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Abstract
This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineer-
ing problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/
roll-off passenger ferry advancing in calm water and subject to two operational uncertainties (ship speed and payload). The 
first four statistical moments (mean, variance, skewness, and kurtosis), and the probability density function for such quantity 
of interest (QoI) are computed with two multi-fidelity methods, i.e., the Multi-Index Stochastic Collocation (MISC) and an 
adaptive multi-fidelity Stochastic Radial Basis Functions (SRBF). The QoI is evaluated via computational fluid dynamics 
simulations, which are performed with the in-house unsteady Reynolds-Averaged Navier–Stokes (RANS) multi-grid solver 
�navis. The different fidelities employed by both methods are obtained by stopping the RANS solver at different grid levels 
of the multi-grid cycle. The performance of both methods are presented and discussed: in a nutshell, the findings suggest 
that, at least for the current implementation of both methods, MISC could be preferred whenever a limited computational 
budget is available, whereas for a larger computational budget SRBF seems to be preferable, thanks to its robustness to the 
numerical noise in the evaluations of the QoI.
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1  Introduction

Aerial, ground, and water-born vehicles must perform, in gen-
eral, under a variety of environmental and operating conditions 
and, therefore, their design analysis and optimization processes 
cannot avoid taking into account the stochasticity associated 
with environmental and operational parameters. An example 
is given by ships and their subsystems, which are required to 
operate under a variety of highly stochastic conditions, such 
as speed, payload, sea state, and wave heading [1]. In this con-
text, the accurate prediction of relevant design metrics (i.e., 
resistance and powering requirements; seakeeping, maneuver-
ability, and dynamic stability; structural response and failure) 
requires prime-principles-based high-fidelity computational 
tools (e.g., computational fluid/structural dynamics, CFD/
CSD), especially for innovative configurations and off-design 
conditions. These tools are, however, generally computation-
ally expensive, making the quantification of the relevant statis-
tical indicators (through the use of many function evaluations) 
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a technological challenge. As an example, an accurate hull-
form optimization based on unsteady Reynolds-Averaged 
Navier-Stokes (URANS) solvers under stochastic conditions 
may require up to 500K CPU hours on high performance com-
puting (HPC) systems, even if computational cost reduction 
methods are used [1]. Similarly, a URANS-based statistically 
significant evaluation of ship maneuvering performance in 
irregular waves may require up to 1M CPU hours on HPC 
systems [2]. In this context, the use of efficient uncertainty 
quantification (UQ) methods is essential to make the design 
analysis and optimization processes affordable. The develop-
ment and application of UQ methods for sea-vehicle problems 
were discussed in [3]. Moreover, the numerical UQ analysis of 
a high-speed catamaran was performed and discussed for calm 
water [4], regular [5] and irregular [6] waves conditions. An 
experimental UQ analysis was presented in [7] for validation 
purposes of the same model. The efficiency of the UQ meth-
ods is, in general, problem dependent and has to be carefully 
assessed. As an example, several UQ methods were compared 
for an airfoil benchmark problem in [8].

In general, there is by now a large consensus in the UQ 
and computational sciences communities on the fact that 
large-scale UQ analyses can only be performed by leverag-
ing on multi-fidelity methodologies, i.e., methodologies that 
explore the bulk of the variability of the quantities of interest 
(QoI) of the simulation over coarse grids (or more gener-
ally, computationally inexpensive models with, e.g., simpli-
fied physics), and resort to querying high-fidelity models 
(e.g., refined grids or full-physics models) only sparingly, 
to correct the initial guess produced with the low-fidelity 
models, see e.g., [9]. Within this general framework, several 
approaches can be conceived, depending on the kind of fidel-
ity models considered and on the strategy used to sample 
the parameter space (i.e., for what values of the uncertain 
parameters the different fidelity models should be queried/
evaluated).

One large class of methods that has received increasing 
attention in this context is the family of multi-level/multi-
index methods, due to its effectiveness and solid mathemati-
cal ground. The hierarchy of models considered by these 
methods is usually obtained by successive (most often—but 
not necessarily—dyadic) refinements of a computational 
grid. The multi-level/multi-index distinction arises from 
the number of hyper-parameters that are considered to con-
trol the overall discretization of the problem, i.e., how many 
hyper-parameters are used to determine the computational 
grids (e.g., one or multiple size parameters for the grid ele-
ments and/or time-stepping) and the number of samples 
from the parameter space to be solved on each grid (e.g., 
specified by a single number or by a tuple of different num-
bers along different directions in the parametric space).

Combining the above considerations with a specific sam-
pling strategy over the parameter space results in different 

variations of the method. One approach is to use random/
quasi random sampling methods: this leads to methods such 
as Multi-Level Monte Carlo [10, 11], Multi-Index Monte 
Carlo [12], Multi-Level/Multi-Index Quasi-Monte Carlo 
[13].

A different option is to resort to methods that build a 
polynomial approximation over the parameter space: 
methods such as Multi-Level Stochastic Collocation [14], 
Multi-Index Stochastic Collocation [15–18], Multi-Level 
Least-Squares polynomial approximation [19], etc. fall in 
this category. Note that the wording “Stochastic Colloca-
tion” is to be understood as a synonym of “sampling in the 
parametric space”: it refers to the fact that the parameters of 
the problem can be seen as random (stochastic) variables, 
and sampling the parametric space can be seen as “collocat-
ing the approximation problem at points of the stochastic 
domain”.

Another widely studied class of multi-level methods 
employs kernel-based surrogates such as hierarchical kriging 
[20], co-kriging [21], Gaussian processes [22], and radial-
basis functions [23]. Additive, multiplicative, or hybrid 
correction methods, also known as “bridge functions” or 
“scaling functions” [24], are used to build multi-fidelity 
surrogates. Further efficiency of multi-fidelity surrogates 
is gained using dynamic/adaptive sampling strategies, for 
which the multi-fidelity design of experiments for the surro-
gate training is not defined a priori but dynamically updated, 
exploiting the information that becomes available during the 
training process. Training points are dynamically added with 
automatic selection of both their location and the desired 
fidelity level, with the aim of reducing the computational 
cost required to properly represent the function [23].

Moving away from the multi-level/multi-index paradigm, 
multi-fidelity methods that are based on different physical 
models rather than multiple discretizations have been pro-
posed, e.g., in [25–29].

The objective of the present work is to assess and com-
pare the use of two methods, one from each methodological 
family, for the forward UQ analysis of a naval engineering 
problem. Specifically, the performance of the Multi-Index 
Stochastic Collocation (MISC) and adaptive multi-fidelity 
Stochastic Radial Basis Functions (SRBF) methods is com-
pared on: (i) an analytical test function and (ii) the forward 
UQ analysis of a roll-on/roll-off passenger (RoPax) ferry 
sailing in calm water with two operational uncertainties, 
specifically ship speed and draught, the latter being directly 
linked to the payload. The estimation of the expected value, 
variance, skewness, kurtosis, and of the probability density 
function (PDF) of the function and the hydrodynamic resist-
ance of the RoPax, is presented and discussed. The test func-
tion considered in the analytical test is tailored to resemble 
the surrogate model of the naval engineering problem: the 
results of this preliminary test can then be considered as a 
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baseline for the assessment of the relative performances of 
the two methods, and help in interpreting the results of the 
naval test case. In the RoPax problem the hydrodynamic 
resistance for each value of speed and draught requested 
by MISC and SRBF is computed by the URANS equation 
solver �navis [30–32], developed at CNR-INM. �navis 
embeds a multi-grid approach for iterations acceleration, 
based on a sequence of grids obtained by derefining an ini-
tial fine grid. More specifically, in this work four grids are 
used, and leveraged by both MISC and SRBF to vary the 
fidelity of the simulations. Therefore, both MISC and SRBF 
are used as multi-index methods with only one component 
controlling the spatial discretization. Another relevant aspect 
is that �navis is an iterative solver, and, as such, it stops 
as soon as a suitable norm of the residual drops below a 
prescribed tolerance. The fact that the RANS equations are 
not solved at machine precision introduces in practice some 
noise in the evaluation of the resistance, which needs to be 
dealt with during the computations of the UQ indicators 
(statistical moments, PDF, etc.).

A preliminary version of this work is available as pro-
ceedings of the AIAA Aviation 2020 Forum, see [33]. With 
respect to that version, the manuscript was significantly 
improved in many ways. First, the discussion on MISC is 
now focused on the construction of the surrogate model 
rather than on computing statistical moments, and in par-
ticular we added some (we believe) interesting considera-
tions about the fact that the MISC surrogate model is not 
interpolatory, even when using nested points in the para-
metric space; to the best of the authors’ knowledge, this 
fact was never mentioned in previous literature. Second, 
for the SRBF method applied to the RoPax UQ analysis, a 
methodological advancement is used. In the previous work 
interpolation was enforced for the early iterations. Then, 
when a certain number of training points was available, an 
optimization process was performed to automatically select 
the number and the position of centers of the SRBF, thus 
automatically selecting whether to perform interpolation 
or regression. Differently, in this work, the optimization 
process is performed since the first iteration, thus mak-
ing the methodology fully adaptive. Finally, the numerical 
results section has been enriched by including an analytical 
test, by adding a reference solution for the naval problem 
(which is obtained by a sparse-grid sampling of the high-
est fidelity at our disposal), and by discussing a possible 
strategy to mitigate the impact of the RANS noise on the 
MISC framework.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the general framework and notation for 
the UQ problem, and the two methodologies considered 
in this work; in particular, MISC is presented in Sect. 2.1, 
while SRBF is presented in Sect. 2.2. Section 3 presents 
the numerical results: a preliminary analytical test (see 

Sect. 3.2) and then the naval problem (see Sect. 3.3). Finally, 
a summary of the findings of the numerical tests and an 
outlook on future work is presented in Sect. 4.

