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Abstract
Dynamic mode decomposition (DMD) is a powerful data-driven method used to extract spatio-temporal coherent structures 
that dictate a given dynamical system. The method consists of stacking collected temporal snapshots into a matrix and 
mapping the nonlinear dynamics using a linear operator. The classical procedure considers that snapshots possess the same 
dimensionality for all the observable data. However, this often does not occur in numerical simulations with adaptive mesh 
refinement/coarsening schemes (AMR/C). This paper proposes a strategy to enable DMD to extract features from obser-
vations with different mesh topologies and dimensions, such as those found in AMR/C simulations. For this purpose, the 
adaptive snapshots are projected onto the same reference function space, enabling the use of snapshot-based methods such as 
DMD. The present strategy is applied to challenging AMR/C simulations: a continuous diffusion–reaction epidemiological 
model for COVID-19, a density-driven gravity current simulation, and a bubble rising problem. We also evaluate the DMD 
efficiency to reconstruct the dynamics and some relevant quantities of interest. In particular, for the SEIRD model and the 
bubble rising problem, we evaluate DMD’s ability to extrapolate in time (short-time future estimates).

Keywords Dynamic mode decomposition · Mesh projection · Adaptive mesh refinement and coarsening · Dimensionality 
reduction

1 Introduction

Data-driven methods are currently revolutionizing the mod-
eling, prediction, and control of complex systems. Increas-
ingly, researchers are considering data-driven approaches 
for a diverse range of complex systems, such as turbulent 
flows, climate sciences, epidemiology, finance, robotics, and 
many other different applications [12]. Even with the avail-
ability of better hardware and advances in techniques and 
algorithms, numerical simulations of these systems are still 
resource-demanding: strong nonlinearities, multiple scales, 
and large dimensionalities are typical examples of complex-
ities found in modern applications. With the assembly of 
modern mathematical methods, unprecedented data avail-
ability, and increasing computational resources, previously 
complex, challenging problems can now be tackled within 
the new research field entitled scientific machine learning 
(SciML).

SciML is a core component of artificial intelligence and 
computational technology that can be trained, with scientific 
data, to augment or automate human skills [6]. This emerg-
ing research area aims at the opportunities and challenges 
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in the context of complex applications across science and 
engineering, and other interdisciplinary fields. A wide range 
of SciML methods can be categorized regarding the type 
of information available, and their intended use [13]. For 
instance, many state-of-the-art methods and applications 
within the SciML scope can be found in [13, 36, 45, 46, 
52, 60]. In this study, we focus on Dynamic Mode Decom-
position (DMD), an unsupervised SciML method that can 
extract the most dynamically relevant low-rank structures 
from large-dimensional data observed in dynamical systems. 
DMD can be applied to both numerical [56] and experimen-
tal data [57].

The standard DMD procedure for numerical simulations 
consists of stacking the m snapshots (discrete solutions in 
space for a given time step) in columns to create a matrix 
and map the dynamics using a linear operator. The DMD 
procedure assumes that the m collected snapshots have spa-
tial dimensionality n, where n ≫ m , such that the snapshots 
matrix has dimension n × m . This occurs when snapshots 
are obtained from experimental data with sensors in fixed 
positions or numerical simulations considering a fixed mesh. 
However, in many situations, this is not always achievable. 
For numerical simulations using Adaptive Mesh Refinement/
Coarsening (AMR/C), for instance, spatial adaptivity leads 
to solutions computed in meshes that constantly change in 
time. Adaptive meshes lead to a different number of nodes, 
nodal coordinates and numbering, and mesh topologies. 
Although there are strategies regarding missing spatial data 
or subsampling for the DMD [14, 41], specific treatments 
related to AMR/C approaches in the finite element context 
are not explored in the literature. In the present study, we 
develop a strategy to project all the snapshots of a given 
simulation with different dimensionality onto a reference 
target mesh with minor accuracy loss, enabling the use of 
any SVD-based data-driven technique such as DMD.

This paper is structured as follows: Sect. 2 describes 
the relation between the discretization of PDEs in space 
and time and a dynamical system. This section introduces 
Dynamic Mode Decomposition, our method of choice for 
short-time future estimates and extrapolation. Section 3 
describes our strategy to deal with simulations that consider 
AMR/C in their evolution (e.g., in the case of dimensional-
ity of the output vector, as well as of mesh topology and/or 
node numbering, varying in time). In Sect. 4 we describe 
the numerical applications in this study: the use of DMD 
on a continuous SEIRD model for COVID-19 and two fluid 
dynamics problems, a density-driven gravity current, and 
a bubble rising problem. We show efficiency and accuracy 
results for the signal reconstruction. Moreover, future time 
step predictions using DMD are evaluated for the SEIRD 
model and the bubble rising problem. In Sect. 5, we draw 
our final remarks and conclusions.

2  Numerical methods and dynamic mode 
decomposition

Solving partial differential equations (PDEs) using fast, 
accurate, reliable, and robust methods is crucial for many 
industrial and scientific applications. Several methods (such 
as finite elements, finite differences, and many others) are 
responsible for approximating the infinite-dimensional PDEs 
into finite-dimensional spaces. The discretization of these 
equations allows the process to be automated. In the present 
study, we focus on using the finite element method for spa-
tial discretization of the PDEs. That is, consider a generic 
transient parametric PDE such as

where N  is a nonlinear operator, � is a vector of parameters 
(e.g., diffusion, density, viscosity, etc.), � = � (t;�) is a given 
function and the solution � is a function of spatial coordi-
nates � , temporal coordinates t, and parameters � such that 
� = �(�, t;�) . The equation is equipped with boundary and 
initial conditions

where � and � are the Dirichlet and Neumann boundary con-
ditions, respectively, T is the final time, and �0 is the initial 
condition for � . The domain Ω ⊂ ℝ

nsd is bounded by Lip-
schitz continuous boundaries ΓN ∪ ΓD = Γ ⊂ ℝ

nsd−1 , and � 
is the unit outward normal to ΓN . The union of boundaries 
and domain is represented as Ω̃ . The standard finite element 
method consists of discretizing Ω̃ into a mesh composed of 
nodes and elements. Each element has its domain Ωe ⊂ ℝ

nsd 
and boundary Γe ⊂ ℝ

nsd−1 . The weak form of the system can 
be obtained by integrating Eq. (1) in its strong form against a 
weighting function � ∈ H1(Ω) , where H1(Ω) is the Sobolev 
space of the square-integrable functions with an integrable 
first weak derivative, and applying the divergence theorem. 
Being Pk(Ωe) the space of polynomials of degree equal or 
less than k over Ωe , the function spaces are defined as

Therefore, the semi-discrete finite element formulation for 
Eq. (1) is: find �h(t) ∈ Sh

t
 such that ∀�h ∈ Wh:

(1)
��

�t
+N(�;�) = � , in Ω × (0, T],

(2)

� = � on ΓD × (0, T],

∇� ⋅ � = � on ΓN × (0, T],

�(�, 0;𝜁) = �0(�;𝜁) onΩ̃,

(3)Sh
t
= {�h(⋅, t) ∈ H1(Ω) | �h(⋅, t)|Ωe

∈ Pk(Ωe),∀e},

(4)Wh = {�h ∈ H1(Ω) | �h|Ωe
∈ Pk(Ωe),∀e}.

(5)
(
��h

�t
,�h

)
+ (N(�h;�),�h) = (�h,�h),
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where the L2 inner product over the domain Ω is indicated 
by (⋅, ⋅) . The weak form given by Eq. (5) naturally accom-
modates several finite element formulations, from Galerkin 
to Variational Multiscale methods [1, 8, 19, 39, 53]. After 
the temporal discretization of Eq. (5), the equation can be 
translated into a discrete-time dynamic system. In this sys-
tem, the state vector �h at the time instant k + 1 can be writ-
ten such that:

where F  represents the discrete-time flow map of the sys-
tem and incorporates information regarding the parameters 
� , mesh size, solver tolerances, etc. In the present study, 
we consider that the measurements of the system are the 
state vectors themselves, that is, �h

k
 . Analyzing the evolu-

tion in time of a discretized PDE as a dynamical system is a 
key concept for introducing Dynamic Mode Decomposition 
(DMD).

DMD is an equation-free, data-driven method that pro-
vides accurate assessments of the dominant structures in a 
given complex system [43]. DMD provides a decomposition 
of data into spatio-temporal modes that correlates the data 
across spatial features and also associates them to unique 
temporal Fourier modes. The main idea of the method is to 
efficiently compute the regression of linear/nonlinear terms 
to a least-square linear dynamics approximation from experi-
mental or numerical observable data. Despite its first appear-
ance in the fluid dynamics context [55, 56], DMD has been 
used in many other applications such as epidemiology [51], 
biomechanics [16], urban mobility [3], climate [44] and aer-
oelasticity [28], especially in structure extraction from data 
and control-oriented methods.

