
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38:4241–4268
https://doi.org/10.1007/s00366-021-01485-6

ORIGINAL ARTICLE

Dynamic mode decomposition in adaptive mesh refinement
and coarsening simulations

Gabriel F. Barros1 · Malú Grave1 · Alex Viguerie2 · Alessandro Reali3 · Alvaro L. G. A. Coutinho1

Received: 28 April 2021 / Accepted: 12 July 2021 / Published online: 2 August 2021
© The Author(s) 2021

Abstract
Dynamic mode decomposition (DMD) is a powerful data-driven method used to extract spatio-temporal coherent structures
that dictate a given dynamical system. The method consists of stacking collected temporal snapshots into a matrix and
mapping the nonlinear dynamics using a linear operator. The classical procedure considers that snapshots possess the same
dimensionality for all the observable data. However, this often does not occur in numerical simulations with adaptive mesh
refinement/coarsening schemes (AMR/C). This paper proposes a strategy to enable DMD to extract features from obser-
vations with different mesh topologies and dimensions, such as those found in AMR/C simulations. For this purpose, the
adaptive snapshots are projected onto the same reference function space, enabling the use of snapshot-based methods such as
DMD. The present strategy is applied to challenging AMR/C simulations: a continuous diffusion–reaction epidemiological
model for COVID-19, a density-driven gravity current simulation, and a bubble rising problem. We also evaluate the DMD
efficiency to reconstruct the dynamics and some relevant quantities of interest. In particular, for the SEIRD model and the
bubble rising problem, we evaluate DMD’s ability to extrapolate in time (short-time future estimates).

Keywords Dynamic mode decomposition · Mesh projection · Adaptive mesh refinement and coarsening · Dimensionality
reduction

1 Introduction

Data-driven methods are currently revolutionizing the mod-
eling, prediction, and control of complex systems. Increas-
ingly, researchers are considering data-driven approaches
for a diverse range of complex systems, such as turbulent
flows, climate sciences, epidemiology, finance, robotics, and
many other different applications [12]. Even with the avail-
ability of better hardware and advances in techniques and
algorithms, numerical simulations of these systems are still
resource-demanding: strong nonlinearities, multiple scales,
and large dimensionalities are typical examples of complex-
ities found in modern applications. With the assembly of
modern mathematical methods, unprecedented data avail-
ability, and increasing computational resources, previously
complex, challenging problems can now be tackled within
the new research field entitled scientific machine learning
(SciML).

SciML is a core component of artificial intelligence and
computational technology that can be trained, with scientific
data, to augment or automate human skills [6]. This emerg-
ing research area aims at the opportunities and challenges

 * Alessandro Reali
 alereali@unipv.it

 Gabriel F. Barros
 gabriel.barros@coc.ufrj.br

 Malú Grave
 malugrave@nacad.ufrj.br

 Alex Viguerie
 alexander.viguerie@gssi.it

 Alvaro L. G. A. Coutinho
 alvaro@nacad.ufrj.br

1 Department of Civil Engineering, COPPE/Federal
University of Rio de Janeiro, P.O. Box 68506,
21945-970 Rio de Janeiro, RJ, Brazil

2 Department of Mathematics, Gran Sasso Science Institute,
Viale Francesco Crispi 7, L’Aquila, AQ 67100, Italy

3 Dipartimento di Ingegneria Civile ed Architettura, Università
di Pavia, Via Ferrata 3, Pavia, PV 27100, Italy

http://orcid.org/0000-0002-0639-7067
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-021-01485-6&domain=pdf

4242 Engineering with Computers (2022) 38:4241–4268

1 3

in the context of complex applications across science and
engineering, and other interdisciplinary fields. A wide range
of SciML methods can be categorized regarding the type
of information available, and their intended use [13]. For
instance, many state-of-the-art methods and applications
within the SciML scope can be found in [13, 36, 45, 46,
52, 60]. In this study, we focus on Dynamic Mode Decom-
position (DMD), an unsupervised SciML method that can
extract the most dynamically relevant low-rank structures
from large-dimensional data observed in dynamical systems.
DMD can be applied to both numerical [56] and experimen-
tal data [57].

The standard DMD procedure for numerical simulations
consists of stacking the m snapshots (discrete solutions in
space for a given time step) in columns to create a matrix
and map the dynamics using a linear operator. The DMD
procedure assumes that the m collected snapshots have spa-
tial dimensionality n, where n ≫ m , such that the snapshots
matrix has dimension n × m . This occurs when snapshots
are obtained from experimental data with sensors in fixed
positions or numerical simulations considering a fixed mesh.
However, in many situations, this is not always achievable.
For numerical simulations using Adaptive Mesh Refinement/
Coarsening (AMR/C), for instance, spatial adaptivity leads
to solutions computed in meshes that constantly change in
time. Adaptive meshes lead to a different number of nodes,
nodal coordinates and numbering, and mesh topologies.
Although there are strategies regarding missing spatial data
or subsampling for the DMD [14, 41], specific treatments
related to AMR/C approaches in the finite element context
are not explored in the literature. In the present study, we
develop a strategy to project all the snapshots of a given
simulation with different dimensionality onto a reference
target mesh with minor accuracy loss, enabling the use of
any SVD-based data-driven technique such as DMD.

This paper is structured as follows: Sect. 2 describes
the relation between the discretization of PDEs in space
and time and a dynamical system. This section introduces
Dynamic Mode Decomposition, our method of choice for
short-time future estimates and extrapolation. Section 3
describes our strategy to deal with simulations that consider
AMR/C in their evolution (e.g., in the case of dimensional-
ity of the output vector, as well as of mesh topology and/or
node numbering, varying in time). In Sect. 4 we describe
the numerical applications in this study: the use of DMD
on a continuous SEIRD model for COVID-19 and two fluid
dynamics problems, a density-driven gravity current, and
a bubble rising problem. We show efficiency and accuracy
results for the signal reconstruction. Moreover, future time
step predictions using DMD are evaluated for the SEIRD
model and the bubble rising problem. In Sect. 5, we draw
our final remarks and conclusions.

2 Numerical methods and dynamic mode
decomposition

Solving partial differential equations (PDEs) using fast,
accurate, reliable, and robust methods is crucial for many
industrial and scientific applications. Several methods (such
as finite elements, finite differences, and many others) are
responsible for approximating the infinite-dimensional PDEs
into finite-dimensional spaces. The discretization of these
equations allows the process to be automated. In the present
study, we focus on using the finite element method for spa-
tial discretization of the PDEs. That is, consider a generic
transient parametric PDE such as

where N is a nonlinear operator, � is a vector of parameters
(e.g., diffusion, density, viscosity, etc.), � = � (t;�) is a given
function and the solution � is a function of spatial coordi-
nates � , temporal coordinates t, and parameters � such that
� = �(�, t;�) . The equation is equipped with boundary and
initial conditions

where � and � are the Dirichlet and Neumann boundary con-
ditions, respectively, T is the final time, and �0 is the initial
condition for � . The domain Ω ⊂ ℝ

nsd is bounded by Lip-
schitz continuous boundaries ΓN ∪ ΓD = Γ ⊂ ℝ

nsd−1 , and �
is the unit outward normal to ΓN . The union of boundaries
and domain is represented as Ω̃ . The standard finite element
method consists of discretizing Ω̃ into a mesh composed of
nodes and elements. Each element has its domain Ωe ⊂ ℝ

nsd
and boundary Γe ⊂ ℝ

nsd−1 . The weak form of the system can
be obtained by integrating Eq. (1) in its strong form against a
weighting function � ∈ H1(Ω) , where H1(Ω) is the Sobolev
space of the square-integrable functions with an integrable
first weak derivative, and applying the divergence theorem.
Being Pk(Ωe) the space of polynomials of degree equal or
less than k over Ωe , the function spaces are defined as

Therefore, the semi-discrete finite element formulation for
Eq. (1) is: find �h(t) ∈ Sh

t
 such that ∀�h ∈ Wh:

(1)
��

�t
+N(�;�) = � , in Ω × (0, T],

(2)

� = � on ΓD × (0, T],

∇� ⋅ � = � on ΓN × (0, T],

�(�, 0;𝜁) = �0(�;𝜁) onΩ̃,

(3)Sh
t
= {�h(⋅, t) ∈ H1(Ω) | �h(⋅, t)|Ωe

∈ Pk(Ωe),∀e},

(4)Wh = {�h ∈ H1(Ω) | �h|Ωe
∈ Pk(Ωe),∀e}.

(5)
(
��h

�t
,�h

)
+ (N(�h;�),�h) = (�h,�h),

4243Engineering with Computers (2022) 38:4241–4268

1 3

where the L2 inner product over the domain Ω is indicated
by (⋅, ⋅) . The weak form given by Eq. (5) naturally accom-
modates several finite element formulations, from Galerkin
to Variational Multiscale methods [1, 8, 19, 39, 53]. After
the temporal discretization of Eq. (5), the equation can be
translated into a discrete-time dynamic system. In this sys-
tem, the state vector �h at the time instant k + 1 can be writ-
ten such that:

where F represents the discrete-time flow map of the sys-
tem and incorporates information regarding the parameters
� , mesh size, solver tolerances, etc. In the present study,
we consider that the measurements of the system are the
state vectors themselves, that is, �h

k
 . Analyzing the evolu-

tion in time of a discretized PDE as a dynamical system is a
key concept for introducing Dynamic Mode Decomposition
(DMD).

DMD is an equation-free, data-driven method that pro-
vides accurate assessments of the dominant structures in a
given complex system [43]. DMD provides a decomposition
of data into spatio-temporal modes that correlates the data
across spatial features and also associates them to unique
temporal Fourier modes. The main idea of the method is to
efficiently compute the regression of linear/nonlinear terms
to a least-square linear dynamics approximation from experi-
mental or numerical observable data. Despite its first appear-
ance in the fluid dynamics context [55, 56], DMD has been
used in many other applications such as epidemiology [51],
biomechanics [16], urban mobility [3], climate [44] and aer-
oelasticity [28], especially in structure extraction from data
and control-oriented methods.