2 � Forward uncertainty quantification 
methods

Let us assume that we are interested in the outcome 
of a CFD simulation that depends on the value of N 
random/uncertain parameters collected in the vector 
� = [y1, y2,… , yN] ; we denote by Γ ⊆ ℝ

N  the set of all 
possible values of � , and by �(�) the PDF of � over Γ . 
The goal of a forward UQ analysis is to compute statisti-
cal indicators of the QoI, G, of such CFD simulation, to 
quantify its variability due to the uncertainties on � . For 
instance, we might be interested in computing expected 
values and/or higher-order moments of G (in the numeri-
cal tests, we will report on mean, variance, skewness, 
and kurtosis, denoted by �[G] , Var[G] , Skew[G] , and 
Kurt[G] , respectively), and the PDF of G, which com-
pletely describes its statistical variability. 

This analysis is often performed by a sampling 
approach, i.e., the CFD simulation is run for several pos-
sible values of � , and the corresponding results are post-
processed to get the indicators of interest. For instance, 
the statistical moments can be approximated by weighted 
averages of the values obtained,  while the PDF can be 
approximated by histograms or, e.g., kernel density meth-
ods [34, 35]. Clearly, these analyses require large datasets 
of evaluations of G: if computing a single instance of 
G requires a significant amount of computational time, 
obtaining the dataset can become prohibitively expensive. 
A possible workaround is then to replace the evaluations 
of G with the evaluations of a surrogate model, which is 
ideally a good approximation of the original G, cheap to 
evaluate and obtained by suitably combining together a 
relative small number of evaluations of G (less than what 
would be needed to perform the UQ analysis of the full 
model). The two methods that we consider in this work 
are both methods to construct such surrogate model, and 
in particular they leverage the fact that CFD simulations 
can be performed over multiple grid resolutions to further 
reduce the computational costs.

Before describing in detail each method, we need to 
introduce some notation. To this end, let us assume that 
the computational domain of our CFD simulation can be 
discretized by a grid with non-cubic hexahedral elements 
of the same size1 and let us also assume for a moment that 
the level of refinement of the grid along each physical 

1  The assumption that all elements must be of the same size can be 
relaxed, but it is kept for simplicity of exposition.
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direction can be specified by prescribing some integer 
values �1, �2, �3 ; to fix ideas, one can think, e.g., that the 
number of elements of the grid scales as 2�1 × 2�2 × 2�3 , 
but this is not necessary. The three values of �i are col-
lected in a multi-index � = [�1, �2, �3] ; prescribing the 
multi-index � thus prescribes the computational grid to 
be generated. If this flexibility is not allowed by the grid-
generator (or by the problem itself), it is possible to set 
�1 = �2 = �3 = � , i.e., controlling the grid-generation by 
a single integer value � (this is actually the case for the 
RoPax ferry example considered in this work). The same 
philosophy applies both to single- and multi-patch grids, 
where in principle there could be up to three values �i for 
each patch. In general, we assume that � has d compo-
nents, � ∈ ℕ

d
+
 . The QoI of the CFD simulation computed 

over the grid specified by � is denoted by G� ; this could 
be, e.g., the full velocity field or a scalar quantity associ-
ated with it.

2.1 � Multi‑index stochastic collocation (MISC)

In this section, the MISC method is introduced. As already 
mentioned, the MISC method is a multi-fidelity method 
that falls under the umbrella of multi-index/multi-level 
methods: in particular, the single-fidelity models upon 
which MISC is built are global Lagrangian interpolants 
over Γ.

2.1.1 � Tensorized Lagrangian interpolant operators

The first step to derive the MISC surrogate model is to select 
a sequence of collocation points for each uncertain param-
eter yn , i.e., for each direction of Γn of Γ . For computational 
efficiency, these points should be chosen according to �(�) , 
and they should be of nested type (i.e., collocation grids of 
increasing refinement should be subset of one another). In 
the RoPax ferry example considered in this work, the uncer-
tain parameters � can be modeled as uniform and independ-
ent random variables (see Sect. 3.3) for which we choose to 
employ Clenshaw–Curtis (CC) points, see, e.g., [36]. A set 
of K univariate CC points can be obtained as

and two sets of CC points, with K1 and K2 points, are nested 
if (K2 − 1)∕(K1 − 1) = 2� for some integer � , see also below. 
Other nested alternatives for uniformly distributed param-
eters are Leja points [37, 38] and Gauss–Patterson points 
[39]. Next, we introduce the function

(1)t
(j)

K
= cos

(
(j − 1)�

K − 1

)
, 1 ≤ j ≤ K,

and denote by Tn,�n the set of m(�n) CC points along yn , i.e.,

Note that this choice of m guarantees nestedness of two sets 

of CC points, i.e., Tn,�n =
{
y
(jn)

n,m(�n)

||||
jn = 1,… ,m(�n)

}

for n = 1,… ,N. if � ≥ �.
An N-dimensional interpolation grid can then be obtained 

by taking the Cartesian product of the N univariate sets just 
introduced. The number of collocation points in this grid 
is specified by a multi-index � ∈ ℕ

N
+

 : such multi-index 
plays thus a similar role for the parametric domain Γ as the 
multi-index � for the physical domain. We denote such ten-
sor interpolation grid by T� =

⨂N

n=1
Tn,�n

 and its number 
of points by M� =

∏N

n=1
m(�n) : using standard multi-index 

notation, they can be written as

where m(�) =
[
m(�1), m(�2),… ,m(�N)

]
 and � ≤ m(�) 

means that jn ≤ m(�n) for every n = 1,… ,N . For fixed � , 
the approximation of G�(�) based on global Lagrangian 
polynomials collocated at these grid points (single-fidelity 
approximation) has the following form

where 
{
L
(�)

m(�)
(�)

}

�≤m(�) are N-variate Lagrange basis poly-

nomials, defined as tensor products of univariate Lagrange 
polynomials, i.e.,

Naturally, the single-fidelity approximation U�,� is more and 
more accurate the higher the number of collocations points 
in each direction. Hence, ideally one would choose both 
multi-indices � and � with large components, say � = �⋆ 
and � = �⋆ , i.e., to consider many CFD simulations over 
a refined computational grid; however, this is typically 
infeasible due to the computational cost of a single CFD 
simulation.

(2)m(0) = 0, m(1) = 1, m(�n) = 2�n−1 + 1 for �n ≥ 2,

Tn,�n
=

{
y
(jn)

n,m(�n)

||||
jn = 1,… ,m(�n)

}
for n = 1,… ,N.

T� =
{
�
(�)

m(�)

}

�≤m(�), with �
(�)

m(�)
=
[
y
(j1)

1,m(�1)
,… , y

(jN )

N,m(�N )

]
,

(3)G�(�) ≈ U�,�(�) ∶=
∑

�≤m(�)
G�

(
�
(�)

m(�)

)
L
(�)

m(�)
(�),

(4)

L
(�)

m(�)
(�) =

N∏

n=1

l
(jn)

n,m(�n)
(yn) with

l
(jn)

n,m(�n)
(yn) =

m(�n)∏

k=1,k≠jn

yn − y
(k)

n,m(�n)

y
(k)

n,m(�n)
− y

(jn)

n,m(�n)

.
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2.1.2 � MISC surrogate model

The above discussion on the costs of U�⋆,�⋆ motivates the 
introduction of MISC. MISC is a multi-fidelity approxima-
tion method that replaces U�⋆,�⋆ with a linear combination 
of multiple coarser U�,� : as will be clearer later, the com-
ponents of such linear combination are chosen obeying to 
the idea that whenever the spatial discretization � is refined, 
the order of the interpolation � is kept to a minimum and 
vice versa.

To build a MISC approximation, the so-called “detail 
operators” (univariate and multivariate) on the physical and 
parametric domains have to be introduced. They are defined 
as follows, with the understanding that U�,�(�) = 0 when at 
least one component of � or � is zero. In the following the 
dependence of the interpolation operator on the parameters 
� is omitted for sake of compactness. Thus, we denote by �i 
the canonical multi-index, i.e., (�i)k = 1 if i = k and 0 oth-
erwise, and define

Observe that taking tensor products of univariate details 
amounts to composing their actions, i.e.,

and analogously for the multivariate parametric detail opera-
tors �param[U�,�] . By replacing the univariate details with 
their definitions, we can then see that this implies that the 
multivariate operators can be evaluated by evaluating certain 
full-tensor approximations U�,� introduced in the previous 
subsection, and then taking linear combinations:

Univariate physical detail:

Δ
phys

i
[U�,�] = U�,� − U�−�i,�

with 1 ≤ i ≤ d;

Univariate parametric detail:

Δ
param

i
[U�,�] = U�,� − U�,�−�i

with 1 ≤ i ≤ N;

Multivariate physical detail:

�phys[U�,�] =

d⨂

i=1

Δ
phys

i
[U�,�];

Multivariate parametric detail:

�param[U�,�] =

N⨂

j=1

Δ
param

j
[U�,�];

Mixed multivariate detail:

�mix[U�,�] = �param
[
�phys[U�,�]

]
.

