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Abstract
Peridynamic theory has been shown to possess the capabilities of describing phenomena that theories based on partial dif-
ferential equations are not capable of describing. These phenomena include nonlocal interactions and presence of singulari-
ties in system responses. To exploit the capabilities offered by peridynamics in the homogenization of heterogenous media, 
a nonlocal computational homogenization theory based on peridynamic correspondence model (non-ordinary state-based 
peridynamics) is proposed. To set the development of the theory on a rigorous mathematical framework and to ensure consist-
ency with the nonlocal nature of the peridynamic theory, a nonlocal vector calculus was used in the analysis of the nonlocal 
homogenization theory. The proposed theory is a two-scale micro–macro-homogenization strategy in which the constitu-
tive relation at the macroscale is derived from explicit solution of a nonlocal volume constraint problem at the microscale. 
To justify the coupling between the two scales, nonlocal analogues of the stress and strain average theorems as well as the 
Hill–Mandel macrohomogeneity condition were derived. Validation of the proposed theory is achieved via numerical solu-
tion of Representative Volume Elements (RVE) from composite materials and comparing the results with those obtained by 
means of established methodologies.

Keywords Composites · Homogenization · Nonlocal calculus · Nonlocal model · RVE, peridynamics

1 Introduction

Understanding how materials behave has contributed tre-
mendously to the development of modern technologies. 
Historically, the Cauchy continuum theory has been and 
continues to dominate as the tool used by scientists and 
engineers in studying the behaviour of materials. Central 
to the Cauchy continuum theory is the continuum hypoth-
esis which presupposes that at an arbitrarily small scale 
(microscale), materials consist of a continuous distribution 
of infinitesimal particles that are idealised as point mass and 
each having physical properties such as mass, displacement 
and velocity which are volume averages over a finite-size 
domain defined in the microscale. The term microscale in 
this context should be understood to mean the scale at which 

the material is decomposed into continuum particles which 
does not necessarily have to be in the order of micrometres.

The state of the material at a point is governed by bal-
ance laws and interaction between the continuum particles 
is achieved through exchange of mass, momentum, and 
energy with immediate neighbours in accordance with Noll’s 
principle of local action. The composition, geometries, dis-
tribution, and properties of these particles along with the 
characteristics of heterogeneities such as cracks and voids 
constitute the material’s microstructure. The detail of this 
microstructure typically transcends many orders of magni-
tude. When developing a model to characterise these materi-
als, a resolution threshold is selected below which informa-
tion about the microstructure is ignored. If the selected level 
of resolution is not able to encapsulate important micro-
structural details, the model must be enriched to be able to 
capture the desired level of details.

A straightforward solution is the use of micromodels 
in which the resolution is refined until the model can 
explicitly resolve all important microstructural details. 
This solution strategy has been utilised to model micro-
structurally heterogeneous materials such as composites 
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using numerical techniques such as the Finite-Element 
method [1–4], Finite-Difference Method [5–8], and mesh-
less methods such as the Element-free Galerkin method 
[9–12] to name just a few. This method of enriching the 
model suffers from several drawbacks amongst which 
include the fact that the microstructural details that plays 
important role in the response of the material may exist 
over wide orders of magnitude and explicit resolution 
of the microstructure for some applications may require 
computational resources that is prohibitively expensive. 
Other more fundamental problems include the fact that 
the response of a material specimen in the framework of 
the classical continuum theory is independent of the size 
and shape of the specimen [13]. This is, however, not the 
case as several studies [14–17] have indicated that material 
behaviour changes as their characteristic size decreases, 
a phenomenon known as size or scale effect [18]. Other 
problems include the presence of discontinuity in mate-
rial response for which the classical theory is not good at 
handling [19] and resolution of nonlocal effects such as 
the existence of long-range interaction [20].

A variety of enrichment methodologies have been devel-
oped over the years to overcome the challenges associated 
with the classical Cauchy continuum theory. A broad class 
of these methodologies is called the generalised continuum 
theories [21] or microcontinuum theories [22]. In developing 
these methodologies, the local action hypothesis is relaxed 
or eliminated, and interaction between continuum points 
located at finite distance apart is permitted thereby lead-
ing essentially to continuum models that are nonlocal. The 
nonlocality implied here should be understood in the sense 
used in [23] to encompass ‘weakly’ nonlocal and ‘strongly’ 
nonlocal models. In this sense, the weakly nonlocal models, 
though mathematically adhering to the principle of local 
action, account for nonlocality by enriching the constitutive 
model with the first or higher gradient of relevant state vari-
ables or thermodynamic forces [24]. A foremost contribution 
to the development of the generalised continuum models is 
the work of Voigt [25]. Later contributions would lead to 
the development of a range of nonlocal models. The weak 
generalised continuum theories can broadly be classified 
into those that retain the kinematics of the classical Cauchy 
theory but account for nonlocality by incorporating higher 
gradients of the classical kinematic variables in the defini-
tion of the strain energy and those with extended kinematics, 
with the strain energy in this case expressed as a function of 
the classical kinematic variables and their gradient in addi-
tion to the newly incorporated variables. Among theories 
in the first category, we can cite the couple stress theories 
[26–28] and the strain gradient theories [29–32]. Of those 
in the second category, we can cite the Cosserat theory [33], 
the micromorphic theories [34], micropolar theory [35–37] 
and the internal variable models [38–41].

In the strong nonlocal category of enrichment, belong 
the integral-type nonlocal models. The development of 
these class of nonlocal models can be traced to the works of 
Kunin [42], Kroner [43] and Eringen [44]. In contrast to the 
weak nonlocal models, the integral-type nonlocal models 
completely jettison with the notion of locality even in their 
mathematical formulation by substituting the gradients of 
relevant state variables with a weighted integral of these 
state variables. By doing so, these models posit that the 
state variables at a continuum point is influenced directly by 
the state variables of all other points in the body or at least 
some finite neighbourhood of the point under consideration. 
Subsequent development of the integral-type nonlocal con-
tinuum theories includes the introduction of Peridynamic 
continuum theory [45], the Nonlocal Operator Method 
(NOM) originally proposed in [46] and later extended in 
[47] as Higher Order Nonlocal Operator Method (HONOM) 
to eliminate the requirement of shape functions in obtaining 
partial derivatives and a Long-range cohesive interaction 
model proposed in [48–50].

Peridynamics is a reformulation of the classical elasticity 
theory with extended capabilities of modelling discontinu-
ous system response and long-range force interaction. Since 
its introduction, theory continues to receive growing interest 
from researchers and have thus found application in solv-
ing a wide range of engineering problems [51–70]. This is 
because it offers a theoretical and mathematical framework 
that allow for the modelling of systems with singularities 
without the need for modification of the governing equa-
tions. Discontinuous state variables are handled with the 
same equations as the continuous state variables. Another 
advantage offered by peridynamics is the introduction of an 
intrinsic length-scale parameter into the governing equation. 
This parameter allows the theory to be useful in modelling 
problems across a wide range of scales [71] and has been 
shown to correlate with the notion of an ‘effective distance’ 
introduced in [20] as a parameter that influences direction 
of crack in dynamic fracture.

Although peridynamics has been proven to overcome a 
lot of challenges associated with the classical Cauchy con-
tinuum theory, there are still problems for which resolu-
tion of relevant physics of the problem to obtain acceptable 
model fidelity require inordinate computational resources 
that is either prohibitively expensive or currently not avail-
able. The need to find a balance between acceptable model 
fidelity and lowering computational cost has motivated the 
development of a range of multiscale enrichment protocols 
for the peridynamic theory. The objective of these protocols 
is to enhance the capability of peridynamics in capturing 
and utilising information across spatial scales at acceptable 
computational cost. This objective is achieved in one of two 
approaches. The first approach is by developing a framework 
that allow the coupling of peridynamic theory with other 
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theories of mechanics with the goal of leveraging on the 
strengths of the coupled modelling theories. This will fall 
under the purview of concurrent multiscale modelling. The 
second is achieved through frameworks that allow coupling 
of models at different length scale in the same part of a 
computational domain and are categorised as Hierarchical 
multiscale modelling.

A variety of concurrent multiscale modelling framework 
for peridynamics have been proposed. These approaches 
can broadly be categorised into monomodel and multimodel 
approaches. In the monomodel approach, peridynamics is 
used to model the entire computational domain. Multiscale 
capability is achieved by refining the grid appropriately to 
resolve details at different length scales. Development in 
this respect includes the adaptive grid refinement method 
proposed in [72–74]. Refinement of the grid requires chang-
ing the grid density and the horizon which in turn induces 
a change in the micromodulus function of the peridynamic 
model. This change is done relying on a scaling algorithm. 
A variable horizon method was proposed in [75] to solve 
the problem of ghost forces that is a consequence of using 
variable horizon by introducing the concept of partial stress 
and a splice technique. To resolve the problem of ghost 
forces without recourse to the partial stress and splice tech-
nique of [75], a dual horizon method [76] was proposed 
with extended capability of covering both bond-based peri-
dynamics and state-based peridynamics. The dual horizon 
method was extended as Voronoi-based peridynamics in [77] 
for non-uniform discretization based on Voronoi diagrams.

The multimodel concurrent approaches are hybridiza-
tion frameworks that focus primarily in developing cou-
pling methodologies that allow peridynamics to be used 
concurrently with other modelling frameworks such as the 
classical continuum or atomistic modelling theories. The 
goal is to leverage on the advantages offered by each of the 
coupled models. These methods can broadly be classified 
as kinematic-based, force-based or energy-based coupling 
methods. In the kinematic-based methods [78–81], cou-
pling is achieved by implementing a contact algorithm over 
the interface region that requires the satisfaction of a series 
of kinematical constraints. The force-based approaches 
[82–88] rely on the balance of force in the interface region 
to achieve coupling of the models. In some cases, nonlocal 
weight functions are used to account for the contributions 
from the models in the balance of force. In the energy-based 
approach, coupling relies on the principle of energy con-
servation in the interface region. Two notable subclasses 
of the energy-based approach have been proposed such as 
the morphing methods [89–94] and the Arlequin coupling 
method [95].

In the hierarchical multiscale subclass, efforts have been 
expended by several researchers that led to the development 
of different hierarchical methods. A class of the hierarchical 

methods that we will designate as Model Reduction tech-
niques in the framework of peridynamics was first proposed 
in [96] as coarsening method. The key idea of the Model 
Reduction techniques is to be able to capture the behaviour 
high-fidelity models using fewer degrees of freedom. The 
reduction in the order of model is achieved by substitut-
ing a high-fidelity model with a surrogate model with fewer 
degrees of freedom. The coarsening method was extended 
in [97] for two-dimensional applications. A related method 
of model reduction based on static condensation of a high-
fidelity peridynamic model was proposed in [98].

Another subclass of the hierarchical methodologies 
developed for peridynamics is the homogenization meth-
ods which encompasses several related methods. The earli-
est attempt at developing a homogenization framework for 
peridynamics appeared in [99, 100] in which a two-scale 
solution expansion of the peridynamic equation for a het-
erogeneous medium was proposed based on the concept of 
two-scale convergence. The framework is a three-step solu-
tion strategy of computing an average displacement field 
as a solution of a peridynamic macroscopic equation and 
computing micro-level displacement field from a solution 
of a microscopic equation. The displacement field of the 
heterogeneous medium is found by superimposition of the 
micro-displacement field unto the macro-field in a final 
step. Although the mathematical framework was developed, 
numerical validation for the method is yet to be done.

A class of mean-field homogenization methods that 
can be categorised as a generalisation of the self-consist-
ent methods [101] of the classical theory to peridynamics 
were proposed in [102–104] by extending the effective field 
hypothesis of the classical elasticity of composites to the 
nonlocal peridynamic framework. The effective elastic prop-
erties of a heterogeneous medium are determined through 
the introduction of a stress polarisation tensor.

