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Abstract
An investigation of dynamic behaviors of a sandwich plate containing an imperfect two dimensional functionally graded (2D-
FG) core surrounded by two faces on a two-parameter elastic foundation and subjected to a moving load is carried out in this 
paper. The present sandwich solid is composed of a porous 2D-FG core covered by two homogenous layers. It is assumed that 
the middle layer has micro voids dispersed uniformly and unevenly through the layer thickness. The fundamental equations 
are governed within the framework of first-order-shear deformation theory by utilizing Hamilton’s principle, von-Karman 
geometrical nonlinearity and the principal of mixtures. Newmark direct integration procedure is implemented to transform 
the dynamic equations into a static form and then the kinetic dynamic relaxation numerical technique in conjunction with the 
finite difference discretization method are employed to solve the nonlinear partial differential governing equations. Finally, 
the effects of porosity fraction and scattering patterns, boundary constrains, the variation of materials’ grading indexes and 
elastic foundation constants on the transient performances of the plate are studied in detail.

Keywords 2D-FG sandwich plate · Porosity · Moving load · Kinetic dynamic relaxation · Newmark technique

1 Introduction

A sandwich structured composite is an advanced type of 
composite materials usually fabricated by attaching two 
fairly thin but strong face sheets to a relatively thick light-
weight core [1]. Using a first order shear deformation theory 
and Hamilton’s principle, Karroubi and Irani Rahaghi [2] 
performed a study on the free vibration of a three-layer rotat-
ing shell which consists of a functionally graded core and 
two piezoelectric face sheets. The emphasis of the current 
study is on the time-dependent deflection of a sandwich plate 
made of a porous plate whose materials functionally scat-
tered along thickness and in-plane directions as a core solid 
with two similar homogenous faces.

In the few recent decades, more and more craftsmen have 
tried to seek for advanced materials which have more capac-
ity to resist both different mechanical loadings and sever 
environmental conditions [3, 4]. This way, 2D-FG solids 
have attracted enormous attentions from both research and 
industrial divisions [5]. Scientists have showed that func-
tionally graded materials with two directional dependent 
materials properties have more resistance against severe 
temperature variations compared to one-dimensional (1D) 
functionally graded materials (FGMs) [6–8]. Beferani et al. 
[9] analyzed the vibrational characteristics of function-
ally graded plates on Winkler and Pasternak foundations. 
Sheikholeslami and Saidi [10] showed the impacts of some 
factors such as the thickness ratio and elastic foundation 
parameters on the natural frequencies of thick functionally 
graded rectangular plates. Some years later, Chen et al. [11] 
explored the effects of several factors such as geometric fea-
tures and material parameters on the vibrational behaviors 
of cylindrical 2D-FG shells. The vibrational and buckling 
performances of 2D-FG beams were analyzed by Nguyen 
and Lee [12]. Using the generalized differential quadrature 
method, Fariborz and Batra [13] studied the free vibration 
of curved beams with two directional material properties. 
Tang and Ding [14] used Euler–Berloni theory along with 
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the von Kármán scheme for large deflections to investigate 
the effects of material gradients on the mechanical charac-
teristics of 2D-FG beams under hygro-thermal loads. The 
nonlinear vibrational behaviors of pre- and post-buckled 
nonuniform bi-directional functionally graded microbeams 
under nonlinear thermal loading were investigated by Attia 
and Mohamed [15]. In another study, Saini and Lal [16] 
analyzed the free vibrational behavior of functionally graded 
moderately thick circular plates with two-dimensional mate-
rial and temperature distribution.

During the fabrication of functionally graded materials, 
micro-voids can be created inside the FGMs. For instance, 
porosity formation can be a result of mixing some materials 
with different sintering temperature [17]. Wang et al. [18] 
investigated the thermal vibration of a cylindrical shell with 
structural defections dispersed monotonously or function-
ally through the thickness path. Zhou et al. [19] conducted a 
study on the vibrational and flutter behaviors of functionally 
graded plates containing porosities. Esmaeilzadeh and Kad-
khodayan [20] used the kinetic dynamic relaxation technique 
combined with Newmark approach to undertake a numerical 
study on nonlinear dynamic behaviors of porous stiffened 
2D-FG sheets. Following that, they [21] investigated the 
effects of porosity configurations on time-dependent behav-
ior of bi-layer sandwich plates.