We can now apply DMD on the dynamical system 
described in Eq. (6). Consider a dataset �h containing 
the observations in time of the dynamical system �h

k
 for 

k = 0, 1,… ,m , where m + 1 is the total number of observa-
tions. The dataset

can be split into two datasets �h
1
= [�h

0
…�h

m−1
] ∈ ℝ

n×m and 
�h

2
= [�h

1
…�h

m
] ∈ ℝ

n×m . DMD consists on finding the best 
fit approximation of the linear mapping � that transforms 
dataset �h

1
 into dataset �h

2
 , that is,

The computation of � can be done as � = �h
2
�

h†

1
 , where �h†

1
 

is the Moore–Penrose pseudoinverse of �h
1
 . However, we 

avoid the computation of the full matrix � since � is a n × n 
matrix. Also, the computation of the full Moore–Penrose 

(6)�h
k+1

= F(�h
k
),

(7)�h =

⎡⎢⎢⎣

� � �
�h
0
�h
1
… �h

m� � �

⎤⎥⎥⎦

(8)�h
2
= ��h

1
.

pseudoinverse is not advisable due to its ill-conditioning. 
Instead, we can compute the SVD of �h

1
 as

where � ∈ ℝ
n×m and � ∈ ℝ

m×m are the left and right sin-
gular vectors and � ∈ ℝ

m×m is a diagonal matrix with real, 
non-negative, and decreasing entries named singular values. 
The singular values �0 ≥ �1 ≥ �2 ≥ ⋯ ≥ �m−1 are hierarchi-
cal and can be interpreted in terms of how much the singular 
vectors influence the original matrix �h

1
 . For the DMD pro-

cedure, considering the Eckart–Young Theorem [23], the 
optimal low-rank update approximation matrix �h

1
 , when 

subjected to a truncation rank r, can be written as

where �r ∈ ℝ
n×r is a matrix containing the first r columns 

of � , �r ∈ ℝ
m×r contains the first r columns of � , and 

�r ∈ ℝ
r×r is the diagonal matrix containing the first r sin-

gular values. The pseudoinverse can be approximated as

and, instead of computing � ∈ ℝ
n×n , we can obtain �̃ , a 

r × r projection of � as

Note that �̃ is unitarily similar to � . Further mathematical 
details regarding the optimization problem (the best-fitting 
matrix �̃ ) and the influence of the Eckart–Young Theorem 
on constraints of the problem can be found in [40]. Now we 
can compute the eigendecomposition of �̃:

where � is a diagonal matrix containing the discrete eigen-
values �j and the matrix � contains the eigenvectors �j of 
�̃ . The DMD basis can be written as

and the signal reconstruction as

being � the vector containing the projected initial conditions 
such that 𝐛 = 𝚿†𝐮h

0
 , and �eig is a diagonal matrix whose 

entries are the continuous eigenvalues �i = ln(�i)∕Δto , 
where Δto is the time step size between the outputs. In the 
present study, Δto = jΔt , where j = 1, 2,… ,m , being Δt the 
time step size used in the temporal integration of the PDEs. 
For instance, if one chooses to output the solutions once 
every two time steps, the time step size between the two 
observations will be two times larger than the time step size 

(9)�h
1
= ���T ,

(10)�h
1
≈ �̃h

1
= �r�r�

T
r
,

(11)�
h†

1
≈ �̃

h†

1
= �r�

−1
r
�T

r

(12)�̃ = �T
r
��r = �T

r
�h

2
�r�

−1
r
.

(13)�̃W = WΛ,

(14)� = �h
2
�r�

−1
r
�,

(15)�h(t) ≈ �̃h(t) = � exp(�eigt)�,
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used to compute time integration, that is, Δto = 2Δt . It is 
important to mention that the snapshots sampling frequency 
affects directly the DMD’s ability to capture the dynam-
ics. For lower dominant frequencies, a larger Δto is more 
adequate, while smaller values of Δto are required for captur-
ing rapid dynamics [56]. The form of (15) can be regarded 
as a generalization of the Sturm–Liouville expansion for a 
differential problem:

where �i and �i are the ith Sturm–Liouville eigenfunctions 
and eigenvalues for a given differential operator.

DMD can be seen as a dimensionality reduction method 
due to its inherent ability to extract the r most relevant 
dynamical modes, where r is often much smaller than the 
snapshot matrix rank m. However, a strategy to determine 
the number of relevant modes is not straightforward, and 
is an active topic in DMD research [59]. Even though the 
choice of r for DMD may require some trial and error, some 
techniques can be used to find a good starting point. A hard 
threshold technique [43] consists of choosing r such that

where � is a tolerance threshold, set, e.g., to 10−6 . This 
method implies that more than 100(1 − �)% of the variance 
in the data is retained by the approximation. For the case 
where DMD is used on experimental (or numerical but 
noisy) data, more sophisticated solutions are presented in 
the literature [22, 29].

Another important consideration when using DMD is the 
SVD algorithm. The SVD can represent a significant part 
of the computational effort, meaning that improvements in 
the SVD performance lead to significant CPU time gains. 
For many SVD-based methods (such as DMD), there is no 
need to compute the SVD for the whole matrix, since the 
method aims at extracting the first r dominant structures in 
the matrix. Many algorithms are designed in this direction to 
make this computation more efficient. One important contri-
bution in this direction is seen in [58], where the method of 
snapshots was proposed, paving the way to more algorithms 
and techniques. In this paper, we employ the randomized 
SVD (rSVD) algorithm [25, 38], a non-deterministic algo-
rithm able to compute the near-optimal low-rank approxima-
tion of a given large dataset with good efficiency.

(16)u(t) =

∞∑
i=0

bi�ie
�it,

(17)� = 1 −

∑r

i=1
�2
i∑m

i=1
�2
i

≤ �,

3  DMD on adapted meshes

Regarding numerical methods to approximate PDEs, the use 
of finer meshes in finite element discretizations usually leads 
to more accurate solutions. On the other hand, reducing the 
number of equations neq in the nonlinear system is crucial for 
efficiency, especially considering that the optimal computa-
tional complexity of a single physics transient finite element 
simulation is O(n

4

3

eq) [15]. The duality between the two state-
ments describes a well-known trade-off between accuracy 
and efficiency in the finite element context. Despite a consid-
erable research effort in the past decades, strategies to gener-
ate tailored meshes to maximize the accuracy while mini-
mizing the computational effort are still an open research 
topic. Milestones addressing this subject are finite element a 
posteriori error estimators/indicators [2], techniques such as 
adaptation, interpolation [17, 47] and projection [18, 27, 50], 
as well as libraries and frameworks containing automated 
versions of AMR/C techniques [4, 42].

The general structure of the AMR/C scheme is given 
in Algorithm 1 and illustrated in Fig. 1. Three criteria are 
fundamental in an AMR/C algorithm: remeshing, flagging, 
and stopping. The remeshing criterion defines whether the 
computed solution at a given time step requires remeshing 
driven by global a posteriori error estimators (or indicators) 
and/or by calling the refinement/coarsening procedure at 
every j time steps. Next, all mesh elements are visited and 
flagged for refinement or coarsening. The element flagging 
criterion is often represented by local a posteriori error esti-
mators or indicators, i.e. flux-jumps of the solution gradi-
ent. In possession of the flagged elements, the remeshing 
algorithm is invoked. Finally, the previous mesh solution 
must be projected or interpolated into the target mesh. This 
is done by the projection/interpolation algorithm. The whole 
process is repeated until the stopping criterion is achieved. 
This criterion could be error equidistribution (until a certain 
threshold), a given element size, the maximum number of 

Fig. 1  Illustration of a mesh refinement procedure. A local a poste-
riori error estimator or indicator flags an element for refinement (in 
green) using the solution computed in the mesh on the left. The mesh 
is refined (or coarsened) according to the flagged elements, and the 
process can be restarted until a given criterion is met (error level, ele-
ment size, maximum number of elements, etc.). Note that the initial 
and the final mesh differ in the number of degrees of freedom and 
topology
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elements in the mesh, or the number of refinement levels. 
Note that the meshes generated in Algorithm 1, guided by 
the error estimation procedure, have different dimensions 
(number of degrees of freedom) and different topologies, 
which poses difficulties for DMD (or, in fact, for any snap-
shot-based method).