We can now apply DMD on the dynamical system
described in Eq. (6). Consider a dataset �h containing
the observations in time of the dynamical system �h

k
 for

k = 0, 1,… ,m , where m + 1 is the total number of observa-
tions. The dataset

can be split into two datasets �h
1
= [�h

0
…�h

m−1
] ∈ ℝ

n×m and
�h

2
= [�h

1
…�h

m
] ∈ ℝ

n×m . DMD consists on finding the best
fit approximation of the linear mapping � that transforms
dataset �h

1
 into dataset �h

2
 , that is,

The computation of � can be done as � = �h
2
�

h†

1
 , where �h†

1

is the Moore–Penrose pseudoinverse of �h
1
 . However, we

avoid the computation of the full matrix � since � is a n × n
matrix. Also, the computation of the full Moore–Penrose

(6)�h
k+1

= F(�h
k
),

(7)�h =

⎡⎢⎢⎣

� � �
�h
0
�h
1
… �h

m� � �

⎤⎥⎥⎦

(8)�h
2
= ��h

1
.

pseudoinverse is not advisable due to its ill-conditioning.
Instead, we can compute the SVD of �h

1
 as

where � ∈ ℝ
n×m and � ∈ ℝ

m×m are the left and right sin-
gular vectors and � ∈ ℝ

m×m is a diagonal matrix with real,
non-negative, and decreasing entries named singular values.
The singular values �0 ≥ �1 ≥ �2 ≥ ⋯ ≥ �m−1 are hierarchi-
cal and can be interpreted in terms of how much the singular
vectors influence the original matrix �h

1
 . For the DMD pro-

cedure, considering the Eckart–Young Theorem [23], the
optimal low-rank update approximation matrix �h

1
 , when

subjected to a truncation rank r, can be written as

where �r ∈ ℝ
n×r is a matrix containing the first r columns

of � , �r ∈ ℝ
m×r contains the first r columns of � , and

�r ∈ ℝ
r×r is the diagonal matrix containing the first r sin-

gular values. The pseudoinverse can be approximated as

and, instead of computing � ∈ ℝ
n×n , we can obtain �̃ , a

r × r projection of � as

Note that �̃ is unitarily similar to � . Further mathematical
details regarding the optimization problem (the best-fitting
matrix �̃) and the influence of the Eckart–Young Theorem
on constraints of the problem can be found in [40]. Now we
can compute the eigendecomposition of �̃:

where � is a diagonal matrix containing the discrete eigen-
values �j and the matrix � contains the eigenvectors �j of
�̃ . The DMD basis can be written as

and the signal reconstruction as

being � the vector containing the projected initial conditions
such that 𝐛 = 𝚿†𝐮h

0
 , and �eig is a diagonal matrix whose

entries are the continuous eigenvalues �i = ln(�i)∕Δto ,
where Δto is the time step size between the outputs. In the
present study, Δto = jΔt , where j = 1, 2,… ,m , being Δt the
time step size used in the temporal integration of the PDEs.
For instance, if one chooses to output the solutions once
every two time steps, the time step size between the two
observations will be two times larger than the time step size

(9)�h
1
= ���T ,

(10)�h
1
≈ �̃h

1
= �r�r�

T
r
,

(11)�
h†

1
≈ �̃

h†

1
= �r�

−1
r
�T

r

(12)�̃ = �T
r
��r = �T

r
�h

2
�r�

−1
r
.

(13)�̃W = WΛ,

(14)� = �h
2
�r�

−1
r
�,

(15)�h(t) ≈ �̃h(t) = � exp(�eigt)�,

4244 Engineering with Computers (2022) 38:4241–4268

1 3

used to compute time integration, that is, Δto = 2Δt . It is
important to mention that the snapshots sampling frequency
affects directly the DMD’s ability to capture the dynam-
ics. For lower dominant frequencies, a larger Δto is more
adequate, while smaller values of Δto are required for captur-
ing rapid dynamics [56]. The form of (15) can be regarded
as a generalization of the Sturm–Liouville expansion for a
differential problem:

where �i and �i are the ith Sturm–Liouville eigenfunctions
and eigenvalues for a given differential operator.

DMD can be seen as a dimensionality reduction method
due to its inherent ability to extract the r most relevant
dynamical modes, where r is often much smaller than the
snapshot matrix rank m. However, a strategy to determine
the number of relevant modes is not straightforward, and
is an active topic in DMD research [59]. Even though the
choice of r for DMD may require some trial and error, some
techniques can be used to find a good starting point. A hard
threshold technique [43] consists of choosing r such that

where � is a tolerance threshold, set, e.g., to 10−6 . This
method implies that more than 100(1 − �)% of the variance
in the data is retained by the approximation. For the case
where DMD is used on experimental (or numerical but
noisy) data, more sophisticated solutions are presented in
the literature [22, 29].

Another important consideration when using DMD is the
SVD algorithm. The SVD can represent a significant part
of the computational effort, meaning that improvements in
the SVD performance lead to significant CPU time gains.
For many SVD-based methods (such as DMD), there is no
need to compute the SVD for the whole matrix, since the
method aims at extracting the first r dominant structures in
the matrix. Many algorithms are designed in this direction to
make this computation more efficient. One important contri-
bution in this direction is seen in [58], where the method of
snapshots was proposed, paving the way to more algorithms
and techniques. In this paper, we employ the randomized
SVD (rSVD) algorithm [25, 38], a non-deterministic algo-
rithm able to compute the near-optimal low-rank approxima-
tion of a given large dataset with good efficiency.

(16)u(t) =

∞∑
i=0

bi�ie
�it,

(17)� = 1 −

∑r

i=1
�2
i∑m

i=1
�2
i

≤ �,

3 DMD on adapted meshes

Regarding numerical methods to approximate PDEs, the use
of finer meshes in finite element discretizations usually leads
to more accurate solutions. On the other hand, reducing the
number of equations neq in the nonlinear system is crucial for
efficiency, especially considering that the optimal computa-
tional complexity of a single physics transient finite element
simulation is O(n

4

3

eq) [15]. The duality between the two state-
ments describes a well-known trade-off between accuracy
and efficiency in the finite element context. Despite a consid-
erable research effort in the past decades, strategies to gener-
ate tailored meshes to maximize the accuracy while mini-
mizing the computational effort are still an open research
topic. Milestones addressing this subject are finite element a
posteriori error estimators/indicators [2], techniques such as
adaptation, interpolation [17, 47] and projection [18, 27, 50],
as well as libraries and frameworks containing automated
versions of AMR/C techniques [4, 42].

The general structure of the AMR/C scheme is given
in Algorithm 1 and illustrated in Fig. 1. Three criteria are
fundamental in an AMR/C algorithm: remeshing, flagging,
and stopping. The remeshing criterion defines whether the
computed solution at a given time step requires remeshing
driven by global a posteriori error estimators (or indicators)
and/or by calling the refinement/coarsening procedure at
every j time steps. Next, all mesh elements are visited and
flagged for refinement or coarsening. The element flagging
criterion is often represented by local a posteriori error esti-
mators or indicators, i.e. flux-jumps of the solution gradi-
ent. In possession of the flagged elements, the remeshing
algorithm is invoked. Finally, the previous mesh solution
must be projected or interpolated into the target mesh. This
is done by the projection/interpolation algorithm. The whole
process is repeated until the stopping criterion is achieved.
This criterion could be error equidistribution (until a certain
threshold), a given element size, the maximum number of

Fig. 1 Illustration of a mesh refinement procedure. A local a poste-
riori error estimator or indicator flags an element for refinement (in
green) using the solution computed in the mesh on the left. The mesh
is refined (or coarsened) according to the flagged elements, and the
process can be restarted until a given criterion is met (error level, ele-
ment size, maximum number of elements, etc.). Note that the initial
and the final mesh differ in the number of degrees of freedom and
topology

4245Engineering with Computers (2022) 38:4241–4268

1 3

elements in the mesh, or the number of refinement levels.
Note that the meshes generated in Algorithm 1, guided by
the error estimation procedure, have different dimensions
(number of degrees of freedom) and different topologies,
which poses difficulties for DMD (or, in fact, for any snap-
shot-based method).

The structure of the exact DMD algorithm relies on the
fact that the measurements of the state vectors, i.e., �h

0
…�h

m

have the same dimensionality. This structure could be exem-
plified in numerical experiments as fixed discretizations in
space, i.e., fixed meshes or static sensors in experimental
data. However, finite element simulations equipped with
AMR/C strategies provide solutions in different function

spaces, depending on the mesh used to compute the solu-
tion on a given time step. Spatial adaptivity on transient
finite element simulations leads to meshes with a different
number of nodes, numbering, and nodal coordinates. It can
also lead to different mesh topologies and structures. For that
reasons, snapshots obtained by AMR/C simulations cannot
be stacked in columns to construct the snapshot matrix. Even
if one considers an AMR/C strategy that restricts the adap-
tive meshes to preserve the dimensionality of the snapshots,
the difference between the nodal coordinates of the various
meshes will lead to misleading dynamics captured by DMD.
In the present study, we circumvent this issue by considering
the L2-projection [50] of the numerical simulation results for
different meshes into a reference target mesh. Recent work
on reducing these projection costs for related reduced-order
modeling techniques (though not DMD) may be found in
[26, 32, 37]. The projection or interpolation of numerical
solutions between finite element meshes is a well-known
computational mechanics subject. Many issues regarding
boundary conditions, data visualization, or coupling arise
from this kind of problem. The choice of a proper method
to successfully project functions in different finite element
spaces is not a trivial task since conservation may not be sat-
isfied [18, 27, 50]. This issue is not addressed in the present
study since the mesh projection occurs as a post-processing
phase after computing the AMR/C solutions. Therefore, it

cannot lead to cumulative errors. Furthermore, we are also
careful to choose reference target meshes with characteristic
length equivalent with the existent in the AMR/C meshes to
avoid any major accuracy losses. For the sake of generality,
we consider the L2-projection as our method of choice, and
it can be defined as follows [61]. Assuming that the solution
on the donor mesh �h(�) =

∑n

j=1
�j�j(�) to be projected onto

the target mesh must satisfy the orthogonality condition,

where V� is a finite-dimensional subspace of L2(Ω) defined
by the target mesh and the interpolant �proj is the optimal
interpolant in the L2-norm for V� . The orthogonal projec-
tion can be defined in terms of the following linear system

where � is the mass matrix and � is the projection matrix.
The mass matrix is usual in finite element computations.
The � matrix, however, can present technical difficulties (see
“Appendix”).

Therefore, our strategy consists of applying the L2-pro-
jection onto a tailored reference target mesh capable of
representing the many scales in time and space of all the
snapshots. This routine is inserted in the code and invoked
after the adaptive procedure in Algorithm 1 at every output

(18)(�h − �proj, �)L2 = 0 ∀� ∈ V�

(19)��proj = ��,

4246 Engineering with Computers (2022) 38:4241–4268

1 3

time step Δto . This tailored reference mesh is described in
this work as target reference mesh and should not be con-
fused with the target mesh generated during the AMR/C
procedure. The new solution (computed on the adaptive
donor mesh) is projected onto the reference target mesh and
exported as a simulation output. In this work, we export as
output files for visualization purposes, although there is no
restriction on stacking the snapshots on the snapshot matrix
during the simulation runtime or dumping only �proj on disk.
We considered Gmsh [30], an open-source robust mesh gen-
erator, as our software of choice for defining and creating
the target meshes for this study. The output for each time
step is the snapshot with constant dimensionality n such that
all nodes in space are correctly mapped and capturing the
dynamics existent in the system. The procedure is summa-
rized in Algorithm 2. This strategy is relatively simple since
the L2-projection consists of solving a linear system where
the generated matrix is a mass matrix and requires no extra
outputs for storing the projected solutions since the projec-
tion can be applied right after the AMR/C code. The mass
matrix is generated in the finite element context by a self-
adjoint operator, enabling more efficient solvers. In terms
of versatility, the L2-projection method is flexible because a
solution obtained for a given mesh can be naturally projected
onto reference target meshes with different topologies and
dimensionalities. Also, since the mesh projection is a vital
part of AMR/C algorithms, finite element algorithms fre-
quently present efficient implementations of interpolation
or projection techniques. Figure 2 shows an example where

a solution obtained by an adaptive mesh simulation is pro-
jected onto two meshes with different topologies.