Among the homogenization methodologies exists a class 
designated as full-field (computational) homogenization 
techniques which achieve a much higher resolution of the 
microscopic fields than the mean-field methods. In several 
works [105–107], various computational homogeniza-
tion methodologies have been proposed to evaluate effec-
tive properties of heterogenous medium in the bond-based 
peridynamic framework based on the description of the 
microgeometry of the heterogeneous medium by solving a 
well-defined microscale volume-constrained problem. An 
extension of the computational homogenization framework 
to Ordinary state-based peridynamics was proposed in [108].

The objective in this study is to develop a multiscale con-
stitutive theory for non-ordinary state-based peridynamics 
(peridynamic correspondence model) in the framework of 
computational homogenization. The methodology will be set 
on a rigorous mathematical foundation in a manner that will 
account for the nonlocal nature of the peridynamic theory. 
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To achieve these goals and for the sake of self-contained 
presentation, this paper will start off with a brief review of 
relevant results from a nonlocal vector calculus developed 
in [109]. This provides a mathematical framework that is 
consistent with the nonlocal nature of Peridynamics. Key 
results from the nonlocal vector calculus will be used as the 
building block to derive the nonlocal Peridynamic model in 
Sect. 3. Discussion on the discretization methodology for the 
peridynamic model adopted in this presentation is provided 
in Sect. 3.3. The development of a nonlocal computational 
homogenization for the peridynamic model is presented in 
Sect. 4 while numerical experiments to validate the proposed 
methodology is presented in Sect. 5. Concluding remarks 
and discussion on future research outlook is presented in 
Sect. 6.

2  Nonlocal vector calculus primer

In developing the nonlocal vector calculus, two types of 
functions and operators were defined in [109]. Let k,m and 
n be positive integers and let x and x′ be points in ℝn . For a 
given domain Ω ⊆ ℝ

n , functions or operators that maps Ω 
into ℝm×n or ℝn or ℝ are called point functions or operators, 
respectively. On the other hand, functions, or operators from 
Ω × Ω into ℝm×n or ℝn or ℝ are called two-point functions or 
operators, respectively. Point functions and two-point func-
tions could be scalar, vector or tensor valued functions.

A very important concept to start with in this review 
is the nonlocal flux. Given a tensor two-point function 
� ∶ ℝ

n ×ℝ
n
→ ℝ

k , then the definition

is the nonlocal f lux of q from Ω1 into Ω2 where 
∫

Ω2

�
(

x, x�
)

dx� is identified as the nonlocal flux density into 
the region Ω2 from point x ∈ Ω1 . It can be deduced from (1) 
that the nonlocal flux is not necessarily zero even if the inter-
section of the closures of Ω1 and Ω2 is an empty set. This is 
in stark contrast with the local flux which is zero if 
Ω1 ∩ Ω2 = ∅ . The nonlocal flux density is related to the 
intensive quantity q through a constitutive relation. If 
�
(

x, x′
)

 is assumed to be antisymmetric, then the following 
statements are true:

1. There is no self-interaction, i.e.

2. The nonlocal action-reaction principle holds for 
Ω1,Ω2 ⊂ Ω

(1)F
(

Ω
1

,Ω
2

; q

)

∶= ∫Ω
1

∫Ω
2

�(x, x�)dx�dx

(2)∫Ω∫Ω�
(

x, x
�
)

dydx = 0.

The action-reaction principle given by (3) simply states 
that the flux from Ω1 into Ω2 is equal to the flux that exits 
Ω2 into Ω1.

2.1  Nonlocal divergence and gradient operators 
and their adjoint

Given the two-point  function v ∶ ℝ
n ×ℝ

n
→ ℝ

k 
and the scalar two-point functionu ∶ ℝ

n
→ ℝ . Let 

�
(

x, x�
)

∶ ℝ
n ×ℝ

n
→ ℝ

m be an antisymmetric vector two-
point function. The action of nonlocal divergence operator 
D and its adjoint D∗ on v and u , respectively, are defined as

and

where D(v)(x) ∶ ℝ
n ×ℝ

n
→ ℝ

k and D∗(u)
(

x, x

�)

∶ ℝ
n
→

ℝ
m ×ℝ

k
.

Given the scalar two-point function � ∶ ℝ
n ×ℝ

n
→ ℝ and 

the vector point function u ∶ ℝ
n
→ ℝ

k , for a given antisym-
metric vector two-point function �

(

x, x�
)

∶ ℝ
n ×ℝ

n
→ ℝ

m , 
the action of the nonlocal gradient operator G and its adjoint 
G∗ on � and u, respectively, are defined as

and

where G(�)(x) ∶ ℝ
n ×ℝ

n
→ ℝ

k andG∗(u)
(

x, x
�)

∶ ℝ
n
→ ℝ.

Observe that, unlike in local calculus which deals with 
point functions only, nonlocal calculus involves two kinds 
of functions: point and two-point functions. This, therefore, 
necessitates the definition of alternative forms of the nonlo-
cal operators defined in (7) and (8). The alternative forms of 
the nonlocal divergence and gradient operators were given in 
[28] to be the pairs D,−G∗ and G,−D∗ . For example, in the 
alternative pair D,−G∗ , while D operates on tensor two-point 
functions, −G∗ operates on tensor point functions. Similarly, 
for the pair G,−D∗ , G operates on vector two-point functions 
while −D∗ operates on vector point functions.

It is possible to apply the nonlocal divergence opera-
tor on a tensor function and the nonlocal gradient operator 
on a vector function. Let �

(

x, x�
)

∶ ℝ
n ×ℝ

n
→ ℝ

m be an 

(3)
∫ Ω1

∫ Ω2

�
(

x, x�
)

dx�dx + ∫ Ω2
∫ Ω1

�
(

x, x�
)

dx�dx = 0.

(4)

D(v)(x) ∶= ∫
ℝn

(

v
(

x, x�
)

+ v
(

x�, x
)

∙ �
(

x, x�
))

dx� ∀x ∈ ℝ
n

(5)
D∗(u)

(

x, x�
)

∶= −
(

u
(

x�
)

− u(x)
)

⊗ �
(

x, x�
)

∀x ∈ ℝ
n,

(6)

G(�)(x) ∶= ∫
ℝ

n

(�
(

x, x
�
)

+ �
(

x
�
, x

)

�
(

x, x
�
)

dy ∀x ∈ ℝ
n

(7)G∗(u)
(

x, x�
)

∶= −
(

u
(

x�
)

− u(x)
)

∙ �
(

x, x�
)

∀x ∈ ℝ
n,
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antisymmetric vector two-point function. Given the tensor 
two-point function � ∶ ℝ

n ×ℝ
n
→ ℝ

m×k and the vector two-
point function v ∶ ℝ

n ×ℝ
n
→ ℝ

k , the nonlocal divergence 
is defined by its action on � as

whereD(�)(x) ∶ ℝ
n ×ℝ

n
→ ℝ

m×k . The action of the nonlo-
cal adjoint operator D∗ on v is given by

where D∗(v)
(

x, x�
)

∶ ℝ
n
→ ℝ

m ×ℝ
k . The nonlocal gradient 

of v is given by

where G(v)(x) ∶ ℝ
n ×ℝ

n
→ ℝ

m×k . The action of the nonlo-
cal adjoint operator G∗ on � is given by

2.2  Interaction kernels and domains

In (7) and (8), the two-point vector functions �
(

x, x′
)

 and 
�
(

x, x′
)

 are also known as the interaction kernels. In the 
context of Peridynamics, these kernels are assumed to have 
a finite domain that does not map to zero. Given two points 
x, x� ∈ ℝ

n , and � ∈ ℝ
+ , let B�(x) be a ball or radius � cen-

tred at x , then for example, the interaction kernel �(x, x�) is 
nonzero only if x� ∈ B�(x) , i.e.

where � is the interaction radius also known as the hori-
zon in the context of PD. Interaction kernels that satisfy 
(12) are called truncated kernels [110] or localised kernels 
[111]. Another key concept that is connected to the notion of 
truncated kernels is the interaction domain. Let Ω ⊂ ℝ

n be 
a bounded open set. The interaction domain ΩI consists of 
points outside of Ω that interact with points in Ω . Given the 
truncated interaction kernel �(x, x�) , an interaction domain 
ΩI is defined as

(8)

D(�)(x) ∶= ∫
ℝn

(

�
(

x, x�
)

+�
(

x�, x
)

∙ �
(

x, x�
))

dx� ∀x ∈ ℝ
n,

(9)
D∗(v)

(

x, x�
)

∶= −
(

v
(

x�
)

− v(x)
)

⊗ �
(

x, x�
)

∀x ∈ ℝ
n,

(10)

G(v)(x) = ∫
ℝn

(v
(

x, x�
)

+ v
(

x�, x
)

⊗ �
(

x, x�
)

dx� ∀x ∈ ℝ
n,

(11)D∗(v)(x, y) = −
(

�
(

x�
)

−�(x)
)

∙ �
(

x, x�
)

∀x ∈ ℝ
n.

(12)�
�

x, x�
�

⎧

⎪

⎨

⎪

⎩

≠ 0 ∀x� ∈ B�(x)

= 0 ∀x� ∉ B�(x)

,

(13)ΩI =
{

x� ∈ ℝ
n�Ω ∶ ∃x ∈ Ω ∶ �

(

x, x�
) ≠ 0

}

.

The interaction subdomain contains all the points x′ in the 
complement domain ℝn�Ω that interact with points x in Ω . 
Many geometrical relationships exist between Ω and ΩI [109]. 
A typical such relationship is shown in Fig. 1.

2.3  Nonlocal interaction operators

Given a domain Ω , let ΩI be the interaction domain associated 
with Ω as defined in Sect. 2.2. Corresponding to the nonlo-
cal divergence operator D(v)(x) , a point interaction operator 
N(v) ∶ ℝ

n ×ℝ
n
→ ℝ is defined as

Corresponding to the nonlocal gradient operator (�)(x) , 
a point interaction operator S(�)(x) ∶ ℝ

n ×ℝ
n
→ ℝ

m×k is 
defined as

2.4  Nonlocal integral theorem

A very important outcome of the nonlocal operators devel-
oped in the proceeding subsections is statement of the nonlocal 
Gauss theorem. Recall from (2) that

(14)

N(v)(x) ∶= −∫ Ω∪ΩI

((

v
(

x, x�
)

+ v
(

x�, x
))

∙ �
(

x, x�
))

dx� ∀x ∈ ΩI .

(15)

S(𝜂)(x) ∶= −∫ Ω∪ΩI

((

𝜂
(

x, x�
)

+ 𝜂
(

x�, x
))

⊗ �
(

x, x�
))

dx� ∀x ∈ ΩI .

∫ Ω∪ΩI
∫ Ω∪ΩI

((

v
(

x, x�
)

+ v
(

x�, x
))

∙ �
(

x, x�
))

dx�dx = 0,

∫ Ω∫ Ω∪Ω
I

∫ Ω∪Ω
I

((

v

(

x, x
�
)

+ v

(

x
�
, x

))

∙ �
(

x, x
�
))

dx�dx

+ ∫ Ω
I

∫ Ω∪Ω
I

∫ Ω∪Ω
I

((

v

(

x, x
�
)

+ v

(

x
�
, x

))

∙ �
(

x, x
�
))

dx�dx = 0,

Fig. 1  Interaction domain
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Consider the right-hand side of (16). If the kernel func-
tion �

(

x, x′
)

 is antisymmetric and (2) holds, then:

From (18) and considering (3), it can be deduced that 
∫

ΩI
N(v)(x)dx in (17) represents the flux from Ω into ΩI . 

Thus, (17) is the mathematical statement of the nonlocal 
Gauss theorem which postulates that the integral of the non-
local divergence of v over Ω is equal to the total flux exiting 
Ω into ΩI.