The structure of the exact DMD algorithm relies on the 
fact that the measurements of the state vectors, i.e., �h

0
…�h

m
 

have the same dimensionality. This structure could be exem-
plified in numerical experiments as fixed discretizations in 
space, i.e., fixed meshes or static sensors in experimental 
data. However, finite element simulations equipped with 
AMR/C strategies provide solutions in different function 

spaces, depending on the mesh used to compute the solu-
tion on a given time step. Spatial adaptivity on transient 
finite element simulations leads to meshes with a different 
number of nodes, numbering, and nodal coordinates. It can 
also lead to different mesh topologies and structures. For that 
reasons, snapshots obtained by AMR/C simulations cannot 
be stacked in columns to construct the snapshot matrix. Even 
if one considers an AMR/C strategy that restricts the adap-
tive meshes to preserve the dimensionality of the snapshots, 
the difference between the nodal coordinates of the various 
meshes will lead to misleading dynamics captured by DMD. 
In the present study, we circumvent this issue by considering 
the L2-projection [50] of the numerical simulation results for 
different meshes into a reference target mesh. Recent work 
on reducing these projection costs for related reduced-order 
modeling techniques (though not DMD) may be found in 
[26, 32, 37]. The projection or interpolation of numerical 
solutions between finite element meshes is a well-known 
computational mechanics subject. Many issues regarding 
boundary conditions, data visualization, or coupling arise 
from this kind of problem. The choice of a proper method 
to successfully project functions in different finite element 
spaces is not a trivial task since conservation may not be sat-
isfied [18, 27, 50]. This issue is not addressed in the present 
study since the mesh projection occurs as a post-processing 
phase after computing the AMR/C solutions. Therefore, it 

cannot lead to cumulative errors. Furthermore, we are also 
careful to choose reference target meshes with characteristic 
length equivalent with the existent in the AMR/C meshes to 
avoid any major accuracy losses. For the sake of generality, 
we consider the L2-projection as our method of choice, and 
it can be defined as follows [61]. Assuming that the solution 
on the donor mesh �h(�) =

∑n

j=1
�j�j(�) to be projected onto 

the target mesh must satisfy the orthogonality condition,

where V� is a finite-dimensional subspace of L2(Ω) defined 
by the target mesh and the interpolant �proj is the optimal 
interpolant in the L2-norm for V� . The orthogonal projec-
tion can be defined in terms of the following linear system

where � is the mass matrix and � is the projection matrix. 
The mass matrix is usual in finite element computations. 
The � matrix, however, can present technical difficulties (see 
“Appendix”).

Therefore, our strategy consists of applying the L2-pro-
jection onto a tailored reference target mesh capable of 
representing the many scales in time and space of all the 
snapshots. This routine is inserted in the code and invoked 
after the adaptive procedure in Algorithm 1 at every output 

(18)(�h − �proj, �)L2 = 0 ∀� ∈ V�

(19)��proj = ��,
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time step Δto . This tailored reference mesh is described in 
this work as target reference mesh and should not be con-
fused with the target mesh generated during the AMR/C 
procedure. The new solution (computed on the adaptive 
donor mesh) is projected onto the reference target mesh and 
exported as a simulation output. In this work, we export as 
output files for visualization purposes, although there is no 
restriction on stacking the snapshots on the snapshot matrix 
during the simulation runtime or dumping only �proj on disk. 
We considered Gmsh [30], an open-source robust mesh gen-
erator, as our software of choice for defining and creating 
the target meshes for this study. The output for each time 
step is the snapshot with constant dimensionality n such that 
all nodes in space are correctly mapped and capturing the 
dynamics existent in the system. The procedure is summa-
rized in Algorithm 2. This strategy is relatively simple since 
the L2-projection consists of solving a linear system where 
the generated matrix is a mass matrix and requires no extra 
outputs for storing the projected solutions since the projec-
tion can be applied right after the AMR/C code. The mass 
matrix is generated in the finite element context by a self-
adjoint operator, enabling more efficient solvers. In terms 
of versatility, the L2-projection method is flexible because a 
solution obtained for a given mesh can be naturally projected 
onto reference target meshes with different topologies and 
dimensionalities. Also, since the mesh projection is a vital 
part of AMR/C algorithms, finite element algorithms fre-
quently present efficient implementations of interpolation 
or projection techniques. Figure 2 shows an example where 

a solution obtained by an adaptive mesh simulation is pro-
jected onto two meshes with different topologies.

For this example, we consider the square domain 
Ω = [−1, 1] × [−1, 1] and the function u defined in Ω such 
that

This function is approximated on a structured finite ele-
ment mesh discretized into 10 × 10 cells where each cell is 
divided into two triangular elements. An AMR/C procedure 
is invoked to refine three times the transition between � = 1 
and � = 0 , creating a new mesh containing 1672 elements 
and 857 nodes. Figure 2a shows the new mesh generated 
after the AMR/C procedure and the function approximated 
by the resulting function space. Two meshes—one struc-
tured and another unstructured—are considered for projec-
tion. The structured mesh contains 80 × 80 cells, resulting 
in 12,800 triangular elements and 6561 nodes. The ele-
ment sizes of the structured mesh are similar to the small-
est elements in the adaptive mesh. The unstructured mesh 
presents a smaller characteristic length than the structured 
mesh and contains 17,088 elements and 8705 nodes. Fig-
ure 2b, c shows the proposed meshes and the projections of 
the solution onto the new finite element spaces. Note that 
the projected solutions are fairly accurate since their infinity 
norm is in good agreement with the adaptive mesh solution’s 
infinity norm.

(20)u =

{
1, if (x, y) ∈ [−0.3, 0.3] × [−0.3, 0.3],

0, otherwise.

Remark In this study, the projection is carried out inside the 
finite element simulation since the projection computational 
cost is practically negligible in comparison with the overall 
time required for solving nonlinear systems of a complex 
numerical simulation. However, if one does not have access 
to the finite element simulation codes used, the reconstruc-
tion of the solution of each time step can still be done off-
line. Output files of various formats contain information 
regarding the mesh used (such as nodal coordinates and con-
nectivities) for visualization purposes. By properly reading 
these files, the solutions can be reconstructed under a finite 

element framework (such as FEniCS [4] or libMesh [42]) 
or on a code developed by the user. However, this totally 
non-intrusive approach can significantly increase the com-
putational cost due to several I/O operations that are often 
extremely low compared to computational intensive opera-
tions. Since the mesh constantly varies in an AMR/C finite 
element simulation, each solution obtained in the simulation 
has to be imported, reconstructed under its original mesh, 
and projected. After the projection, the user can choose to 
dump the solution in the disk or stack the snapshots on the 
snapshot matrix. For the first case, another I/O operation 
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Fig. 2  Comparison of differ-
ent L2-projection examples on 
structured and unstructured 
meshes
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would be invoked. This non-intrusive strategy is especially 
suitable (and restricted) to be used with DMD, which is also 
a non-intrusive algorithm. For intrusive snapshot-based 
methods such as Proper Orthogonal Decomposition (POD), 
one needs to project finite element matrices onto the com-
puted basis and, therefore, requires access to the code [62].

4  Numerical experiments

In this section, for the sake of generality, we apply our 
method in several applications, with different systems of 
equations, numerical formulations, mesh topologies, spatial 
dimensions, refinement criteria, and finite element libraries. 
We compare the results between the AMR/C solution, the 
fixed mesh solution, and the DMD results for all cases. First, 
we test the DMD short-time future prediction capabilities 
on a continuous SEIRD model for COVID-19, a nonlinear 
system of diffusion–reaction equations. The equations are 
considered using a Galerkin finite element discretization 
and are solved using libMesh [42], a high-performance 
C++ finite element library. The error estimators, refinement/
coarsening strategies built-in on libMesh can be seen on 
[34, 63]. Also, the L2-projection algorithm is embedded in 
libMesh. We explore the results in one and two spatial 
dimensions, where the 1D case is a hypothetical exam-
ple, and the 2D case describes the COVID-19 evolution in 
the Lombardy region in Italy [34, 63, 64]. The simulation 
obtains the results for 44 and 60 days for the 1D and 2D 
cases, respectively. Since we want to predict 14 days in the 
future, we only feed DMD with snapshot matrices contain-
ing the first 30 and 46 days in the 1D and 2D cases, respec-
tively, such that the predicted results can be compared with 
the results obtained in the simulations. To apply DMD to the 
SEIRD data obtained on an AMR/C simulation, we project 
the adaptive solution onto a mesh with characteristic length 
compatible with the obtained simulation results. The dis-
cretization of the reference mesh used for the projection is 
as fine as the final refinement level on the adaptive meshes. 
Next, we consider two fluid dynamics applications where the 
governing equations for both cases are advection-dominated. 
To circumvent the LBB condition and spurious oscillations 
regarding dominant advection, these equations consider the 
residual-based variational multiscale (RBVMS) formulation 
[1, 8, 19, 35, 39, 53] on a finite element discretization. We 
consider the use of DMD on a 2D density-driven gravity 
flow and a 3D bubble rising simulation. The density-driven 
gravity current is modeled by the coupling of the incom-
pressible Navier–Stokes equation and the advection–dif-
fusion equation. We consider a lock-exchange problem, 
where a tank is filled with two fluids of different densities, 
separated by a lock. The simulation starts when the lock is 
removed, and the difference in the densities of the fluids 

generates the driving forces responsible for the motion of 
the fluids. Unlike the other examples in this work, the imple-
mentation of this numerical test is made on the FEniCS 
v.2019.1 framework [4], a high-performance Python/C++ 
finite element library. The refinement/coarsening algorithm 
and L2-projection algorithm for this example are part of the 
framework. We consider an interface-tracking error indica-
tor for the AMR/C simulations, and the mesh is refined fol-
lowing the bisection method [54]. DMD is considered to 
reconstruct the solution, and the results are compared to the 
fixed mesh results and the results obtained by AMR/C simu-
lations. Finally, we extend our analysis to a 3D bubble rising 
case [33], a two-phase incompressible flow problem where 
the interface is captured by the convected level-set method. 
This model is implemented on libMesh, taking advantage 
of the same refinement/coarsening strategies as well as the 
projection algorithm used in the SEIRD numerical tests. In 
this example, we test the projection of the adaptive solu-
tions onto three different meshes containing the different 
scales existent on the AMR/C simulation and evaluate the 
results. We consider DMD to predict the bubble geometry 
and dynamics for a short time in the future.

