Skip to main content
Log in

A fully Lagrangian mixed discrete least squares meshfree method for simulating the free surface flow problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper presents a fully Lagrangian mixed discrete least squares meshfree (MDLSM) method for simulating the free surface problems. In the proposed method, the mass and momentum conservation equations are first discretized in time using the projection method. The resulting pressure Poisson equation is then re-written in the form of three first-order equations in terms of the pressure field and its first-order derivatives. The mixed discrete least squares meshless method is then used to solve this system of equations and simultaneously calculate the pressure field and its gradients. The advantage of the proposed Lagrangian MDLSM is twofold. First, the pressure gradients are directly computed and, therefore, they enjoy higher accuracy than those calculated in the conventional DLSM via a post-processing method. The more accurate pressure gradient will in turn lead to more accurate velocity field when used in the momentum equations. Second, the proposed Lagrangian MDLSM method can be more efficient than the corresponding original Lagrangian DLSM method, for the specific number of nodes, since the costly calculation of the shape function second derivatives required for solving the pressure Poison equation are avoided in each time step of the simulation. Several free surface problems are solved and the results are presented and compared to those of DLSM method. The results indicate the superior efficiency and accuracy of the proposed Lagrangian MDLSM method compared to those of the existing Lagrangian DLSM method in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Code availability

A custom code for this research is available.

References

  1. Trobec R, Kosec G (2015) Parallel scientific computing: theory, algorithms, and applications of mesh based and meshless methods. Springer, Cham

    MATH  Google Scholar 

  2. Nguyen VT, Park WG (2016) A free surface flow solver for complex three-dimensional water impact problems based on the VOF method. Int J Numer Meth Fluids 82(1):3–34

    MathSciNet  Google Scholar 

  3. McKee S et al (2008) The MAC method. Comput Fluids 37(8):907–930

    MathSciNet  MATH  Google Scholar 

  4. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    MathSciNet  MATH  Google Scholar 

  5. Lin CL et al (2005) A level set characteristic Galerkin finite element method for free surface flows. Int J Numer Meth Fluids 49(5):521–547

    MATH  Google Scholar 

  6. Zhang Y, Zou Q, Greaves D (2010) Numerical simulation of free-surface flow using the level-set method with global mass correction. Int J Numer Meth Fluids 63(6):651–680

    MathSciNet  MATH  Google Scholar 

  7. Liu G-R (2009) Meshfree methods: moving beyond the finite element method. Taylor & Francis, Boca Raton

    Google Scholar 

  8. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    MATH  Google Scholar 

  9. Das R, Cleary PW (2016) Three-dimensional modelling of coupled flow dynamics, heat transfer and residual stress generation in arc welding processes using the mesh-free SPH method. J Comput Sci 16:200–216

    Google Scholar 

  10. Alshaer AW, Rogers BD, Li L (2017) Smoothed Particle Hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of Al and associated free-surface problems. Comput Mater Sci 127:161–179

    Google Scholar 

  11. Bøckmann A, Shipilova O, Skeie G (2012) Incompressible SPH for free surface flows. Comput Fluids 67:138–151

    MathSciNet  MATH  Google Scholar 

  12. Khanpour M et al (2016) Numerical modeling of free surface flow in hydraulic structures using Smoothed Particle Hydrodynamics. Appl Math Model 40(23–24):9821–9834

    MathSciNet  MATH  Google Scholar 

  13. Ataie-Ashtiani B, Shobeyri G, Farhadi L (2008) Modified incompressible SPH method for simulating free surface problems. Fluid Dyn Res 40(9):637

    MATH  Google Scholar 

  14. Tartakovsky AM, Ferris KF, Meakin P (2009) Lagrangian particle model for multiphase flows. Comput Phys Commun 180(10):1874–1881

    MathSciNet  MATH  Google Scholar 

  15. Zheng BX, Chen Z (2019) A multiphase smoothed particle hydrodynamics model with lower numerical diffusion. J Comput Phys 382:177–201

    MathSciNet  MATH  Google Scholar 

  16. Zhang ZL et al (2018) Meshfree modeling of a fluid-particle two-phase flow with an improved SPH method. Int J Numer Meth Eng 116(8):530–569