We next consider the nonlocal analogue of integration 
by parts expressions involving the nonlocal divergence and 
gradient operators. Given the point functions u(x) ∶ ℝ

n
→ ℝ 

and v(x) ∶ ℝ
n
→ ℝ

m,

2.5  Nonlocal weighted operators

Since the classical continuum theory is a local theory, the 
functions utilised are point functions. This is not the case 
with peridynamics which is a nonlocal theory, hence some 
of the functions utilised are point functions while some are 
two-point functions. The differential operators defined in 
Sect. 2.1 are operators that act on two-point functions. To 
complete the definition of the nonlocal operators, another 

∫ Ω∫ ℝn∫ Ω∪Ω
I

((

v

(

x, x
�
)

+ v

(

x
�
, x

))

∙ �
(

x, x
�
))

dx�dx

+ ∫ Ω
I

∫ Ω∪Ω
I

∫ Ω∪Ω
I

((

v

(

x, x
�
)

+ v

(

x
�
, x

))

∙ �
(

x, x
�
))

dx�dx = 0,

(16)

∫ Ω

D(v)(x) dx

= −∫ ΩI

∫ Ω∪ΩI

∫ Ω∪ΩI

((

v

(

x, x
�
)

+ v

(

x
�
, x

))

∙ �
(

x, x
�
))

dx�dx,

(17)∫ Ω

D(v)(x) dx = ∫ ΩI

N(v)(x) dx.

− ∫ Ω
I

∫ Ω∪Ω
I

((

v

(

x, x
�
)

+ v

(

x
�
, x

))

∙ �
(

x, x
�
))

dx�dx

= −∫ Ω
I

∫ Ω

((

v

(

x, x
�
)

+ v

(

x
�
, x

))

∙ �
(

x, x
�
))

dx�dx

(18)= ∫ Ω∫ ΩI

((

v
(

x, x�
)

+ v
(

x�, x
))

∙ �
(

x, x�
))

dx�dx.

(19)
∫ Ω

uD(v)dx − ∫ Ω∪ΩI
∫ Ω∪ΩI

D∗(u) ⋅ vdx�dx = ∫ ΩI

uN(v)dx,

(20)
∫ Ω

v ⋅ G(u)dx − ∫ Ω∪ΩI
∫ Ω∪ΩI

G∗(v)udx�dx = ∫ ΩI

v ⋅ S(u)dx.

class of operators need to be defined that act on point 
functions.

Given the point function u ∶ ℝ
n
→ ℝ

k and the point 
functionv ∶ ℝ

n
→ ℝ , let �

(

x, x�
)

∶ ℝ
n ×ℝ

n
→ ℝ

+ and 
let the operators D and G be as defined in Sect. 2.1, then 
the weighted nonlocal divergence operator acting on u is 
defined as

The weighted nonlocal gradient operator acting on v is 
defined as

The extended application of the weighted nonlocal 
divergence and gradient operators on tensor and vector 
fields, respectively, follows as in (8) and (10). In addi-
tion, as is with the unweighted nonlocal operators, adjoint 
operators can also be defined for the weighted nonlocal 
operators. Let D∗ and G∗ be as defined in Sect. 2.1 and 
� ∶ ℝ

n ×ℝ
n
→ ℝ be a non-negative symmetric func-

tion known as the weight function, then the action of 
the adjoint operator D∗

�
 corresponding to the nonlocal 

weighted divergence operator on v is defined as

The action of the adjoint operator G∗ corresponding to 
the nonlocal weighted gradient operator G∗

�
 on v is defined 

as

The relationship established between D and −G∗ and 
between G and −D∗ allows us to, respectively, write (21) 
and (22) as

and

Equations  (25) and (26) serve to define two forms 
to each of the weighted nonlocal divergence and gradi-
ent operators, respectively, and have been shown to be 
equal [109]. For example, from (25), the first form of the 
weighted nonlocal divergence is given by

and the second form is given by

(21)D�(u)(x) ∶= D
(

�
(

x, x�
)

u(x)
)

∀x ∈ ℝ
n.

(22)G�(v)(x) ∶= G
(

�
(

x, x�
)

v(x)
)

∀x ∈ ℝ
n.

(23)D∗
�
(v)(x) ∶= ∫

ℝ

D∗(v)
(

x, x�
)

�
(

x, x�
)

dx� ∀x ∈ ℝ
n.

(24)G∗
�
(v)(x) ∶= ∫

ℝ

G∗v
(

x, x�
)

�
(

x, x�
)

dx� ∀x ∈ ℝ
n.

(25)D�(u)(x) = −G∗
�
(u(x)) ∀x ∈ ℝ

n

(26)G�(v)(x) = −D∗
�
(v(x)) ∀x ∈ ℝ

n.

(27)

D�(u)(x) = ∫
ℝn

�
(

x, x�
)(

u

(

x
�
)

− u(x)
)

⋅ �
(

x, x�
)

dx� ∀ x ∈ ℝ
n
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2.6  Nonlocal differential operators for peridynamic 
application

Often, the governing equations in the classical continuum 
theory are expression of physical balance laws that are 
composed of partial differential operators. Although the 
peridynamic theory as a nonlocal model replaces the spa-
tial derivatives with integral operators, it can be shown to 
have retained the structure of the balance law in the classical 
theory. This is achieved by introducing nonlocal analogues 
of the differential operators used in the local theory. The 
nonlocal operators presented in Sect. 2 will be used to derive 
application specific to nonlocal differential operators and 
the generalised notion of nonlocal derivative for application 
in peridynamics. Let � ∶ ℝ

n ×ℝ
n
→ ℝ be a non-negative 

weight function of compact support in B𝛿(x) ⊂ ℝ
n where 

B�(x) is a ball of radius 𝛿 > 0 centred at x . Let a shape tensor 
[112] � ∶ ℝ

n ×ℝ
n
→ ℝ

n×n be defined as

where �xx� = x� − x andx� ∈ Hx =
{

x� ∈ ℝ
n ∶ |x� − x| ≤ �

}

 . 
Let �

(

x, x�
)

= �
(

x, x�
)

= �xx��
−1, then the nonlocal 

unweighted and weighted divergence and gradient opera-
tors from (4), (6), (25) and (26) are, respectively, given as

where (32) and (33) appeared in [113] are defined as the 
notions of nonlocal material divergence and gradient 
operators, respectively. From (28), the second form of the 
weighted nonlocal divergence operator is

(28)

D�(u)(x) = ∫
ℝn

�
(

x, x′
)(

u(x) + u

(

x
′
))

⋅ �
(

x, x′
)

dx� ∀x ∈ ℝ
n

(29)� = ∫ B𝛿(x)

𝜔
(

|

|

�xx�
|

|

)

�xx� ⊗ �xx�dVx� ,

(30)

D(v)(x) ∶=

[

∫
ℝn

((

v
(

x, x�
)

+ v
(

x�, x
))

∙ �xx�
)

dx�
]

�−1 ∀x ∈ ℝ
n,

(31)

G(�)(x) ∶=

[

∫
ℝn

(

�
(

x, x�
)

+ �
(

x�, x
))

�xx�dx
�

]

�−1 ∀x ∈ ℝ
n,

(32)

D�(u)(x) =

[

∫
ℝn

�
(

x, x�
)(

u
(

x�
)

− u(x)
)

∙ �xx�dx
�

]

�−1 ∀x ∈ ℝ
n,

(33)

G�(v)(x) =

[

∫
ℝn

�
(

x, x�
)(

v
(

x�
)

− v(x)
)

�xx�dx
�

]

�−1 ∀x ∈ ℝ
n,

(34)

D�(u)(x) =

[

∫
ℝn

�
(

x, x�
)(

u
(

x�
)

+ u(x)
)

∙ �xx�dx
�

]

�−1 ∀x ∈ ℝ
n.

3  Peridynamic model

Peridynamics is a nonlocal alternative to the classical con-
tinuum mechanics developed in [45]. The objective was to 
create a nonlocal continuum theory that is capable of model-
ling both continuous and discontinuous material response in 
a single framework. This was achieved by replacing the dif-
ferential operators in the equilibrium equation of motion of the 
classical continuum theory with an integral operator. Given a 
bounded open domain Ω ∈ ℝ

n , in peridynamics, a continuum 
point x ∈ Ω interacts with infinitely many other points located 
within its domain of influence. If this domain of influence is 
assumed to be a ball B�(x) of radius 𝛿 > 0 centred at x , then � 
is called the horizon of x , such that

where B�(x) is called the family of x . Interaction between 
two points x and x′ is called a bond and the distance 
|�| = |x� − x| in the undeformed reference configuration is 
called the bond length. The relative displacement � in the 
deformed configuration is given by � = u

(

x�, t
)

− u(x, t) , 
where u

(

x′, t
)

 and u(x, t) are the displacements of material 
points at x′ and x, respectively, at time t.

In the original development [45] that came to be known as 
the Bond-Based Peridynamics, the force in each bond is a cen-
tral force and each bond is independent of all other bonds. This 
lack of dependence limits the value of Poisson’s ratio to 1/3 for 
2D and 1/4 for 3D isotropic solids. To circumvent this limita-
tion and obtain a more general material model, State Based 
Peridynamics was developed. To pursue the development of 
the state-based peridynamics, [112] introduced mathematical 
objects called states which are functions defined on bonds in 
B�(x) . To define the domain H of the state, let 𝛿 > 0 be the 
horizon of a point x in a body � , then:

is the family of bonds for the point x . Equation (36) allows 
for a more precise definition of a state. Let Lm be the set of 
all tensors of order m , then a state of order m associated with 
the point x is a function �

_
⟨∙⟩ ∶ H → Lm . Angle brackets are 

used to indicate the bond acted upon by the state. A state that 
maps vectors in H to a scalar is called a scalar state. Simi-
larly, a state that maps vectors in H to vectors is called a 
vector state. The set of all states of order m is denoted by Am , 
thus if the set of all scalar states is denoted as S , then S = A1 
and similarly if the set of all vector states is denoted as V , 
then V = A2 . Let �

_
⟨�⟩ be an influence function obtained 

when the scalar state �
_
∈ S acts on � , then the tensor prod-

uct of two vector states �
_
∈ V and �

_
∈ V is defined as

(35)B𝛿(x) =
{

x� ∈ R ∶ |

|

x� − x|
|

< 𝛿
}

,

(36)H =
{

� ∈ (ℝ�0)|(� + x) ∈
(

B�(x) ∩�
)}
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Perhaps the most important state in the peridynamic 
formulation is the vector state and there are three impor-
tant vector states that are worth mentioning here: the refer-
ence position vector state, deformation state �

_
 and the 

force vector state �
_
.

The reference position vector state �
_

 is a function 
whose value is the bond it acts on. It is defined as

The reference position vector state can be thought of as 
an identity vector state since it simply output the value of 
its argument. The deformation state �

_
 is a function operat-

ing on each bond length � = x� − x in the family of point 
x , whose value is the image of the bond in the deformed 
configuration:

where y′
(

x′, t
)

 and y(x, t) are, respectively, the coordinates 
of the points x′ and x in the deformed configuration at time 
t . The force state �

_
 is a function that is associated with each 

bond in the family of point x with some force density vector 
such that

A very import tensor (already introduced in Sect. 2.6) 
in the formulation of the state-based peridynamics is the 
shape tensor � . This tensor can also be defined using the 
notion of states. Following from (37), the shape tensor � 
is defined as

where �
_

 is as defined in (38). Although vector state and 
second-order tensors both map vectors to vectors, they are 
essentially different. For example, a state is in general non-
linear in its argument and is infinite dimensional. In contrast, 
a second-order tensor is linear function of its argument and 
has a dimension of 9. It was, however, demonstrated in [31] 
that given a second-order tensor � , it is possible to obtain a 
vector state through an expansion operation defined as

where ϵ
_
(�)⟨�⟩ is the vector state expanded from � . Con-

versely, given a vector state �
_
∈ V , a second-order tensor 

can be obtained by a reduction operation defined as

(37)�
_
∗ �

_
= ∫ H

𝜔
_
⟨�⟩�

_
⟨�⟩⊗ �

_
⟨�⟩dV𝜉 .

