epoxy are 
1.2 g/cc and 355 K, respectively. The plates are cut into 
CT specimens with a width of 35 mm and a nominal thick-
ness of 5 mm using a CNC milling machine according to 
DIN EN ISO 13586. A pre-crack with a length of 16 mm is 
introduced into the notch root by forcing a razor blade. The 
pre-crack ensures that a crack is formed ahead of the razor 
blade tip. The specifications of the specimen are illustrated 
in Fig. 2. Fracture toughness experiments are carried out at 
a deformation rate of 10 mm/min and 296 K. Since experi-
mental results may be affected by uncertainties resulting 
from the manufacturing process, each force–displacement 
response is obtained from five CT tests to secure the experi-
mental data statistically.

4.2  Simulations

We first study the crack growth in a CT specimen. The speci-
men specifications and dimensions in mm are illustrated in 
Fig. 2. Considering the symmetry at the mid-length of the 
specimen, the FE analysis of half of the specimen using 
symmetric boundary conditions would provide a complete 
solution of the full model with less computational cost. 
Loading and boundary conditions of the reduced model are 

Fig. 2  Planar dimensions of the CT specimen with a thickness of 
5 mm ( W = 35 mm, d = 6 mm, and a = 16 mm)

Fig. 3  a Loading and boundary conditions imposed on half of the CT specimen due to symmetry, and b two-dimensional FE model composed of 
6130 Q4 elements with 6334 nodes (fine mesh)
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shown in Fig. 3a. The following simulations are performed 
under plane strain conditions, and the load is applied in the 
form of a monotonic displacement with constant displace-
ment increments. The material parameters are presented in 
Table 2. The model is discretized with four-noded quad-
rilateral (Q4) elements. Figure 3b shows the correspond-
ing mesh with 6130 Q4 elements. Due to stress and strain 
concentrations at the bottom-right part of the model, the 
mesh is refined toward the part, so that the characteristic 
element size of the fine-level discretization is eight times 
smaller than the phase-field length scale. In the following 
CT simulations, two times the vertical displacement of the 
point placed at the external force is used to measure the 
displacement. 

The resulting force–displacement curves of the CT tests 
obtained from both the quasi-Newton monolithic and stag-
gered solutions are shown in Fig. 4a. The load is applied 
to a neat epoxy sample at a constant deformation rate of 
u̇ = 10 mm/min, � = 296 K and w = 0 . In the monolithic 
solution, the load is applied with a constant displace-
ment increment of �u = 5 × 10−3 mm. It can be seen that 
the staggered solution is sensitive to the increment size, 
and two orders of magnitude smaller displacement incre-
ment (i.e., �u = 5 × 10−5 mm) is required to reproduce the 
monolithic solution. The cumulative number of iterations 
versus displacement is also presented in Fig. 4b. The simu-
lation results show that recovering the monolithic result 
using a staggered solution requires a displacement incre-
ment of 5 × 10−5 mm and a total number of iterations that 
is one order of magnitude larger. The significant reduc-
tion in the number of iterations justifies the computational 
efficiency and applicability of the monolithic solution for 
studying rate-dependent fracture problems in polymer-
based materials.

Next, CT simulation tests are performed to asses the pre-
dictive capability of the proposed PFM model in capturing 

Table 2  Material parameters of the proposed PFM

Parameter Value References

Equilibrium part (Eq. (37)) �0

eq,ref
 (MPa) 800

Non-equilibrium part (Eq. (38)) �0

neq,ref
 (MPa) 2100

Viscoelastic dashpot (Eq. (22)) �̇�
0
  (s-1) 8.9207 × 1011 [59]

�
0
 (MPa) 140.65 [59]

�H (J) 2.0324 × 10−19 [59]
Modified Kitagawa parameters (Eqs. (37) and (38)) �  (K-1) 0.01093 [60]

�ref  (K) 296 [60]
Volumetric part (Eq. (40)) k0

v
 (MPa) 1200

Thermal expansion coefficient (Eq. (3)) ��  (K-1) 4.19 × 10−5 [60]
Moisture swelling coefficient (Eq. (4)) �w 0.039 Adopted based on [16]
Energy release rate (Eq. (43)) G0

c
 (N/mm) 250 × 10−3

Degradation function parameter (Eq. (46)) ag 1

Fig. 4  a Force–displacement response for neat epoxy samples 
obtained by the quasi-Newton monolithic and staggered solvers at 
u̇ = 10 mm/min and � = 296 K, and b a comparison of the cumula-
tive number of iterations for the solvers
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the fracture behavior of BNP/epoxy nanocomposites. Fig-
ures 5a and b show the force–displacement response asso-
ciated with specimens made of BNP(10 %wt)/epoxy and 
BNP(15 %wt)/epoxy at the deformation rate of u̇ = 10 mm/
min, � = 296 K, and w = 0 . The mass density of the neat 
epoxy and BNPs are 1.2 and 3.0 g/cc, respectively. Accord-
ingly, the volume fractions are obtained to be �np = 0.043 
and 0.065 for 10 and 15 %wt of BNPs, respectively. The 
simulations are performed using the material parameters 
listed in Table 2. The effect of nanoparticle contents is 
also considered using the modified Guth–Gold model pre-
sented in Sect. 2. The agreement between experimental 
data and numerical predictions in the figures confirms the 
predictive capability of the PFM in capturing the effect of 
nanoparticles on the fracture behavior of the nanocom-
posites. Also, from Figs. 4a and  5, it can be found that 
the peak force increases from 75.29 N for neat epoxy to 

90.26 and 97.94 N for nanocomposites with 10 and 15 %wt 
of BNP contents, respectively. The results indicate that 
the critical load for crack initiation increases by 30% by 
increasing the BNP content to 15 %wt.