For all the numerical tests proposed, we evaluate the 
results in terms of efficiency and accuracy. For efficiency 
purposes, we compute the ratio between the computational 
time required to run the finite element simulations and the 
time required to run DMD separately. We refer to this quo-
tient as speedup. The finite element code is responsible for 
computing the snapshots and projecting the results onto the 
reference target meshes proposed, while the DMD code 
imports the output files, extract the snapshots, computes the 
approximation, and outputs the results. Also, we provide a 
table describing how the projection routine affects the over-
all computational time required for the simulations for all 
examples. In terms of accuracy, we evaluate the results in 

terms of overall relative error �F =
||�h − �h

DMD
||F

||�h||F
 where 

�h is the snapshots matrix, �h
DMD

 is a matrix comprising the 
approximations obtained by DMD and || ⋅ ||F denotes the 
Frobenius norm. A more detailed analysis is also done in 
terms of relative error in time � . For that, we plot the curves 
of the relative errors (in terms of L2-norm) of each snapshot. 

We compute � =
||�h

k
− �h

kDMD
||
2

||�h
k
||
2

 for k = 0, 1,… ,m snap-

shots, where || ⋅ ||2 denotes the L2-norm. Also, to avoid 
unphysical results, some quantities of interest are evaluated 
and compared using both simulation and approximation 
results. For the SEIRD model, we plot the results regarding 
the total population. This quantity should be constant in time 
according to the hypothesis of the model. For the lock-
exchange simulation, we compute the mass during the simu-
lation and the front position. Since the simulation is 
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considered on a closed tank, the mass must be kept constant 
during the simulation. For the 3D bubble rising problem, we 
plot the quantities of interest related to the geometry (vol-
ume and sphericity) and dynamics (center of mass and rise 
velocity) of the bubble. In this case, we test meshes with 
different minimum characteristic lengths. The results are 
shown and discussed below.

4.1  Continuous SEIRD model for COVID‑19

The outbreak of COVID-19 in 2020 has led to a surge in 
interest in the mathematical modeling of infectious diseases. 
This new virus is responsible for infecting millions of people 
worldwide and impacting the economy in an unprecedented 
way. Therefore, numerical simulation of the virus’ dynam-
ics may help provide short-term prediction models for fore-
casting the number of future cases. In this perspective, it is 
possible to develop strategic planning in the public health 
system to avoid deaths and manage patients.

Disease transmission may be modeled as compartmen-
tal models, in which the population under study is divided 
into compartments and has assumptions about the nature 
and time rate of transfer from one compartment to another 
[11]. Here, we work with a spatio-temporal SEIRD model, 
presented in [34, 63, 64], and given by,

where s(�, t) , e(�, t) , i(�, t) , r(�, t) , and d(�, t) denote the 
densities of the susceptible, exposed, infected, recovered, 
and deceased populations, respectively. The sum of all the 
compartments with the exception of d(�, t) is represented by 
npop which is the total living population. Ae characterizes the 
Allee effect (persons), that takes into account the tendency 
of outbreaks to cluster around large populations, �i and �e 
denote the transmission rates between symptomatic and 
susceptible individuals and asymptomatic and susceptible 

(21)
�s

�t
+ �i

(
1 −

Ae

npop

)
si + �e

(
1 −

Ae

npop

)
se

− ∇ ⋅ (npop�s∇s) = 0

(22)
�e

�t
− �i

(
1 −

Ae

npop

)
si − �e

(
1 −

Ae

npop

)
se

+ (� + �e)e − ∇ ⋅ (npop�e∇e) = 0

(23)
�i

�t
− �e + (�i + �)i − ∇ ⋅ (npop�i∇i) = 0

(24)
�r

�t
− �ee − �ii − ∇ ⋅ (npop�r∇r) = 0

(25)
�d

�t
− �i = 0,

individuals, respectively (units days−1 ), � denotes the incu-
bation period (units days−1 ), �e corresponds to the asympto-
matic recovery rate (units days−1 ), �i the symptomatic recov-
ery rate (units days−1 ), � represents the mortality rate (units 
days−1 ), and �s , �e , �i , �r are the diffusion parameters of the 
different population groups as denoted by the sub-scripted 
letters (units km2 persons−1 days−1 ). Note that all these 
parameters can be considered time and space-dependent. 
We also compute the compartment c, the cumulative field 
of the i compartment.

For the numerical solution of (21)–(25), we discretize in 
space using a Galerkin finite element variational formula-
tion. The resulting systems of equations are stiff, leading us 
to employ implicit methods for time integration. We apply 
the Backward Differentiation Formula (BDF2), which offers 
second-order accuracy while remaining unconditionally sta-
ble. We implement the whole model in libMesh [42]. We 
additionally make use of AMR/C, allowing us to resolve 
multiple scales. One may find more details about the meth-
ods in [34, 63].

4.1.1  Reproducing a 1D model

First, we use a simple 1D continuous SEIRD model for 
COVID-19 with adaptive mesh refinement to validate the 
L
2-projection and DMD. This example was introduced in 

[63] and reproduced in [34]. Basically, we consider a 1D 
region Ω = [0, 1] with initial conditions that represents a 
large population centered around x = 0.35 with no exposed 
persons and a small population centered around x = 0.75 
with some exposed individuals, as shown in Fig. 3. Thus, 
we set s = s0 and e = e0 as follows:
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Fig. 3  Initial conditions for the 1D model
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We further set i0 = 0 , r0 = 0 , and d0 = 0 . We also enforce 
homogeneous Neumann boundary conditions at x = 0 and a 
zero-population Dirichlet boundary condition at x = 1 for all 
model compartments. The latter represents a non-populated 
area at x = 1.

(26)

s0 =e
−(x+1)4 + e

−
(x−0.35)2

10−2

+
1

8

(
e
−

(x−0.62)4

10−5 + e
−

(x−0.52)4

10−5 + e
−

(x−0.42)4

10−5

)

+
1

4
e
−

(x−0.735)4

10−5

(27)e0 =
1

20
e
−

(x−0.75)4

10−5 .

Following [34, 63] we set � = 0.09375 days−1 , 
�i = �e = 0.375 days−1persons−1 , � = 0.0046875 days−1 , 
�i = 0.03125 days−1 and �e = 0.125 days−1 ,  A = 0 , 
�s = 3.75 × 10−5 , �e = 0.75 × 10−3 , �i = 0.75 × 10−10 and 
�r = 3.75 × 10−5 km2persons−1days−1 . The time step size is 
defined as Δt = 0.25 days and we consider the mesh projec-
tion and outputs at every time step, that is, Δto = Δt = 0.25.

We use an adapted mesh with initially 125 elements, and 
after the refinement, the smallest element has a size 0.002. 
At the beginning of the simulation, we refine uniformly the 
whole domain into two levels and, after that, we apply the 
adaptive mesh refinement every 4 time steps. The idea is 
that the AMR/C strategy will keep this spatial resolution 
on more dynamically relevant regions while coarsening 
other regions in the domain. As a target reference mesh, 
we consider the uniformly refined mesh, such that all the 
domain contains the minimal spatial resolution obtained by 
the AMR/C simulation.

The results of this simulation are validated against the 
results from [34, 63]. Figure 4 show the solution of the 1D 
SEIRD example at t = 30 days for the fixed mesh simulation, 
the adaptive mesh simulation, and the projection of the adap-
tive solution onto the target reference mesh used in the fixed 
mesh simulation. We observe a good agreement between 

Fig. 4  Solution at t = 30 days 
for the fixed mesh solution, 
AMR solution and the respec-
tive projection onto a reference 
mesh for the 1D SEIRD exam-
ple. The reference mesh was 
built with characteristic length 
similar to the smaller elements 
in the adaptive mesh
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Table 1  Absolute and relative time required for the projection rou-
tine in comparison with the adaptive finite element simulation code 
(AMR/C FEM) for the SEIRD model in the 1D case

Code part Absolute time (s) Relative time ( %)

AMR/C FEM 1262.89 98.53
Mesh projection 18.88 1.47
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the solutions. This agreement is a positive indicator that the 
DMD can be used on the projected meshes with little to no 
error compared to the DMD on a fixed mesh simulation. In 
terms of efficiency, Table 1 shows the computational effort 
required for the reference mesh projection embedded on the 
adaptive finite element code in comparison with the time 
used for the simulation code itself (AMR/C FEM).

After some initial experiments, we set r = 15 for all com-
partments. In this example, the finite element simulation 
computes the results for 44 days, that is, 176 time steps. 
However, we only consider the first 30 days in the snapshot 
matrix for reconstruction. DMD is set to approximate the 
results for a further 14 days so the results can be compared 
with the 44 days results obtained in the finite element simu-
lation. In other words, we want to evaluate the DMD ability 
to predict the COVID-19 scenario two weeks in the future 
given the data of the last 30 days. For numerical reasons, 
we considered an initial 3 days shift in the snapshots since 
some compartments are initialized with zeros, affecting how 
DMD captures the dynamics. The 44th day solution for the 
adaptive simulation and the 44th day prediction consider-
ing DMD are seen in Fig. 5. We observe good agreement 
between predictions and the numerical solutions of the 
simulations for most compartments. The speedup and over-
all relative error between the DMD approximation and the 
snapshots are seen in Table 2.