(38)�
_
[x]⟨x� − x⟩ = x� − x = �.

(39)�
_
[x, t]⟨x� − x⟩ = y�

�

x�, t
�

− y(x, t),

(40)�
_
[x, t]⟨x� − x⟩ = �

�

x�, x, t
�

.

(41)� = �
_
∗ �,

_

(42)ϵ
_
(�)⟨�⟩ = ��∀�,

The governing equation of motion in PD can be for-
mulated using the nonlocal vector calculus presented in 
Sect. 2 based on a statement of balance law which postu-
lates the dependence of the rate of change in the content 
of an extensive quantity over a given domain on the rate 
at which the quantity is produced within the domain and a 
flux through the boundary of the domain.

Let the region occupied by a body B be given by the 
open domain Ω ⊆ ℝ

n . Let 
∼

Ω⊆ Ω be an open subregion, 
then a quantitative statement of a balance law for Ω can 
be stated as

where (13) postulates that A
(∼

Ω, q
)

 (the time rate of change 

of the intensive quantity q ) is equal to P
(∼

Ω

)

 (the rate at 
which the quantity is produced within the subdomain by 
sources) minus F

(∼

Ω,ℝn�
∼

Ω ;q
)

 (the rate at which the inten-
sive quantity exit the subdomain). Let the quantity (q) to be 
balanced is the momentum density so that q = 𝜌u̇ where u̇ is 
the velocity of a point in 

∼

Ω and � is the density of the mate-
rial. Let b denotes the rate of production of q in 

∼

Ω , then:

To obtain an expression for the rate at which the flux of 
q exits the subdomain 

∼

Ω , let 
∼

ΩI ⊂ Ω be the domain inter-
acting with 

∼

Ω as defined in (13), then:

Applying the nonlocal Gauss theorem (17), then (46) 
can be written as

Thus, (44) becomes

From localization theorem, (48) can be written as

(43)R
_

(

�
_

)

=

(

�
_
∗�

_

)

�−1.

(44)A
(∼

Ω, q
)

= P
(∼

Ω

)

− F
(∼

Ω,ℝ
n�

∼

Ω ;q
)

,

(45)
A
(∼

Ω, q
)

=
�

�t∫ ∼

Ω

q(x, t)dx = �∫ ∼

Ω

�2u

�t2
dx and

P
(∼

Ω

)

= ∫ ∼

Ω

b(x, t)dx.

(46)F
(∼

Ω,
∼

ΩI ;q
)

= ∫ ΩI

N�(�)(x)dx.

(47)F
(∼

Ω,
∼

ΩI ;q
)

= ∫ Ω

D�(�)(x)dx.

(48)�∫ ∼

Ω

�2u

�t2
dx = −∫ Ω

D�(�)(x)dx + ∫ ∼

Ω

b(x, t)dx.

(49)�
�2u

�t2
= −D�(�)(x) + b(x, t).
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From (34), (49) can be written as

where (50) follows from the antisymmetric property of � . 
From (42), the integrand of the integration in (50) can be 
understood to be a vector obtained when a vector state 
ϵ
_

(

��K−1
)

 is expanded from a second-order tensor ��K−1 
acting upon the bond �xx′ or �x′x as the case maybe. If we 
write

and since �
(

x, x�
)

= 0 whenever x� ∉ B�(x) , then (50) can 
be written as

Equation (52) is the state-based peridynamic equation of 
motion. �

_
[x, t] and �

_

[

x′, t
]

 are the force states at x and x′, 
respectively. When these states act upon the bonds �xx′ and 
�x′x, respectively, the results are bond force density vectors 
acting at points x and x′, respectively. Notice that we still do 
not know what the second-order tensor � represents. Its 
identity can be established from a constitutive material 
model that will relate the bond force density to the displace-
ment. This will be the subject of Sect. 3.2.

3.1  Nonlocal kinematic quantities

In this section, the nonlocal differential operators in Sect. 2.6 
will be used to derive the expression of relevant kinematic 
objects that are nonlocal analogue of their counterparts in 
the local theory.

3.1.1  Gradient of the displacement and deformation vector 
fields

An important quantity in the formulation of continuum 
mechanics is the gradient of the displacement vector. Let 
u(x, t) be the displacement of a point x at time t . Then, from 
(33), the gradient of the displacement field at x as a function 
of the undeformed bond is given as

�
�2u

�t2
= −

[

∫
ℝn

�(x, y)
(

�
(

x�
)

+�(x) ∙ �xx�
)

dx�
]

�−1 + b(x, t)

(50)

= ∫ ��∪�I

�(x, y)
(

�
(

x�
)

�−1 ∙ �x�x −�(x)�−1 ∙ �xx�
)

dx� + b(x, t),

(51)�
_
[x, t] = �ε

_

(

�K−1
)

(52)

�
�2u

�t2
= ∫ B� (x)

�

�
_
[x, t]⟨x� − x⟩ − �

_

�

x�, t
�

⟨x − x�⟩

�

dx� + b(x, t).

(53)

G𝜔x(u(x)) =

[

∫
ℝn

𝜔(|�|)
(

u
(

x�, t
)

− u(x, t)
)

⊗ �x,x�dx
�

]

�−1.

Another key kinematic quantity that plays an important 
role in the development of the state-based peridynamic the-
ory is the concept of the deformation tensor. In the nonlocal 
peridynamic setting, the deformation tensor, denoted as, F, 
is the finite-dimensional equivalent of the deformation state. 
Let L+ be the set of all second-order tensors with positive 
determinants. Let Ω0 and Ωt be the reference and deformed 
configuration of a body � undergoing deformation. Let x be 
the position of a material point in Ω0 and y be its position 
inΩt . Let � ∈ L+ exists such that the deformed image of the 
bond �xx′ is given by

Using (33), the nonlocal material gradient of the deforma-
tion as a function of the undeformed bond is evaluated as

Equation (55) is the definition of the nonlocal deforma-
tion gradient given in [112]. We can further write (55) as

where the second equality follows from the linearity of the 
integral operator. Notice that the nonlocal deformation gra-
dient is devoid of any notion of the local derivative opera-
tor which would have required that the deformation field 
be continuously differentiable (at least in a weak sense for 
the case of Finite-Element Method). In its present form, the 
deformation gradient is still defined in the presence of sin-
gularities such as cracks.

3.1.2  Nonlocal strain tensor

We can define the notion of strain by comparing the length 
of a bond before and after deformation. Let � = x� − x and 
� = y

(

x�
)

− y(x) , then from (38) and (54), we have

If we define a deformation or strain matrix � as

(54)�
_
[x, t]⟨�x,x�⟩ = ��x,x� = �

�

x� − x
�

= y
�

x�, t
�

− y(x, t).

(55)

G𝜔x(y) = �(x) =

[

∫
ℝn

𝜔(|�|)
(

y
(

x�, t
)

− y(x, t)
)

⊗ �x,x�dx
�

]

�−1.

� =

[

∫
ℝn

𝜔(|�|)
(

u

(

x
′, t

)

+ x
′ − u(x, t) − x

)

⊗ �
x,x′dx

′

]

�−1

=

[

∫
ℝn

𝜔(|�|)
(

u

(

x
′, t

)

− u(x, t)
)

⊗ �
x,x′dx

′

]

�−1

+

[

∫
ℝn

𝜔(|�|)
(

x
′ − x

)

⊗ �
x,x′dx

′

]

�−1,

(56)� = G�x(u(x)) + �,

(57)
�2 − �2 = � ∙ � − � ∙ � = �T�T�� − �T� = �T

(

�T� − �
)

�.
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then (57) can be written as

where � is the nonlocal analogue of the Green–Lagrange 
strain tensor and � is the nonlocal deformation gradient 
defined in (55). Considering (56), (58) can be written as

Following from the assumption of infinitesimal defor-
mation where the displacement gradient is small, that is 
|

|

G𝜔x(u(x))
|

|

≪ 1 , we may neglect the nonlinear term in the 
definition of the Green–Lagrange strain tensor � so that (60) 
reduces to

where � is the infinitesimal strain tensor and Gs denotes a 
symmetric tensor operator.

3.2  Constitutive model

We will now focus our attention on (51) and (52) to establish 
the relationship between kinetic and kinematic quantities 
and ultimately establish the identity of the tensor � . Various 
attempts have been made to develop constitutive models for 
the peridynamic theory [112, 114–120]. These material 
models can broadly be grouped into bond-based, ordinary 
state-based and non-ordinary state-based models. Let 

W

(

�
_

)

∶ V → ℝ be the peridynamic strain energy density, 

then generally, for an elastic material, the force density state 
can be expressed [112] as

where ∇W
(

�
_

)

 is the Fréchet derivative of W
(

�
_

)

 with 

respect to �
_

 . A correspondence constitutive model proposed 
in [112] will be used in this study. This material model is 
based on the non-ordinary state-based framework that allows 
for the adaptation of the classical continuum model into 
peridynamics. A key motivation for this choice is to take 
advantage of decades of development and calibration of the 
classical model.

(58)� =
1

2

(

�T� − �
)

,

(59)�2 − �2 = 2�T��,

(60)
� =

1

2

(

(

G�x(u(x))
)

+
(

G�x(u(x))
)T

+
(

G�x(u(x))
)T(

G�x(u(x))
)

)

.

(61)

� ≈ � = Gs

�x
(u(x))

=
1

2

(

(

G�x
(u(x))

)

+
(

G�x
(u(x))

)

T

)

=
1

2

(

� + �T

)

− �,

(62)�
_
= ∇W

(

�
_

)

,

In the correspondence model, W
(

�
_

)

 is assumed to be 

equal to the strain energy density Ω(�) ∶ L2 → ℝ from the 
classical theory where the deformation gradient � from the 
local theory is approximated by its nonlocal counterpart 
given by (55). So that (62) becomes

Evaluating the Fréchet derivative in (63) is shown [112] 
to result in the expression

where P is the first Piola stress tensor. Comparing (64) to 
(42), it can be deduced that the force state �

_
 is a state 

expanded from the tensor �
_

(

|

|

�x,x�
|

|

)

��−1 , i.e.

Comparing (51) and (65) shows that

Thus, in compact notation, the state-based peridynamic 
balance of linear momentum can be written as

To complete the definition of the nonlocal problem, 
we need to apply appropriate constraints to certain region 
of the problem domain. To this end, let the interac-
tion domain ΩI = Ωc be the constrained volume. Let Ωc 
splits into two disjoint subdomains Ωcd and Ωcn such that 
Ωcd ∩ Ωcn = ∅ and either of Ωcd and Ωcn could be an empty 
set. Ωcd is the subdomain where Dirichlet boundary condi-
tion is applied and Ωcn is the subdomain where Neumann 
boundary condition is applied. Analogous to the boundary 
value problem of the classical local theory, constraint on 
the solution u of (49) over Ω is applied as follows: a given 
function value gd is prescribed on the solution over Ωcd 
such that

To prescribe the Neumann-type constraint, recall that 
in the classical boundary value problem, this involves pre-
scribing a traction or flux density � ∙ n over the traction 
boundary. From (18) and the discussion that follows, the 
nonlocal flux density over ΩIn is given by ∫

ΩI
N�(�)(x)dx . 

Let gn be a given function value of the flux density over 
Ωcn , the Neumann constraint can be stated as

(63)�
_
= ∇Ω(�).

(64)�
_
⟨�x,x�⟩ = �

_

�

�

�

�x,x�
�

�

�

��−1�x,x�,

(65)�
_
= �

_
ϵ
_

(

��−1
)

.

(66)� = �.

(67)𝜌ü = −D𝜔(�)(x) + b(x, t).

(68)u(x) = gd ∀x ∈ Ωcd.