For this example, we consider the square domain
Ω = [−1, 1] × [−1, 1] and the function u defined in Ω such
that

This function is approximated on a structured finite ele-
ment mesh discretized into 10 × 10 cells where each cell is
divided into two triangular elements. An AMR/C procedure
is invoked to refine three times the transition between � = 1
and � = 0 , creating a new mesh containing 1672 elements
and 857 nodes. Figure 2a shows the new mesh generated
after the AMR/C procedure and the function approximated
by the resulting function space. Two meshes—one struc-
tured and another unstructured—are considered for projec-
tion. The structured mesh contains 80 × 80 cells, resulting
in 12,800 triangular elements and 6561 nodes. The ele-
ment sizes of the structured mesh are similar to the small-
est elements in the adaptive mesh. The unstructured mesh
presents a smaller characteristic length than the structured
mesh and contains 17,088 elements and 8705 nodes. Fig-
ure 2b, c shows the proposed meshes and the projections of
the solution onto the new finite element spaces. Note that
the projected solutions are fairly accurate since their infinity
norm is in good agreement with the adaptive mesh solution’s
infinity norm.

(20)u =

{
1, if (x, y) ∈ [−0.3, 0.3] × [−0.3, 0.3],

0, otherwise.

Remark In this study, the projection is carried out inside the
finite element simulation since the projection computational
cost is practically negligible in comparison with the overall
time required for solving nonlinear systems of a complex
numerical simulation. However, if one does not have access
to the finite element simulation codes used, the reconstruc-
tion of the solution of each time step can still be done off-
line. Output files of various formats contain information
regarding the mesh used (such as nodal coordinates and con-
nectivities) for visualization purposes. By properly reading
these files, the solutions can be reconstructed under a finite

element framework (such as FEniCS [4] or libMesh [42])
or on a code developed by the user. However, this totally
non-intrusive approach can significantly increase the com-
putational cost due to several I/O operations that are often
extremely low compared to computational intensive opera-
tions. Since the mesh constantly varies in an AMR/C finite
element simulation, each solution obtained in the simulation
has to be imported, reconstructed under its original mesh,
and projected. After the projection, the user can choose to
dump the solution in the disk or stack the snapshots on the
snapshot matrix. For the first case, another I/O operation

4247Engineering with Computers (2022) 38:4241–4268

1 3

Fig. 2 Comparison of differ-
ent L2-projection examples on
structured and unstructured
meshes

4248 Engineering with Computers (2022) 38:4241–4268

1 3

would be invoked. This non-intrusive strategy is especially
suitable (and restricted) to be used with DMD, which is also
a non-intrusive algorithm. For intrusive snapshot-based
methods such as Proper Orthogonal Decomposition (POD),
one needs to project finite element matrices onto the com-
puted basis and, therefore, requires access to the code [62].

4 Numerical experiments

In this section, for the sake of generality, we apply our
method in several applications, with different systems of
equations, numerical formulations, mesh topologies, spatial
dimensions, refinement criteria, and finite element libraries.
We compare the results between the AMR/C solution, the
fixed mesh solution, and the DMD results for all cases. First,
we test the DMD short-time future prediction capabilities
on a continuous SEIRD model for COVID-19, a nonlinear
system of diffusion–reaction equations. The equations are
considered using a Galerkin finite element discretization
and are solved using libMesh [42], a high-performance
C++ finite element library. The error estimators, refinement/
coarsening strategies built-in on libMesh can be seen on
[34, 63]. Also, the L2-projection algorithm is embedded in
libMesh. We explore the results in one and two spatial
dimensions, where the 1D case is a hypothetical exam-
ple, and the 2D case describes the COVID-19 evolution in
the Lombardy region in Italy [34, 63, 64]. The simulation
obtains the results for 44 and 60 days for the 1D and 2D
cases, respectively. Since we want to predict 14 days in the
future, we only feed DMD with snapshot matrices contain-
ing the first 30 and 46 days in the 1D and 2D cases, respec-
tively, such that the predicted results can be compared with
the results obtained in the simulations. To apply DMD to the
SEIRD data obtained on an AMR/C simulation, we project
the adaptive solution onto a mesh with characteristic length
compatible with the obtained simulation results. The dis-
cretization of the reference mesh used for the projection is
as fine as the final refinement level on the adaptive meshes.
Next, we consider two fluid dynamics applications where the
governing equations for both cases are advection-dominated.
To circumvent the LBB condition and spurious oscillations
regarding dominant advection, these equations consider the
residual-based variational multiscale (RBVMS) formulation
[1, 8, 19, 35, 39, 53] on a finite element discretization. We
consider the use of DMD on a 2D density-driven gravity
flow and a 3D bubble rising simulation. The density-driven
gravity current is modeled by the coupling of the incom-
pressible Navier–Stokes equation and the advection–dif-
fusion equation. We consider a lock-exchange problem,
where a tank is filled with two fluids of different densities,
separated by a lock. The simulation starts when the lock is
removed, and the difference in the densities of the fluids

generates the driving forces responsible for the motion of
the fluids. Unlike the other examples in this work, the imple-
mentation of this numerical test is made on the FEniCS
v.2019.1 framework [4], a high-performance Python/C++
finite element library. The refinement/coarsening algorithm
and L2-projection algorithm for this example are part of the
framework. We consider an interface-tracking error indica-
tor for the AMR/C simulations, and the mesh is refined fol-
lowing the bisection method [54]. DMD is considered to
reconstruct the solution, and the results are compared to the
fixed mesh results and the results obtained by AMR/C simu-
lations. Finally, we extend our analysis to a 3D bubble rising
case [33], a two-phase incompressible flow problem where
the interface is captured by the convected level-set method.
This model is implemented on libMesh, taking advantage
of the same refinement/coarsening strategies as well as the
projection algorithm used in the SEIRD numerical tests. In
this example, we test the projection of the adaptive solu-
tions onto three different meshes containing the different
scales existent on the AMR/C simulation and evaluate the
results. We consider DMD to predict the bubble geometry
and dynamics for a short time in the future.

For all the numerical tests proposed, we evaluate the
results in terms of efficiency and accuracy. For efficiency
purposes, we compute the ratio between the computational
time required to run the finite element simulations and the
time required to run DMD separately. We refer to this quo-
tient as speedup. The finite element code is responsible for
computing the snapshots and projecting the results onto the
reference target meshes proposed, while the DMD code
imports the output files, extract the snapshots, computes the
approximation, and outputs the results. Also, we provide a
table describing how the projection routine affects the over-
all computational time required for the simulations for all
examples. In terms of accuracy, we evaluate the results in

terms of overall relative error �F =
||�h − �h

DMD
||F

||�h||F
 where

�h is the snapshots matrix, �h
DMD

 is a matrix comprising the
approximations obtained by DMD and || ⋅ ||F denotes the
Frobenius norm. A more detailed analysis is also done in
terms of relative error in time � . For that, we plot the curves
of the relative errors (in terms of L2-norm) of each snapshot.

We compute � =
||�h

k
− �h

kDMD
||
2

||�h
k
||
2

 for k = 0, 1,… ,m snap-

shots, where || ⋅ ||2 denotes the L2-norm. Also, to avoid
unphysical results, some quantities of interest are evaluated
and compared using both simulation and approximation
results. For the SEIRD model, we plot the results regarding
the total population. This quantity should be constant in time
according to the hypothesis of the model. For the lock-
exchange simulation, we compute the mass during the simu-
lation and the front position. Since the simulation is

4249Engineering with Computers (2022) 38:4241–4268

1 3

considered on a closed tank, the mass must be kept constant
during the simulation. For the 3D bubble rising problem, we
plot the quantities of interest related to the geometry (vol-
ume and sphericity) and dynamics (center of mass and rise
velocity) of the bubble. In this case, we test meshes with
different minimum characteristic lengths. The results are
shown and discussed below.

4.1 Continuous SEIRD model for COVID‑19

The outbreak of COVID-19 in 2020 has led to a surge in
interest in the mathematical modeling of infectious diseases.
This new virus is responsible for infecting millions of people
worldwide and impacting the economy in an unprecedented
way. Therefore, numerical simulation of the virus’ dynam-
ics may help provide short-term prediction models for fore-
casting the number of future cases. In this perspective, it is
possible to develop strategic planning in the public health
system to avoid deaths and manage patients.

Disease transmission may be modeled as compartmen-
tal models, in which the population under study is divided
into compartments and has assumptions about the nature
and time rate of transfer from one compartment to another
[11]. Here, we work with a spatio-temporal SEIRD model,
presented in [34, 63, 64], and given by,

where s(�, t) , e(�, t) , i(�, t) , r(�, t) , and d(�, t) denote the
densities of the susceptible, exposed, infected, recovered,
and deceased populations, respectively. The sum of all the
compartments with the exception of d(�, t) is represented by
npop which is the total living population. Ae characterizes the
Allee effect (persons), that takes into account the tendency
of outbreaks to cluster around large populations, �i and �e
denote the transmission rates between symptomatic and
susceptible individuals and asymptomatic and susceptible

(21)
�s

�t
+ �i

(
1 −

Ae

npop

)
si + �e

(
1 −

Ae

npop

)
se

− ∇ ⋅ (npop�s∇s) = 0

(22)
�e

�t
− �i

(
1 −

Ae

npop

)
si − �e

(
1 −

Ae

npop

)
se

+ (� + �e)e − ∇ ⋅ (npop�e∇e) = 0

(23)
�i

�t
− �e + (�i + �)i − ∇ ⋅ (npop�i∇i) = 0

(24)
�r

�t
− �ee − �ii − ∇ ⋅ (npop�r∇r) = 0

(25)
�d

�t
− �i = 0,

individuals, respectively (units days−1), � denotes the incu-
bation period (units days−1), �e corresponds to the asympto-
matic recovery rate (units days−1), �i the symptomatic recov-
ery rate (units days−1), � represents the mortality rate (units
days−1), and �s , �e , �i , �r are the diffusion parameters of the
different population groups as denoted by the sub-scripted
letters (units km2 persons−1 days−1). Note that all these
parameters can be considered time and space-dependent.
We also compute the compartment c, the cumulative field
of the i compartment.

For the numerical solution of (21)–(25), we discretize in
space using a Galerkin finite element variational formula-
tion. The resulting systems of equations are stiff, leading us
to employ implicit methods for time integration. We apply
the Backward Differentiation Formula (BDF2), which offers
second-order accuracy while remaining unconditionally sta-
ble. We implement the whole model in libMesh [42]. We
additionally make use of AMR/C, allowing us to resolve
multiple scales. One may find more details about the meth-
ods in [34, 63].

4.1.1 Reproducing a 1D model

First, we use a simple 1D continuous SEIRD model for
COVID-19 with adaptive mesh refinement to validate the
L
2-projection and DMD. This example was introduced in

[63] and reproduced in [34]. Basically, we consider a 1D
region Ω = [0, 1] with initial conditions that represents a
large population centered around x = 0.35 with no exposed
persons and a small population centered around x = 0.75
with some exposed individuals, as shown in Fig. 3. Thus,
we set s = s0 and e = e0 as follows:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s e i r d c

Fig. 3 Initial conditions for the 1D model

4250 Engineering with Computers (2022) 38:4241–4268

1 3

We further set i0 = 0 , r0 = 0 , and d0 = 0 . We also enforce
homogeneous Neumann boundary conditions at x = 0 and a
zero-population Dirichlet boundary condition at x = 1 for all
model compartments. The latter represents a non-populated
area at x = 1.