4.1.2  The Lombardy region

We extend our analysis by solving the continuous SEIRD 
model and applying DMD to a 2D real world domain that is 
the Lombardy region in Italy. The spread of the COVID-19 
has been studied in this region using the continuous SEIRD 
model with accurate results [63, 64]. Here, we reproduce this 
simulation with the solver developed in [34] which invokes 
adaptive mesh refinement every 4 time steps. We use the 
same parameters as shown in [63, 64]. It is important to 
point that, in this simulation, the transmission rates and dif-
fusion parameters vary with time in order to reproduce the 
effects of restrictions during the simulated period.

For this simulation, an unstructured mesh is considered 
due to the complex geometry imposed by the domain. The 
mesh is generated using Gmsh and is uniformly refined 
as the simulation starts. After refining the whole mesh in 
one level, the mesh presents a minimum spatial resolution 
of approximately 1 km. This procedure allows the solver 
to coarsen the regions where no significant dynamics are 
observed while preserving the scales of the regions of inter-
est. Figure 6 shows the variation of the number of nodes 
in time for the AMR/C strategy. The coarsening approach 
improves the simulation performance significantly since the 
average number of nodes (and respectively, the number of 
equations neq ) used in the adaptive simulation is approxi-
mately half with respect to the case of a fixed mesh with the 
same spatial resolution considered for the entire domain. 
In this example, the reference target mesh is the uniformly 
refined unstructured mesh considered in the early stages of 
the simulation, presenting 13,158 nodes and 25,340 ele-
ments. The simulation considers a time step size of Δt = 0.25 
days for the numerical integration and Δto = Δt = 0.25 days 
for the observations. Initial conditions for the Lombardy 
domain are the same presented on [63, 64] and are seen in 
Fig. 7, while compartments r and d are initialized to zero.

We then proceed to run both adaptive and fixed mesh 
simulations and, to apply DMD in the adaptive mesh results, 
we consider the proposed projection scheme. Figure 8 shows 
the s compartment solution at t = 46 days for both simula-
tions and the projected adaptive solution onto the reference 
mesh, revealing that the results are in good agreement. In 
terms of efficiency, Table 3 shows results for the computa-
tional time required for the projection compared to the finite 
element code. That said, the adaptive snapshots can now be 
assembled into a snapshot matrix for the DMD reconstruc-
tion and prediction.

The DMD analysis is made in the same way as presented 
in the 1D case: the simulation outputs the projected snap-
shots for the first 60 days (240 snapshots). The snapshot 
matrix assembles the information regarding 46 days of simu-
lations, while DMD approximates the results for 60 days. 
The idea is to predict two weeks in the future, given the data 
observed in the past 46 days. For this example, we consider 
the SVD truncation at r = 20 for all compartments. Again, 
an initial 3 days shift in the data is considered to avoid issues 
with the compartments initialized to zero. Results for the 
60th day comparing the computed numerical solutions and 
the DMD predictions are seen in Figs. 9 and 10. We present 
the projected solutions, the DMD prediction, and the relative 
error in space between the two results from left to right. We 
can note that most compartments show results in agreement 
with the simulations, while the exposed compartment reveals 
more pronounced differences than the other compartments.

Figure 11 shows the relative error in time between the 
DMD results and the projected snapshots. The first thing we 

Table 2  Relative error between reconstructed (and predicted) data 
and the projected snapshots

Compartments Relative error Speedup

s 1.590 × 10−3 1.079 × 103

e 2.574 × 10−2 1.316 × 103

i 1.162 × 10−2 1.225 × 103

r 1.439 × 10−2 1.264 × 103

d 2.001 × 10−2 1.331 × 103

c 1.286 × 10−2 1.341 × 103
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notice is that the curves are different for each compartment. 
This discrepancy occurs due to the different parameters for 
each equation in the SEIRD model, which largely affects the 
dynamics of the system. The dynamics for each compart-
ment are different since each compartment presents different 
coupling, diffusion, and reaction parameters. Also, regarding 
this issue, since the parameters are time and space-depend-
ent, sudden changes in their values can affect the dynamics 

of the system as well as DMD’s dynamics mapping ability. 
Some sudden changes in the s and e compartments related 
to stricter public policies considered to reduce the transmis-
sion rates (parameters �i and �e ) are incorporated into the 
model. Since the variation in the parameters is not intro-
duced smoothly, DMD’s ability to map sudden changes in 
the dynamics of the system is reflected by the existence of 
some spikes on the curves of the relative errors in time. 
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Fig. 5  Solution at t = 44 days for the AMR simulation solution and the 14 days projection using DMD for the 1D SEIRD example
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Comparing the reconstruction and prediction stages, we 
observe that the errors tend to grow as soon as the prediction 
stage starts (dashed line). The exposed compartment, which 
yielded most of the oscillations due to parameter changing 
on the reconstruction stage, presented the same behavior 
on the prediction phase around day 49. We also note that 
the exposed compartment yields a larger relative error for 
the 60th day in comparison with the other compartments. 
Table 4 shows the overall relative error and the speedups 
for the six compartments approximations. Comparing these 
results with the results presented in Figs. 9, 10 and 11, we 
can conclude that the predictions are reasonably accurate in 
comparison with the numerical solutions, specially when 
considering the time required for calculation.

Another important analysis to be done is the conserva-
tion property of the continuous SEIRD model. As men-
tioned before, the standard L2-projection does not guarantee 

conservation among the projections. Figure 12 shows the 
total population during the simulation, normalized by the 
total population modeled in the initial conditions. The total 
population is computed as the sum of the integral of the 
compartments (excluding c) divided by the sum of the inte-
gral of the elements of the mesh. Since the SEIRD model 
does not consider any population growth, the value must be 
theoretically constant for all the simulations. From the fig-
ure, we observe that the population is kept constant during 
all the adaptive simulation, and this was preserved by the 
projected solutions and the DMD reconstruction stage. That 
is, we can note that the L2-projection does not yield con-
servation issues in this example. For the prediction phase, 
DMD preserves the total population for several days in the 
future. However, it presents a slight increase (around 0.1% ) 
for predictions over 10 days, which does not affect the results 
significantly. This increase can be explained by the relative 
errors behavior, observed in Fig. 11, as DMD computes 
future estimates.

4.2  Fluid dynamics

This section evaluates the DMD use on two cases involving 
AMR/C in computational fluid dynamics: the reconstruction 
of a 2D density-driven gravity current simulation and the 
temporal prediction on a 3D rising bubble. Different from 
the previous cases, the test cases presented in this section are 
advection-dominant. To approximate the governing equa-
tions, we use a finite element RBVMS formulation [1, 19, 
35, 39, 53]. In the first case, we reconstruct the solution and 
evaluate important quantities of interest regarding density-
driven gravity flows. On the bubble rising simulation, we 
show how our strategy works on a 3D mesh, and we evaluate 
the DMD ability to predict the quantities of interest of the 
rising bubble in time.
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Fig. 6  Number of mesh nodes in time for the adaptive solution and 
the proposed reference mesh for the 2D SEIRD example

Fig. 7  Initial conditions for the SEIRD model in the Lombardy case
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Fig. 8  Solution for the suscep-
tible compartment at t = 46 
days obtained using an adaptive 
mesh and its respective projec-
tion onto a fixed reference mesh
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4.2.1  Density‑driven gravity flow

In this section, we consider a long numerical simulation that 
consists of a lock-exchange between two fluids, the heavy 
fluid, A, and the lighter fluid, B, based on the numerical 
example in [49]. The difference between their densities is 
such that the Boussinesq hypothesis is considered valid. 
Moreover, particles in the heavy fluid have negligible iner-
tia and are much smaller than the smallest length scales of 

Table 3  Absolute and relative time required for the projection rou-
tine in comparison with the adaptive finite element simulation code 
(AMR/C FEM) for the SEIRD model in the Lombardy case

Code part Absolute time (s) Relative time ( %)

AMR/C FEM 2107.24 98.52
Mesh projection 31.60 1.48

Fig. 9  Comparison between computed and predicted solutions at t = 60 days for the susceptible, exposed, and infected compartments
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the buoyancy-induced fluid motion. Thus, the dimensionless 
governing equations are

(28)

∇ ⋅ � = 0,

��

�t
+ � ⋅ ∇� + ∇p −

1√
Gr

Δ� − ��g = 0,

��

�t
+ � ⋅ ∇� −

1

Sc
√
Gr

Δ� = 0,

where � is the fluid velocity, � is the concentration field, 
p is the pressure, �g = (0,−1) is the vector pointing in the 
direction of gravity, Sc = 1.0 is the Schmidt number and 
Gr = 5 × 106 is the Grashof number, two dimensionless 
numbers that relate viscous effects with diffusion and buoy-
ancy effects, respectively. A Grashof number of this magni-
tude indicates a turbulent flow. The field � = �A∕�B is the 
concentration and is responsible for mapping the evolution 
of fluid interactions. The time step size considered for this 
simulation consists on Δt = 0.01 s for a total simulation time 

Fig. 10  Comparison between computed and predicted solutions at t = 60 days for the recovered, deceased, and cumulative infected compart-
ments
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of T = 30 s with an output frequency of Δto = Δt = 0.01 s. 
We consider a tank, that is, a rectangular domain with length 
L1 = 18 m, height L2 = 2 m. The boundary conditions for this 

case are no-slip for the velocity and no-flux for the trans-
port equation, and the initial conditions are such that the 
heavy fluid is represented as a column with dimensions 
L0
x
× L0

y
= 1 m × 2m located at the left border of the tank and 

the light fluid fills the rest of the domain. Figure 13 illus-
trates the domain and the initial conditions.