(69)∫ Ωcn

N�(�)(x) dx = gn ∀x ∈ Ωcn.
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The presence of the second-order time derivative of the 
solution u in (67) means in addition to the boundary con-
straints (68), (69), initial conditions also need to be speci-
fied. The initial condition involves prescribing the initial 
values of the solution and its first derivative. Let uI and 
u̇I be the initial values of u(x) and u̇(x), respectively, then

and

are the initial conditions. So that (67)–(71) gives the com-
plete definition of the nonlocal problem:

Notice that the constraints (68) and (69) are prescribed 
over domains Ωcd and Ωcn that have positive volume in ℝn . 
This contrasts with the classical local theory where con-
straints are applied on domains that have zero volume. For 
this reason, (72) is referred to as initial volume constraint 
problem.

3.3  Discretization of the Peridynamic model

As can be seen from (72), the governing equation of 
motion in Peridynamics gives rise to a continuum model. 
To be amenable to computer implementation, different 
numerical approximation schemes have been proposed 
such as the meshfree method [121, 122], the collocation 
methods [123, 124] and methods based on finite-element 
mesh [125, 126]. Due to its simple implementation algo-
rithm and relatively low computational cost, the meshfree 
method suggested in [121] is the most widely used [127] 
and is the preferred method in this work for these same 
reasons. In this approximation method, the discrete form 
of (52) is

where �i ∶= �(xi) , üi =
𝜕2ui

𝜕t2
 with ui ∶= u(xi) and N  is the 

number of nodes in the neighbourhood of node i.

(70)u(x, 0) = uI ∀x ∈ Ω, for t = 0

(71)u̇(x, 0) = u̇I ∀x ∈ Ω, for t = 0

(72)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜌ü = −D𝜔(�)(x) + b(x, t) ∀x ∈ Ωs

u(x) = gd ∀x ∈ Ωcd

∫
Ωcn

N𝜔(�)(x)dx = gn ∀x ∈ Ωcd

u(x, 0) = uI ∀x ∈ Ω, fort = 0

u̇(x, 0) = u̇I ∀x ∈ Ω, fort = 0

.

(73)𝜌iüi =

N
�

j=1

�

�
_
[x, t]⟨xj − xi⟩ − �

_

�

xj, t
�

⟨xi − xj⟩

�

Vj + bi,

4  Peridynamic homogenization theory

The homogenization procedure developed in this work is 
a two-scale scheme: a microscopic scale represented by an 
RVE, and a macroscopic scale represented by a homogene-
ous effective medium. The constitutive law of the microscale 
model is assumed to be explicitly known at every point of 
the micro-domain while the constitutive law of the micro-
model is not known everywhere. The objective is to retrieve 
a constitutive law of the macroscale substitute medium from 
a numerical solution of an initial volume constraint prob-
lem (IVCP) at the level of the underlying microstructure. 
In this multiscale framework, an RVE is assigned to each 
integration point of the macro-continuum. A peridynamic 
equilibrium solution of the RVE is sought using boundary 
condition generated by the macroscale deformation gradient. 
The solution of the RVE IVCP yields the microscale stress 
field which is then homogenised to produce macroscale 
stresses and associated material tangent tensor. The coupling 
of the micro- and macroscale is achieved through averaging 
relationships and the energetic equivalence statement of the 
Hill–Mandel micro-homogeneity condition.

4.1  Effective material constants

Consider a heterogeneous medium �o with characteristic 
size of heterogeneities to be lhetro . Momentarily, let this 
medium be replaced by a homogeneous ‘effective’ medium 
�h . The original heterogeneous medium is the microscale, 
and the geometrical arrangement and material characteristics 
of the heterogeneities constitute the microstructure while 
the effective medium is the macroscale. Define a grid on �h 
and let each point x on this grid be associated with a neigh-
bourhood Ωs . Let Ωs be bounded by a region Ωc of positive 
volume inℝn . Let a sample of �h occupying the regions Ωs 
and Ωc be denoted as Ω0

s
 and Ωo

c
 , respectively. In addition, 

let a sample of �o occupying Ωs be denoted as Ωo
s
 as shown 

in Fig. 2.
Now, define a grid on Ωs and let the position of points on 

this grid in the reference configuration be denoted as x . The 
grid associated with x is called the macroscale and the grid 
associated with x is the microscale. Let the characteristic 
lengths associated with the macroscale and the microscale 
be lmacro and lmicro , respectively. The morphology and mate-
rial properties of the constituents of �o in the microscale are 
called the microstructure of �h . If Ωo

s
 exists such that

then Ωo
s
 is referred to as a Representative Volume Element 

(RVE) associated with the macro-point x where (74) is 
the statement of the principle of separation of scale. This 

(74)lhetro ≪ lmicro ≪ lmacro,
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principle requires that the scale of the microstructure (or 
fluctuation of micro-field such as stress and strain) should 
be much smaller than the size of the RVE considered which 
in turn should be much smaller than the characteristic length 
scale of the macro-domain (or fluctuation of macro-field 
variables).

Let �h be subjected to an affine deformation at its bound-
ary. This will produce a homogeneous strain � (for small 
deformation). This homogeneous strain will in turn generate 
a homogeneous stress field � everywhere in �h . For simplic-
ity, we will assume linear elastic material response in both 
scales, then the material model that relates � and � given by 
the generalised Hooke’s law:

is the effective or homogenised constitutive law, where ℂ∗ 
and �∗ are the effective stiffness and compliance tensors, 
respectively. At the microscale, the constitutive relation in 
each phase of the microscale is given by

If the condition for the existence of the RVE is satisfied 
(henceforth, this condition will be assumed to be satisfied), 
then the microscopic deformation will be assumed to admit 
the following decomposition:

where u∗(x) is the displacement fluctuation due to the pres-
ence of the microstructure and �∗ = Gxu

∗(x).

4.2  Micro–macroscale transition

4.2.1  Average theorems

The transition of mechanical properties from the microscale 
to the macroscale is achieved using volume average rela-
tions. Let � be a quantity defined over a domain Ω . We 
denote the volume average of � over Ω as

(75)� = ℂ
∗� or � = 𝕊

∗�

(76)�(x) = ℂ(x)�(x) or �(x) = 𝕊(x)�(x).

(77)u(x) = �x + u∗(x) and �(x) = � + �∗,

where VΩ is the volume associated with Ω.

Theorem 4.1 Nonlocal average stress theorem. Let � be 
a heterogeneous body occupying the region Ω = Ωs

⋃

Ωc 
where Ωs is the region where solution is sought and Ωc is the 
boundary volume. We denote the average stress and aver-
age strain over Ωs as ⟨�⟩ and ⟨�⟩ , respectively. Let � be in a 
state of static equilibrium when a constant stress tensor � is 
applied on the boundary volume Ωc , then the volume average 
of the stress field in Ωs is equal to � , that is

Proof From (67), static equilibrium of the RVE in the 
absence of body forces requires the divergence of the 
Cauchy stress tensor in the case of small deformation to 
vanish, that is

The Cauchy stress field in Ωs can be written as

Taking the volume average of (81) and utilising (20) 
yields

Considering the relationship D� = −G∗
�
 and utilising (80), 

then (82) reduces to

(78)⟨�⟩ =
1

VΩ
∫ Ω

�dVΩ,

(79)⟨�⟩ = �.

(80)D�(�)(x) = 0.

(81)�(x) = �G�x(x).

(82)

⟨�⟩ =
1

VΩs
∫ Ωs

�G�x
(x)dVΩs

=
1

VΩs
∫ Ω

c

�S�x
(x)dVΩs

+
1

VΩs
∫ Ω∫ Ω

xG∗
�x
(�)dV

Ω
dV

Ω
.

Fig. 2  Homogenisation process
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Theorem 4.2 Nonlocal average strain theorem. Let � be as 
defined in Theorem 4.1. If � is subjected to applied displace-
ment on the boundary volume Ωc generated by a constant 
strain tensor � such that u0 = �x for all x ∈ Ωc , then the 
average of the infinitesimal strain field �(x) (for all x ∈ Ωs ) 
is equal to � , that is

Proof From (78), the volume average of the strain field over 
Ω is given by

This implies that the volume average of the strain field 
is completely defined in terms of the strain at the boundary 
volume.

4.2.2  Macrohomogeneity condition

For the averaged fields ⟨�⟩ and ⟨�⟩ to be admissible vari-
ables in the macroscale constitutive relation, the so-called 
Hill–Mandel macrohomogeneity condition [128] must 
be satisfied. The macrohomogeneity condition provides 

(83)

𝛔 =
1

VΩs

∫
Ωc

�S�x(x)dVΩs

=
1

VΩs

∫
Ωc

�̄�S�x(x)dVΩc

=
�̄�

VΩs

∫
Ωc

S�x(x)dVΩc

=
�̄�

VΩs

∫
Ωs

G�x(x)dVΩs

= �̄�.

(84)⟨�⟩ = �.

𝜀ij =
1

VΩs

∫
Ωs

𝜀ijdVΩ =
1

2VΩs

∫
Ωs

(

Gxj

(

ui
)

+ Gxi

(

uj
)

)

dVΩs

=
1

2VΩs

∫
Ωc

(

Sxj

(

ui
)

+ Sxi

(

uj
)

)

dVΩc
=

1

2VΩs

∫
Ωc

(

Sxj

(

𝜀ikxk
)

+ Sxi

(

𝜀jkxk
)

)

dVΩc

= −
1

2VΩs

∫
Ωc

[

∫
Ω

(

𝜀ik(xk + x�
k

)

⊗ 𝛽jdVx
′ + ∫

Ω

(

𝜀jk(xk + x�
k

)

⊗ 𝛽idVx
′

]

dVΩc

=
1

2VΩs

∫
Ωs

(

𝜀ikGxk

(

xj
)

+ 𝜀jkGxk

(

xi
))

dVΩs

=
1

2VΩs

∫
Ωs

(

𝜀ik𝛿kj + 𝜀jk𝛿ki
)

dVΩs

=
1

2VΩs

∫
Ωs

(

𝜀ij + 𝜀ji
)

dVΩs
= 𝜀ij.

the basis for the substitution of an initially heterogeneous 
medium with a homogeneous one. This is achieved by pre-
scribing an energetic equivalence between the heterogenous 
medium and the homogeneous substitution medium. Let the 
strain energy density of the underlying classical continuum 
material be

then invoking the principle of constitutive correspondence 
allows us to write the strain energy of the peridynamic 
model as (85). The macrohomogeneity condition is stated as

In other words, the condition requires that the average 
strain energy of the heterogeneous medium be equal to the 
strain energy density of the homogeneous medium. The con-
dition under which (86) is satisfied for a peridynamic con-
tinuum material under constitutive correspondence will be 
established through a nonlocal analogue of the Hill’s lemma.

Theorem 4.3 Nonlocal Hill’s lemma: Consider the body 
defined in Theorem 4.1. Let �ij and �ij be the stress and strain 

field in � under prescribed boundary traction or boundary 
displacement, then

is the nonlocal Hill’s lemma.

Proof We can write the scalar product of the average of the 
stress and strain tensor as

(85)U =
1

2
�ij�ij,

(86)⟨𝜎ij𝜀ij⟩ = �̃�ij𝜀ij.

(87)

⟨𝜎ij𝜀ij⟩ − �̃�ij𝜀ij =
1

VΩs
∫ Ωc

�

�

𝜎ik − �̃�ik
�

Ss
𝜔xk

�

ui − xj𝜀ij
�

�

dVΩc
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Thus, we can rewrite (86) as

which proves (87). It is obvious from (87) that for the Hill–
Mandel condition, (86) to be satisfied will require that

Thus, the satisfaction of the Hill–Mandel macrohomoge-
neity condition requires the integral in (89) to vanish.

4.2.3  RVE boundary volume constraints

In the classical continuum framework, the satisfaction of 
(89) is traditionally achieved in one of the following ways: 
(1) Voigt (or Taylor) assumption, (2) Reuss (or Sachs) 
assumption, (3) Homogeneous displacement, (4) Prescribed 
periodicity in displacement, (5) Homogeneous stress, and (6) 
Prescribed periodicity in traction. Methods 1–3 are catego-
rised as deformation-driven approaches while methods 4–6 
are categorised as stress-driven approaches. The task now 
is to establish the boundary requirements that will make the 
lemma (87) satisfy the Hill–Mandel condition in the nonlo-
cal framework using the methods 1–6.