(26)

s0 =e
−(x+1)4 + e

−
(x−0.35)2

10−2

+
1

8

(
e
−

(x−0.62)4

10−5 + e
−

(x−0.52)4

10−5 + e
−

(x−0.42)4

10−5

)

+
1

4
e
−

(x−0.735)4

10−5

(27)e0 =
1

20
e
−

(x−0.75)4

10−5 .

Following [34, 63] we set � = 0.09375 days−1 ,
�i = �e = 0.375 days−1persons−1 , � = 0.0046875 days−1 ,
�i = 0.03125 days−1 and �e = 0.125 days−1 , A = 0 ,
�s = 3.75 × 10−5 , �e = 0.75 × 10−3 , �i = 0.75 × 10−10 and
�r = 3.75 × 10−5 km2persons−1days−1 . The time step size is
defined as Δt = 0.25 days and we consider the mesh projec-
tion and outputs at every time step, that is, Δto = Δt = 0.25.

We use an adapted mesh with initially 125 elements, and
after the refinement, the smallest element has a size 0.002.
At the beginning of the simulation, we refine uniformly the
whole domain into two levels and, after that, we apply the
adaptive mesh refinement every 4 time steps. The idea is
that the AMR/C strategy will keep this spatial resolution
on more dynamically relevant regions while coarsening
other regions in the domain. As a target reference mesh,
we consider the uniformly refined mesh, such that all the
domain contains the minimal spatial resolution obtained by
the AMR/C simulation.

The results of this simulation are validated against the
results from [34, 63]. Figure 4 show the solution of the 1D
SEIRD example at t = 30 days for the fixed mesh simulation,
the adaptive mesh simulation, and the projection of the adap-
tive solution onto the target reference mesh used in the fixed
mesh simulation. We observe a good agreement between

Fig. 4 Solution at t = 30 days
for the fixed mesh solution,
AMR solution and the respec-
tive projection onto a reference
mesh for the 1D SEIRD exam-
ple. The reference mesh was
built with characteristic length
similar to the smaller elements
in the adaptive mesh

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

s e i r d c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

s e i r d c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

s e i r d c

Table 1 Absolute and relative time required for the projection rou-
tine in comparison with the adaptive finite element simulation code
(AMR/C FEM) for the SEIRD model in the 1D case

Code part Absolute time (s) Relative time (%)

AMR/C FEM 1262.89 98.53
Mesh projection 18.88 1.47

4251Engineering with Computers (2022) 38:4241–4268

1 3

the solutions. This agreement is a positive indicator that the
DMD can be used on the projected meshes with little to no
error compared to the DMD on a fixed mesh simulation. In
terms of efficiency, Table 1 shows the computational effort
required for the reference mesh projection embedded on the
adaptive finite element code in comparison with the time
used for the simulation code itself (AMR/C FEM).

After some initial experiments, we set r = 15 for all com-
partments. In this example, the finite element simulation
computes the results for 44 days, that is, 176 time steps.
However, we only consider the first 30 days in the snapshot
matrix for reconstruction. DMD is set to approximate the
results for a further 14 days so the results can be compared
with the 44 days results obtained in the finite element simu-
lation. In other words, we want to evaluate the DMD ability
to predict the COVID-19 scenario two weeks in the future
given the data of the last 30 days. For numerical reasons,
we considered an initial 3 days shift in the snapshots since
some compartments are initialized with zeros, affecting how
DMD captures the dynamics. The 44th day solution for the
adaptive simulation and the 44th day prediction consider-
ing DMD are seen in Fig. 5. We observe good agreement
between predictions and the numerical solutions of the
simulations for most compartments. The speedup and over-
all relative error between the DMD approximation and the
snapshots are seen in Table 2.

4.1.2 The Lombardy region

We extend our analysis by solving the continuous SEIRD
model and applying DMD to a 2D real world domain that is
the Lombardy region in Italy. The spread of the COVID-19
has been studied in this region using the continuous SEIRD
model with accurate results [63, 64]. Here, we reproduce this
simulation with the solver developed in [34] which invokes
adaptive mesh refinement every 4 time steps. We use the
same parameters as shown in [63, 64]. It is important to
point that, in this simulation, the transmission rates and dif-
fusion parameters vary with time in order to reproduce the
effects of restrictions during the simulated period.

For this simulation, an unstructured mesh is considered
due to the complex geometry imposed by the domain. The
mesh is generated using Gmsh and is uniformly refined
as the simulation starts. After refining the whole mesh in
one level, the mesh presents a minimum spatial resolution
of approximately 1 km. This procedure allows the solver
to coarsen the regions where no significant dynamics are
observed while preserving the scales of the regions of inter-
est. Figure 6 shows the variation of the number of nodes
in time for the AMR/C strategy. The coarsening approach
improves the simulation performance significantly since the
average number of nodes (and respectively, the number of
equations neq) used in the adaptive simulation is approxi-
mately half with respect to the case of a fixed mesh with the
same spatial resolution considered for the entire domain.
In this example, the reference target mesh is the uniformly
refined unstructured mesh considered in the early stages of
the simulation, presenting 13,158 nodes and 25,340 ele-
ments. The simulation considers a time step size of Δt = 0.25
days for the numerical integration and Δto = Δt = 0.25 days
for the observations. Initial conditions for the Lombardy
domain are the same presented on [63, 64] and are seen in
Fig. 7, while compartments r and d are initialized to zero.

We then proceed to run both adaptive and fixed mesh
simulations and, to apply DMD in the adaptive mesh results,
we consider the proposed projection scheme. Figure 8 shows
the s compartment solution at t = 46 days for both simula-
tions and the projected adaptive solution onto the reference
mesh, revealing that the results are in good agreement. In
terms of efficiency, Table 3 shows results for the computa-
tional time required for the projection compared to the finite
element code. That said, the adaptive snapshots can now be
assembled into a snapshot matrix for the DMD reconstruc-
tion and prediction.

The DMD analysis is made in the same way as presented
in the 1D case: the simulation outputs the projected snap-
shots for the first 60 days (240 snapshots). The snapshot
matrix assembles the information regarding 46 days of simu-
lations, while DMD approximates the results for 60 days.
The idea is to predict two weeks in the future, given the data
observed in the past 46 days. For this example, we consider
the SVD truncation at r = 20 for all compartments. Again,
an initial 3 days shift in the data is considered to avoid issues
with the compartments initialized to zero. Results for the
60th day comparing the computed numerical solutions and
the DMD predictions are seen in Figs. 9 and 10. We present
the projected solutions, the DMD prediction, and the relative
error in space between the two results from left to right. We
can note that most compartments show results in agreement
with the simulations, while the exposed compartment reveals
more pronounced differences than the other compartments.

Figure 11 shows the relative error in time between the
DMD results and the projected snapshots. The first thing we

Table 2 Relative error between reconstructed (and predicted) data
and the projected snapshots

Compartments Relative error Speedup

s 1.590 × 10−3 1.079 × 103

e 2.574 × 10−2 1.316 × 103

i 1.162 × 10−2 1.225 × 103

r 1.439 × 10−2 1.264 × 103

d 2.001 × 10−2 1.331 × 103

c 1.286 × 10−2 1.341 × 103

4252 Engineering with Computers (2022) 38:4241–4268

1 3

notice is that the curves are different for each compartment.
This discrepancy occurs due to the different parameters for
each equation in the SEIRD model, which largely affects the
dynamics of the system. The dynamics for each compart-
ment are different since each compartment presents different
coupling, diffusion, and reaction parameters. Also, regarding
this issue, since the parameters are time and space-depend-
ent, sudden changes in their values can affect the dynamics

of the system as well as DMD’s dynamics mapping ability.
Some sudden changes in the s and e compartments related
to stricter public policies considered to reduce the transmis-
sion rates (parameters �i and �e) are incorporated into the
model. Since the variation in the parameters is not intro-
duced smoothly, DMD’s ability to map sudden changes in
the dynamics of the system is reflected by the existence of
some spikes on the curves of the relative errors in time.

0 0.2 0.4 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1
0.0

1.0

2.0

3.0

4.0

5.0

10-3

0 0.2 0.4 0.6 0.8 1
0.0

0.5

1.0

1.5

2.0

10-2

0 0.2 0.4 0.6 0.8 1
0.0

2.0

4.0

6.0

8.0

10-2

0 0.2 0.4 0.6 0.8 1
0.0

1.0

2.0

3.0

4.0

10-3

0 0.2 0.4 0.6 0.8 1
0.0

1.0

2.0

3.0

4.0

5.0

10-2

Fig. 5 Solution at t = 44 days for the AMR simulation solution and the 14 days projection using DMD for the 1D SEIRD example

4253Engineering with Computers (2022) 38:4241–4268

1 3

Comparing the reconstruction and prediction stages, we
observe that the errors tend to grow as soon as the prediction
stage starts (dashed line). The exposed compartment, which
yielded most of the oscillations due to parameter changing
on the reconstruction stage, presented the same behavior
on the prediction phase around day 49. We also note that
the exposed compartment yields a larger relative error for
the 60th day in comparison with the other compartments.
Table 4 shows the overall relative error and the speedups
for the six compartments approximations. Comparing these
results with the results presented in Figs. 9, 10 and 11, we
can conclude that the predictions are reasonably accurate in
comparison with the numerical solutions, specially when
considering the time required for calculation.

Another important analysis to be done is the conserva-
tion property of the continuous SEIRD model. As men-
tioned before, the standard L2-projection does not guarantee

conservation among the projections. Figure 12 shows the
total population during the simulation, normalized by the
total population modeled in the initial conditions. The total
population is computed as the sum of the integral of the
compartments (excluding c) divided by the sum of the inte-
gral of the elements of the mesh. Since the SEIRD model
does not consider any population growth, the value must be
theoretically constant for all the simulations. From the fig-
ure, we observe that the population is kept constant during
all the adaptive simulation, and this was preserved by the
projected solutions and the DMD reconstruction stage. That
is, we can note that the L2-projection does not yield con-
servation issues in this example. For the prediction phase,
DMD preserves the total population for several days in the
future. However, it presents a slight increase (around 0.1%)
for predictions over 10 days, which does not affect the results
significantly. This increase can be explained by the relative
errors behavior, observed in Fig. 11, as DMD computes
future estimates.

4.2 Fluid dynamics

This section evaluates the DMD use on two cases involving
AMR/C in computational fluid dynamics: the reconstruction
of a 2D density-driven gravity current simulation and the
temporal prediction on a 3D rising bubble. Different from
the previous cases, the test cases presented in this section are
advection-dominant. To approximate the governing equa-
tions, we use a finite element RBVMS formulation [1, 19,
35, 39, 53]. In the first case, we reconstruct the solution and
evaluate important quantities of interest regarding density-
driven gravity flows. On the bubble rising simulation, we
show how our strategy works on a 3D mesh, and we evaluate
the DMD ability to predict the quantities of interest of the
rising bubble in time.