To solve the governing equations, we implement the 
RBVMS formulation [35] for Eq. (28) using the FEniCS 
2019.1 [4] framework to generate the snapshots for this 
example. The adaptive mesh refinement procedure returns 
the solution for �, p, and � . For this example, we only con-
sider the snapshots of � for our calculations, that is, an over-
all data reduction of 75% . Details of the formulation of the 
problem can be found in [7, 35]. We consider a fixed mesh 
simulation with 701 × 101 nodes and 700 × 100 cells, where 
each cell is divided into two linear triangles. We consider 
an interface-tracking adaptive mesh error indicator that flags 
and refines the mesh where the two fluids interact for the 
adaptive mesh simulation. The error indicator for the mesh 
refinement is |∇�| being larger than a given tolerance. For 
this purpose, a mesh containing 175 × 25 cells is considered, 
the interfaces are refined considering two levels of refine-
ment, and the mesh refinement is invoked at every time step. 
Figure 14 shows the results at t = 10 s for both fixed and 
adaptive mesh simulations and the projection of the adap-
tive solution onto the same mesh used in the fixed mesh 
simulation.

AMR/C in this problem is advisable since the dynamics 
are predominant on the interface between the fluids. Most of 
the domain is not affected in the early stages of the simula-
tion, and the use of fine meshes outside these regions may 
represent unnecessary computational effort. Figure 15 shows 
the number of nodes in the mesh during the simulation time 
for the adaptive mesh compared with the fixed 701 × 101 
nodes mesh.

We observe that the number of nodes in the adaptive 
simulation is smaller than the fixed mesh for all the simula-
tion time. Table 5 shows the time required for the simulation 
to run in comparison with the time spent on projecting the 
solutions onto the reference target mesh.
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Fig. 11  Relative error for all compartments between numerical simu-
lation snapshots and DMD reconstruction and prediction. The dashed 
line represents the beginning of the DMD prediction stage

Table 4  Relative error between reconstructed (and predicted) data 
and the computed snapshots and speedup between DMD and the 
numerical simulation

Compartments Relative error ( �
F
) Speedup

s 1.345 × 10−3 822.61
e 5.187 × 10−2 938.09
i 1.304 × 10−2 755.97
r 7.316 × 10−3 1036.93
d 1.097 × 10−2 977.91
c 1.251 × 10−2 977.03
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Fig. 12  Population conservation for both adaptive and projected 
results

Fig. 13  Scheme illustrating the initial conditions for the density-
driven gravity flow example
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Now we proceed applying DMD to the projected solution 
and reconstructing the solutions. Figure 16 shows the rela-
tive error for the reconstruction using different values of the 
rank r. The results are also confirmed in Table 6, where the 
relative error between the reconstructed and projected snap-
shot matrices is shown and the speedup computed for each 

case. We observe that, for increasing values of r, the relative 
error decreases for all steps and affects the overall relative 
error of the matrices. That is, inserting more structures in the 
DMD basis yields better accuracy in terms of overall rela-
tive error. As for the speedup, we notice that it decreases for 

Fig. 14  Results and mesh for the first 8 m of the domain at t = 10s
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Fig. 15  Number of mesh nodes in time for the adaptive solution and 
the proposed reference mesh for the density-driven gravity current 
example

Table 5  Absolute and relative time required for the projection rou-
tine in comparison with the adaptive finite element simulation code 
(AMR/C FEM) for the lock-exchange example

Code part Absolute time (s) Relative time ( %)

AMR/C FEM 15748.11 94.94
Mesh projection 839.42 5.06
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Fig. 16  Relative error for the reconstruction considering different val-
ues of the rank r 

Table 6  Relative error between reconstructed data and the snapshots 
and speedup between DMD and the numerical simulation

Rank r Relative error ( �
F
) Speedup

50 1.081 × 10−1 558.53
100 3.472 × 10−2 445.91
150 6.207 × 10−3 230.67
200 2.024 × 10−3 204.74
250 9.604 × 10−4 189.17



4259Engineering with Computers (2022) 38:4241–4268 

1 3

increasing values of r. Such a decrease occurs because larger 
values of r directly affect the rSVD algorithm performance 
[7, 25] and increase the dimensions of the matrices for the 
computation of the DMD basis.

Most importantly, we can evaluate the quantities of inter-
est common to density-driven gravity currents. Figure 17 
shows the front position and mass conservation for both 
simulations and the respective reconstructions. We note that, 
for these quantities all reconstructions are in extremely good 
agreement with those computed with the fixed and adaptive 
meshes, approaching them, as expected, for higher values r.

4.2.2  Bubble rising problem

We now study a bubble rising 3D benchmark, whose task is 
to track the evolution of a three-dimensional bubble rising 
in a liquid column. The initial configuration is described in 
Fig. 18.

For this problem, we couple the Navier–Stokes equations 
with an interface capturing method called convected level-
set [20, 33, 65]. The convected level-set is a method used to 
represent the interface between two phases and, by a convec-
tion equation, to move the interface as the flow evolves. A 
force that has an important role in bubble problems is the 
surface tension ��� , which is applied using the Continuum 
Surface Model (CSF) [10].

We write the governing equations in their dimensional 
form as

where � is the density, � is the dynamic viscosity, � is the 
acceleration of gravity vector, � is the level-set function, � 

(29)

∇ ⋅ � = 0,

�
��

�t
+ �� ⋅ p∇� + ∇p − �∇2� − �� − ��� = �,

��

�t
+ (� + ��) ⋅ ∇� − � sgn (�)S = 0,
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Fig. 17  Front position and mass conservation for the fixed mesh and 
adaptive mesh simulations and reconstructions with the target mesh

Fig. 18  Initial configuration and boundary conditions for the bubble 
rising problem

Table 7  Rising bubble data

Computational domain 1 × 1 × 2 (m)
Grid sizes 0.100 to 0.025 (m)
Number of time steps 240 (–)
Time step 0.0125 s
Bubble radius 0.25 m
Initial bubble position (x, y) = (0.5, 0.5, 0.5) m
Liquid density 1000 kg/m3

Liquid viscosity 10 kg/(ms)
Gas density 100 kg/m3

Gas viscosity 1 kg/(ms)
Surface tension 24.5 N/m
Gravity 0.98 m/s2



4260 Engineering with Computers (2022) 38:4241–4268

1 3

is a penalty constant, � = sgn (�)
∇�

||∇�|| , and S a function 

related to the level-set signed distance function.
For the temporal integration, we apply the Back-

ward–Euler method to the Navier–Stokes equations, while 
for the convected level-set, we use the BDF2 method. One 

may find more details about the governing equations and 
methods in [33].

The initial configuration consists of a spherical bub-
ble of radius R = 0.25 m centered at [0.5, 0.5, 0.5] m in 
a [1 × 1 × 2] m domain. The no-slip boundary condition is 

Fig. 19  Level-set solution detail at t = 3.0 s and projection to the coarse, medium and fine meshes
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applied to all boundaries. Table 7 lists the parameters used 
for this simulation.

We use an adapted mesh, initially with 10 × 10 × 20 cells, 
with each cell divided into 6 linear tetrahedra. We refine the 
initial region where the bubble is located into two levels 
and, after the refinement, the smallest element has a size of 
0.025 m. The adaptive mesh refinement is based on the flux 
jump of the level-set function error, in which hmax = 2 . We 

apply the adaptive mesh refinement every four time steps. 
The interface is modeled with E = 0.05 , and the time step 
size is defined as Δt = 0.0125 s. We output the projected 
solutions at every 2 time steps such that Δto = 0.025 s. In 
this example, we consider three tetrahedral meshes for our 
projection strategy, presented in Fig. 19. The three meshes 
named coarse, intermediate and fine, present characteristic 
lengths similar to the three scales existent in the refinement 
levels of the adaptive mesh simulation. The coarse mesh 
represents the initial mesh on the adaptive simulation, with 
12,000 elements and 2541 nodes. The intermediate mesh 
presents smaller elements equivalent to the generated ele-
ments after the first refinement level on the AMR/C simula-
tion, totalizing 96,000 elements and 18,081 nodes and the 
fine mesh contains the smallest scales presented on the adap-
tive numerical solution with 768,000 elements and 136,161 
nodes. The figures show the level-set solution on half of the 
domain and at t = 3 s for the adaptive mesh solution and the 
respective projections. We also present on Table 8 the time 
required for the projection of the solutions of � on the three 

Table 8  Absolute and relative time required for the projection rou-
tine in comparison with the adaptive finite element simulation code 
(AMR/C FEM) for the bubble rising example

Target mesh Code part Absolute time (s) Relative time ( %)

Coarse AMR/C FEM 17345.92 99.97
Mesh projection 4.41 0.03

Intermediate AMR/C FEM 17390.03 99.85
Mesh projection 24.56 0.14

Fine AMR/C FEM 17653.70 98.91
Mesh projection 194.87 1.09
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Fig. 20  Comparison between the simulation and projection of the 3D rising bubble quantities of interest
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meshes in terms of absolute and relative time. We can see 
that the projection time is very small.