Voigt (Taylor) model
In this method [129], (89) is satisfied by assuming a 

homogeneous deformation of the form ui = xj�ij in Ω . This 
implies a constant strain field �(x) = � in the RVE. Inserting 
this assumption into (75) yields

(88)

�̃�
ij
𝜀
ij
=

1

VΩ
s

∫ Ω
s

𝜎
ij
𝜀
ij
dVΩ

s

=
1

VΩ
s

∫ Ω
s

�̃�
ij
𝜀
ij
dVΩ

s

=
1

VΩ
s

∫ Ω
s

�̃�
ij
Gs

𝜔x
j

(

u
i

)

dVΩ
s

.

𝜎ij𝜀ij − �̄�ij�̄�ij =
1

VΩs

∫
Ωs

(

𝜎ij𝜀ij − �̄�ij𝜀ij − 𝜎ij�̄�ij + �̄�ij�̄�ij
)

dVΩs

=
1

VΩs

∫
Ωs

(

𝜎ikG
s
𝜔xk

(

ui
)

− �̄�ikG
s
𝜔xk

(

ui
)

− 𝜎ikG
s
𝜔xk

(

xj
)

�̄�ij + �̄�ikG
s
𝜔xk

(

xj
)

�̄�ij

)

dVΩs

=
1

VΩs

∫
Ωc

(

𝜎ikS
s
𝜔xk

(

ui
)

− 𝜎ikS
s
𝜔xk

(

xj
)

�̄�ij − �̄�ikS
s
𝜔xk

(

ui
)

+ �̄�ikS
s
𝜔xk

(

xj
)

�̄�ij

)

dVΩc

=
1

VΩs

∫
Ωc

(

(

𝜎ik − �̄�ik
)

(

Ss
𝜔xk

(

ui
)

− Ss
𝜔xk

(

xj
)

�̄�ij

))

dVΩc

=
1

VΩs

∫
Ωc

(

(

𝜎ik − �̄�ik
)

Ss
𝜔xk

(

ui − xj�̄�ij
)

)

dVΩc

(89)
1

VΩs
∫ Ωc

(

(

𝜎ik − �̃�ik
)

Ss
𝜔xk

(

ui − xj𝜀ij
)

)

dVΩc
= 0.

From (90), the implication of the Taylor (Reuss) assump-
tion is that the homogenised or effective stiffness tensor is 
simply the volume average of the stiffness tensor of the 
constituents. It will also be noticed that utilising the Tay-

lor assumption means, we can obtain the effective material 
properties without the need to solve the microscale peridy-
namic (RVE) problem.

Reuss model
In this model [130], (89) is verified by assuming a constant 

stress �(x) = � in Ω . If this assumption is inserted into (75) 
yields

thus meaning that the effective compliance tensor is simply 
the volume average of the compliance tensor of the constitu-
ents. As with the Voigt model, the utilisation of the Reuss 
assumption allows the determination of the effective prop-
erties without recourse to solving the microscopic peridy-
namic (RVE) model.

Constant traction boundary volume constraint 
(CTVBC)

One way of satisfying (89) is to prescribe appropriate trac-
tion on the boundary volume Ωc . A traditional way of achiev-
ing this in the classical continuum framework is by applying 
the so-called constant traction boundary condition. In the non-
local framework, this is achieved by imposing on the boundary 
volume Ωc , a constant traction generated by constant stress 
field

(90)�̄�ij = 𝜎ij = ℂijkl�̄�kl = ℂijkl�̄�kl = ℂ
∗
ijkl
�̄�kl ⇒ ℂ

∗
ijkl

= ℂijkl

(91)�̄�ij = �̄�ij = �ijkl�̄�kl = �ijkl�̄�kl = �
∗
ijkl
�̄�kl ⇒ �

∗
ijkl

= �ijkl

(92)�(x) = � ∀x ∈ Ωc.
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Substituting (92) into (89) will vanish the boundary volume 
integral and, therefore, satisfying the Hill–Mandel condition 
(86).

Linear displacement boundary volume constraint 
(LDBVC)

This boundary condition is also referred to as homogene-
ous boundary condition in the literature. This boundary condi-
tion is achieved by applying appropriate displacement field to 
the boundary of the RVE that will varnish the gradient of the 
displacement terms of the integrand of the boundary volume 
integral (89). A traditional way of achieving this is to apply a 
linear displacement of the form

Inserting (93) into (89) yields

Thus, proving (93) satisfies the Hill–Mandel condition 
(86).

Periodic boundary volume constraint (PBVC)
This model is appropriate to model materials with peri-

odic microstructure. The reference configuration of the RVE 
is assumed to be a geometric shape with even number of 
sides or faces for two- and three-dimensional problems, 

(93)u(x) = �x ∀x ∈ Ωc.

1

VΩs

∫
Ωc

(

(

𝜎ik − �̄�ik
)

Ss
𝜔xk

(

xj�̄ij − xj�̄ij
)

)

dVΩc
=

1

VΩs

∫
Ωc

(

(

𝜎ik − �̄�ik
)

Ss
𝜔xk

(

xj − xj
)

�̄ij

)

dVΩc

=
1

VΩs

∫
Ωc

((

𝜎ik − �̄�ik
)(

𝛿jk − 𝛿jk
)

�̄ij
)

dVΩc

=
1

VΩs

∫
Ωc

((

𝜎ik − �̄�ik
)(

�̄ik − �̄ik
))

dVΩc
= 0.

respectively. A square RVE is shown in Fig. 2 for two-
dimensional problems, with each pair i of the RVE bound-
ary region assumed to be equally sized subsets, that is, there 
should be a one-to-one correspondence between points in 
Ω+

i
 and Ω−

i
.

In this method, a displacement field of the form (77) is 
applied on the boundary region such that for each pair of 
boundary points (x+ ∈ Ω+

i
, x− ∈ Ω−

i
):

The difference in displacement between two correspond-
ing boundary points x+, x− is then given by

To achieve static equilibrium of the RVE, an anti-periodic 
stress field is applied in the boundary domain such that

for each pair of points in Ω+
i
 and Ω−

i
.

Utilising (95) and (96), the Hill–Mandel condition is sat-
isfied as follows:

(94)u∗
(

x+
)

= u∗(x−).

(95)u
(

x+
)

− u(x−) = �
(

x+ − x−
)

.

(96)�(x−) = −�
(

x+
)

1

VΩs

∫
Ωc

�

�

𝜎ik − �̄�ik
�

Ss
𝜔xk

�

ui − xj�̄�ij
�

�

dVΩc

=
1

VΩs

n
�

i=1

�

∫
Ω+

ci

�

�

𝜎+
ik
− �̄�+

ik

�

Ss
𝜔xk

�

u+
i
− x+

j
�̄�ij

��

dVΩ+
ci
+ ∫

Ω−
ci

�

�

𝜎−
ik
− �̄�−

ik

�

Ss
𝜔xk

�

u−
i
− x−

j
�̄�ij

��

dVΩ−
ci

�

=
1

VΩs

n
�

i=1

�

∫
Ω+

ci

�

�

𝜎+
ik
− �̄�+

ik

�

Ss
𝜔xk

�

u+
i
− x+

j
�̄�ij

��

dVΩ+
ci
− ∫

Ω−
ci

�

�

𝜎+
ik
− �̄�+

ik

�

Ss
𝜔xk

�

u−
i
− x−

j
�̄�ij

��

dVΩ−
ci

�

=
1

VΩs

n
�

i=1

⎡

⎢

⎢

⎢

⎢

⎣

∫
Ω+

ci

⎛

⎜

⎜

⎜

⎜

⎝

�

𝜎+
ik
− �̄�+

ik

�

Ss
𝜔xk

�

u+
i
− u−

i
− �̄�ij

�

x+
j
− x−

j

��

�������������������������������������
= 0 from (95)

⎞

⎟

⎟

⎟

⎟

⎠

dVΩci

⎤

⎥

⎥

⎥

⎥

⎦

= 0.
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4.2.4  Bounds for effective properties

Predictions from the Voigt and Reuss assumptions were 
shown in [131] to provide the upper and lower bounds for 
the effective material properties. That is,

where ℂ∗R , ℂ∗V  are the effective stiffness tensors due to 
Reuss and Voigt assumptions, respectively, and ℂ∗ is the 
effective stiffness due to any other method. As emphasised 
in [132], the corresponding entries of ℂ∗R , ℂ∗ and ℂ∗V do not 
necessarily satisfy (97), however, the corresponding diago-
nal terms and eigenvalues are shown to satisfy (97). It can 
also be shown that the inequality (97) hold true in terms of 
elastic constants such as bulk and shear moduli. Consider 
a given strain tensor �kl at a point, the stress �ij acting at 
the point for a linear 2D isotropic media undergoing small 
deformation is given by (96) and the fourth-order isotropic 
tensor ℂijkl can be written as

where � and � are the bulk and shear moduli, respectively. 
If we define two fourth-order isotropic tensors I1 and I2 as

then (98) can be written as

It can be shown from (100) that the compliance tensor 
can be written as

For the sake of brevity, we will adopt a symbolic nota-
tion that will allow us write (100) and (101) as

Given a two-phase composite having constituent mate-
rial constants �0 , �1 , �0 and �1 and volume fractions c0 and 
c1 such that 𝜅1 > 𝜅0 and 𝜇1 > 𝜇0 , then the volume average 
of the stiffness and compliance tensor can be written as

Utilising (102) and (103) in (97), it can easily be shown 
that

(97)ℂ
∗R ≤ ℂ

∗ ≤ ℂ
∗V ,

(98)ℂijkl = ��ij�kl + �
(

�ik�jl + �il�jk − �ij�kl
)

,

(99)I1 =
1

2
�ij�kl and

1

2

(

�ik�jl + �il�jk − �ij�kl
)

,

(100)ℂ = 2�I1 + 2�I2.

(101)� =
1

2�
I1 +

1

2�
I2.

(102)ℂ = (2�, 2�),𝕊 =

(

1

2�
,
1

2�

)

.

(103)
[

c0ℂ0 + c1ℂ1

]

,
[

c0𝕊0 + c1𝕊1

]

.

It follows from (104) that

and

where the left-hand sides of (105) and (106) give the Reuss 
lower bound while the right-hand sides give the Voigt upper 
bound, and �∗ and �∗ and the 2D effective bulk and shear 
moduli. It is noted that the distance between the Reuss lower 
bound and the Voigt upper bound is large and often does not 
give much information, a tighter bound is achieved using the 
Hashin–Shtrikman bounds [133]:

and

4.3  Computational implementation of the PDCHT

To obtain the numerical solution of the RVE in the 
PDCHT framework, the RVE will be discretised follow-
ing the procedure outlined in Sect. 3.3. Being a nonlo-
cal problem, the RVE is subjected to appropriate volume 
constraints. In the numerical validation that follows in 
Sect. 5, the RVEs will be subjected to LDBVC and PBVC. 
Although computational algorithm to implement these 

(104)

[

2�
0

�
1

c
0

�
1

+ c
1

�
0

,

2�
0

�
1

c
0

�
1

+ c
1

�
0

]

≤ (2�∗
, 2�∗)

≤ [

2

(

c
0

�
0

+ c
1

�
1

)

, 2

(

c
0

�
0

+ c
1

�
1

)]

.

(105)
�0�1

c0�1 + c1�0
≤ �∗ ≤ c0�0 + c1�1

(106)
�0�1

c0�1 + c1�0

≤ �∗ ≤ c0�0 + c1�1,

(107)�0 +
c1

1

�1−�0
+

3c0

3�0+4�0

≤ �∗ ≤ �1 +
c0

1

�0−�1
+

3c1

3�1+4�1

(108)

�0 +
c1

1

�1−�0

+
6c0(�0+2�0)

5�0(3�0+4�0)

≤ �∗ ≤ �1 +
c0

1

�0−�1

+
6c1(�1+2�1)
5�1(3�1+4�1)

.