�phys[U�,�] =

d⨂

i=1

Δ
phys

i
[U�,�] = Δ

phys

1

[
⋯

[
Δ

phys

d

[
U�,�

] ] ]
,

The latter expressions are known as “combination-tech-
nique” formulations, and can be very useful for practical 
implementations. In particular, they allow to evaluate, e.g., 
�phys[U�,�] by calling pre-existing softwares on different 
grids up to 2d times in a “black-box” fashion. Analogously, 
evaluating �param[U�,�] requires evaluating up to 2N opera-
tors U�,� over different interpolation grids, and evaluating 
�mix[U�,�] requires evaluating up to 2d+N operators U�,� over 
different parametric grids and physical grids. Observe that 
by introducing these detail operators a hierarchical decom-
position of U�,� can be obtained; indeed, the following tel-
escopic identity holds true:

As an example, the case of d = N = 1 (i.e., one-dimensional 
physical and parametric spaces) can be considered. Recall-
ing that by definition Ui,j = 0 when either i = 0 or j = 0 , it 
can be seen that

The crucial observation is that, under suitable regular-
ity assumptions for G(�)  (see, e.g., [17, 18]), not all of the 
details in the hierarchical decomposition in Eq. (5) con-
tribute equally to the approximation, i.e., some of them 
can be discarded and the resulting formula will retain good 
approximation properties at a fraction of the computational 
cost (roughly, the multi-indices to be discarded are those 
corresponding to “high-order” details, i.e., those for which 
‖�‖1 + ‖�‖1 is sufficiently large). Upon collecting the multi-
indices [�, �] to be retained in the sum in a multi-index set 
Λ ⊂ ℕ

d+N
+

 , the MISC approximation of G can be introduced 
as

�phys[U�,� ] = Δ
phys

1

�
⋯

�
Δ

phys

d

�
U�,�

� � �

=
�

�∈{0,1}d

(−1)‖�‖1U�−�,� ;

�param[U�,� ] =
�

�∈{0,1}N

(−1)‖�‖1U�,�−�.

(5)U�,� =
∑

[�,�]≤[�,�]
�mix[U�,�].

∑

[i,j]≤[2,2]
�mix[Ui,j] = �mix[U1,1] + �mix[U1,2] + �mix[U2,1]

+ �mix[U2,2]

= U1,1 + (U1,2 − U1,1) + (U2,1 − U1,1)

+ (U2,2 − U2,1 − U1,2 + U1,1)

= U2,2.

(6)G(�) ≈ SΛ(�) ∶=
∑

[�,�]∈Λ

�mix[U�,�(�)].
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To obtain a meaningful expression, Λ should be chosen as 
downward closed, i.e., (see Fig. 1a)

Clearly, the MISC formula in Eq. (6) has a combination-
technique expression as well, which can be written in com-
pact form as

where the coefficients c�,� are defined as

This is the approximation formula which is used in our prac-
tical implementation of the MISC method, which shows our 
initial statement that the MISC evaluation is computed by 
evaluating full-tensor interpolation operators U�,� indepen-
dently and combining them linearly, as specified by Eq. (7). 
Before going further, we remark a few important points: 

1.	 The effectiveness of the MISC approximation depends 
on the choice of the multi-index set Λ . The optimal 
choice of Λ depends on the regularity assumptions 
on G(�) : in general, the result will be a method akin 
to classical multi-level schemes such as Multi-Level 

∀� ∈ Λ, � − �j ∈ Λ for every j = 1,… , d + N such that kj > 1.

(7)SΛ(�) =
∑

[�,�]∈Λ

�mix[U�,�(�)] =
∑

[�,�]∈Λ

c�,� U�,�(�),

c�,� =
�

[�, �] ∈ {0, 1}d+N

[� + �, � + �] ∈ Λ

(−1)‖[�,�]‖1 .

Monte Carlo, where most of the statistical variability 
of the QoI is explored by solving many CFD simula-
tions with coarse grids (large ‖�‖1 with small ‖�‖1 ) 
and then the result is corrected with a few CFD simula-
tions with refined grids (large ‖�‖1 with small ‖�‖1 ). 
A practical adaptive algorithm to construct Λ is pre-
sented in Sect. 2.1.4, following the discussion in, e.g., 
[16]. Another option is to design Λ a-priori, by a careful 
analysis of the PDE at hand, see, e.g., [15, 17, 18].

2.	 MISC works well only if the levels are sufficiently sepa-
rated, i.e., if the number of degrees of freedom of the 
computational grid (and the corresponding computa-
tional cost) grows significantly from one level to the 
next one: to fix ideas, one such case is if the number of 
elements in the grid scales, e.g., as 2�1 × 2�2 × 2�3 , but 
not if, e.g., increasing �1 to �1 + 1 adds only one element 
to the grid. If this separation does not hold, the cost of 
computing all the components in Eq. (7) would exceed 
the cost of the construction of a highly-refined single-
fidelity surrogate model U�⋆,�⋆.

3.	 The MISC surrogate model SΛ(�) is not interpolatory, 
even when nested nodes are used in the parametric space 
(as it is the case here). To illustrate this, let us consider 
as an example the case d = 1,N = 2 , with Γ = [−1, 1]2 . 
We construct the MISC approximation based on the 
multi-index set Λ = {[1, 1 1], [1, 2 1], [2, 1 1]} : for-
mula (7) results in

SΛ(�) = −U[1,1 1](�) + U[2,1 1](�) + U[1,2 1](�),

Fig. 1   Multi-index sets for 
the construction of the MISC 
approximation (in the case 
d = N = 1 ). a the gray set is 
downward closed, whereas 
adding the blue multi-index 
to it would result in a set not 
downward closed; b a down-
ward closed set (in gray) and 
its margin (indices marked in 
red and blue). If Algorithm 1 
reaches the gray set, it will next 
explore all indices marked in 
red (their addition to the gray 
set keeps the downward closed-
ness property) but not those 
marked in blue. The red set is 
also known as “reduced margin”

(a) (b)
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where the first and the second operators are constant inter-
polants ( � = [1 1] ) whose value is equal to the first and 
second fidelity evaluated at the center of the parametric 
domain, �(C) = [0, 0] , respectively; the third operator is 
instead an interpolant of degree two based on the value of 
the first fidelity evaluated at the following three CC bivar-
iate points: �(L) = [−1, 0] , �(C) = [0, 0] , and �(R) = [1, 0] . 
Then, evaluating the MISC approximation at, e.g., �(R) 
results in

i.e., the value of SΛ at �(R) is different from the only model 
evaluation available at such point (which is G1(�

(R)) ). This 
is in contrast with the well-known property of single-fidelity 
sparse-grid surrogate models, for which the use of nested 
nodes over Γ guarantees that SΛ(�SG) = G(�SG) at the sparse-
grid points �SG.

2.1.3 � MISC quadrature

By taking the integral of the MISC surrogate model defined 
in Eq. (7) it is straightforward to obtain a quadrature formula 
RΛ to approximate the expected value of G:

By recalling the definition of U�,� given in Eq. (3) and of the 
multivariate Lagrange polynomials in Eq. (4), each of the 
integrals at the right-hand side of the previous formula can 
be rewritten in compact form as tensor quadrature opera-
tors, i.e.,

SΛ(�
(R)) = −G1(�

(C)) + G2(�
(C)) + G1(�

(R)) ≠ G1(�
(R)),

�[G] ≈ �[SΛ] =∶ RΛ = ∫Γ

SΛ(�)�(�) d�

=
∑

[�,�]∈Λ

c�,� ∫Γ

U�,�(�)�(�) d�.

Q�,� ∶ = �Γ

U�,�(�)�(�) d�

=
∑

�≤m(�)
G�

(
�
(�)

m(�)

)( N∏

n=1
�Γn

l
(jn)

n,m(�n)
(yn)�(yn) dyn

)

=
∑

�≤m(�)
G�

(
�
(�)

m(�)

)( N∏

i=1

�
(jn)

n,m(�n)

)

=
∑

�≤m(�)
G�

(
�
(�)

m(�)

)
�
(�)

m(�)
,

where �(jn)

n,m(�n)
 , are the standard quadrature weights obtained 

by computing the integrals of the associated univariate 
Lagrange polynomials (available as analytical or tabulated 
values for most families of collocation points), and �(�)

m(�)
 are 

their multivariate counterparts. The quadrature formula RΛ 
can then be understood as a linear combination of tensor 
quadrature operators, in complete analogy with the MISC 
surrogate model construction:

Equivalently, one can also write

where the definition of �mix[Q�,�] can be easily deduced by 
replacing the interpolation operators with quadrature opera-
tors in the definition of the detail operators given earlier in 
this section. Clearly, formula (8) easily generalizes to the 
computation of higher-order moments:

However, this formula might not be the most effective 
approach to approximate �[Gr] , especially in case of noisy 
evaluations of G; this aspect is discussed in more detail in 
Sect. 3.3.2.

We close the discussion on the MISC quadrature by 
remarking that the collocation points have a twofold use, 
i.e., they are both interpolation and quadrature points. This 
aspect significantly differentiates the MISC method from 
the approach based on radial basis functions presented in 
Sect. 2.2, where two distinct sets of points are considered: 
one for constructing a surrogate models (“training points”), 
and one for obtaining sample values of the surrogate mod-
els and deriving an estimate of expected value and higher 
moments of G (“quadrature points”).

2.1.4 � An adaptive algorithm for the multi‑index set 3

As already mentioned, the effectiveness of the MISC 
approximation depends on the choice of the multi-index set 
Λ : in this work such set is built with an adaptive algorithm, 
see [16]. We begin by introducing the following decomposi-
tion of the quadrature error

(8)RΛ =
∑

[�,�]∈Λ

c�,�Q�,� .

RΛ =
∑

[�,�]∈Λ

�mix[Q�,�],

(9)�[Gr] ≈
∑

[�,�]∈Λ

c�,�

∑

�≤m(�)
Gr

�

(
�
(�)

m(�)

)
�
(�)

m(�)
, with r ≥ 1.