    MathSciNet  Google Scholar 

  17. Tartakovsky AM et al (2016) Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media. Comput Geosci 20(4):807–834

    MathSciNet  MATH  Google Scholar 

  18. Xu X et al (2014) SPH simulations of 2D transient viscoelastic flows using Brownian configuration fields. J Nonnewton Fluid Mech 208–209:59–71

    Google Scholar 

  19. Wei Z et al (2015) SPH modeling of dynamic impact of tsunami bore on bridge piers. Coast Eng 104:26–42

    Google Scholar 

  20. Pahar G, Dhar A (2016) Modeling free-surface flow in porous media with modified incompressible SPH. Eng Anal Boundary Elem 68:75–85

    MathSciNet  MATH  Google Scholar 

  21. Soleimani M et al (2016) Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method. Comput Mech 58(4):619–633

    MathSciNet  Google Scholar 

  22. Dehghan M, Abbaszadeh M (2019) The simulation of some chemotactic bacteria patterns in liquid medium which arises in tumor growth with blow-up phenomena via a generalized smoothed particle hydrodynamics (GSPH) method. Eng Comput 35(3):875–892

    Google Scholar 

  23. Rathnayaka C et al (2019) A 3-D coupled Smoothed Particle Hydrodynamics and Coarse-Grained model to simulate drying mechanisms of small cell aggregates. Appl Math Model 67:219–233

    MathSciNet  MATH  Google Scholar 

  24. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434

    Google Scholar 

  25. Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. J Waterw Port Coast Ocean Eng 129(6):250–259

    Google Scholar 

  26. Liu X, Morita K, Zhang S (2019) A stable moving particle semi-implicit method with renormalized Laplacian model improved for incompressible free-surface flows. Comput Methods Appl Mech Eng 356:199–219

    MathSciNet  MATH  Google Scholar 

  27. Ataie-Ashtiani B, Farhadi L (2006) A stable moving-particle semi-implicit method for free surface flows. Fluid Dyn Res 38(4):241

    MathSciNet  MATH  Google Scholar 

  28. Nabian MA, Farhadi L (2019) MR-WC-MPS: a multi-resolution WC-MPS method for simulation of free-surface flows. Water 11(7):1349

    Google Scholar 

  29. Hattori T et al (2018) Numerical simulation of droplet sliding on an inclined surface using moving particle semi-implicit method. Comput Part Mech 5(4):477–491

    Google Scholar 

  30. Wang J, Zhang X (2019) Improved Moving Particle Semi-implicit method for multiphase flow with discontinuity. Comput Methods Appl Mech Eng 346:312–331

    MathSciNet  MATH  Google Scholar 

  31. Duan G et al (2018) An accurate and stable multiphase moving particle semi-implicit method based on a corrective matrix for all particle interaction models. Int J Numer Meth Eng 115(10):1287–1314

    MathSciNet  Google Scholar 

  32. Liu G-R, Gu Y-T (2005) An introduction to meshfree methods and their programming. Springer, Dordrecht

    Google Scholar 

  33. Koukouvinis PK, Anagnostopoulos JS, Papantonis DE (2013) An improved MUSCL treatment for the SPH-ALE method: comparison with the standard SPH method for the jet impingement case. Int J Numer Meth Fluids 71(9):1152–1177

    MathSciNet  MATH  Google Scholar 

  34. Oger G et al (2016) SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. J Comput Phys 313:76–98

    MathSciNet  MATH  Google Scholar 

  35. Vila J (1999) On particle weighted methods and smooth particle hydrodynamics. Math Models Methods Appl Sci 9(02):161–209

    MathSciNet  MATH  Google Scholar 

  36. Sun P et al (2019) A consistent approach to particle shifting in the δ-Plus-SPH model. Comput Methods Appl Mech Eng 348:912–934

    MathSciNet  Google Scholar 

  37. Khayyer A, Gotoh H, Shimizu Y (2017) Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context. J Comput Phys 332:236–256

    MathSciNet  MATH  Google Scholar 

  38. Mokos A, Rogers BD, Stansby PK (2017) A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles. J Hydraul Res 55(2):143–162