Fig. 3  Example square RVE showing corresponding boundary 
regions



477Engineering with Computers (2023) 39:461–487 

1 3

boundary conditions in the framework of finite-element 
analysis is well established and discussed by many authors 
[134–137], however, implementing them in a nonlocal 
boundary value constraint problem such as the RVE in 
the PDCHT framework require special treatment. This is 
particularly the case with the PBVC. To implement the 
PBVC in the PDCHT framework, the displacement-driven 
approach to homogenization is utilised in this work and 
thus, to determine the effective elasticity tensor, the first 
of (75) is employed. Combining this with (79) and (84) 
allows us to write the expression for the effective elastic-
ity tensor as

where the stress field �ij in Ωs is obtained using discretised 
peridynamic equation of motion (73) and �kl is the pre-
scribed strain tensor on the boundary volume. For a two-
dimensional problem, ℂ∗

ijkl
 has six components. However, 

owing to its symmetric property, only three components are 
independent. Thus, to determine the components of ℂ∗

ijkl
 for 

a two-dimensional problem requires the application of three 
loading conditions that results in deformation modes which 
render all but one of the three independent components of 
the strain tensor to zero. For the purpose of this implementa-
tion, these deformation modes are given as

where c is the magnitude of the prescribed strain tensor. 
These strains are then used to generate displacement in the 
boundary volume depending on the boundary condition 
used. In the case of LDBC, the displacement u generated at 
every node xi in the boundary volume after discretization of 
the RVE follows from (93) as

(109)ℂ
∗
ijkl

=
1

VΩs
�kl∫ Ωs

�ijdVΩs
,

(110)�11 =

[

c 0

0 0

]

, �22 =

[

0 0

0 c

]

, �12 =

[

0 1∕2c

1∕2c 0

]

,

where �i and �i are the components of the coordinates of 
xi in the first and second reference direction, respectively. 
To implement the PBC, nodes in the boundary volume are 
broadly grouped into ‘facial’ nodes and ‘corner’ nodes. 
Thus, from Fig. 3, all nodes in boundary sub-volumes Ω−

1
 , 

Ω+
1
 , Ω−

2
 and Ω+

2
 are facial nodes while those in Ω−

3
 , Ω+

3
 , Ω−

4
 

and Ω+
4
 are corner nodes. If we write (95) in expanded form 

for two-dimensional space, we have

for every pair of points in the i-th pair of two opposite par-
allel faces. Applying (101) to facial pairs Ω−

1
 , Ω+

1
 , Ω−

2
 and 

Ω+
2
 results in the following relative displacement boundary 

constraints:

With the group of equations in (102)-(a) associated with 
the pair Ω−

1
 , Ω+

1
 and the group (102)-(b) associated with the 

(111)u
(1)

i
=

{

c�i
0

}

, u
(2)

i
=

{

0

c�i

}

, u
(3)

i
=

{

c�i
c�i

}

,

(112)
{

ui+

vi+

}

−

{

ui−

vi−

}

=

[

�11 �12
�12 �22

]{

�i+ − �i−

� i+ − � i−

}

(113)

u1+ − u1− = �11
(

�1+ − �1−
)

v1+ − v1− = �12
(

�1+ − �1−
)

}

(a)

u2+ − u2− = �12
(

�2+ − �2−
)

v2+ − v2− = �22
(

�2+ − �2−
)

}

(b)

.

Fig. 4  RVE geometry showing 
various configuration

Table 1  Material properties of the constituents of RVEs

Material E
1

= E
1

(GPa) �
12

�
12

(GPa) �
12

(GPa)

Boron 379.30 0.10 172.41 158.04
Graphite 235.00 0.20 97.92 130.56
Glass 73.10 0.22 29.96 43.51
Aluminium 68.30 0.30 26.27 56.92
Epoxy 3.45 0.35 1.28 3.83
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pair Ω−
2
 and Ω+

2
 , respectively, it will be noticed that each 

corner volume is shared by two facial volumes and applying 
(102) to nodes within these boundary volumes will lead to 
over constrained boundary. To eliminate this problem, the 
following translational periodicity is imposed at the corner 
boundary volumes: if we write Ω−

3
= Ωc

1
 , Ω+

3
= Ωc

2
 , Ω−

4
= Ωc

3
 

and Ω+
4
= Ωc

4
 , then volumes Ωc

1
 and Ωc

2
 are assumed to be 

images of Ωc
3
 under horizontal and vertical translational sym-

metry, respectively, while Ωc
4
 is the image of Ωc

3
 under com-

bined horizontal and vertical symmetry so that the following 
relative displacement constraints are imposed between nodes 
in the corner boundary volumes:

and

(114)
uc1 − uc3 = �12(�

c1 − �c3 )

vc1 − vc3 = �22(�
c1 − �c3 )

(115)
uc2 − uc3 = �11(�

c2 − �c3 )

vc2 − vc3 = �22(�
c2 − �c3 )

To eliminate translational rigid body motion of the RVE, 
nodes within the corner volume Ωc

3
 are constrained. The 

determination of the effective elastic tensor in both prob-
lems proceeds under the assumption of small deformation 
and plane stress. This allows the use of infinitesimal strain 
tensor and Cauchy stress tensor directly in (64). Once the 
Cauchy stress field in the RVE is obtained, (98) is used to 
recover the effective elasticity tensor.

5  Validation of the homogenization scheme

Having established and justified the peridynamic corre-
spondence homogenization theory (PDCHT) in Sect. 4, 
numerical examples are presented in this section to bench-
mark the scheme against the Reus–Voigt and Hashin–Shtrik-
man bounds discussed in Sect. 4.2.3. Prediction from the 
PDCHT would also be compared against predictions from 

(116)
uc4 − uc3 = �11(�

c4 − �c3 ) + �12(�
c4 − �c3 )

vc4 − vc3 = �12(�
c4 − �c3 ) + �22(�

c4 − �c3 ).

Fig. 5  Evolution of the effective stiffness tensor of glass in epoxy-matrix composite—LDBVC a C∗
11

= C
∗
22

 b C∗
22

 c C∗
33

 and d C∗
12

Fig. 6  Evolution of the effective elastic constants—LDBVC. a Effective bulk modulus, b effective shear modulus and c effective elastic modulus
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other classical mean-field homogenization methods such 
as the Eshelby dilute estimate [138] and the Mori–Tanaka 
method [139]. In addition, the result from the PDCHT will 
be compared to result obtained from computational homog-
enization based on the Finite-Element Analysis. After vali-
dation of the PDCHT strategy, the framework will be used 
to predict the effective properties given elliptical inclusion 
to observe the influence of inclusion shape on the effective 
properties predicted by the method. All materials considered 
throughout this section are assumed to be two-phased con-
sisting of a matrix phase and a stiffer fibre phase (inclusion). 
Properties associated with matrix will be denoted with the 
superscript (m) while those associated with the fibre phase 
will be denoted with superscript (f ) . Both matrix and fibre 
phases are assumed to be isotropic under isothermal linear 
elasticity.

To pursue the objectives of validating the proposed 
method, three numerical examples will be considered. Fig-
ure 4 shows the RVE configurations to be considered in this 
section, and the properties of the constituent materials for 

the RVEs to be considered in the numerical examples are 
given in Table 1.

5.1  Comparing the PDCHT results with bounding 
theorems and other established methods

In this example, effective properties predicted from the 
PDCHT will be compared against computational result from 
the bounding theorems of Reuss, Voigt and Hashin–Shtrik-
man, the mean-field methods of Eshelby and Mori–Tanaka 
as well as the full-field method based on the finite-element 
analysis as done by the authors. The material is assumed to 
be a glass in epoxy-matrix composite with properties given 
in Table 1 under a plane strain condition. The RVE geometry 
is assumed to consist of epoxy matrix with a circular glass 
fibre centrally placed as shown in Fig. 4a. The problem is 
solved over the range of all admissible fibre volume frac-
tions 0–100%. Solutions will be sought considering LDBVC 
and PBVC. Results from the computations are presented as 
follows.

(b)

Fig. 7  Evolution of the effective stiffness tensor of glass in epoxy-matrix composite—PBVC a C∗
11

= C
∗
22

 b C∗
22

 c C∗
33

 and d C∗
12
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Fig. 8  Evolution of the effective elastic constants—PBVC. a Effective bulk modulus, b effective shear modulus and c effective elastic modulus
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The predicted evolution of the effective elastic stiffness 
tensor and corresponding effective elastic constants from 
PDCHT, the bounding theorems and other established meth-
ods are presented in Figs. 5 and 6, respectively, for the case 
of LDBVC. Similar analysis with the same RVE subjected 
to PBVC is conducted and the results are presented in Figs. 7 
and 8 representing the evolution of the effective stiffness 
tensor and elastic constants, respectively.

Prediction from PDCHT of the effective stiffness tensors 
presented in Figs. 5 and 7 lie within the Reuss–Voigt bound 
as well as the tighter Hashin–Shtrikman bound thus satis-
fying (97). Similar agreement with the bounding theorems 

is observed with prediction of the effective bulk and shear 
moduli as presented in Figs. 6 and 8 thus satisfying (105) 
and (106) for the Reuss–Voigt bounds and (107)–(108) for 
the Hashin–Shtrikman bounds. This is true for both the pre-
dictions under LDBVC and PBC. Another consequence of 
the bounding Eqs. (97), and (105)–(108) is that the elas-
tic modulus from any proposed homogenization theory is 
predicted to lie within the Reuss–Voigt and Hashin–Shtrik-
man bound. The evolution of the effective elastic modulus 
obtained from the proposed theory indeed lies within these 
bounds as shown in Figs. 6c and 8c for LDBVC and PBVC, 
respectively.

The result of prediction from the PDCHT is also com-
pared to predictions from the mean-field homogenization 
methods of Eshelby and Mori–Tanaka as well as a full-
field computational method based on FEM solution of the 
RVE. The results from these methods are also presented in 
Figs. 5, 6, 7 and 8. The predictions from both the PDCHT 
and FEM comply with the bounding theorems and compared 
to predictions from the Mori–Tanaka method, the PDCHT 
prediction gives an upper estimate of the effective proper-
ties. It is worthy to note that the prediction in this example 
from the Mori–Tanaka method coincide with those from the 
Hashin–Shtrikman lower bound. This is the case in some 
situations and has been reported in the literature [González]. 
Predictions from the Eshelby dilute method agrees with 
results from the PDCHT only for very low fibre volume 
fraction. This is an expected trend as the dilute method is 
expected to give reasonable predictions only for very low 
(dilute) fibre volume fraction.

Since the fibre is assumed to be of circular cross-sec-
tion, it can be shown that the maximum volume fraction 
that can be achieved with a perfectly circular fibre cross-
section is 78.54% . Beyond this volume fraction, the cir-
cular geometry of the fibre cross-section degenerates and 
thereby causes a change in the morphology of the RVE. 
This change in morphology is reflected in the results pre-
dicted from the PDCHT and FEM solutions of the RVE 
and expectedly not the bounding theorems as shown in 
Figs. 5, 6, 7 and 8. A comparison of the predicted effective 
elastic modulus obtained using both LDBVC and PBVC 
as shown in Fig. 9 shows that the prediction using the 
LDBVC provides an upper estimate of the two boundary 
conditions at least within the small deformation regime. 
This is a tested and proven result from the literature [132, 
140, 141].