0 10 20 30 40
0.0

0.5

1.0

1.5
104

Adaptive Solution Reference Mesh

Fig. 6 Number of mesh nodes in time for the adaptive solution and
the proposed reference mesh for the 2D SEIRD example

Fig. 7 Initial conditions for the SEIRD model in the Lombardy case

4254 Engineering with Computers (2022) 38:4241–4268

1 3

Fig. 8 Solution for the suscep-
tible compartment at t = 46
days obtained using an adaptive
mesh and its respective projec-
tion onto a fixed reference mesh

4255Engineering with Computers (2022) 38:4241–4268

1 3

4.2.1 Density‑driven gravity flow

In this section, we consider a long numerical simulation that
consists of a lock-exchange between two fluids, the heavy
fluid, A, and the lighter fluid, B, based on the numerical
example in [49]. The difference between their densities is
such that the Boussinesq hypothesis is considered valid.
Moreover, particles in the heavy fluid have negligible iner-
tia and are much smaller than the smallest length scales of

Table 3 Absolute and relative time required for the projection rou-
tine in comparison with the adaptive finite element simulation code
(AMR/C FEM) for the SEIRD model in the Lombardy case

Code part Absolute time (s) Relative time (%)

AMR/C FEM 2107.24 98.52
Mesh projection 31.60 1.48

Fig. 9 Comparison between computed and predicted solutions at t = 60 days for the susceptible, exposed, and infected compartments

4256 Engineering with Computers (2022) 38:4241–4268

1 3

the buoyancy-induced fluid motion. Thus, the dimensionless
governing equations are

(28)

∇ ⋅ � = 0,

��

�t
+ � ⋅ ∇� + ∇p −

1√
Gr

Δ� − ��g = 0,

��

�t
+ � ⋅ ∇� −

1

Sc
√
Gr

Δ� = 0,

where � is the fluid velocity, � is the concentration field,
p is the pressure, �g = (0,−1) is the vector pointing in the
direction of gravity, Sc = 1.0 is the Schmidt number and
Gr = 5 × 106 is the Grashof number, two dimensionless
numbers that relate viscous effects with diffusion and buoy-
ancy effects, respectively. A Grashof number of this magni-
tude indicates a turbulent flow. The field � = �A∕�B is the
concentration and is responsible for mapping the evolution
of fluid interactions. The time step size considered for this
simulation consists on Δt = 0.01 s for a total simulation time

Fig. 10 Comparison between computed and predicted solutions at t = 60 days for the recovered, deceased, and cumulative infected compart-
ments

4257Engineering with Computers (2022) 38:4241–4268

1 3

of T = 30 s with an output frequency of Δto = Δt = 0.01 s.
We consider a tank, that is, a rectangular domain with length
L1 = 18 m, height L2 = 2 m. The boundary conditions for this

case are no-slip for the velocity and no-flux for the trans-
port equation, and the initial conditions are such that the
heavy fluid is represented as a column with dimensions
L0
x
× L0

y
= 1 m × 2m located at the left border of the tank and

the light fluid fills the rest of the domain. Figure 13 illus-
trates the domain and the initial conditions.

To solve the governing equations, we implement the
RBVMS formulation [35] for Eq. (28) using the FEniCS
2019.1 [4] framework to generate the snapshots for this
example. The adaptive mesh refinement procedure returns
the solution for �, p, and � . For this example, we only con-
sider the snapshots of � for our calculations, that is, an over-
all data reduction of 75% . Details of the formulation of the
problem can be found in [7, 35]. We consider a fixed mesh
simulation with 701 × 101 nodes and 700 × 100 cells, where
each cell is divided into two linear triangles. We consider
an interface-tracking adaptive mesh error indicator that flags
and refines the mesh where the two fluids interact for the
adaptive mesh simulation. The error indicator for the mesh
refinement is |∇�| being larger than a given tolerance. For
this purpose, a mesh containing 175 × 25 cells is considered,
the interfaces are refined considering two levels of refine-
ment, and the mesh refinement is invoked at every time step.
Figure 14 shows the results at t = 10 s for both fixed and
adaptive mesh simulations and the projection of the adap-
tive solution onto the same mesh used in the fixed mesh
simulation.

AMR/C in this problem is advisable since the dynamics
are predominant on the interface between the fluids. Most of
the domain is not affected in the early stages of the simula-
tion, and the use of fine meshes outside these regions may
represent unnecessary computational effort. Figure 15 shows
the number of nodes in the mesh during the simulation time
for the adaptive mesh compared with the fixed 701 × 101
nodes mesh.

We observe that the number of nodes in the adaptive
simulation is smaller than the fixed mesh for all the simula-
tion time. Table 5 shows the time required for the simulation
to run in comparison with the time spent on projecting the
solutions onto the reference target mesh.

10 20 30 40 50 60
10-4

10-3

10-2

10-1

100

s e i r d c

Fig. 11 Relative error for all compartments between numerical simu-
lation snapshots and DMD reconstruction and prediction. The dashed
line represents the beginning of the DMD prediction stage

Table 4 Relative error between reconstructed (and predicted) data
and the computed snapshots and speedup between DMD and the
numerical simulation

Compartments Relative error (�
F
) Speedup

s 1.345 × 10−3 822.61
e 5.187 × 10−2 938.09
i 1.304 × 10−2 755.97
r 7.316 × 10−3 1036.93
d 1.097 × 10−2 977.91
c 1.251 × 10−2 977.03

0 10 20 30 40 50 60
0.995

1.000

1.005

Fig. 12 Population conservation for both adaptive and projected
results

Fig. 13 Scheme illustrating the initial conditions for the density-
driven gravity flow example

4258 Engineering with Computers (2022) 38:4241–4268

1 3

Now we proceed applying DMD to the projected solution
and reconstructing the solutions. Figure 16 shows the rela-
tive error for the reconstruction using different values of the
rank r. The results are also confirmed in Table 6, where the
relative error between the reconstructed and projected snap-
shot matrices is shown and the speedup computed for each

case. We observe that, for increasing values of r, the relative
error decreases for all steps and affects the overall relative
error of the matrices. That is, inserting more structures in the
DMD basis yields better accuracy in terms of overall rela-
tive error. As for the speedup, we notice that it decreases for

Fig. 14 Results and mesh for the first 8 m of the domain at t = 10s

0 5 10 15 20 25 30
0

2

4

6

8
104

Adaptive Solution Reference Mesh

Fig. 15 Number of mesh nodes in time for the adaptive solution and
the proposed reference mesh for the density-driven gravity current
example

Table 5 Absolute and relative time required for the projection rou-
tine in comparison with the adaptive finite element simulation code
(AMR/C FEM) for the lock-exchange example

Code part Absolute time (s) Relative time (%)

AMR/C FEM 15748.11 94.94
Mesh projection 839.42 5.06

0 5 10 15 20 25 30
10-4

10-3

10-2

10-1

100

Fig. 16 Relative error for the reconstruction considering different val-
ues of the rank r

Table 6 Relative error between reconstructed data and the snapshots
and speedup between DMD and the numerical simulation

Rank r Relative error (�
F
) Speedup

50 1.081 × 10−1 558.53
100 3.472 × 10−2 445.91
150 6.207 × 10−3 230.67
200 2.024 × 10−3 204.74
250 9.604 × 10−4 189.17

4259Engineering with Computers (2022) 38:4241–4268

1 3

increasing values of r. Such a decrease occurs because larger
values of r directly affect the rSVD algorithm performance
[7, 25] and increase the dimensions of the matrices for the
computation of the DMD basis.

Most importantly, we can evaluate the quantities of inter-
est common to density-driven gravity currents. Figure 17
shows the front position and mass conservation for both
simulations and the respective reconstructions. We note that,
for these quantities all reconstructions are in extremely good
agreement with those computed with the fixed and adaptive
meshes, approaching them, as expected, for higher values r.

4.2.2 Bubble rising problem

We now study a bubble rising 3D benchmark, whose task is
to track the evolution of a three-dimensional bubble rising
in a liquid column. The initial configuration is described in
Fig. 18.

For this problem, we couple the Navier–Stokes equations
with an interface capturing method called convected level-
set [20, 33, 65]. The convected level-set is a method used to
represent the interface between two phases and, by a convec-
tion equation, to move the interface as the flow evolves. A
force that has an important role in bubble problems is the
surface tension ��� , which is applied using the Continuum
Surface Model (CSF) [10].

We write the governing equations in their dimensional
form as

where � is the density, � is the dynamic viscosity, � is the
acceleration of gravity vector, � is the level-set function, �

(29)

∇ ⋅ � = 0,

�
��

�t
+ �� ⋅ p∇� + ∇p − �∇2� − �� − ��� = �,

��

�t
+ (� + ��) ⋅ ∇� − � sgn (�)S = 0,

0 10 20 30
t

0

5

10

15
F

ro
nt

 P
os

iti
on

(a) Front position

0 10 20 30
t

0.9

0.95

1

1.05

1.1

(b) Mass conservation

Fig. 17 Front position and mass conservation for the fixed mesh and
adaptive mesh simulations and reconstructions with the target mesh

Fig. 18 Initial configuration and boundary conditions for the bubble
rising problem

Table 7 Rising bubble data

Computational domain 1 × 1 × 2 (m)
Grid sizes 0.100 to 0.025 (m)
Number of time steps 240 (–)
Time step 0.0125 s
Bubble radius 0.25 m
Initial bubble position (x, y) = (0.5, 0.5, 0.5) m
Liquid density 1000 kg/m3

Liquid viscosity 10 kg/(ms)
Gas density 100 kg/m3

Gas viscosity 1 kg/(ms)
Surface tension 24.5 N/m
Gravity 0.98 m/s2

4260 Engineering with Computers (2022) 38:4241–4268

1 3

is a penalty constant, � = sgn (�)
∇�

||∇�|| , and S a function

related to the level-set signed distance function.
For the temporal integration, we apply the Back-

ward–Euler method to the Navier–Stokes equations, while
for the convected level-set, we use the BDF2 method. One

may find more details about the governing equations and
methods in [33].

The initial configuration consists of a spherical bub-
ble of radius R = 0.25 m centered at [0.5, 0.5, 0.5] m in
a [1 × 1 × 2] m domain. The no-slip boundary condition is

Fig. 19 Level-set solution detail at t = 3.0 s and projection to the coarse, medium and fine meshes

4261Engineering with Computers (2022) 38:4241–4268

1 3

applied to all boundaries. Table 7 lists the parameters used
for this simulation.

We use an adapted mesh, initially with 10 × 10 × 20 cells,
with each cell divided into 6 linear tetrahedra. We refine the
initial region where the bubble is located into two levels
and, after the refinement, the smallest element has a size of
0.025 m. The adaptive mesh refinement is based on the flux
jump of the level-set function error, in which hmax = 2 . We

apply the adaptive mesh refinement every four time steps.
The interface is modeled with E = 0.05 , and the time step
size is defined as Δt = 0.0125 s. We output the projected
solutions at every 2 time steps such that Δto = 0.025 s. In
this example, we consider three tetrahedral meshes for our
projection strategy, presented in Fig. 19. The three meshes
named coarse, intermediate and fine, present characteristic
lengths similar to the three scales existent in the refinement
levels of the adaptive mesh simulation. The coarse mesh
represents the initial mesh on the adaptive simulation, with
12,000 elements and 2541 nodes. The intermediate mesh
presents smaller elements equivalent to the generated ele-
ments after the first refinement level on the AMR/C simula-
tion, totalizing 96,000 elements and 18,081 nodes and the
fine mesh contains the smallest scales presented on the adap-
tive numerical solution with 768,000 elements and 136,161
nodes. The figures show the level-set solution on half of the
domain and at t = 3 s for the adaptive mesh solution and the
respective projections. We also present on Table 8 the time
required for the projection of the solutions of � on the three

Table 8 Absolute and relative time required for the projection rou-
tine in comparison with the adaptive finite element simulation code
(AMR/C FEM) for the bubble rising example

Target mesh Code part Absolute time (s) Relative time (%)

Coarse AMR/C FEM 17345.92 99.97
Mesh projection 4.41 0.03

Intermediate AMR/C FEM 17390.03 99.85
Mesh projection 24.56 0.14

Fine AMR/C FEM 17653.70 98.91
Mesh projection 194.87 1.09

0 1 2 3
0.55

0.60

0.65

0.70

0.75
10-1

(a) Volume.