The numerical replicas of structures which rest on elastic 
foundations are frequently employed to duplicate numer-
ous real models in industrial sectors. In several cases, an 
elastic medium can be assumed as simple instruments such 
as spring. Beferani and Saidi [22] used the third order shear 
deformation plate theory along with the Levy approach to 
investigate the buckling and vibrational behaviors of sym-
metrically laminated thick rectangular plates supported by 
elastic foundations. In another research, Gao et al. [23] pre-
sented the effects of some factors such as damping ratios 
and temperature changes on the dynamic performance of 
composite orthotropic plates resting on an elastic medium.

Structures subjected to moving loads can be seen in vari-
ous applications such as trains on the track, airplanes pass-
ing floating airports, machine tools, etc. From a computa-
tional point of view, the travelling load is usually applied as 
a simple massless force or an oscillator or an inertial force. 
Numerous historical studies concerning the moving load 
problem exist in the open literatures [20, 24–27]. Simsek 
[28] conducted a study on nonlocal vibration of a single-
walled carbon nanotube carrying a moving harmonic load. 
The nonlocal elasticity theory was used by Chang [29] and 
Nami and Janghorban [30], respectively, to study dynamic 
behaviors of double-walled nanotubes and nanoplates. 

Shahsavari and Janghorban [31] also investigated dynamic 
deflections and shearing responses of nanoplates under mov-
ing loads using the nonlocal theory. With the consideration 
of nano-system coefficients, Barati et al. [32] undertook a 
research on transient responses of nanobeams under inertia 
forces. Recently, stability of graphite sheets resting on elas-
tic foundations and subjected to moving nanoparticles was 
investigated by Pirmoradian et al. [33].

Based on the comprehensive literature review conducted 
by the authors, on the basis of the FSDT, there is no numeri-
cal study on the nonlinear dynamic behaviors of sandwich 
rectangular plates with porous 2D-FG core mounted on elas-
tic foundations and under the action of moving loads. In this 
study, a 2D-FG core is assumed to be defected with porosity 
inclusions uniformly or functionally distributed through its 
thickness. Hamilton’s principle in conjunction with von-
Karman theory are used to derive the time-dependent equa-
tions, and then an amalgamation of kinetic dynamic relaxa-
tion method and Newmark implicit integration are employed 
for solving governing equations. Eventually, the influence of 
some key parameters including elastic foundations, material 
gradient properties, boundary constrains, and moving load 
on transient responses of the sandwich plate are precisely 
scrutinized. The result of this research work can be applied 
to bridging engineering and transportation divisions, where 
dynamic effects of the moving vehicles on bridge structures 
can play a significant role on their lifetime.

2  Theoretical modelling

Consider a rectangular sandwich plate with length a, width 
b and thickness h (= hc + 2hf) along x, y and z directions, 
respectively, as shown in Fig. 1. This plate rests on an elastic 
foundation and is exposed to a moving load. Subscripts c 
and f denote the core layer and face surfaces, respectively.

2.1  Bi‑directional FG plate with geometrical 
imperfections

Figure 1 shows that the mixture of the 2D-FG core changes 
along both x and z directions. The upper surface of the plate, 
hc/2, is completely made out of material 3, then its mechani-
cal properties vary to a composition of martial 1 and 2 at 
the bottom of the sheet. The plate’s mechanical properties 
change along axial direction at z = − hc/2, as well, from pure 
material 1 at x = 0 to unadulterated ceramic 2 at x = a.

The effective mechanical properties, P (x, z), of the 
2D-FG core with even micro-void inclusions (Fig. 2a) based 
on the rule of mixtures can be measured by [20]
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where P1, P2 and P3 are, respectively, mechanical properties 
(Young’s modulus (E), and mass density (ρ)) of materials 
1, 2 and 3, and also positive parameters n and m are gradi-
ent indexes along z- and x-axes. In the case of the core with 
uneven porosities (Fig. 2b), the effective mechanical proper-
ties become [20]:

where P (x, z) represents Young’s modulus (E), and mass 
density (ρ). Also, α denotes porosity fraction. The Poisson’s 
ratio (υ) is assumed to be constant.
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2.2  Fundamental equations