We then study the effect of temperature on the fracture 
behavior of BNP/epoxy nanocomposites. Figure 6 shows 
the force–displacement response in CT simulation tests of 
specimens with 15 wt% of BNPs. Here, the deformation rate 
is kept constant at u̇ = 10 mm/min, while temperature varies 
from � = 296 to 346 K. The simulation results show that the 
peak force decreases from around 98 to 51 N by increasing 
temperature from 296 to 346 K. Furthermore, the displace-
ment at the fracture initiation rises from 0.27 to 0.53 mm 
by increasing temperature from 296 to 346 K. The simula-
tion results can be explained as follows. First, the shear and 
bulk modulus associated with the equilibrium, non-equi-
librium, and volumetric responses decrease by increasing 

Fig. 5  Effect of BNP weight fraction on the force–displacement curve in the CT test at u̇ = 10 mm/min and � = 296 K: (a) BNP(10 %wt)/epoxy 
sample, and (b) BNP(15 %wt)/epoxy sample

Fig. 6  Effect of temperature on the force–displacement curve in CT 
simulation tests of BNP(15 %wt)/epoxy samples at u̇ = 10 mm/min Fig. 7  Effect of deformation rate on the force–displacement curve in 

CT simulation tests of BNP(15 %wt)/epoxy samples at � = 346 K
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temperature (see Eqs. (37) and (38)), leading to a less stiff 
material. Second, the nonlinear viscoelastic flow defined by 
the Argon model in Eq. (22) is temperature-dependent, so 
that the viscoelastic flow increases with an increase in tem-
perature. As a result, a larger portion of the strain energy is 
dissipated at higher temperatures, leading to a smaller peak 
force and larger displacement at the fracture initiation. It 
is noteworthy that the effect of temperature on the energy 
release rate has not been considered in the simulations. 
Although this assumption may be acceptable in the studied 
range of temperatures according to experimental data [32], 
further studies are required to investigate the variation of 
energy release rate with temperature.

In Fig. 7, CT simulation tests are conducted to investigate 
the effect of the deformation rate ( ̇u ) on the fracture response 
of BNP (15 wt%)/epoxy nanocomposites. Here, temperature 
is set to be 346 K, and large deformations up to 10 mm at 
different deformation rates, varying from 0.001 to 1 mm/
min, are applied to the specimens. From the figure, the dis-
placement at the peak force decreases from 1.31 to 0.53 mm 
by increasing the deformation rates from 0.001 to 1 mm/
min. In analogy with the effect of temperature, the viscous 
effect is smaller, and the dashpot behaves more like a solid at 
higher deformation rates. Therefore, a smaller portion of the 
strain energy is dissipated, and displacement at the fracture 
initiation and peak force become smaller. The evolution of 
damage in a BNP(15 %wt)/epoxy sample at the deformation 

rate of 0.01 mm/min and imposed displacements of 1, 2, 5, 
and 10 mm is illustrated in Figs. 8a–d.

In the following, we study the effect of moisture on the 
fracture behavior of the nanocomposites. Figures 9a and 
9b show the force–displacement response in CT simula-
tion tests of specimens with 15 wt% of BNPs at 296 and 
346 K, respectively. In the simulations, the deformation 
rate is kept constant at u̇ = 10 mm/min, while the moisture 
content varies from 0 to 3 wt%. Here, 3 wt% is considered 
as the saturation moisture content that can be contained in 
the polymer nanocomposites. The influence of moisture 
content on the material behavior of the nanocomposites is 
captured using the modified Guth–Gold model presented in 
Eq. (36). The simulation results show that the peak force, 
respectively, decreases from around 98 to 87 N and from 5̃0 
to 45 N at 296 and 346 K by increasing the moisture content 
from 1 to 2 wt%. The peak force, however, rises by further 
increasing the moisture to 3 wt%. For instance, the peak 
force increases from around 87 to 91 N at 296 K by increas-
ing the moisture content from 2 to 3wt%. This observation 
can be interpreted as follows. The epoxy’s moduli decrease 

Fig. 8  Contour plots of damage in the CT simulation test of a 
BNP(15 %wt)/epoxy sample at 346  K and the deformation rate of 
0.01  mm/min at the imposed displacement of a 1  mm, b 2  mm, c 
5 mm, and d 10 mm

Fig. 9  Effect of moisture content on the force–displacement curve in 
CT simulation tests of BNP (15 %wt)/epoxy samples at a � = 296 K 
and b � = 346 K
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with moisture absorption when the moisture content is less 
than 1.7 wt%. However, when the moisture content exceeds 
1.7 wt%, moduli regain some of their reduction as discussed 
in Eq. (36). Therefore, the peak force increases by increasing 
the moisture content from 2 to 3wt%.