2216	 Engineering with Computers (2023) 39:2209–2237

1 3

where ER
�,�

∶= ||�
mix[Q�,�]

|| . E
R

�,�
 thus represents the “error 

contribution” of [�, �] , i.e., the reduction in the quadrature 
error due to having added [�, �] to the current index-set Λ . 
In practice, ER

�,�
 can be conveniently computed by

for any Λ downward-closed set such that Λ ∪ [�, �] is also 
downward closed. A similar quadrature-based error contri-
bution is considered in [16], where a convex combination of 
the error in the computation of the mean and of the variance 
of the QoI is used. Another possibility is to introduce an 
error decomposition based on the point-wise accuracy of the 
surrogate model, following the same arguments above. The 
“error contribution” of [�, �] is then taken as

where H ⊂ Γ is a suitable set of “testing points”. Note that 
a similar criterion has been proposed also in the context 
of sparse-grid methods: different choices of H can be con-
sidered, depending whether nested or non-nested points are 
used (cf., e.g., [40, 41] and [42], respectively). In this work, 
we consider a set of 10000 random points (note that this 
operation is not expensive since it does not require evalua-
tions of the full model).

Similarly to the “error contribution”, the “work contribu-
tion” W�,� of [�, �] is defined as the work required to add 
[�, �] to the current index-set Λ . It is the product of the 
computational cost associated with the spatial grid identi-
fied by the multi-index � , denoted by cost(�) (see details in 
Sect. 3.3.1, Eq. (29)), times the number of new evaluations 
of the PDE required by the multi-index � , i.e.,

|�[G] −RΛ| =
|||�[G] −

∑

[�,�]∈Λ

�mix[Q�,�]
|||

=
|||

∑

[�,�]∉Λ

�mix[Q�,�]
||| ≤

∑

[�,�]∉Λ

||�
mix[Q�,�]

||

=
∑

[�,�]∉Λ

ER
�,�

,

(10)E
R

�,�
= |RΛ∪[�,�] −RΛ|

(11)

E
S

�,�
= ‖SΛ∪[�,�] − SΛ‖L∞ ≈ max

�∈H

���SΛ∪[�,�](�) − SΛ(�)
���,

with m defined as in Eq. (2). Note that the expression above 
is based on the fact that the collocation points used here are 
nested.

We then introduce the so-called “profit” associated with 
the multi-index [�, �] , which is defined in correspondence 
with the two choices of error contribution above as

An effective strategy to build adaptively a MISC approxi-
mation can then be broadly described as follows: given the 
MISC approximation associated with a multi-index set Λ , 
a new MISC approximation is obtained by adding to Λ the 
multi-index [�, �] ∉ Λ with the largest profit (either PS or 
PR , depending on the goal of the simulation), such that 
Λ ∪ {[�, �]} is downward closed. In practice the implemen-
tation reported in Algorithm 1 is used: it makes use of an 
auxiliary multi-index set, i.e., the margin of a multi-index 
set Λ , Mar(Λ) , which is defined as the set of multi-indices 
that can be reached “within one step” from Λ (see Fig. 1b)

This algorithm was first proposed in the context of sparse-
grids quadrature in [43] and its MISC implementation was 
first proposed in [16]. It is an a-posteriori algorithm and as 
such it determines the error contribution ES

�,�
, E

R

�,�
 of [�, �] 

after having added [�, �] to the grid. Therefore, at the end 
of the algorithm we do not have SΛ , but actually SJ , where J 
is the set of all indices whose profit has been computed, and 
clearly Λ ⊆ J : the richer approximation SJ is thus actually 
returned in practical implementations instead of SΛ . Finally, 
note that many stopping criteria can be considered (and pos-
sibly used simultaneously), which typically check that com-
putational work, error contributions or profit estimator are 
below a desired threshold.

(12)W�,� = cost(�)

N∏

n=1

(m(�n) − m(�n − 1)),

(13)PS

�,�
=

E
S

�,�

W�,�

or PR

�,�
=

E
R

�,�

W�,�

.

Mar(Λ) = {� ∈ ℕ
d+N s.t. � = � + �k

for some � ∈ Λ and some k ∈ {1,… , d + N}}.
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method treats one of its hyper-parameters as a random vari-
able, as will be clear later on.

2.2.1 � SRBF surrogate model

Given a training set T = {
(
�i,G(�i)

)
}J
i=1

 and normalizing 
the uncertain parameters domain into a unit hypercube, the 

Fig. 2   SRBF example with least-squares regression

2.2 � Adaptive multi‑fidelity stochastic radial basis 
functions (SRBF)

In this section, each of the components of the adaptive multi-
fidelity SRBF surrogate model are discussed. In particu-
lar, we emphasize that here the word “stochastic” denotes 
not only the fact that we are sampling parameters that are 
affected by uncertainty, but also to the fact that the SRBF 

Fig. 3   Example of multi-fidelity surrogate with M = 2 and exact 
interpolation at the training points
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RBF prediction is here based on a power function kernel 
and reads

where wj are unknown coefficients, �j are K points in Γ called 
RBF centers, and � ∼ unif[�min, �max] is a stochastic tuning 
parameter that follows a uniform distribution. The range of � 
is defined within �min = 1 and �max = 3 , where � = 1 provides 
a polyharmonic spline of first order (linear kernel) [44] and 
� = 3 provides a polyharmonic spline of third order (cubic 
kernel) [45]. Note that the choice of the distribution for � 
is arbitrary and, from a Bayesian viewpoint, this represents 
the degree of belief in the definition of the tuning param-
eter. The SRBF surrogate model F(�) is computed as the 
expected value (approximated by Monte Carlo) of f over � 
[46]:

where Θ is the number of samples for � , here set equal to 
1000. To give more flexibility to the method, the coor-
dinates of the RBF centers �j are not a-priori set to be 
coincident with the training points, but rather chosen by a 
k-means clustering algorithm applied to the training coor-
dinates, see [47]. Several values of the number of centers 
K ≤ J  are tested and their optimal number K∗ is chosen 
by minimizing a leave-one-out cross-validation (LOOCV) 
metric, see [48]. In details, letting gi,K(�) , i = 1,… ,J  be 
the surrogate models with K centers trained on the whole 
training set T  but the i-th point, K∗ is defined as:

where K ≤ J,K ∈ C ⊂ ℕ and RMSE(K ) is the root mean 
square error of the J  leave-one-out models g1,K,… , gJ,K at 
the point that is being left out for each gi,K:

Clearly, once the optimal number of centers K∗ is chosen, the 
whole set of points is used for the construction of the final 
surrogate model. Whenever the number of RBF centers is 
lower than the training set size ( K < J  ), the coefficients wj 
in Eq. (14) are determined through a least-squares regres-
sion by solving

(14)f (�, �) =

K∑

j=1

wj||� − �j||� ,

(15)G(�) ≈ F(�) = �
�

[
f (�, �)

]
≈

1

Θ

Θ∑

i=1

f
(
�, �i

)
,

(16)K
∗ = argmin

K∈C

RMSE(K),

(17)RMSE(K) =

√√√√ 1

J

J∑

i=1

(
G(�i) − gi,K(�i)

)2
, �i ∈ T.

with � = [w1,… ,wK]
�  ,  �ij = ||�i − �j||�  ,  1 ≤ i ≤ J  , 

1 ≤ j ≤ K and � = [G(�1),… ,G(�J)]
� ; otherwise when the 

optimal number of RBF centers equals the training set size, 
exact interpolation at the training points ( f (�i, �) = G(�i) ) 
is imposed and Eq. (18) reduces to

with �j = �j . Having less RBF centers than training points 
and employing the least-squares approximation in Eq. (18) 
to determine the coefficients wj is particularly helpful when 
the training data are affected by noise. An example of least-
squares regression is shown in Fig. 2.

The uncertainty UF(�) associated with the SRBF surro-
gate model prediction is quantified by the 95%-confidence 
band of the cumulative density function (CDF) of f (�, �) 
with respect to � for fixed � as follows

with

where H(⋅) is the Heaviside step function.

2.2.2 � Multi‑fidelity approach

In this section, we restrict to the case of the CFD grid gen-
eration being controlled by a scalar value � , i.e., the QoI 
computed with the �-th grid is denoted by G

�
 , � = 1,… ,M . 

The multi-fidelity approximation of G is adaptively built 
following the approach introduced in [49] and extended to 
noisy data in [50]. Extending the definition of the training 
set to an arbitrary number M of fidelity levels as {T

�
}M
�=1

 , 
with each T

�
= {

(
�j,G�

(�j)
)
}
J
�

j=1
 , the multi-fidelity approxi-

mation S
�
(�) of G(�) reads

where F1 is the single-fidelity surrogate model associ-
ated with the lowest-fidelity training set (constructed as in 
Eq. (15)), and �i(�) is the inter-level error surrogate with 
associated training set Ei = {(�,� − Si(�)) | (�,�) ∈ Ti+1} . 
An example of the multi-fidelity approximation with two 
fidelities is shown in Fig. 3.

(18)� =
(
���

)−1
���,

(19)� = �−��,

(20)UF(�) = CDF−1(0.975; �) − CDF−1(0.025; �),

CDF(�;�) ≈
1

Θ

Θ∑

i=1

H[� − f (�, �i)],

(21)S
�
(�) ∶= F1(�) +

�−1∑

i=1

�i(�),
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Assuming that the uncertainty associated with the predic-
tion of the lowest-fidelity UF1

 and inter-level errors U
�i
 as 

uncorrelated, the multi-fidelity approximation SM(�) of G(�) 
and its uncertainty USM

 read

2.2.3 � Adaptive sampling approach

Upon having evaluated USM
 , the multi-fidelity surrogate is 

then updated adding a new training point following a two-
steps procedure: first, the coordinates of the new training 
point �⋆ are identified based on the SRBF maximum uncer-
tainty, see [23], solving the maximization problem:

An example (with one fidelity only) is shown in Fig. 4. 
Secondly, once �⋆ is identified, the training set/sets to be 
updated with the new training point 

(
�⋆,G

𝛼
(�⋆)

)
 are T

�
 with 

� = 1,… , k , where k is defined as

with �
�
 being the computational cost associated with the  

�-th level.
In the present work, the adaptive sampling procedure 

starts with five training points (for each fidelity level) located 

(22)

G(�) ≈ SM(�) = F1(�) +

M−1∑

i=1

�i(�)

and USM
(�) =

√√√√
U2

F1
(�) +

M−1∑

i=1

U2
�i
(�).