0 1 2 3
0.92

0.94

0.96

0.98

1.00

1.02

1.04

(b) Sphericity.

0 1 2 3

0.50

1.00

1.50

(c) Center of mass.

0 1 2 3
0.00

0.10

0.20

0.30

0.40

(d) Rise velocity.

Fig. 20 Comparison between the simulation and projection of the 3D rising bubble quantities of interest

4262 Engineering with Computers (2022) 38:4241–4268

1 3

meshes in terms of absolute and relative time. We can see
that the projection time is very small.

To verify if the bubble geometry and dynamics are being
preserved during the mesh projections, we evaluate the
quantities of interest such as the bubble volume, sphericity,
center of mass, and rise velocity. Bubble volume and sphe-
ricity are related to the bubble geometry, while the position
of the bubble center of mass and rise velocity regard the

bubble dynamics. The results are compared for the AMR/C
simulation output and the projections on Fig. 20. The quan-
tities of interest are computed using the adaptive snapshots
as well as the projected snapshots and compared with each
other. Regarding the geometry quantities of interest, we
observe that the coarse mesh projection solution affects
the bubble’s geometry, leading to bad results regarding the
bubble volume and sphericity compared with the AMR/C
simulation. For the intermediate and the fine meshes, the
bubble’s geometry is not largely affected, and the results are
compatible with the AMR/C results. As for the quantities of
interest related to the bubble dynamics, no significant dif-
ference is observed on the projection of the three meshes.
We observe that the center of mass is not affected by the
projections compared with the simulation results. As for
the rise velocity, we observe some minor differences in all
projection cases.

The simulation proceeds until T = 3.0 s, yielding a dataset
containing 240 snapshots regarding the solution of � for each
target mesh from the projections. We do not consider the
use of velocities and pressure in the DMD analysis, reduc-
ing the required data in 80% . We consider the results for the
first 2.75s to construct the basis and predict the last 0.25
s. We compare the DMD results in terms of relative error
between the snapshot matrix and the obtained solutions for
each case. The DMD solution for the coarse mesh is com-
pared to the projected adaptive solution onto the coarse mesh
and so forth. Results are evaluated for multiple values of
r, such that r = {5, 10, 15, 30, 45, 60} . The results regarding
accuracy and performance for multiples values of r and the
three meshes are presented in Table 9.

The results for r = 60 are shown in Fig. 21. We observe
that the errors are stable for the reconstruction case, that
is, the DMD solution before t = 2.75 s. From that point,
shown as a dashed line on the figure, the errors begin to
grow exponentially for each predicted time step, while still
remaining below 1% until around 2.9 s. We observe that
the errors in the reconstruction case are different regarding
the mesh used. That is, the errors are larger with respect to
the minimum characteristic length of the projection meshes.
However, we observe that the errors grow at the same rate on
the prediction phase independently of spatial discretization.

We also show the results considering r = 60 for recon-
struction at t = 2.75 s and prediction at t = 3.0 s in Fig. 22.
We compare the DMD results for the three projected meshes,
the adaptive mesh solution, and a fixed mesh solution. The
fixed mesh solution is obtained by running the simulation
with a mesh of 768,000 elements and 136,161 nodes, as the
fine mesh used in the projection. We observe initially that
the bubble geometry is better defined on the reconstruction
than on the prediction figure. This better definition is directly
related to the errors observed in Fig. 21. We observe that the
coarse mesh results do not capture the bubble geometry with

Table 9 Relative error between reconstructed data and the projected
snapshots and speedup between DMD and the numerical simulation

Results presented for multiple values of r

Rank r Mesh Rel. error (�
F
) Speedup

5 Coarse 6.222 × 10−2 1.33 × 105

Intermediate 6.655 × 10−2 7.95 × 104

Fine 6.865 × 10−2 1.53 × 104

10 Coarse 2.384 × 10−2 1.21 × 105

Intermediate 2.461 × 10−2 3.60 × 104

Fine 2.490 × 10−2 1.22 × 104

15 Coarse 1.415 × 10−2 1.15 × 105

Intermediate 1.402 × 10−2 2.46 × 104

Fine 1.429 × 10−2 7.55 × 103

30 Coarse 8.900 × 10−3 1.09 × 105

Intermediate 8.125 × 10−3 3.29 × 104

Fine 7.687 × 10−3 6.66 × 103

45 Coarse 6.382 × 10−3 1.02 × 105

Intermediate 5.820 × 10−3 5.35 × 104

Fine 5.776 × 10−3 5.80 × 103

60 Coarse 5.659 × 10−3 8.74 × 104

Intermediate 5.444 × 10−3 1.45 × 104

Fine 5.518 × 10−3 5.53 × 103

0 0.5 1 1.5 2 2.5 3
10-4

10-3

10-2

10-1

100
Coarse Intermediate Fine

Fig. 21 Relative error for the rising bubble example for the coarse,
intermediate, and fine mesh solutions. The dashed line defines the
start of the prediction phase

4263Engineering with Computers (2022) 38:4241–4268

1 3

the same accuracy as the intermediate and fine meshes for
the reconstruction results. As for the intermediate and fine
meshes, they present similar results in comparison with the
projected solutions. However, when we observe the predic-
tion figure, we observe that instabilities inherent to DMD
arise on the bubble contour, affecting the bubble geometry
for the intermediate and fine mesh.

We now proceed comparing the results in terms of quan-
tities of interest for the DMD results. Figure 23 shows the
bubble volume, sphericity, center of mass, and rise veloc-
ity for the DMD results compared to the adaptive solution
results. The same issue regarding sphericity on the coarse
mesh projection is observed on the coarse mesh DMD
results. However, for the intermediate and fine meshes, the
values match the results observed for the projection. We

Fig. 22 Bubble contour at the
vertical mid plane for the signal
reconstruction (t = 2.75 s) and
prediction (t = 3.0 s) last steps

Fig. 23 Comparison between
the simulation and DMD signal
plus prediction of the 3D rising
bubble quantities of interest.
The dashed line marks the
beginning of the prediction
regime for the DMD

0 1 2 3
0.55

0.60

0.65

0.70

0.75
10-1

(a) Volume.

0 1 2 3
0.90

0.95

1.00

1.05

(b) Sphericity.

0 1 2 3

0.50

1.00

1.50

(c) Center of mass.

0 1 2 3
0.00

0.10

0.20

0.30

0.40

(d) Rise velocity.

4264 Engineering with Computers (2022) 38:4241–4268

1 3

observe results in conformity for the center of mass and
rise velocity as well. In terms of prediction, we observe that
DMD accurately predicts the volume and the center of mass
evolution. As for the other quantities of interest, the increas-
ing exponential errors in the DMD prediction structure affect
the quantities of interest for long time future predictions.

5 Conclusions

In this work, we propose a strategy to enable data-driven
snapshot-based methods on finite element solutions obtained
by AMR/C simulations. The use of AMR/C algorithms in
finite element approximations of PDEs is known to reduce
memory usage and to increase the efficiency of the simula-
tions without compromising the accuracy. The simulation
adapts the mesh with the evolution of the solution, refining
regions of interest and coarsening regions that are not of
interest. The adaptation process leads to different meshes
during the simulations, and the solutions have different
dimensions and topologies (or different connectivities
and nodal coordinates) whenever the AMR/C algorithm is
invoked. Snapshots with different dimensions prevent the
use of snapshot-based algorithms such as DMD, where the
snapshot matrix is built by stacking the solutions for each
observation in columns. In this study, we considered a strat-
egy to project the adaptive solutions on reference meshes
such that all snapshots present the same dimensions and
nodal indices, enabling the construction of snapshot matri-
ces. The method employed to project the solutions onto the
target reference mesh is the L2-projection, a simple, fast and
versatile approach. The L2-projection is a common strategy
present in several finite element libraries and frameworks
and consists basically of solving a linear system, where the
matrix is obtained by a self-adjoint operator enabling the use
of efficient solvers. Despite presenting drawbacks, especially
regarding properties’ conservation, we investigate the use
of the L2-projection as a postprocessing tool without any
relevant issues. By postprocessing, we mean that the L2-pro-
jection algorithm is invoked only to insert the solutions on
a reference function space for each time step and output the
files. This strategy does not yield significant additional com-
putational effort as we observe that the L2-projection routine
required around 1% of the computational time required for
the adaptive finite element code to run in most cases and
5% in the worst case. When the source code is not available
to invoke the L2-projection, one can construct the solutions
from the output files and project them onto the target refer-
ence mesh in a complete non-intrusive workflow.

We test the algorithm on several models presenting differ-
ent dynamics and underlying physics. First, we present the
results for DMD on a continuous SEIRD model for COVID-
19 for fictional data in 1D and real data for Lombardy, Italy,

in 2D. The idea of considering short-time future estimates
on COVID-19 models could improve the decision-making
of public policies to avoid further contamination, and the
use of AMR/C in the simulations, coupled with the pre-
sented projection scheme and DMD, can lead to fast and
reliable predictions. The simulations are implemented using
the libMesh library using its refinement built-in functions.
We compare the solution, its projection in the reference
mesh, and the adaptive solution and notice that no relevant
errors are found for the projection strategy. In this example,
the L2-projection consists of 1.47% and 1.48% of the total
time required for the code to run for the 1D and 2D cases,
respectively. As for the use of short-time future estimates,
we consider DMD for predicting two weeks in the future
given a set of snapshots. For the 1D case, we feed DMD with
snapshots covering 30 days, while for the 2D case, the snap-
shot matrix comprises 46 days of simulation results. The
DMD results are presented in terms of efficiency and accu-
racy compared to the projected solutions, and we observe
that the predictions are mostly in good agreement except for
the exposed compartment. To test the approach’s agnosti-
cism regarding the dynamics of the systems, we consider
two different fluid dynamics problems: a 2D density-driven
gravity current and a 3D bubble rising problem. We use a
3000-snapshot simulation to generate a basis containing the
spatio-temporal coherent structures for the density-driven
gravity flow. The lock-exchange simulation is solved using
the FEniCS framework. The computational effort regard-
ing the projection, in this case, corresponds to 5.06% of the
overall computational time. As for the DMD analysis, we
evaluate the results for different values of the rank r and
observe that, as we increase it, in this case, the overall rela-
tive errors decrease significantly. However, when evaluating
the quantities of interest such as mass conservation and front
position, even the worst case yields good approximations.
For the 3D example, we use the libMesh library, testing
three different reference meshes considering the three ele-
ment sizes existent in the adaptive simulation. We investi-
gate the occurrence of projecting the adaptive solution onto
meshes that do not necessarily guarantee that all the scales
obtained in the solution are preserved in terms of quanti-
ties of interest related to the bubble geometry and dynam-
ics. We observe that the use of L2-projection on coarser
meshes leads to issues regarding the shape of the bubble,
affecting quantities of interest such as bubble volume and
sphericity. When considering the L2-projection on meshes
with approximately the same spatial resolution as the finest
scale in the adaptive meshes, these effects are mitigated. As
for the bubble dynamics, even coarser meshes reveal simi-
lar results for the bubble center of mass and rise velocity
in comparison with finer mesh projections and the adap-
tive solution itself. In terms of computational effort, the L2

-projection corresponds to 0.03% , 0.14% and 1.09% of the

4265Engineering with Computers (2022) 38:4241–4268

1 3

total simulation time for the coarse, intermediate, and fine
meshes, respectively. Proceeding to the DMD analysis, we
present the results for a 220 time step reconstructions and
a 20 time step prediction for the bubble rising problem. We
test the approximations for multiple values of r being r = 60
our best approximations. The results computed by DMD are
presented in terms of efficiency and accuracy compared to
the projected solutions. We also reevaluate the quantities of
interest, now with the DMD approximation. For the recon-
struction, results are practically identical to those observed
for the projection, while for the prediction, the center of
mass and bubble volume yield good results while sphericity
and rise velocity are not in agreement with those obtained
in the simulation.