To verify if the bubble geometry and dynamics are being 
preserved during the mesh projections, we evaluate the 
quantities of interest such as the bubble volume, sphericity, 
center of mass, and rise velocity. Bubble volume and sphe-
ricity are related to the bubble geometry, while the position 
of the bubble center of mass and rise velocity regard the 

bubble dynamics. The results are compared for the AMR/C 
simulation output and the projections on Fig. 20. The quan-
tities of interest are computed using the adaptive snapshots 
as well as the projected snapshots and compared with each 
other. Regarding the geometry quantities of interest, we 
observe that the coarse mesh projection solution affects 
the bubble’s geometry, leading to bad results regarding the 
bubble volume and sphericity compared with the AMR/C 
simulation. For the intermediate and the fine meshes, the 
bubble’s geometry is not largely affected, and the results are 
compatible with the AMR/C results. As for the quantities of 
interest related to the bubble dynamics, no significant dif-
ference is observed on the projection of the three meshes. 
We observe that the center of mass is not affected by the 
projections compared with the simulation results. As for 
the rise velocity, we observe some minor differences in all 
projection cases.

The simulation proceeds until T = 3.0 s, yielding a dataset 
containing 240 snapshots regarding the solution of � for each 
target mesh from the projections. We do not consider the 
use of velocities and pressure in the DMD analysis, reduc-
ing the required data in 80% . We consider the results for the 
first 2.75s to construct the basis and predict the last 0.25 
s. We compare the DMD results in terms of relative error 
between the snapshot matrix and the obtained solutions for 
each case. The DMD solution for the coarse mesh is com-
pared to the projected adaptive solution onto the coarse mesh 
and so forth. Results are evaluated for multiple values of 
r, such that r = {5, 10, 15, 30, 45, 60} . The results regarding 
accuracy and performance for multiples values of r and the 
three meshes are presented in Table 9.

The results for r = 60 are shown in Fig. 21. We observe 
that the errors are stable for the reconstruction case, that 
is, the DMD solution before t = 2.75 s. From that point, 
shown as a dashed line on the figure, the errors begin to 
grow exponentially for each predicted time step, while still 
remaining below 1% until around 2.9 s. We observe that 
the errors in the reconstruction case are different regarding 
the mesh used. That is, the errors are larger with respect to 
the minimum characteristic length of the projection meshes. 
However, we observe that the errors grow at the same rate on 
the prediction phase independently of spatial discretization.

We also show the results considering r = 60 for recon-
struction at t = 2.75 s and prediction at t = 3.0 s in Fig. 22. 
We compare the DMD results for the three projected meshes, 
the adaptive mesh solution, and a fixed mesh solution. The 
fixed mesh solution is obtained by running the simulation 
with a mesh of 768,000 elements and 136,161 nodes, as the 
fine mesh used in the projection. We observe initially that 
the bubble geometry is better defined on the reconstruction 
than on the prediction figure. This better definition is directly 
related to the errors observed in Fig. 21. We observe that the 
coarse mesh results do not capture the bubble geometry with 

Table 9  Relative error between reconstructed data and the projected 
snapshots and speedup between DMD and the numerical simulation

Results presented for multiple values of r

Rank r Mesh Rel. error ( �
F
) Speedup

5 Coarse 6.222 × 10−2 1.33 × 105

Intermediate 6.655 × 10−2 7.95 × 104

Fine 6.865 × 10−2 1.53 × 104

10 Coarse 2.384 × 10−2 1.21 × 105

Intermediate 2.461 × 10−2 3.60 × 104

Fine 2.490 × 10−2 1.22 × 104

15 Coarse 1.415 × 10−2 1.15 × 105

Intermediate 1.402 × 10−2 2.46 × 104

Fine 1.429 × 10−2 7.55 × 103

30 Coarse 8.900 × 10−3 1.09 × 105

Intermediate 8.125 × 10−3 3.29 × 104

Fine 7.687 × 10−3 6.66 × 103

45 Coarse 6.382 × 10−3 1.02 × 105

Intermediate 5.820 × 10−3 5.35 × 104

Fine 5.776 × 10−3 5.80 × 103

60 Coarse 5.659 × 10−3 8.74 × 104

Intermediate 5.444 × 10−3 1.45 × 104

Fine 5.518 × 10−3 5.53 × 103

0 0.5 1 1.5 2 2.5 3
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Fig. 21  Relative error for the rising bubble example for the coarse, 
intermediate, and fine mesh solutions. The dashed line defines the 
start of the prediction phase
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the same accuracy as the intermediate and fine meshes for 
the reconstruction results. As for the intermediate and fine 
meshes, they present similar results in comparison with the 
projected solutions. However, when we observe the predic-
tion figure, we observe that instabilities inherent to DMD 
arise on the bubble contour, affecting the bubble geometry 
for the intermediate and fine mesh.

We now proceed comparing the results in terms of quan-
tities of interest for the DMD results. Figure 23 shows the 
bubble volume, sphericity, center of mass, and rise veloc-
ity for the DMD results compared to the adaptive solution 
results. The same issue regarding sphericity on the coarse 
mesh projection is observed on the coarse mesh DMD 
results. However, for the intermediate and fine meshes, the 
values match the results observed for the projection. We 

Fig. 22  Bubble contour at the 
vertical mid plane for the signal 
reconstruction ( t = 2.75 s) and 
prediction ( t = 3.0 s) last steps

Fig. 23  Comparison between 
the simulation and DMD signal 
plus prediction of the 3D rising 
bubble quantities of interest. 
The dashed line marks the 
beginning of the prediction 
regime for the DMD
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observe results in conformity for the center of mass and 
rise velocity as well. In terms of prediction, we observe that 
DMD accurately predicts the volume and the center of mass 
evolution. As for the other quantities of interest, the increas-
ing exponential errors in the DMD prediction structure affect 
the quantities of interest for long time future predictions.

5  Conclusions

In this work, we propose a strategy to enable data-driven 
snapshot-based methods on finite element solutions obtained 
by AMR/C simulations. The use of AMR/C algorithms in 
finite element approximations of PDEs is known to reduce 
memory usage and to increase the efficiency of the simula-
tions without compromising the accuracy. The simulation 
adapts the mesh with the evolution of the solution, refining 
regions of interest and coarsening regions that are not of 
interest. The adaptation process leads to different meshes 
during the simulations, and the solutions have different 
dimensions and topologies (or different connectivities 
and nodal coordinates) whenever the AMR/C algorithm is 
invoked. Snapshots with different dimensions prevent the 
use of snapshot-based algorithms such as DMD, where the 
snapshot matrix is built by stacking the solutions for each 
observation in columns. In this study, we considered a strat-
egy to project the adaptive solutions on reference meshes 
such that all snapshots present the same dimensions and 
nodal indices, enabling the construction of snapshot matri-
ces. The method employed to project the solutions onto the 
target reference mesh is the L2-projection, a simple, fast and 
versatile approach. The L2-projection is a common strategy 
present in several finite element libraries and frameworks 
and consists basically of solving a linear system, where the 
matrix is obtained by a self-adjoint operator enabling the use 
of efficient solvers. Despite presenting drawbacks, especially 
regarding properties’ conservation, we investigate the use 
of the L2-projection as a postprocessing tool without any 
relevant issues. By postprocessing, we mean that the L2-pro-
jection algorithm is invoked only to insert the solutions on 
a reference function space for each time step and output the 
files. This strategy does not yield significant additional com-
putational effort as we observe that the L2-projection routine 
required around 1% of the computational time required for 
the adaptive finite element code to run in most cases and 
5% in the worst case. When the source code is not available 
to invoke the L2-projection, one can construct the solutions 
from the output files and project them onto the target refer-
ence mesh in a complete non-intrusive workflow.