(23)�⋆ = argmax
�∈�

[USM
(�)].

(24)
k = maxloc

[
�(�⋆)

]
and

�(�⋆) ≡ {UF1
(�⋆)∕𝛾1,U𝜖1

(�⋆)∕𝛾2, ...,U𝜖M−1
(�⋆)∕𝛾M},

at the domain center and at the centers of each boundary 
of Γ . Furthermore, to avoid abrupt changes in the SRBF 
prediction from one iteration to the next one, the search for 
the optimal number of centers for the �-th fidelity K∗

�
 can be 

constrained. Herein, at every adaptive sampling iteration, 
the problem in Eq. (16) is solved assuming K to be either 
equal to the number of centers at the previous iteration or 
incremented by 1, i.e., C = [K∗,t−1

�
,K∗,t−1

�
+ 1] , except for the 

first iteration where no constraint is imposed.
A deterministic version of the particle swarm optimiza-

tion algorithm [51] is used for the solution of the optimiza-
tion problem in Eq. (23).

The adaptive sampling is, therefore, inherently sequential 
(the uncertainty changes every time a new point is added), 
but this is sub-optimal whenever the numerical simulations 
can be performed with an hardware capable of running p 
simulations simultaneously. In this case, it would be ideal 
to identify p training points where the models G

�
 can be run 

in parallel, instead of running them one after the other. To 
this end, we follow a parallel-infill procedure, i.e. we per-
form p “guessing steps”: the adaptive sampling procedure 
is repeated p times replacing the evaluations of the actual 
model G

�
 with the evaluations of the multi-fidelity models 

S
�
 . This replacement significantly speeds up the p steps, 

since the true models G
�
 are not evaluated at this stage. Upon 

doing these p guessing steps, the actual G
�
 are evaluated all 

at once (i.e., in parallel) at the p training points just obtained 
and these evaluations replace the corresponding multi-fidel-
ity evaluations in the training set.

Finally, numerical quadrature is used on the multi-fidelity 
SRBF surrogate model to estimate the statistical moments 
of the QoI.

(a) (b)

Fig. 4   Example of the adaptive sampling method using a single-fidelity training set consisting of noiseless evaluations: a shows the initial SRBF 
with the associated prediction uncertainty and training set; b shows the position of the new training point, the new SRBF prediction, and its 
uncertainty
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3 � Numerical tests

In this section, two numerical tests are considered. First, 
the performance of the MISC and SRBF methods are com-
pared on an analytical test, and then the main problem of 
this work, i.e., the RoPax ferry problem mentioned in the 
introduction, is discussed. In the analytical example, Taylor 
expansions of increasing order are considered as different 
fidelities to be employed, while in the RoPax problem the 
fidelities are obtained by using different grid refinements, as 
will be clearer later. Both problems consider uniformly dis-
tributed uncertain parameters. Before entering the detailed 
discussion of the two tests, an overview of the error metrics 
used to carry out the comparison is given in the following.

3.1 � Error metrics

The performance of MISC and SRBF are assessed by com-
paring the convergence of both methods to a reference solu-
tion according to several error metrics. The specific choice 
of the reference solution (denoted below by Gref ) for each 
test will be detailed in the corresponding sections. In the 
following list, we use the symbol S for both the MISC 
and SRBF surrogate models for sake of compactness, i.e., 
S = SΛ for MISC (cf. Eq. (7)) and S = SM for SRBF (cf. 
Eq. (22)). 

1.	 Relative error between the first four centered moments 
(mean, variance, skewness, and kurtosis) of the MISC/
SRBF approximations and those of the reference solu-
tion: 

 where Momi[S] denotes the MISC/SRBF approximation 
of the i-th centered moment (computed by the quadra-
ture rule associated with MISC/SRBF) and Momi[Gref] 
the approximation of the i-th centered moment of the 
reference solution computed by a suitable quadrature 
rule (more details will be given later).

2.	 Relative error in discrete L2 and L∞ norm between the 
MISC/SRBF surrogates and the reference solution, i.e., 
sample mean square error and largest point-wise predic-
tion error, respectively; the differences are evaluated at 
a set of n = 10000 random points �i ∈ Γ . In formulas, 

(25)erri =
|Momi[S] −Momi[Gref]|

|Momi[Gref]|
, i = 1,… , 4,

(26)

errL2 =

�
1

n

∑n

i=1

�
S(�i) − Gref(�i)

�2

�
1

n

∑n

i=1
Gref(�i)

2

,

errL∞ =
maxi=1,…,n

���S(�i) − Gref(�i)
��
�

maxi=1,…,n Gref(�i)
.

3.	 A visual comparison of the PDFs obtained by Matlab’s 
ksdensity function, using again as input the 10000 points 
used before.

4.	 Convergence of the CDF approximated by MISC/SRBF 
to the CDF of the reference solution, as measured by the 
Kolmogorov–Smirnov (KS) test statistic. In details, we 
evaluate an approximation of the quantity 

 where range[S,Gref] is the largest common range of 
values taken by S and Gref , CDF

S and CDFGref are the 
empirical CDFs obtained by the set used before of 
10000 random samples of the MISC/SRBF surrogate 
models and reference model, respectively. We then 
check that T converges to zero as the surrogate models 
get more and more accurate. The values of T reported 
in the next sections are obtained with the Matlab’s kst-
est2 function.

We emphasize that the adaptive criteria that drive the con-
struction of the MISC and SRBF approximations need not 
match the error metrics above (compare them against Eqs. 
(13), (10) and (11) for MISC, and Eq. (23) for SRBF). It 
is actually interesting to investigate how MISC and SRBF 
converge when monitoring error norms that are not aligned 
with the adaptivity criteria.

3.2 � Analytical problem

3.2.1 � Formulation

As analytical test, a two-dimensional function is chosen. 
This function is designed to be representative of the RoPax 
problem: the input parameters � are independent and have 
a uniform distribution, and the function is non-linear, non-
polynomial and monotonic. In details, it is defined as

with � ∈ [0, 1]2 . To provide a range of fidelities G
�
(�) for 

G(�) , Taylor expansions of order � of the argument of the 
sin(⋅) function, that is exp(y1+y2)

5
 , are performed for � = 1,… , 6 

in the neighborhood of � = (0, 0) . The sixth-order Taylor 
expansion G6(�) is then considered as the highest-fidelity 
and the first order G1(�) as the lowest-fidelity. Figure 5 
shows the true function G(�) and its approximations G6(�) 
and G1(�) . We mention in-passing that the sixth-order Taylor 
expansion is almost indistinguishable from the true function 
in the range of y1, y2 considered, whereas the low-fidelity 
function is significantly different and does not show any 
change in curvature. Note that the difference between the 

(27)T = sup
t∈range[S,Gref]

|CDFS(t) − CDFGref(t)|,

G(�) = G(y1, y2) = sin

(
exp(y1 + y2)

5

)
,
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sixth-order and the true function is actually irrelevant for 
our purposes since we never consider the true function in 
the numerical tests: errors are indeed computed with respect 
the sixth-order approximation, in analogy with PDE-based 
problems where no exact closed-formula solution is avail-
able, and the “ground-truth” is usually taken as a “refined-
enough” solution.

A normalized computational cost is associated with each 
evaluation of the �-th Taylor expansion G

�
(�) as

(28)cost(�) = 8�−1.

This choice is done to keep the analogy with the RoPax 
problem and will become clear later.

3.2.2 � Numerical results

We start the discussion with the comparison of the MISC/
SRBF estimates of the moments with the reference values. 
The reference values are computed by an accurate sparse-
grids quadrature rule with 215 + 1 points where the refer-
ence surrogate model/function Gref(�) is the highest-fidelity 

(a) True function (b) Highest-fidelity functionG6(y) (c) Lowest-fidelity functionG1(y)

Fig. 5   Analytical problem, true function and highest- and lowest-fidelity approximations

(a) Results for the MISC method with profit PR.

(b) Results for the MISC method with profit PS . For ease of comparison, we overlap the results for MISC-PR (gray
dashed lines) in the plot on the right.

Fig. 6   Analytical problem, results for the MISC method. Left: convergence of the values of the first four centered moments. The black dashed 
line marks the reference value of the moments. Right: relative error of the moments (see Eq. (25))
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2  https://​sites.​google.​com/​view/​sparse-​grids-​kit

approximation G6(�) . The calculations have been done using 
the Sparse Grids Matlab Kit2 [52].

In Fig. 6 the convergence of the MISC estimates of the first 
four centered moments and their relative errors as defined in 
Eq. (25) are reported. The two variants of MISC (denoted 
by MISC-PR and MISC-PS in the following) introduced in 
Sect. 2.1 are tested, i.e., two type of profits (see Eq. (13)), PR 
based on the quadrature error (see Eq. (10)) and PS based on 
the point-wise accuracy of the surrogate model (see Eq. (11)), 
are considered. The results for the case of a quadrature-based 
profit PR are displayed in the first set of plots (see Fig. 6a left). 
All the moments converge to the reference results marked 
with the black dashed line. In Fig. 6a right one can observe 
that the error is larger the higher the order of the moment. 
Remarkably, even if the adaptivity of the MISC method is 
driven by the improvement in the first-order moment, all the 
moments are estimated very well. The second set of plots 

(see Fig. 6b) suggests that also the version of MISC driven 
by the accuracy of the surrogate model PS is effective in the 
estimation of the moments. By comparing the two methods, 
one can observe that the latter one brings better results, as the 
error for all the moments is always smaller.