Summarizing our findings, we highlight that the present
approach, despite its simplicity:

• is versatile since every finite element library that presents
AMR/C is often equipped with efficient projection algo-
rithms;

• is fast in the sense that the L2-projection only requires
solving a sparse, well-conditioned linear system �� = �
where � is the mass matrix, obtained by a self-adjoint
operator, enabling the use of efficient solvers;

• is framework-agnostic, as noted in the results of our
simulations implemented on libMesh and FEniCS,
requiring only the standard procedures already in place
in both libraries;

• is problem-agnostic, as observed on meshes with dif-
ferent spatial dimensions (1D, 2D, and 3D), topologies
(structured and unstructured), and equations (convection-
dominated and reaction–diffusion systems);

• preserves the dynamics computed on the adaptive snap-
shots for all the tested examples.

The results observed in this study reveal that the use of mesh
projections for adaptive solutions preserves the dynam-
ics inherent to the finite element solutions. However, this
approach on large problems could be inefficient or prohibi-
tive since the mesh projection on a sufficiently fine target
reference mesh can lead to unfeasible DMD storage and
computation times. As a future work, aiming to circumvent
this issue, we plan to explore the use of data compression on
DMD, once used for streaming purposes [24], in the mesh
projection context. Also, it is known that DMD approxi-
mates the nonlinear dynamics existent in the dataset using a
linear operator, being fragile to problems presenting a strong
nonlinearity [43]. To deal with this, several Koopman-based
frameworks, such as the Extended DMD [66], the Kernel
DMD [67], and LANDO [5], use nonlinear observables
to improve temporal predictions. In the future, we plan to
evaluate our projection approach on nonlinear observables
for further investigations.

Appendix

In this appendix, we provide a more detailed discussion of
several points raised in Sect. 3 regarding the use of DMD on
adapted meshes. As discussed in the main text, given the way
DMD works by acting on the snapshot matrix, it is, there-
fore, essential for its proper application that all snapshots are
of equal dimension; if the original dataset has been produced
using different meshes, this may not be the case. Thus, it is
crucial in such a case to use some sort of post-processing
technique to provide a uniform snapshot size across the time
series. For practical purposes, however, ensuring simply that
all snapshots of uniform dimension is a necessary but not
sufficient condition to usefully apply DMD. As illustrated
in Fig. 24, we show an example of two meshes (labelled as
1 and 2) that both an have equal number of nodes. Assum-
ing the same order of finite element approximation is used
on each mesh, the resulting vectors �h

1
 and �h

2
 will have the

same dimension. However, while the number of degrees of
freedom is the same on each mesh, they are topologically
distinct. Hence, to properly perform DMD in this instance,
we must have a third mesh, which we call a reference mesh
(labeled as mesh 3), on which we project both �h

1
 and �h

2
 . We

note that this mesh is refined everywhere, compared to the
locally refined mesh 1 and mesh 2. In this way, we guarantee
that the fine-scale frequencies captured by all the different
mesh levels are properly represented by the DMD modes.

Fig. 24 Depiction demonstrating the need for projection. Even
though Mesh 1 and Mesh 2 have the same number of degrees of
freedom, the different topologies require that, for a proper applica-
tion of DMD, we must project both meshes onto a reference mesh 3
(Mesh 3). As shown, this reference mesh should be sufficiently fine to
resolve all necessary in all areas of the domain

4266 Engineering with Computers (2022) 38:4241–4268

1 3

In the current work, we have performed this by using L2

-projection of all snapshots onto a reference (or projected)
mesh. Let �h denote the finite element solution on the origi-
nal mesh. Then we define the L2-projection onto the refer-
ence mesh as

for all �proj in Vproj . One may quickly verify that this satisfies
the Galerkin orthogonality property on the reference mesh,
i.e., for all �proj in Vproj , the relation:

is satisfied. At the algebraic level, the problem (30) may be
expressed as:

where � is the mass matrix on the FEM space Vproj

h
 and

� is a rectangular matrix consisting of the projection from
Vh onto Vproj . Letting Nproj

i
 correspond to the shape func-

tions of Vproj and Nh
i
 to Vh , the matrices have the following

definitions:

We then may view �proj as

Consider now DMD on Mesh 1:

Similarly, DMD defined on the reference mesh reads:

Similarly,

From (35), (36):

(30)(�proj, �proj) = (�h, �proj),

(�proj − �h, �proj) = 0

(31)��proj = ��h,

(32)
(�)i,j = ∫Ω

N
proj

i
N

proj

j

(�)i,j = ∫Ω

N
proj

i
Nh
j
.

(33)�proj = �−1��h.

(34)

�h
2
= �1�h

1
, where �h

1
=

⎡⎢⎢⎣

� � �
�h(t0) �

h(t1) … �h(tm)

� � �

⎤⎥⎥⎦
.

(35)

�
proj

2
= �proj�

proj

1
, where �

proj

1

=

⎡⎢⎢⎣

� � �
�−1��h(t0) �

−1��h(t1) … �−1��h(tm)

� � �

⎤⎥⎥⎦
�

proj

2
= �proj�−1��h

1
.

(36)�
proj

2
= �−1��h

2
.

where �−T denotes the left-sided pseudoinverse of � (see e.g.
[31]). Thus, rank(�) = dim(�h), DMD may properly repre-
sent all relevant dynamics on the reference (projected) mesh.

Theorem If every degree of freedom of the original mesh
is also a degree of freedom of the reference mesh, then the
matrix � is full-rank.

Proof By assumption, for every Nh
i
 , the corresponding Nproj

i

(assumed to be more fine and hence greater in number) is
defined such that

This idea may be alternatively expressed as

where the different Vi are finite element spaces correspond-
ing to the different adapted meshes. Such a condition was
also used in [62]. We, therefore, have that

where 0 < 𝜅ij ≤ 1 for all i, j is a volumetric constant relating
the measures of supp(Nproj

j
) and supp(Nh

j
) . By (38), the

matrix �̃ , defined such that

which has the same rank (that is, dim(Vh)) as �h by con-
struction. We then observe that, for i, j ≤ dim(Vh):

Thus, we can express � as

Assume now for the sake of contradiction that � is not full-
rank. This implies that there exists a � ∈ ℝ

dim(Vh) such that
�� = �. Then

implying that �̃� = 0 , contradicting the full-rank of �̃ .
Hence, we can conclude � is full-rank.

The above theorem requires an assumption that, while
often the case in practice, is not strictly necessary in our

(37)
�−1��h

2
= �proj�−1��h

1
, implying:

�h
2
= �−T��proj�−1��h

1
,

supp(N
proj

i
) ⊂ supp(Nh

i
).

V1 + V2 +⋯Vn = Vproj,

(38)∫Ω

Nh
i
N

proj

j
= �ij ∫Ω

Nh
i
Nh
j
,

(�̃)i,j = �ij ∫Ω

Nh
i
Nh
j
,

(�)i,j = (�̃)i,j.

� =

(
�̃

�

)
+

(
�

�̃

)
.

(39)
(
�̃�

�

)
+

(
�

�̃�

)
=

(
�

�

)
,

4267Engineering with Computers (2022) 38:4241–4268

1 3

experience to obtain acceptable results using DMD. As men-
tioned, a similar condition was required for the related POD
method in [62], in which a common finite element space Vn
was implicitly constructed from the different spaces from
each adapted mesh. Issues regarding projection between
meshes were also studied in [9, 21, 48], in which the inter-
ested reader may find more theoretical results regarding pro-
jection between meshes. ◻

Acknowledgements This research was financed in part by the Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil
(CAPES)-Finance Code 001. This research has also received funding
from CNPq and FAPERJ. Computer time in Lobo Carneiro super-
computer was provided by the High Performance Computer Center
at COPPE/Federal University of Rio de Janeiro, Brazil. A. Reali was
partially supported by the Italian Ministry of University and Research
(MIUR) through the PRIN project XFAST-SIMS (No. 20173C478N).

Funding Open access funding provided by Università degli Studi di
Pavia within the CRUI-CARE Agreement.

Declarations

 Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Ahmed N, Rebollo TC, John V, Rubino S (2017) A review of
variational multiscale methods for the simulation of turbulent
incompressible flows. Arch Comput Methods Eng 24(1):115–164

 2. Ainsworth M, Oden JT (2011) A posteriori error estimation in
finite element analysis, vol 37. Wiley, New York

 3. Alla A, Balzotti C, Briani M, Cristiani E (2020) Understanding
mass transfer directions via data-driven models with application
to mobile phone data. SIAM J Appl Dyn Syst 19(2):1372–1391

 4. Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A,
Richardson C, Ring J, Rognes ME, Wells GN (2015) The Fenics
project version 15. Arch Numer Softw 3:100

 5. Baddoo PJ, Herrmann B, McKeon BJ, Brunton SL (2021) Kernel
learning for robust dynamic mode decomposition: linear and non-
linear disambiguation optimization (LANDO). arXiv: 2106. 01510

 6. Baker N, Alexander F, Bremer T, Hagberg A, Kevrekidis Y, Najm
H, Parashar M, Patra A, Sethian J, Wild S, Willcox K, Lee S
(2019) Workshop Report on Basic Research Needs for Scientific

Machine Learning: Core Technologies for Artificial Intelligence.
United States. https:// doi. org/ 10. 2172/ 14787 44.