Because the main aim of the current study is to investigate 
dynamic response of moderately thick sandwich plates, 
equivalent single layer theory of the first-order shear defor-
mation is hired to describe the kinematics of deformation 

Fig. 1  Schematic of a sandwich 
plate resting on an elastic foun-
dation under a moving load

Fig. 2  Two types of porosity distributions through the plate thickness

of the plate. The FSDT provides a sufficiently accurate 
description of global response for moderately thick lay-
ered structures with complex constitutive behavior [34]. 
Based on FSDT along with von-Karman nonlinearity, the 
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stress–displacement relationships of face layers and a porous 
2D-FGM core are written as follows:

in which u, v and w are, respectively, the displacements of 
the sandwich plate along x, y and z directions. Also �x and 
�y denote angular dislocations about y and x axes. The plane 
stress-reduced stiffness coefficients (Qij) of the ceramic’s 
layers (f) and porous 2D-FG core (c) are respectively defined 
as follows [21]:

�f and �c are, respectively, the Poisson’s ratios of the face 
sheets and the core. The stress resultants and moments are 
defined as [35]:
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K2 represents the transverse shear correction constant and 
is set as 0.833.

To derive the fundamental equations, the Hamilton’s 
principle is used as,

where �T  is the variation of strain energy and also �W  , and 
�K are, separately, the variation of applied work and kinetic 
energy of a mechanism. �T  can be expressed in terms of 
stress and strain as:

The variation of kinetic energy can be expressed by:

Finally, the kinematic equation of sandwich plates sub-
jected to a moving load (F) can be formulated as follows:
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where N(w) depicts the nonlinear term, Kw is the Winkler 
foundation modulus, and Ks is the Pasternak shear founda-
tion, and � is the Dirac function specify the moving line 
force position with an assigned velocity along the x-axis, 
and;

Three set of boundary constrains, namely simply sup-
ported boundary conditions, SCSC and clamped bound-
ary condition and, are considered for the completion of the 
derived equations.

(a) Fully simply supported boundary edge (SSSS)

(b) Parallel edges are simply supported and clamped 
(SCSC)

(c) Fully clamped boundary edge (CCCC)
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3  Numerical methods

The kinetic dynamic relaxation scheme accompanied by 
Newmark integral technique are recruited in the study for 
solving Eq. (9).

3.1  Newmark integration method

On the basis of Newmark approach, the first and second 
derivatives of x at the next time period, tj+1, are defined as:

in which, x is the displacement field of the nanoplate 
( � = �, �,�,�x,�y ), Δt is real time interval, � and � are 
Newmark’s coefficients. By substituting Eqs. (14) and (15) 
into Eq. (9), it gives:

in which 
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where 
[
�j+1

]
 is the mass matrix and 

[
Kj+1

]
 represents the stiff-

ness matrix. Also, {Pj+1} denotes the external work vector.

3.2  Kinetic dynamic relaxation technique

Equation (9) can be solved when it is transformed into fic-
titious dynamic space by artificial inertia matrix [M]DR as 
follows [36]:

where {a}n and [�]n
DR

 denote, respectively, the fictitious 
acceleration vector in nth iteration of the Kinetic DR [36] 
and diagonal artificial mass matrix. A proper fictitious mass 
can guarantee the convergence of K-DR technique. Such an 
artificial mass is defined in accordance with the Gershgörin 
theorem [37].
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Furthermore, the kinetic energy of system can be obtained 
by:

As the maximum value of kinetic energy is determined, 
the K-DR iteration is started again with another novel initial 
nodal displacement and velocity as follows [38]:
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The satisfaction of two criteria (i.e. |||KE
n+1||| ≤ 10−12 and 

|{�n}| ≤ 10−9 ) leads to stopping the K-DR procedure. These 
steps are iterated for each time increment of implicit New-
mark integration.

4  Numerical results

4.1  Comparison study

Case study 1 for the first case, the dynamic response 
of a 1D-FG plate under a uniform harmonic force, 
F(x, y, t) = 10 sin(2000t) is carried out with the current 
method, and the obtained results are compared with those 
reported by [39]. The following properties have been 
considered:

Also w =
100E1h

3w

12a4(1−v2
1
)F0

 is defined as the non-dimensional 
deflection where F0 represents transverse load applied on the 
top surface of the plate. Figure 3 reveals a perfect match 
between the obtained results and those reported in [39].