Figure 7 shows the convergence of the moments for 
SRBF: differently from MISC, all the moments have a quite 
similar convergence towards their reference values, with 
errors all converging within the same order of magnitude. 
The convergence is almost monotonic for the expected 
value and for the kurtosis whereas some oscillations can 
be observed for the variance and the skewness. Note that 
for this problem the SRBF method is based on interpola-
tion at the training points (i.e., the weights are computed by 
solving Eq. (19)), whereas in the following RoPax example 
the regressive approach (i.e., solving Eq. (18)) is used, for 
reasons that will be clear later on.

Figure 8 shows that MISC and SRBF achieve compa-
rable results in terms of the relative errors of the centered 

Fig. 7   Analytical problem, results for the SRBF method. Left: convergence of the values of the first four centered moments. The black dashed 
line marks the reference value of the moments. Right: relative error of the moments (see Eq. (25))

Fig. 8   Analytical problem, comparison of MISC and SRBF methods: relative errors of the moments. It is a compact visualization of the results 
of Figs. 6 and 7, where the results of MISC are reported only until a computational cost comparable with the one reached by the SRBF method

https://sites.google.com/view/sparse-grids-kit
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moments. Specifically, MISC-PS performs better in the eval-
uation of all the moments, whereas SRBF performs slightly 
better than MISC-PR in the evaluation of the skewness. It 
is also worth noting that SRBF starts with a higher compu-
tational cost in comparison with MISC, due to the fact that 
the initialization strategy requires to sample all the available 
fidelities.

The results for the L2 and L∞ norms of the MISC error 
(see Eq. (26)) of Fig. 9 are in agreement with the previous 
findings for the estimation of the moments. An improvement 
of about two orders of magnitude is observed in favor of the 
surrogate-based method MISC-PS with respect to MISC-PR 
in the final part of the convergence curve. When compar-
ing these results with the convergence of the SRBF one can 
observe that both versions of MISC achieve better results 
than SRBF.

Fig. 9   Analytical problem, comparison of MISC and SRBF methods: relative error of the approximation of G in L2 (left) and L∞ norm (right) 
(see Eq. (26))

(a) PDFs at the final iteration (obtained by Matlab’s ksden-
sity enforcing positive support since G takes positive values
only)

(b) KS test statistic (see Eq. (27))

Fig. 10   Analytical problem, comparison of MISC and SRBF methods

Fig. 11   Analytical problem, 
results for the MISC and SRBF 
method. Sampling points at the 
last iteration

(a) MISC with profit PS (b) SRBF
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The comparison of the PDFs given in Fig. 10a shows a 
very good agreement of the MISC and SRBF results with the 
reference ones. In Fig. 10b the results of the KS test statistics 
(cf. Eq. (27)) are reported: both versions of MISC show a 
slightly better convergence of the test statistic.

Finally, it is worth looking at the sampling performed by 
the two methods. In Fig. 11 the samples selected by MISC-
PS and SRBF are displayed. In the first case (see Fig. 11a) 
the samples are well distributed over the domain in a sym-
metric way, with no preferential directions. The SRBF 
sampling is instead slightly more clustered in the regions 
where the high-fidelity function shows a larger curvature 
(cf. Figs. 5b and 11b). The sampling performed by MISC-
PR is not shown for brevity, as it is very similar to the one 
for MISC-PS.

3.3 � RoPax resistance problem

3.3.1 � Formulation and CFD method

The main problem addressed in this work is the forward UQ 
analysis of the model-scale resistance ( RT ) of a RoPax ferry 
in straight ahead advancement, subject to two operational 
uncertainties � = [U, T] , namely the advancement speed (U) 
and the draught (T), uniformly distributed within the ranges 
summarized in Table 1. The choice of using two operational 
parameters allows visual investigation of the results while 
preserving all the main difficulties that arise when solv-
ing parametric approximation problems. Furthermore, the 
advancement speed and draught are two operational param-
eters with significant practical implications: for instance 
Froude and Reynolds numbers vary with the advancement 
speed; allowed payload and block coefficient vary with the 
draught, etc.

The RoPax ferry is characterized by a length between per-
pendicular at nominal draught ( LPP ) of 162.85 m and a block 
coefficient CB = 0.5677 (see Fig. 12). The parametric geome-
try of the RoPax is produced with the computer-aided design 

environment integrated in the CAESES software, developed 
by FRIENDSHIP SYSTEMS AG, and made available in the 
framework of the H2020 EU Project Holiship3. The analy-
sis is performed at model scale with a scale factor equal to 
27.14. The main dimensions and the operative conditions are 
summarized in Table 1. The advancement speed ranges from 
12 to 26 knots at full scale and the draught variation is ±10% 
of the nominal draught, which corresponds to a variation of 
about ±15% of the nominal displacement. The corresponding 
range in Froude number Fr = U∕

√
gLPP is [0.154, 0.335], 

whereas the variation in Reynolds number (at model scale) is 
Re = �ULPP∕� = ULPP∕� ∈ [6.423 ⋅ 106, 1.392 ⋅ 107] , where 
� = 998.2 kg/m3 is the water density, � = �∕� = 1.105 ⋅ 10−6 
m 2 /s the kinematic viscosity and g = 9.81 m/s2 the gravita-
tional acceleration.

The hydrodynamics performance of the RoPax ferry is 
assessed by the RANS code �navis developed at CNR-INM. 
The main features of the solver are summarized here; for 
more details, the interested reader is referred to [30–32, 53] 
and references therein. �navis is based on a finite volume 
discretization of the RANS equations, with variables col-
located at the cell centers. Turbulent stresses are related to 
the mean velocity gradients by the Boussinesq hypothesis; 
the turbulent viscosity is estimated by the Spalart–Allmaras 
turbulence model [54]. Wall functions are not adopted, 
therefore the wall distance y+ = 1 is ensured on the no-slip 
wall. Free-surface effects are taken into account by a reliable 
single-phase level-set approach.

The computational domain extends to 2 LPP in front of 
the hull, 3 LPP behind, and 1.5 LPP sideway; a depth of 2 LPP 
is imposed (see Fig. 13a). On the solid walls (in red in the 
figure), the velocity is set equal to zero, whereas zero normal 
gradient is enforced on the pressure field; at the (fictitious) 
inflow boundary (in blue in Fig. 13a), the velocity is set to 
the undisturbed flow value and the pressure is extrapolated 
from inside; the dynamic pressure is set to zero at the out-
flow (in yellow), whereas the velocity is extrapolated from 
inner points. On the top boundary, which remains always in 
the air region, fluid dynamic quantities are extrapolated from 
inside (in purple). Taking advantage of the symmetry of the 
flow relative to the y = 0 plane, computations are performed 

Fig. 12   RoPax ferry, hull form. 
Free surface level is reported for 
the nominal draught

3  www.​holis​hip.​eu

http://www.holiship.eu
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for half ship only, and the usual symmetry boundary condi-
tions are enforced on the symmetry longitudinal plane (in 
green).

The computational grid is composed by 60 adjacent and 
partially overlapped blocks; Fig. 13b shows a particular of 
the block structures in the region around the ship hull and 
the computational grid on the symmetry plane. Taking the 
advantage of a Chimera overlapping approach, the grids 
around the skeg and around the bow are generated separately 
from the grid around the hull; a background Cartesian grid 

is then built and the whole grid is assembled by means of 
an in-house overlapping grid pre-processor. The final grid 
counts for a total of about 5.5M control volumes for half the 
domain. The numerical solutions are computed by means of 
a full multi-grid–full approximation scheme (FMG–FAS), 
with four grid levels (from coarser to finer: M1 , M2 , M3 , 
and M4 ), each obtained from the next finer grid with a 
coarsening ratio equal to 2, along each curvilinear direc-
tion. In the FMG–FAS approximation procedure, the solu-
tion is first computed on the coarsest grid level and then 

Table 1   Main geometrical 
details and operative conditions 
of the RoPax ferry (model scale 
1 : 27.14)

Description Symbol Full scale Model scale Unit

Length between perpendiculars LPP 162.85 6.0 m
Beam B 29.84 1.0993 m
Block coefficient CB 0.5677 0.5677 –
Nominal displacement ∇ 19584.04 0.9996 m3

Nominal draught Tn 7.10 0.261660 m
Draught range T [6.391, 7.812] [0.2355, 0.2878] m
Speed range U [6.173, 13.376] [1.185, 2.567] m/s
Froude range Fr [0.154, 0.335] [0.154, 0.335] –
Reynolds range Re [9.081 ⋅ 108, 1.968 ⋅ 109] [6.423 ⋅ 106, 1.392 ⋅ 107] –

Fig. 13   RoPax ferry, numerical setup. Boundary conditions and computational grid

Fig. 14   RoPax grids, detail of the bow region, left to right: M4 , M3 , M2 , M1
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approximated on the next finer grid by exploiting all the 
coarser grid levels available with a V-Cycle. The process 
is repeated up to the finest grid level. For the present UQ 
problem the number of grid volumes is 5.5M for M4 , 699K 
for M3 , 87K for M2 , and 11K for M1 . To provide an idea 
about the different grid resolutions between the grid levels, 
Fig. 14 shows a particular of the grid at the bow region for 
M4 , M3 , M2 and M1 grids.

Since the grids are obtained by a dyadic derefinement, the 
following normalized computational costs can be assigned 
to each grid:

with � = 1,… , 4 . In the FMG-FAS scheme the computa-
tion on the �-th grid level involves computations on all the 
coarser grids . However, with the estimation in Eq. (29), 
only the cost of the highest-fidelity level samples is taken 
into account, i.e., the computations on the coarser grids are 
considered negligible.