5.2  Comparing the PDCHT results with results 
from published works

The objective in this example is to compare predictions from 
the proposed PDCHT with experimental results from [142] 
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Fig. 9  Evolution of effective elastic constant obtained using the 
LDBVC and PBVC

Table 2  Effective material properties for boron/aluminium composite 
( c

1

= 0.47)

OSBPDHT ordinary state-based peridynamic homogenization theory, 
PD UC peridynamic unit cell, FEM finite element method, LTE-
HOT linear thermoelastic higher order theory, VAMUCH variational 
asymptotic method for unit cell homogenization

Models E
11

= E
22

�
12

�
12

PDHCT 140 0.185 52.5

Experiment [142] 140 0.29 52.0

OSBPDHT [108] 150 0.18 53.4

PD UC [105] 144.4 0.251 54.3

FEM [143] 144 0.19 57.2

LTEHOT [144] 144 0.195 54.34

VAMUCH [145] 144.1 0.195 54.39
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Fig. 10  Evolution of effective stiffness ratio under LDBVC a � = 1.07 b � = 3.44

Table 3  Evolution of the elastic 
modulus in directions 1 and 2 
(Glass in aluminium: circular 
inclusion)

c(f ) PD FEM Percentage difference

E1 E2 E1 E2 %ΔE1 %ΔE2

Glass in aluminium: circular inclusion, � = 1.07

 0 6.84E+10 6.84E+10 6.83E+10 6.83E+10 1.88E−01 1.88E−01
 0.05 6.87E+10 6.87E+10 6.85E+10 6.85E+10 2.47E−01 2.47E−01
 0.1 6.89E+10 6.89E+10 6.87E+10 6.87E+10 3.17E−01 3.17E−01
 0.15 6.91E+10 6.91E+10 6.89E+10 6.89E+10 3.09E−01 3.09E−01
 0.2 6.94E+10 6.94E+10 6.92E+10 6.92E+10 3.34E−01 3.34E−01
 0.25 6.96E+10 6.96E+10 6.94E+10 6.94E+10 3.50E−01 3.50E−01
 0.3 6.98E+10 6.98E+10 6.96E+10 6.96E+10 3.53E−01 3.53E−01
 0.35 7.01E+10 7.01E+10 6.98E+10 6.98E+10 4.21E−01 4.21E−01

Table 4  Evolution of the elastic 
modulus in directions 1 and 2 
(Graphite in aluminium: circular 
inclusion)

c(f ) PD FEM Percentage difference

E1 E2 E1 E2 %ΔE1 %ΔE2

Graphite in aluminium: circular inclusion, � = 3.44

 0 6.84E+10 6.84E+10 6.83E+10 6.83E+10 1.09E−01 1.09E−01
 0.05 7.22E+10 7.22E+10 7.10E+10 7.10E+10 1.65E+00 1.65E+00
 0.1 7.66E+10 7.66E+10 7.42E+10 7.42E+10 3.08E+00 3.08E+00
 0.15 8.08E+10 8.08E+10 7.81E+10 7.81E+10 3.32E+00 3.32E+00
 0.2 8.56E+10 8.56E+10 8.21E+10 8.21E+10 4.08E+00 4.08E+00
 0.25 9.08E+10 9.08E+10 8.65E+10 8.65E+10 4.69E+00 4.69E+00
 0.3 9.61E+10 9.61E+10 9.13E+10 9.13E+10 5.07E+00 5.07E+00
 0.35 1.03E+11 1.03E+11 9.64E+10 9.64E+10 6.55E+00 6.55E+00
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and computational predictions from the following refer-
ences: [105, 108, 143–145]. The RVE is assumed to be a 
square array of circular shaped boron fibre placed in the 
centre of aluminium matrix as shown in Fig. 4a. The proper-
ties of boron and aluminium are given in Table 1. The RVE 
volume-constrained problem is solved under the assumption 
of plane stress and PBVC.

Prediction of effective elastic properties of the composite 
system from the PDCHT is presented in Table 2 alongside 
results from some published references. Analysis of the 
results shows that the prediction from PDCHT provides the 
closest correlation to the experimental result from [142] 
in the estimate of the effective elastic and shear moduli. 
Compared to other computational methods, prediction of 
these moduli from the PDCHT gives the lower estimates. 
However, the effective Poisson’s ratio �12 = 0.185 predicted 
by the PDCHT is markedly different from the experimental 
result but agree well with predictions from the FEM, OSB-
PDHT, FEM, PD UC and LTEHOT.

5.3  Effective properties of RVE with elliptical fibre 
inclusion

In this example, two RVEs, the first with circular and the 
second with elliptical fibre inclusions as shown in Fig. 4a 

and b, respectively, will be considered. Two composites 
will be considered. The first is a glass in aluminium-matrix 
composite and the second is a graphite in aluminium-matrix 
composite with material properties as given in Table 1. The 
stiffness ratio (or phase contrast) � ( � ∶= E(f )∕E(m) ) of the 
first material is 1.07 while that of the second material is 3.44 . 
The objective in this example is to briefly demonstrate the 
capability of the PDCHT in capturing the effect of inclu-
sion shape and phase contrast on the effective behaviour of 
materials using the LDBVC.

The evolution of the normalised effective elasticity modu-
lus (effective stiffness ratio) �∗

i
= E∗

i
∕Ei(m) with respect to 

fibre volume fraction c(f ) for RVEs with both circular and 
elliptical inclusion for the two materials alongside results 
from FEM simulation of the same problems are presented 
in Fig. 10. In Tables 3, 4, 5 and 6, the evolution of the elas-
tic modulus in directions 1 and 2 as well as the percentage 
difference between predictions from PDCHT and FEM are 
presented.   

From the result presented for predictions from both 
PDCHT and FEM, the effective material behaviour as rep-
resented by the evolution of the effective elastic modulus 
for the RVE with circular inclusion shows linear behav-
iour for low material phase contrast (� = 1.07) and weak 
nonlinear behaviour for higher material phase contrast 

Table 5  Evolution of the elastic 
modulus in directions 1 and 2 
(Glass in aluminium: elliptical 
inclusion)

c(f ) PD FEM Percentage difference

E1 E2 E1 E2 %ΔE1 %ΔE2

Glass in aluminium: elliptical inclusion, � = 1.07

 0 6.84E+10 6.84E+10 6.83E+10 6.83E+10 1.88E−01 1.88E−01
 0.05 6.87E+10 6.87E+10 6.85E+10 6.85E+10 2.65E−01 2.64E−01
 0.1 6.89E+10 6.89E+10 6.87E+10 6.87E+10 3.08E−01 3.08E−01
 0.15 6.91E+10 6.92E+10 6.89E+10 6.89E+10 3.62E−01 3.61E−01
 0.2 6.94E+10 6.94E+10 6.91E+10 6.92E+10 3.49E−01 3.48E−01
 0.25 6.96E+10 6.97E+10 6.94E+10 6.94E+10 3.77E−01 3.76E−01
 0.3 6.99E+10 6.99E+10 6.96E+10 6.96E+10 4.48E−01 4.48E−01
 0.35 7.01E+10 7.02E+10 6.98E+10 6.98E+10 4.50E−01 4.45E−01

Table 6  Evolution of the elastic 
modulus in directions 1 and 
2 (Graphite in aluminium: 
elliptical inclusion)

c(f ) PD FEM Percentage difference

E1 E2 E1 E2 %ΔE1 %ΔE2

Graphite in aluminium: elliptical inclusion, � = 3.44

 0 6.84E+10 6.84E+10 6.83E+10 6.83E+10 1.09E−01 1.09E−01
 0.05 7.28E+10 7.19E+10 7.14E+10 7.05E+10 1.91E+00 1.94E+00
 0.1 7.79E+10 7.56E+10 7.53E+10 7.35E+10 3.30E+00 2.90E+00
 0.15 8.36E+10 7.98E+10 7.99E+10 7.66E+10 4.52E+00 4.04E+00
 0.2 9.00E+10 8.38E+10 8.55E+10 8.03E+10 4.98E+00 4.12E+00
 0.25 9.80E+10 8.84E+10 9.18E+10 8.41E+10 6.35E+00 4.80E+00
 0.3 1.08E+11 9.34E+10 9.84E+10 8.77E+10 8.78E+00 6.06E+00
 0.35 1.19E+11 9.82E+10 1.08E+11 9.20E+10 9.18E+00 6.30E+00
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(� = 3.44) . In the case of RVE with elliptical inclusion, 
the result for lower material phase contrast shows linear 
behaviour while the effective material behaviour at higher 
material phase contrast shows strong nonlinear behaviour. 
The amplified nonlinearity is because the elliptical inclu-
sion introduces an anisotropy in the microgeometry of the 
composite. In addition, the prediction of effective material 
properties for RVEs with circular inclusion from Tables 2 
and 3 shows an isotropic effective material response while 
predictions for RVEs with elliptical inclusion shows an 
orthotropic effective material behaviour.

Comparing the results from the PDCHT and FEM, it is 
noted that at lower material phase contrast, the predicted 
effective behaviour from the two methods shows good agree-
ment for both inclusion shapes especially at low material 
phase contrast. The maximum percentage difference in the 
estimated results from these methods is 0.421% for circu-
lar inclusion and 0.45% for elliptical inclusion. However, 
at higher material phase contrast (� = 3.44) , the maximum 
percentage difference raises to 6.55% for circular inclusion 
and 9.2% in the case of elliptical inclusion, with the pre-
dictions from the PDCHT yielding more nonlinear behav-
iour with increasing material phase contrast. This nonlin-
ear effective material behaviour is an expected prediction 
and has been reported in literature [146]. In addition, the 
difference in result between the PDCHT and FEM predic-
tions at high material phase contrast also did not come as a 
surprise because it has been reported in the literature [147, 
148] that marked difference between different homogeniza-
tion approaches at high stiffness ratio have been observed.

6  Conclusion

This paper presented a first-order homogenization theory 
in the framework of the non-ordinary state-based cor-
respondence model. The development of the theory is 
set on a rigorous mathematical framework consistent 
with the nonlocal nature of the peridynamic theory. 
Using this homogenization theory, it is now possible to 
obtain microstructure informed properties of materials 
for use at the macroscale within the framework of peri-
dynamic modelling. The proposed nonlocal homogeniza-
tion theory is validated by solving benchmark problems 
and comparing the results with those obtained using the 
Reuss, Voigt and Hashin–Shtrikman bounding theorems, 
the mean-field methods of Eshelby and Mori–Tanaka 
as well as the finite-element method. These results are 
shown to comply with the bounding theorems as well 
as agree with results from the mean-field and full-field 
methods mentioned above.

Comparison of predictions from the proposed homog-
enization framework with results from the literature shows 

good agreement. Lastly, the PDCHT has been shown to be 
capable of capturing interesting material behaviour some 
of which have been reported in the literature such as the 
effect of change in the effective material property when the 
morphology of the RVE changes as illustrated in the first 
example. This effect was demonstrated more elaborately 
in the third example by comparing the prediction for RVEs 
with circular and elliptical shaped inclusion. The proposed 
method was also shown to be able to capture the effect of 
material phase contrast on the effective behaviour of the 
composite system.

The advantage of PDCHT theory over homogeniza-
tion frameworks based on the classical continuum theory 
derives from the strengths of the peridynamic theory. This 
framework is, therefore, especially useful in circumstances 
involving evolution of the microstructure or problems in 
which nonlocal interaction plays important role in the over-
all response of the heterogenous media. Another advantage 
that can be leveraged with this development is that because 
the peridynamic correspondence model uses familiar quanti-
ties from the classical continuum theory, Once the effective 
material tangent is obtained, we are free to use either of peri-
dynamic theory or the classical continuum theory to charac-
terise the macroscopic response of the medium. Where the 
peridynamic theory is utilised at the macroscale, this result 
in a standard multigrid method we will call the  PD2 method. 
In the case where the classical theory is utilised, this result 
in what is referred to in the literature as Heterogenous Multi-
scale Method (HMM) [149]. In this case, numerical schemes 
such as the finite-element method or the finite difference 
method can be utilised to solve the macro-model.

Since one of the greatest strengths of the peridynamic 
theory lies in its capability in handling strong discontinuity 
in the response field of a system, this homogenization theory 
will be applied to problems with evolving microstructure 
such as micro-crack coalescing and propagation in a future 
work.
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