Finally, the capability of the proposed model to predict 
fracture patterns is evaluated using the well-known single-
edge notched tensile and shear tests of BNP(15 %wt)/epoxy 
samples. The geometry and boundary conditions are shown 
in Fig. 10a. A horizontal notch is placed at middle height 
from the left outer surface to the center of the specimen. The 
bottom side of the specimen is fixed, while the top side is 
moved. Both tensile and shear loads are applied at the defor-
mation rate of u̇ = 10 mm/min with constant displacement 
increments of 10−4 mm. The simulations are performed at 

296 K under plane strain conditions with the material param-
eters listed in Table 2. Meshes are refined in areas where 
cracks are expected to propagate. Accordingly, 12509 ele-
ments and an effective element size of 0.003 mm in the cen-
tral strip of the specimen are generated for the tensile test, 
and 21045 elements with refined meshes in the lower right 
diagonal strip of the specimen are used for the shear test. 
Also, the length-scale parameter is set to be l0 = 0.015 mm. 
The predicted fracture patterns for the two cases are shown 
in Figs. 10b, b. It can be seen that the crack path is horizon-
tal for the tensile case, while there is a curved crack path for 
the pure shear case. The crack patterns are in agreement with 
those presented in the literature [43]. To study the effect of 
moisture on the fracture behavior of the nanocomposites, 
the tensile and shear tests are performed in both dry and wet 

Fig. 10  a Geometry and boundary conditions of single-edge notched specimen, b fracture pattern for unidirectional tension ( � = 90◦ ), and c 
fracture pattern for pure shear deformation ( � = 0◦)

Fig. 11  Effect of moisture content on the force–displacement curve in single-edge notched simulation tests of BNP(15 %wt)/epoxy samples 
under a tensile and b shear loading
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conditions. Figures 10a, b present the resulting force–dis-
placement curves at the moisture content of 0 and 2 wt%. 
According to the simulation results, the peak force obtained 
from the tensile and shear tests, respectively, decreases from 
around 43 to 38 N and from 18 to 16 N by increasing the 
moisture content to 2 wt% (Fig. 11). 

5  Summary and conclusion

A phase-field fracture model has been proposed to inves-
tigate the effect of hydrothermal effects on the fracture 
behavior of BNPs/epoxy nanocomposites at finite defor-
mation. To explore the impact of nanoparticle and mois-
ture contents on the rate-, temperature-dependent fracture 
evolution in the polymer nanocomposites, the PFM has 
been coupled to a nonlinear viscoelastic constitutive model 
in a thermodynamically consistent way. For this, the Helm-
holtz free energy, which describes the nanocomposites’ 
rate, temperature, and moisture-dependent behavior, is 
additively decomposed into an equilibrium, a non-equilib-
rium, and a volumetric contribution with positive/negative 
components. Within this framework, modified versions of 
the Guth–Gold and Kitagawa models have been adopted 
to capture the role played by hydrothermal conditions on 
the fracture evolution in the materials. To improve the 
the computational efficiency of the PFM, a quasi-New-
ton monolithic algorithm proposed in [34, 64] has been 
employed to solve the coupled governing equations. The 
BFGS algorithm applied to nonlinear viscoelastic fracture 
problems confirms its higher efficiency in comparison with 
a staggered solution scheme. Benchmark examples show 
that recovering the monolithic solution using the staggered 
solution requires about ten times the cumulative number 
of iterations is about ten times more number of iterations.

To further evaluate the capability of the proposed 
PFM, numerical predictions should be compared with 
the experimental data at different hydrothermal condi-
tions and strain rates in the future. Also, the effect of non-
uniform dispersion of nanoparticles and moisture content 
and varying temperature profiles across a specimen on the 
fracture behavior of polymer nanocomposites needs to be 
investigated in future studies. Furthermore, interactions 
between water molecules, nanoparticles, and an epoxy 
matrix would cause changes in the material properties 
such as the viscosity and energy release rate. However, 
due to the complex interactions at small scales, the mecha-
nisms leading to these possible variations are not clear. To 
gain a deep understanding of the microstructure’s effect 
on the macroscopic properties, the phase-field modeling 
can be coupled to molecular models to characterize the 
polymer nanocomposites’ material behavior [4, 5]. Fur-
thermore, nanoparticles tend to form agglomerates in an 

epoxy matrix, resulting in insufficient dispersal [33]. It 
leads to degrading material properties due to relatively 
inferior interfacial interactions between nanoparticles and 
the matrix. The effect of surface modification of BNPs on 
the the fracture behavior of the polymer nanocomposites 
should be investigated in the future studies.
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