Fig. 15 shows an overview of the numerical solutions 
obtained for different conditions in terms of wave pattern 
and pressure on the hull surface; wave height (as elevation 
with respect to the unperturbed level) and surface pressure 
are reported in non-dimensional values, making the height 
non-dimensional with LPP and the pressure with �U2 . A 
clear, and obvious, Froude number dependency is seen for 
the wave patterns; at the lower speed shown, the free surface 
is weakly perturbed (note that the same color range has been 

(29)cost(�) = 8�−1,

used for all the panels), whereas, at higher Froude, a clear 
Kelvin pattern is seen. Also, at higher speed, the formation 
of a well-defined transom wave system is observed, includ-
ing the presence of the classical rooster tail. It is also worth 
to observe the influence of the draught on the wave sys-
tem; in particular at the lowest speed and smallest draught 
reported, the rear part of the bulbous is partially dry (better 
seen in the enlarged views presented in Fig. 16). The region 
of very low pressure caused by the flow acceleration around 
the bow is obviously the cause. For all cases, the high pres-
sure in the stagnation point at the bow prevents the bow to 
be outside the water, as it is at the rest conditions at least for 
the nominal and the smaller draughts (see Fig. 12). At the 
higher speed, the larger draught condition causes a stronger 
rooster tail system at the stern, with higher crest and trough.

Figure 17 shows the complete FMG–FAS cycle for the 
minimum and the maximum Froude numbers. The final eval-
uation of the RT for each grid is performed averaging the RT 
value among the last 100 iterations of the cycle. These are 
highlighted by the gray areas. Even if a general second-order 
convergence has been verified (not shown here for the sake 
of conciseness), it is evident that, although the FMG–FAS 
switches to a finer grid when the solver residual are lower 
than the defined convergence threshold (not shown here), 
the value of RT is clearly not converged yet, at least for the 
coarsest grid level. This has been observed mostly for low 
Froude numbers. Therefore, the final value of RT can sig-
nificantly deviate for simulations performed on the same 

Fig. 15   RoPax ferry, M4 
CFD results in terms of 
non-dimensional wave pat-
tern (left) and surface pres-
sure (right) for: Fr = 0.193 , 
T = 3.9249 ⋅ 10−2LPP and 
T = 4.7971 ⋅ 10−2LPP , top row 
left and right; Fr = 0.335 , 
T = 3.9249 ⋅ 10−2LPP and 
T = 4.7971 ⋅ 10−2LPP , bottom 
row left and right
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Fig. 16   RoPax ferry, enlarged 
view of the bow region as in 
Fig. 15

(a) Complete FMG–FAS cycle

(b) Detail of the shift from M1
to M2

(c) Detail of the shift from M2
to M3

(d) Detail of the shift from M3
to M4

(e) Detail of the last iterations
on M4

Fig. 17   RoPax problem, FMG–FAS cycle and highlight (gray areas) of the iterations considered to evaluate the RT for each grid for the mini-
mum and maximum Froude numbers
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grid but with slightly different conditions, thus producing 
evaluations affected by numerical noise. This will have an 
impact on the following UQ analysis.

3.3.2 � Numerical results

Hereafter, a detailed comparison of the performance of the 
MISC and SRBF methods is provided. The reference sur-
rogate model Gref(�) is obtained considering highest-fidelity 
simulations only. In details, an isotropic tensor grid con-
sisting of 9 × 9 CC points (see Eq. (1)) is constructed over 
Γ and the corresponding simulations on the grid M4 are 
performed. The resulting surrogate model is an interpolatory 
model, based on global tensor Lagrange polynomials, which 

is shown in Fig. 18b. Figure 18a shows instead the surrogate 
obtained with simulations on M1 , at the same CC points. 
Notice that both surrogates are affected by the noise, and 
more specifically, the noise is more evident in the lowest-
fidelity surface which is significantly less smooth than the 
highest-fidelity surrogate. Reference values for the centered 
moments are then computed applying the tensor quadrature 
formula associated with the CC points to the highest-fidelity 
simulations.

First, the performance of the MISC method is discussed. 
Only the results for the version of MISC with quadrature-
based profits PR are reported here, since this approach out-
performs the version of MISC with surrogate-based profits 
PS , for reasons related with the presence of the numerical 

Fig. 18   RoPax problem, sur-
rogate models

Fig. 19   RoPax problem, results for the MISC method. Left: convergence of the values of the first four centered moments. The black dashed line 
marks the reference value of the moments. Right: relative error of the moments (see Eq. (25))
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noise that will be clarified in a moment. In Fig. 19 the values 
of the approximations of the first four centered moments of 
RT obtained with MISC at different computational costs are 
displayed on the left, while the relative errors are shown on 
the right. Upon inspection of these plots, we can conclude 
that the quality of the estimates decreases with increasing 
order of the moments. In particular, the expected value and 
the variance seem to converge reasonably well (although 
the estimate of the expected value seems to hit a temporary 
plateau, after having obtained a good estimate at a low com-
putational cost), whereas the kurtosis is strongly underesti-
mated and its approximation results to be very poor.

To explain this behavior, we have a closer look at the 
MISC quadrature formula (9). In particular, let us recall that 

the computation of the first four centered moments implic-
itly uses surrogate models for r th powers of the quantity of 
interest Rr

T
 , r = 1,… , 4 , (see Sect. 2.1). These models are 

displayed in Fig. 20. The first one, corresponding to r = 1 , 
is quite rough: the surface shows an oscillatory behavior and 
the expected monotonicity of RT with respect to U and T is 
destroyed. This is due to the already discussed presence of 
numerical noise, which particularly affects the low-fidelity 
simulations. Indeed, MISC intensively samples low-fidelities 
by construction, see Fig. 21a, where we report the evalua-
tions allocated on each fidelity as the iterations proceed. In 
particular, most of the low-fidelity simulations are added 
from iteration 13 on (see Fig. 21b): this explains that the esti-
mate of �[RT ] reaches reasonable values at early iterations, 

Fig. 20   RoPax problem, sur-
rogate models obtained with the 
MISC method

Fig. 21   RoPax problem, number 
of simulations per grid selected 
by the MISC method at each 
iteration

(a) Total number of simulations (b) Number of new simulations
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i.e., when there is still a balance of low- and higher- fidel-
ity simulations, and its convergence deteriorates later, i.e., 
when low-fidelity simulations are the majority. Given that 
the numerical noise introduces spurious oscillations in the 
surrogate model already for r = 1 , such oscillations can only 
be amplified for r > 1 , as can be observed in Fig. 20b,c,d. 
Hence, the computation of moments suffers more from the 
noise the higher the order.

This observation then suggests that a way to mitigate the 
impact of such oscillations in the computation of statistical 
moments is to employ a method that does not require higher-
order surrogate models. In this work, we propose to compute 
such moments by taking Monte Carlo samples of the surro-
gate model of RT , and approximate the moments from these 
values, with the usual sample formulas. The results reported 
in Fig. 22 have been obtained taking the average of 10 rep-
etitions with 10000 samples (again, note that this computa-
tion is not expensive since it only requires evaluations of the 
MISC surrogate model) and are quite promising: the benefits 
increase for higher and higher-order moments, and in particu-
lar, the improvement in the estimate of the kurtosis is quite 
impressive; the results of MISC and Monte Carlo quadrature 
in the case r = 1 are instead substantially equivalent, which is 
to be expected since they both work with the same surrogate 
model. This strategy thus mitigates the impact of the noise 
on the computation of moments. However, it is not entirely 
satisfactory, since the choice of the number of samples to be 
employed is non trivial: on the one hand, we need a suffi-
ciently large number of samples to ensure accuracy of the esti-
mates, on the other hand, taking too many samples results in 
resolving the spurious oscillations. In other words, the chosen 
number of samples should give the best compromise between 
these two aspects, and some trial-and-error tuning, or some 

accurate a priori analysis should be carried out. Deeper stud-
ies of this matter will be subject of future work.

Further, at this point it is also clear why the version of 
MISC with profit PR , i.e., based on the quadrature, gives 
better results than the version with profit PS , i.e. based on 
the quality of the surrogate model. Indeed, in case of noisy 
simulations, the adaptivity criterion based on the profit PS 
results in capturing even more the spurious oscillations due 
to the numerical noise, since it is based on the direct point-
wise evaluation of the noisy surrogate model.

Next, we move to SRBF. As already mentioned, in this 
application we use a regression approach to compute the 
weights of the surrogate model (i.e., solving Eq. (18)), moti-
vated by the fact that the evaluations of the CFD solver are 
noisy as just discussed. The SRBF surrogate model at the 
last iteration of the adaptive sampling procedure is shown in 
Fig. 18d. The surface is smoother than the one produced by 
MISC (cf. Fig. 18c), although a small bump is present in the 
bottom part. This figure, thus, shows that SRBF is in general 
effective in filtering-out the numerical noise in the training set.

Figure 23 shows that SRBF spent about 50% of the final 
computational cost at the first iteration, then requiring simu-
lations on the finest grids only at iterations 5 and 6. In all 
the other iterations mainly low-fidelity simulations are per-
formed. This sampling behavior is due to the high values 
of prediction uncertainty that are found in the corners of 
the parametric domain, because the topology of the initial 
training leads to extrapolation in those zones. Such corner 
regions are those with the highest estimated prediction 
uncertainty, and the adaptive sampling procedure requires 
all the fidelities before exploring other regions.

Figure 24 shows the convergence of the first four centered 
moments of RT and their relative errors obtained with SRBF. 
The method initially converges rapidly to the reference 

Fig. 22   RoPax problem, results for the MISC method: relative error of the moments (see Eq. (25)). A comparison between the results obtained 
with the MISC quadrature formula (9) and the Monte Carlo quadrature
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values but then the metrics start oscillating. Similarly to the 
analytical problem, the errors of all the moments have a 
quite similar convergence. This is particularly evident in the 
last iterations of the adaptive sampling process, see Fig. 24a. 
Figure 24b shows the detail of the last iterations of the adap-
tive sampling. The oscillatory behavior is evident and mostly 
associated with the intensive sampling of the lowest fidel-
ity happening in correspondence with computational costs 
between 4638 and 4655. In this range the expected value 
and the skewness oscillates more than the other moments, 

indicating that the surrogate model is oscillating around the 
training data.