 7. Barros GF, Côrtes AMA, Coutinho AL (2020) Dynamic mode
decomposition for density-driven gravity current simulations.
In: CILAMCE 2020-Proceedings of the XLI Ibero-Latin-Amer-
ican congress on computational methods in engineering. ISSN
2675-6269

 8. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational
fluid-structure interaction: methods and applications. Wiley, New
York

 9. Bolten M, Donatelli M, Huckle T, Kravvaritis C (2015) Gener-
alized grid transfer operators for multigrid methods applied on
toeplitz matrices. BIT Numer Math 55(2):341–366

 10. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method
for modeling surface tension. J Comput Phys 100(2):335–354

 11. Brauer F, Castillo-Chavez C, Feng Z (2019) Mathematical models
in epidemiology. Springer, Berlin

 12. Brunton SL, Kutz JN (2019) Data-driven science and engineering:
machine learning, dynamical systems, and control. Cambridge
University Press, Cambridge

 13. Brunton SL, Noack BR, Koumoutsakos P (2020) Machine learn-
ing for fluid mechanics. Annu Rev Fluid Mech 52:477–508

 14. Brunton SL, Proctor JL, Tu JH, Kutz JN (2015) Compressed
sensing and dynamic mode decomposition. J Comput Dyn
2(2):165–191

 15. Burstedde C, Ghattas O, Gurnis M, Isaac T, Stadler G, Warburton
T, Wilcox L (2010) Extreme-Scale AMR, SC ’10: Proceedings
of the 2010 ACM/IEEE international conference for high per-
formance computing, networking, storage and analysis, pp 1–12.
https:// doi. org/ 10. 1109/ SC. 2010. 25

 16. Calmet H, Pastrana D, Lehmkuhl O, Yamamoto T, Kobayashi
Y, Tomoda K, Houzeaux G, Vázquez M (2020) Dynamic mode
decomposition analysis of high-fidelity CFD simulations of the
sinus ventilation. Flow Turbul Combust 105(3):699–713

 17. Carey GF (1997) Computational grids: generations, adaptation
and solution strategies series in computational and physical pro-
cesses in mechanics. Taylor & Francis, New York

 18. Carey GF, Bicken G, Carey V, Berger C, Sanchez J (2001) Locally
constrained projections on grids. Int J Numer Methods Eng
50(3):549–577

 19. Codina R, Badia S, Baiges J, Principe J (2018) Variational multi-
scale methods in computational fluid dynamics. Encyclop Comput
Mech Sec Ed 20:1–28

 20. Coupez T (2007) Convection of local level set function for
moving surfaces and interfaces in forming flow. AIP Conf Proc
908:61–66. https:// doi. org/ 10. 1063/1. 27407 90

 21. Dickopf T, Krause R (2011) A study of prolongation operators
between non-nested meshes. domain decomposition methods in
science and engineering XIX. Springer, Berlin, pp 343–350

 22. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans
Inf Theory 41(3):613–627

 23. Eckart C, Young G (1936) The approximation of one matrix by
another of lower rank. Psychometrika 1(3):211–218

 24. Erichson NB, Brunton SL, Kutz JN (2019) Compressed dynamic
mode decomposition for background modeling. J Real-Time
Image Proc 16(5):1479–1492

 25. Erichson NB, Voronin S, Brunton SL, Kutz JN (2019) Rand-
omized matrix decompositions using R. J Stat Softw 89(1):1–48

 26. Fang F, Pain CC, Navon IM, Piggott MD, Gorman GJ, Allison
PA, Goddard AJ (2009) Reduced-order modelling of an adaptive
mesh ocean model. Int J Numer Methods Fluids 59(8):827–851

 27. Farrell PE, Maddison JR (2011) Conservative interpolation
between volume meshes by local Galerkin projection. Comput
Methods Appl Mech Eng 200(1–4):89–100

 28. Fonzi N, Brunton SL, Fasel U (2020) Data-driven nonlinear
aeroelastic models of morphing wings for control: data-driven

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2106.01510
https://doi.org/10.2172/1478744
https://doi.org/10.1109/SC.2010.25
https://doi.org/10.1063/1.2740790

4268 Engineering with Computers (2022) 38:4241–4268

1 3

nonlinear aeroelastic models. Proc R Soc A Math Phys Eng Sci
476:2239

 29. Gavish M, Donoho DL (2014) The optimal hard threshold for
singular values is 4∕

√
3 . IEEE Trans Inf Theory 60(8):5040–5053

 30. Geuzaine C, Remacle J-F (2009) Gmsh: a 3-d finite element mesh
generator with built-in pre- and post-processing facilities. Int J
Numer Methods Eng 79(11):1309–1331

 31. Golub GH, Van Loan CF (2013) Matrix computations, vol 3. JHU
Press, Baltimore

 32. Gräßle C, Hinze M (2018) POD reduced-order modeling for evo-
lution equations utilizing arbitrary finite element discretizations.
Adv Comput Math 44(6):1941–1978

 33. Grave M, Camata JJ, Coutinho AL (2020) A new convected level-
set method for gas bubble dynamics. Comput Fluids 209:104667

 34. Grave M, Coutinho ALGA (2021) Adaptive mesh refinement and
coarsening for diffusion–reaction epidemiological models. Com-
put Mech 67:1177–1199

 35. Guerra GM, Zio S, Camata JJ, Rochinha FA, Elias RN, Paraizo
PL, Coutinho AL (2013) Numerical simulation of particle-laden
flows by the residual-based variational multiscale method. Int J
Numer Methods Fluids 73(8):729–749

 36. Guo H, Zhuang X, Rabczuk T (2019) A deep collocation method
for the bending analysis of Kirchhoff plate. Comput Mater Contin
59(2):433–456

 37. Hale JS, Schenone E, Baroli D, Beex LA, Bordas SP (2021) A
hyper-reduction method using adaptivity to cut the assembly
costs of reduced order models. Comput Methods Appl Mech Eng
380:113723

 38. Halko N, Martinsson P-G, Tropp JA (2011) Finding structure with
randomness: probabilistic algorithms for constructing approxi-
mate matrix decompositions. SIAM Rev 53(2):217–288

 39. Hughes TJR, Scovazzi G, Franca LP (2017) Multiscale and stabi-
lized methods. In: Stein E, Borst R, Hughes TJR (eds) Encyclo-
pedia of computational mechanics second edition. https:// doi. org/
10. 1002/ 97811 19176 817. ecm20 51

 40. Héas P, Herzet C (2020) Low-rank dynamic mode decomposition:
optimal solution in polynomial-time. arXiv: 1610. 02962

 41. Jovanović MR, Schmid PJ, Nichols JW (2014) Sparsity-promoting
dynamic mode decomposition. Phys Fluids 26:2

 42. Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libmesh:
a c++ library for parallel adaptive mesh refinement/coarsening
simulations. J Eng Comput 22(3):237–254

 43. Kutz JN, Brunton SL, Brunton BW, Proctor JL (2016) Dynamic
mode decomposition: data-driven modeling of complex systems.
SIAM, Philadelphia

 44. Kutz JN, Fu X, Brunton SL (2016) Multiresolution dynamic mode
decomposition. SIAM J Appl Dyn Syst 15(2):713–735

 45. Li A, Barati Farimani A, Zhang YJ (2021) Deep learning of mate-
rial transport in complex neurite networks. Sci Rep 11:1

 46. Li A, Chen R, Farimani AB, Zhang YJ (2020) Reaction diffusion
system prediction based on convolutional neural network. Sci Rep
10:1

 47. Löhner R (2008) Applied computational fluid dynamics tech-
niques: an introduction based on finite element methods. Wiley,
New York

 48. Maddison J, Hiester H (2017) Optimal constrained interpolation
in mesh-adaptive finite element modeling. SIAM J Sci Comput
39(5):A2257–A2286

 49. Necker F, Härtel C, Kleiser L, Meiburg E (2002) High-resolution
simulations of particle-driven gravity currents. Int J Multiph Flow
28(2):279–300

 50. Pont A, Codina R, Baiges J (2017) Interpolation with restrictions
between finite element meshes for flow problems in an ale setting.
Int J Numer Methods Eng 110(13):1203–1226

 51. Proctor JL, Eckhoff PA (2015) Discovering dynamic patterns from
infectious disease data using dynamic mode decomposition. Int
Health 7(2):139–145

 52. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions. J Comput Phys 378:686–707

 53. Rasthofer U, Gravemeier V (2017) Recent developments in vari-
ational multiscale methods for large-eddy simulation of turbulent
flow. Arch Comput Methods Eng 20:1–44

 54. Rivara MC (1984) Mesh refinement processes based on the gener-
alized bisection of simplices. SIAM J Numer Anal 21(3):604–613

 55. Rowley CW, Mezic I, Bagheri S, Schlatter P, Henningson DS
(2009) Spectral analysis of nonlinear flows. J Fluid Mech
641:115–127

 56. Schmid PJ (2010) Dynamic mode decomposition of numerical and
experimental data. J Fluid Mech 656:5–28

 57. Schmid PJ (2011) Application of the dynamic mode decomposi-
tion to experimental data. Exp Fluids 50(4):1123–1130

 58. Sirovich L (1987) Turbulence and the dynamics of coherent struc-
tures I, II and III. Q Appl Math 45(3):561–590

 59. Taira K, Brunton SL, Dawson ST, Rowley CW, Colonius T,
McKeon BJ, Schmidt OT, Gordeyev S, Theofilis V, Ukeiley
LS (2017) Modal analysis of fluid flows: an overview. AIAA J
55(12):4013–4041

 60. Tajdari M, Pawar A, Li H, Tajdari F, Maqsood A, Cleary E, Saha
S, Zhang YJ, Sarwark JF, Liu WK (2021) Image-based modelling
for adolescent idiopathic scoliosis: mechanistic machine learning
analysis and prediction. Comput Methods Appl Mech Eng 20:374

 61. Thompson RA (2015) Galerkin projections between finite element
spaces. Technical report, Virginia Polytechnic Institute and State
University. http:// hdl. handle. net/ 10919/ 52968

 62. Ullmann S, Rotkvic M, Lang J (2016) Pod-Galerkin reduced-order
modeling with adaptive finite element snapshots. J Comput Phys
325:244–258

 63. Viguerie A, Lorenzo G, Auricchio F, Baroli D, Hughes TJ, Patton
A, Reali A, Yankeelov TE, Veneziani A (2021) Simulating the
spread of COVID-19 via a spatially-resolved susceptible-exposed-
infected-recovered-deceased (SEIRD) model with heterogeneous
diffusion. Appl Math Lett 20:111

 64. Viguerie A, Veneziani A, Lorenzo G, Baroli D, Aretz-Nellesen N,
Patton A, Yankeelov TE, Reali A, Hughes TJ, Auricchio F (2020)
Diffusion-reaction compartmental models formulated in a contin-
uum mechanics framework: application to covid-19, mathematical
analysis, and numerical study. Comput Mech 66:1131–1152

 65. Ville L, Silva L, Coupez T (2011) Convected level set method for
the numerical simulation of fluid buckling. Int J Numer Methods
Fluids 66(3):324–344

 66. Williams MO, Kevrekidis IG, Rowley CW (2015) A data-driven
approximation of the Koopman operator: extending dynamic
mode decomposition. J Nonlinear Sci 25(6):1307–1346

 67. Williams MO, Rowley CW, Kevrekidis IG (2015) A kernel-based
method for data-driven Koopman spectral analysis. J Comput Dyn
2(2):247–265

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/9781119176817.ecm2051
https://doi.org/10.1002/9781119176817.ecm2051
http://arxiv.org/abs/1610.02962
http://hdl.handle.net/10919/52968

	Dynamic mode decomposition in adaptive mesh refinement and coarsening simulations
	Abstract
	1 Introduction
	2 Numerical methods and dynamic mode decomposition
	3 DMD on adapted meshes
	4 Numerical experiments
	4.1 Continuous SEIRD model for COVID-19
	4.1.1 Reproducing a 1D model
	4.1.2 The Lombardy region

	4.2 Fluid dynamics
	4.2.1 Density-driven gravity flow
	4.2.2 Bubble rising problem

	5 Conclusions
	Acknowledgements
	References