We test the algorithm on several models presenting differ-
ent dynamics and underlying physics. First, we present the 
results for DMD on a continuous SEIRD model for COVID-
19 for fictional data in 1D and real data for Lombardy, Italy, 

in 2D. The idea of considering short-time future estimates 
on COVID-19 models could improve the decision-making 
of public policies to avoid further contamination, and the 
use of AMR/C in the simulations, coupled with the pre-
sented projection scheme and DMD, can lead to fast and 
reliable predictions. The simulations are implemented using 
the libMesh library using its refinement built-in functions. 
We compare the solution, its projection in the reference 
mesh, and the adaptive solution and notice that no relevant 
errors are found for the projection strategy. In this example, 
the L2-projection consists of 1.47% and 1.48% of the total 
time required for the code to run for the 1D and 2D cases, 
respectively. As for the use of short-time future estimates, 
we consider DMD for predicting two weeks in the future 
given a set of snapshots. For the 1D case, we feed DMD with 
snapshots covering 30 days, while for the 2D case, the snap-
shot matrix comprises 46 days of simulation results. The 
DMD results are presented in terms of efficiency and accu-
racy compared to the projected solutions, and we observe 
that the predictions are mostly in good agreement except for 
the exposed compartment. To test the approach’s agnosti-
cism regarding the dynamics of the systems, we consider 
two different fluid dynamics problems: a 2D density-driven 
gravity current and a 3D bubble rising problem. We use a 
3000-snapshot simulation to generate a basis containing the 
spatio-temporal coherent structures for the density-driven 
gravity flow. The lock-exchange simulation is solved using 
the FEniCS framework. The computational effort regard-
ing the projection, in this case, corresponds to 5.06% of the 
overall computational time. As for the DMD analysis, we 
evaluate the results for different values of the rank r and 
observe that, as we increase it, in this case, the overall rela-
tive errors decrease significantly. However, when evaluating 
the quantities of interest such as mass conservation and front 
position, even the worst case yields good approximations. 
For the 3D example, we use the libMesh library, testing 
three different reference meshes considering the three ele-
ment sizes existent in the adaptive simulation. We investi-
gate the occurrence of projecting the adaptive solution onto 
meshes that do not necessarily guarantee that all the scales 
obtained in the solution are preserved in terms of quanti-
ties of interest related to the bubble geometry and dynam-
ics. We observe that the use of L2-projection on coarser 
meshes leads to issues regarding the shape of the bubble, 
affecting quantities of interest such as bubble volume and 
sphericity. When considering the L2-projection on meshes 
with approximately the same spatial resolution as the finest 
scale in the adaptive meshes, these effects are mitigated. As 
for the bubble dynamics, even coarser meshes reveal simi-
lar results for the bubble center of mass and rise velocity 
in comparison with finer mesh projections and the adap-
tive solution itself. In terms of computational effort, the L2

-projection corresponds to 0.03% , 0.14% and 1.09% of the 
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total simulation time for the coarse, intermediate, and fine 
meshes, respectively. Proceeding to the DMD analysis, we 
present the results for a 220 time step reconstructions and 
a 20 time step prediction for the bubble rising problem. We 
test the approximations for multiple values of r being r = 60 
our best approximations. The results computed by DMD are 
presented in terms of efficiency and accuracy compared to 
the projected solutions. We also reevaluate the quantities of 
interest, now with the DMD approximation. For the recon-
struction, results are practically identical to those observed 
for the projection, while for the prediction, the center of 
mass and bubble volume yield good results while sphericity 
and rise velocity are not in agreement with those obtained 
in the simulation.

Summarizing our findings, we highlight that the present 
approach, despite its simplicity:

• is versatile since every finite element library that presents 
AMR/C is often equipped with efficient projection algo-
rithms;

• is fast in the sense that the L2-projection only requires 
solving a sparse, well-conditioned linear system �� = � 
where � is the mass matrix, obtained by a self-adjoint 
operator, enabling the use of efficient solvers;

• is framework-agnostic, as noted in the results of our 
simulations implemented on libMesh and FEniCS, 
requiring only the standard procedures already in place 
in both libraries;

• is problem-agnostic, as observed on meshes with dif-
ferent spatial dimensions (1D, 2D, and 3D), topologies 
(structured and unstructured), and equations (convection-
dominated and reaction–diffusion systems);

• preserves the dynamics computed on the adaptive snap-
shots for all the tested examples.

The results observed in this study reveal that the use of mesh 
projections for adaptive solutions preserves the dynam-
ics inherent to the finite element solutions. However, this 
approach on large problems could be inefficient or prohibi-
tive since the mesh projection on a sufficiently fine target 
reference mesh can lead to unfeasible DMD storage and 
computation times. As a future work, aiming to circumvent 
this issue, we plan to explore the use of data compression on 
DMD, once used for streaming purposes [24], in the mesh 
projection context. Also, it is known that DMD approxi-
mates the nonlinear dynamics existent in the dataset using a 
linear operator, being fragile to problems presenting a strong 
nonlinearity [43]. To deal with this, several Koopman-based 
frameworks, such as the Extended DMD [66], the Kernel 
DMD [67], and LANDO [5], use nonlinear observables 
to improve temporal predictions. In the future, we plan to 
evaluate our projection approach on nonlinear observables 
for further investigations.

Appendix

In this appendix, we provide a more detailed discussion of 
several points raised in Sect. 3 regarding the use of DMD on 
adapted meshes. As discussed in the main text, given the way 
DMD works by acting on the snapshot matrix, it is, there-
fore, essential for its proper application that all snapshots are 
of equal dimension; if the original dataset has been produced 
using different meshes, this may not be the case. Thus, it is 
crucial in such a case to use some sort of post-processing 
technique to provide a uniform snapshot size across the time 
series. For practical purposes, however, ensuring simply that 
all snapshots of uniform dimension is a necessary but not 
sufficient condition to usefully apply DMD. As illustrated 
in Fig. 24, we show an example of two meshes (labelled as 
1 and 2) that both an have equal number of nodes. Assum-
ing the same order of finite element approximation is used 
on each mesh, the resulting vectors �h

1
 and �h

2
 will have the 

same dimension. However, while the number of degrees of 
freedom is the same on each mesh, they are topologically 
distinct. Hence, to properly perform DMD in this instance, 
we must have a third mesh, which we call a reference mesh 
(labeled as mesh 3), on which we project both �h

1
 and �h

2
 . We 

note that this mesh is refined everywhere, compared to the 
locally refined mesh 1 and mesh 2. In this way, we guarantee 
that the fine-scale frequencies captured by all the different 
mesh levels are properly represented by the DMD modes.

Fig. 24  Depiction demonstrating the need for projection. Even 
though Mesh 1 and Mesh 2 have the same number of degrees of 
freedom, the different topologies require that, for a proper applica-
tion of DMD, we must project both meshes onto a reference mesh 3 
(Mesh 3). As shown, this reference mesh should be sufficiently fine to 
resolve all necessary in all areas of the domain
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In the current work, we have performed this by using L2

-projection of all snapshots onto a reference (or projected) 
mesh. Let �h denote the finite element solution on the origi-
nal mesh. Then we define the L2-projection onto the refer-
ence mesh as

for all �proj in Vproj . One may quickly verify that this satisfies 
the Galerkin orthogonality property on the reference mesh, 
i.e., for all �proj in Vproj , the relation:

is satisfied. At the algebraic level, the problem (30) may be 
expressed as:

where � is the mass matrix on the FEM space Vproj

h
 and 

� is a rectangular matrix consisting of the projection from 
Vh onto Vproj . Letting Nproj

i
 correspond to the shape func-

tions of Vproj and Nh
i
 to Vh , the matrices have the following 

definitions:

We then may view �proj as

Consider now DMD on Mesh 1:

Similarly, DMD defined on the reference mesh reads:

Similarly,

From (35), (36):

(30)(�proj, �proj) = (�h, �proj),

(�proj − �h, �proj) = 0

(31)��proj = ��h,

(32)
(�)i,j = ∫Ω

N
proj

i
N

proj

j

(�)i,j = ∫Ω

N
proj

i
Nh
j
.
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1
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1
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.

where �−T denotes the left-sided pseudoinverse of � (see e.g. 
[31]). Thus, rank(� ) = dim(�h ), DMD may properly repre-
sent all relevant dynamics on the reference (projected) mesh.

Theorem If every degree of freedom of the original mesh 
is also a degree of freedom of the reference mesh, then the 
matrix � is full-rank.

Proof By assumption, for every Nh
i
 , the corresponding Nproj

i
 

(assumed to be more fine and hence greater in number) is 
defined such that

This idea may be alternatively expressed as

where the different Vi are finite element spaces correspond-
ing to the different adapted meshes. Such a condition was 
also used in [62]. We, therefore, have that

where 0 < 𝜅ij ≤ 1 for all i, j is a volumetric constant relating 
the measures of supp(Nproj

j
) and supp(Nh

j
) . By (38), the 

matrix �̃ , defined such that

which has the same rank (that is, dim(Vh )) as �h by con-
struction. We then observe that, for i, j ≤ dim(Vh):

Thus, we can express � as

Assume now for the sake of contradiction that � is not full-
rank. This implies that there exists a � ∈ ℝ

dim(Vh) such that 
�� = �. Then

implying that �̃� = 0 , contradicting the full-rank of �̃ . 
Hence, we can conclude � is full-rank.

The above theorem requires an assumption that, while 
often the case in practice, is not strictly necessary in our 
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experience to obtain acceptable results using DMD. As men-
tioned, a similar condition was required for the related POD 
method in [62], in which a common finite element space Vn 
was implicitly constructed from the different spaces from 
each adapted mesh. Issues regarding projection between 
meshes were also studied in [9, 21, 48], in which the inter-
ested reader may find more theoretical results regarding pro-
jection between meshes.   ◻
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