Case study 2 in the second example, the transverse dis-
placements at the center of clamped and simply supported 
plates under action of a moving load are obtained by K-DR 
method. The parameters used in this example are:

(25){�}n+
1

2 =
�

2[�DR]
n
{�}n.

(26)

⎧⎪⎨⎪⎩

a = b = 1, h∕a = 0.2,

E1 = 70 GPa, �1 = 2702 kg∕m3, �1 = 0.3,

E2 = 200 GPa, �2 = 5700 kg∕m3, �2 = 0.3.

In this sample, the external load, F, moves on the mid-
line of the plate along the x direction. The bending rigidity 
of the plate is denoted by D and t is the time needed for 
the load to travel on the plate. From Figs. 4 and 5, a close 
agreement can be seen between the present results and the 
reference [40].

Case study 3 for checking the accuracy of the present 
formulation and numerical system, the effects variations of 
vertical (n) and axial (m) grading indexes on the non-dimen-
sional central deflection of a CCCC bi-dimensional func-
tionally graded plate under a moving load with the velocity 
of v are compared in Table 1. The plate has the following 
geometrical and mechanical features;

From Table 1, it can be noticed that the current results 
are in perfect agreements with those of Ref. [20] which can 
confirm the accuracy of the methodology and solutions.

4.2  Parametric study

The influences of the elastic foundations, porous distribu-
tions, material gradient indexes and borderline constrains on 
dimensionless dynamic central deflection of the sandwich 
plates with imperfect 2D-FG core are investigated. To do 
this, a square-shaped three-layer plate with the following 
geometrical and mechanical properties is considered.

(27)

{
a = b = 1, �h∕D = 1,F∕D = 1

x0 = vt, y0 = 1∕2

(28)

a = b = 1000 mm, hc = 100 mm

E1 = 116 GPa, �1 = 1200 kg∕m3, �1 = 0.3

E2 = 200 GPa, �2 = 7850 kg∕m3, �2 = 0.3

E3 = 380 GPa, �3 = 3960 kg∕m3, �3 = 0.18,F = 400
kN

m
, x0 = vt.

(29)

a = b = 1000 mm, hc = 100 mm

E1 = 116 GPa, �1 = 1200 kg∕m3, �1 = 0.3

E2 = 200 GPa, �2 = 7850 kg∕m3, �2 = 0.3

E3 = 380 GPa, �3 = 3960 kg∕m3, �3 = 0.3

Ef = 200 GPa, �f = 7850 kg∕m3, �f = 0.3.

Table 1  Influences of gradient indexes (n, m) on the magnitude of 
wmax/h 

(2, 2) (2, 4) (4, 2) (4, 4)

Current study 2.71 2.85 2.90 3.20
Ref. [20] 2.71 2.85 2.90 3.20

Table 2  Effects of elastic foundations and porosity distributions on the supreme amount of deflection of the sandwich plate (SSSS)

Ks (GPa m) Kw (GPa/m) Wmax

Even porosity pattern Uneven porosity pattern

0 0.0 − 1.55 − 1.35
1.0 − 1.44 − 1.26

0.1 0.0 − 1.23 − 1.12
1.0 − 1.13 − 1.04
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The upper surface of the plate is exposed to a line load 
travelling along the x axis with a constant velocity of v:

(30)F = 400
kN

m
, x0 = vt

The following dimensionless deflection is used to express 
results:

Unless mentioned otherwise, hs, Ks and Kw are respec-
tively 10 mm, 0.0 GPa m and 1.0 GPa/m, respectively.

Influence of the foundation stiffness on dimensionless 
central deflection of SSSS sandwich plates subjected to a 
moving load (v = 20 m/s) for two porous distributions with 
fraction of 0.2 and (n, m) = (1, 1) is considered and the 
resulted magnitudes are provided in Table 2. As depicted in 
Table 2, the elastic foundations can lead to a considerable 
decline of the dynamic dislocation in all cases. The plates 
with even porosity pattern have the largest dynamic deflec-
tion of − 1.55 when Kw = 0 and Ks = 0. The deflection of 
plates resting on an elastic foundation with even and uneven 

(31)W =
w(a∕2, b∕2)

hc
× 1000.