To conclude the discussion on the convergence of the 
moments, in Fig. 25 the convergence of the relative errors of 
the moments obtained with the two methods is compared (of 
course we consider MISC results when using Monte Carlo 
quadrature). Both MISC and SRBF achieve similar values: 
SRBF reach smaller errors in all moments but the kurtosis, 
but the convergence trend is bumpier than for MISC, and 
has a larger initial computational cost. Especially for SRBF, 

(a) Convergence over the full range of available computational costs.

(b) Zoom on the final part of the convergence.

Fig. 24   RoPax problem, results for the SRBF method. Left: values of the first four centered moments. The black dashed line marks the reference 
value of the moments. Right: relative error of the moments (see Eq. (25))

Fig. 23   RoPax problem, number 
of simulations per grid selected 
by the SRBF method at each 
iteration

(a) Total number of simulations (b) Number of new simulations
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Fig. 25   RoPax problem, comparison of MISC and SRBF results: relative error of the moments. It is a compact visualization of the results of 
Fig. 22 and 24

Fig. 26   RoPax problem, comparison of MISC and SRBF methods: relative error of the approximation RT in L2 (left) and L∞ norm (right) (see 
Eq. (26))

the convergence of the moments is oscillating, nevertheless 
the oscillations fall within a range that can be considered 
reasonable from a practical viewpoint as it is comparable 
with the numerical uncertainties and/or noise of the solver.

In Fig. 26 the relative error in L2 and L∞ norms of the 
estimates of the advancement resistance are plotted. These 
metrics confirm that the MISC method reaches reasonable 
estimates with a low computational cost, whereas the SRBF 
method returns slightly better results but requires an higher 
computational cost. In the case of SRBF, it is worth noting 
that in the last iterations the relative errors of variance, 
skewness, and kurtosis increase whereas the L2 metric 
decreases. This apparent contradiction is discussed compar-
ing the convergence of the variance and the L2 metric. Fig-
ure 27a and d show the convergence of the difference of the 
variances between the multi-fidelity surrogate model predic-
tion RT  and the reference value R∗

T
 ,  i .e. ,  of 

ΔVar[RT ] = Var[RT ] − Var[R∗
T
] , and of the L2

2
(RT ) metric, 

along with the summands of their decompositions: 
ΔVar[RT ] = �[R2

T
] − �[R∗2

T
] − (�[RT ]

2 − �[R∗
T
]2),

L2
2
(RT ) = �[

(
RT − R∗

T

)2
] = �[R2

T
] + �[R∗2

T
] − 2�[RTR

∗
T
].

 

To have ΔVar[RT ] going to zero it should happen that its two 
components, �[R2

T
] − �[R∗2

T
] and �[RT ]

2 − �[R∗
T
]2 , go to zero 

remaining equal in size; however, this does not happen, see 
Fig. 27b and e. Conversely, the two components of the 
L2
2
(RT ) metric, i.e., �[R2

T
] + �[R∗2

T
] and 2�[RTR

∗
T
] , are always 

almost equal in size (see Fig. 27c and f), therefore the L2
2
(RT ) 

metric goes to zero. Figure 27e shows a zoom on the last 
iterations of the ΔVar[RT ] convergence: the component 
�[RT ]

2 − �[R2
T
]2 is converging to zero faster than 

�[R2
T
] − �[R∗2

T
] , therefore their difference ΔVar[RT ] does not 

converge to zero.
Finally, in Fig. 28 the PDFs obtained with both methods 

and with the reference surrogate, as well as the results of the 
KS test statistic (cf. Eq. (27)), are plotted. Both MISC and 
SRBF predict well the position of the mode of the PDF and its 
magnitude and the tails of the distribution, with good agree-
ment with the reference solution. In the range [40 70]N , the 
PDF obtained by the MISC method is more “wobbly”, again 
due to the presence of noise in the evaluations of the solver, 
which corrupts the surrogate. Finally, the KS test statistic is 
seen to be convergent for both methods, implying convergence 
towards the reference CDF. Both convergences are not mono-
tonic due to the influence of the noisy simulations.
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4 � Conclusions and future work

In this work, two multi-fidelity methods for forward UQ 
applications, MISC and SRBF, have been presented and 
applied to two examples to highlight their strengths and criti-
cal points. The first numerical test considered in this work 
is an analytical example, that served as benchmark for the 
results of the second test, which instead consists in a realistic 
application in naval engineering and it is more demanding 
for a number of reasons (noisy evaluations of the quantity of 
interest, large setup time and computational costs). For the 
former, the different fidelities considered are Taylor expan-
sions of increasing order of a given function, while for the 
latter the fidelities are obtained by stopping the multi-grid 
computations in the RANS solver at different grid levels.

In detail, we have considered the a posteriori adaptive 
MISC method already presented in [16], with slight modifi-
cations on the profit computation, and we have highlighted 
in passing that MISC is not an interpolatory method, con-
trary to its single-fidelity counterpart (i.e., sparse grids); this 
detail was never previously discussed (up to the authors’ 
knowledge) in the MISC literature. SRBF has been used 
as an interpolatory surrogate model for the analytical test 
problem and as a regressive surrogate model [22] for the 
RoPax problem.

For both tests, we have computed a number of error 
metrics for the quantity of interest (value of the function 
for the analytic test / advancement resistance for the ferry 
problem): convergence of the approximation of the first four 
centered moments, mean squared and maximum prediction 
errors over a set of samples, and convergence of the CDF 
(as measured by the Kolmogorov–Smirnov test statistic).

Overall, both MISC and SRBF confirmed to be viable 
multi-fidelity approaches to forward UQ problems. MISC 
has an edge in providing reasonable estimates of most sta-
tistical quantities at reduced computational cost, but is more 
sensitive to the noise in the evaluations of the quantities of 
interest: indeed, noise can strongly influence the adaptive 
selection process of the multi-indices, corrupt the estimates 
of, e.g., higher-order moments (e.g., skewness, kurtosis), and 
introduce artifacts in the estimation of the PDF of the quanti-
ties of interest. With respect to the first issue, a quadrature-
based adaptive criterion is expected to be more robust than 
a criterion based on the pointwise accuracy of the surrogate 
model. A possible strategy to mitigate the second issue, that 
consists in computing higher-order statistical moments by 
taking Monte Carlo samples of the MISC surrogate model 
and then computing the moments from such set of values by 
sample formulas (sample variance/skewness/kurtosis), has 
been proposed but it is not entirely satisfactory, since it is 

(a) Variance difference and L2
2 metrics (b) Variance difference components (c) L2

2 metric components

(d) Variance difference and L2
2 met-

rics, detail
(e) Variance difference components,
detail

(f) L2
2 metric components, detail

Fig. 27   RoPax problem, results for the SRBF method. Convergence of the variance difference and L2
2
 metrics and their components



2235Engineering with Computers (2023) 39:2209–2237	

1 3

not clear how to choose an appropriate number of samples 
(enough to be accurate, not too many to avoid resolving the 
scale of the noise). This aspect deserves more investigations 
and is one of the subjects of future work. Another practical 
issue is caused by the non-monotonic behavior of the profits, 
where some indices with low profits shade useful neighbors, 
thus delaying the convergence of MISC. More robust strate-
gies to explore the set of multi-indices, that blend the profit-
based selection of indices with other criteria are also subject 
of future work; see, e.g., [40, 43], where this problem was 
discussed in the context of adaptive sparse-grids quadrature/
interpolation.

Conversely, SRBF is less prone to the issue of noisy 
evaluations but on the other hand the current initialization 
strategy needs to sample all available fidelities, which results 
in a significantly larger initialization cost. Different initiali-
zation strategies are under investigation to reduce this gap: a 
possible approach would be, e.g., to build the initial training 
set using only one evaluation for each fidelity other than the 
lowest one, instead of 2N + 1 as in the current implemen-
tation, see [55]. This would allow the adaptive sampling 
method to freely define the best training set for the higher 
fidelities.

Note that the discussion on computational costs in this 
work was set up in terms of sheer evaluation costs of the 
fidelities, i.e., neglecting the CPU-time related to the other 
operations required by MISC and SRBF. In details, MISC 
needs to keep track of profits, update the multi-index sets 
Λ and Mar(Λ) , compute the combination technique coef-
ficients in Eq. (7), generate the tensor grids correspond-
ing to the multi-indices in Λ and Mar(Λ) , and evaluate 
the associated multivariate Lagrange polynomials. Con-
versely, SRBF requires to solve the linear system (18) at 
each iteration (the dimension of the linear system grows at 
each iteration; furthermore, when the LOOCV procedure 
is performed, the linear system is solved for each tested 
value of the number of centers K ), as well as to solve the 
problem in Eq. (23).

An aspect worth investigating for both methods is how to 
incorporate available soft information (monotonicity, mul-
timodality, etc.) on the physical nature of the problem in 
the construction of the surrogate models. In the particular 
RoPax problem considered here, the resistance is expected to 
be monotone increasing with respect to advancement speed 
and draught: such property could be preserved by employ-
ing, e.g., least-squares regressions with appropriate polyno-
mial degrees and/or monotonic smoothing, see, e.g., [56].

Concerning the application to naval UQ, once fixed the 
current limitations of both methods, future research will 
address more complex test cases, such as a larger number of 
uncertain parameters and more realistic conditions, to take, 
e.g., regular/irregular waves into account.
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