(a)

(b)

(c)
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Fig. 6  Effects of the material gradient indexes (n, m) on dynamic 
behavior of the uneven porous 2D-FG sandwich plate; a SSSS, b 
SCSC, c CCCC 
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the SSSS sandwich plates; a even porosity distribution, b uneven 
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porous cores as well as Ks = 0.1 GPa m and Kw = 1.0 GPa/m 
t falls noticeably to − 1.13 and − 1.04, respectively.

Figure 6 demonstrates how the material gradient factors 
(n, m) affect the transient vertical displacement of sandwich 
SSSS, SCSC and CCCC plates with even porous 2D-FG 
core (� = 0.2) under a moving load with a velocity of 20 m/s. 
For all three sorts of boundary conditions, it is evident that 
with a rise in the quantity of material gradient indexes (n, 
m), a greater dynamic deflection will be seen since climbing 
these parameters result in decreasing the bending rigidity of 
the sandwich plate. It is also seen that the influence of the 
index (n) is much noticeable in comparison with the grading 
index (m) when the plate edges are SCSC and CCCC.

The non-dimensional central deflection of a SSSS sand-
wich plate subjected to a moving load (v = 20 m/s) is plot-
ted in Fig. 7 for even and uneven porosity distributions, 
respectively. It is obvious from Fig. 7 that the dimensionless 
dynamic displacement of the plates increases with a growth 
in the values of porosity fractions. In comparison with the 
uneven distribution, the influence of the imperfection rise is 
much greater when the plate is defected with even porosity 
distribution, see Fig. 7a. In this case, the dynamic deflection 
increases to 0.22 and 0.36 unit by rising the porosity fraction 
of 0.2 and 0.4, respectively.

Figures 8a–c, respectively, show non-dimensional tran-
sient deflection at the center versus different magnitudes 
of Ω (= hf/hc) for n = m = 1 with SSSS, SCSC and CCCC 
boundary conditions, respectively. It is presumed that 
v = 20 m/s, α = 0.2 and porosity distribution is even. From 
these figures, it is seen that the dynamic deflections decrease 
remarkably with a rise in the value of Ω for every edge con-
strain. The most significant decreases due to ceramic layers 
can be shown when Ω changes from 0 to 0.05. It is also 
seen from these figures that SSSS case offers greater effects 
on the reduction of dimensionless dynamic displacements 
in all face layer’s thicknesses. For instance, the face layer 
with depth ratio (Ω) of 0.1 condenses the vertical displace-
ment of the SSSS plate with no face surfaces about 0.98 
unit whereas it is 0.718 and 0.507 for the SCSC and CCCC 
plates, respectively.

5  Concluding remarks

The nonlinear transient behavior of sandwich plates with 
porous 2D-FG cores subjected to moving mechanical loads 
supported by the elastic foundations with SSSS, SCSC and 
CCCC boundary surroundings has been explored. Having 
governed by FSDT along with von Karman nonlinearity, 
the kinetic equations have been solved by implementing the 
kinetic dynamic relaxation method coupled with Newmark’s 
integration approach. In this investigation, two types of 
porosity distributions have been considered, and the effects 
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Fig. 8  Non-dimensional vertical displacement at the center of the 
2D-FG sandwich plate with porosity distributed evenly through the 
thickness exposed to a moving load in various boundary constrains 
(α = 0.2, n = m = 1, v = 20 m/s); a SSSS, b SCSC, c CCCC 
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of imperfection distributions and coefficients, parameters of 
elastic foundation and boundary conditions have been ana-
lyzed. From the numerical results, the following conclusions 
are noticeable:

• Elastic foundations offer more reinforcing effects when 
plates have imperfections in the even pattern.

• Transient responses of the plates increase with an incre-
ment in the magnitudes of porosity fractions; and com-
pared to the structures with even micro-voids, the ones 
with uneven porosity have the lower bending deforma-
tion.

• The dynamic characteristics of the structure are highly 
influenced by material properties parameters (n, m); and 
the longitudinal functionally graded factor (n) has a supe-
rior impact on CCCC than SSSS sheets.

• The effect of face layer’s thickness on the dynamic 
response of SSSS plates is more noticeable compared to 
that of SCSC and CCCC plates. So, it can be said that 
the impact of the face layer’s thickness on the decrease 
of displacement growths by decreasing constrains on the 
plate edge surroundings.
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