    Google Scholar 

  39. Akbari H (2019) An improved particle shifting technique for incompressible smoothed particle hydrodynamics methods. Int J Numer Meth Fluids 90(12):603–631

    MathSciNet  Google Scholar 

  40. Gargari SF et al (2019) An Eulerian-Lagrangian Mixed Discrete Least Squares Meshfree method for incompressible multiphase flow problems. Appl Math Modell 2019:193–224

    MathSciNet  MATH  Google Scholar 

  41. Xu X, Yu P (2018) A technique to remove the tensile instability in weakly compressible SPH. Comput Mech 62(5):963–990

    MathSciNet  MATH  Google Scholar 

  42. Liu G, Liu M (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Publishing, Sinagapore, p 449

    MATH  Google Scholar 

  43. Belytschko T et al (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3–47

    MATH  Google Scholar 

  44. Vacondio R, Rogers B, Stansby P (2012) Smoothed particle hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow-water tests. Int J Numer Meth Fluids 69(1):226–253

    MathSciNet  MATH  Google Scholar 

  45. Fourtakas G et al (2019) Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models. Comput Fluids 190:346–361

    MathSciNet  MATH  Google Scholar 

  46. Fatehi R, Manzari M (2011) Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Comput Math Appl 61(2):482–498

    MathSciNet  MATH  Google Scholar 

  47. Trask N et al (2015) A scalable consistent second-order SPH solver for unsteady low Reynolds number flows. Comput Methods Appl Mech Eng 289:155–178

    MathSciNet  MATH  Google Scholar 

  48. Oñate E, Idelsohn S (1998) A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput Mech 21(4–5):283–292

    MathSciNet  MATH  Google Scholar 

  49. Oñate E et al (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39(22):3839–3866

    MathSciNet  MATH  Google Scholar 

  50. Oñate E et al (1996) A stabilized finite point method for analysis of fluid mechanics problems. Comput Methods Appl Mech Eng 139(1–4):315–346

    MathSciNet  MATH  Google Scholar 

  51. Atluri SN, Zhu T (1998) A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    MathSciNet  MATH  Google Scholar 

  52. Lin H, Atluri S (2000) Meshless local Petrov-Galerkin (MLPG) method for convection diffusion problems. CMES (Comput Modell Eng Sci) 1(2):45–60

    MathSciNet  Google Scholar 

  53. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37(2):229–256

    MathSciNet  MATH  Google Scholar 

  54. Lu Y, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113(3–4):397–414

    MathSciNet  MATH  Google Scholar 

  55. Arzani H, Afshar MH (2006) Solving Poisson’s equations by the discrete least square meshless method. WIT Transact Modell Simul 42:23–31

    MathSciNet  Google Scholar 

  56. Yu SY et al (2019) The improved element-free Galerkin method for three-dimensional elastoplasticity problems. Eng Anal Boundary Elem 104:215–224

    MathSciNet  MATH  Google Scholar 

  57. Meng ZJ et al (2019) The hybrid element-free Galerkin method for three-dimensional wave propagation problems. Int J Numer Meth Eng 117(1):15–37

    MathSciNet  Google Scholar 

  58. Cheng H, Peng MJ, Cheng YM (2018) A hybrid improved complex variable element-free Galerkin method for three-dimensional advection-diffusion problems. Eng Anal Boundary Elem 97:39–54

    MathSciNet  Google Scholar 

  59. Cheng H, Peng MJ, Cheng YM (2018) The dimension splitting and improved complex variable element-free Galerkin method for 3-dimensional transient heat conduction problems. Int J Numer Meth Eng 114(3):321–345

    MathSciNet  Google Scholar 

  60. Dehghan M, Narimani N (2019) The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model. Eng Comput 1–21

  61. Swathi B, Eldho TI (2013) Groundwater flow simulation in confined aquifers using meshless local petrov-Galerkin (MLPG) method. ISH J Hydraul Eng 19(3):335–348

    Google Scholar 

  62. Shibahara M, Atluri SN (2011) The meshless local Petrov-Galerkin method for the analysis of heat conduction due to a moving heat source, in welding. Int J Therm Sci 50(6):984–992

    Google Scholar 

  63. Safarpoor M, Takhtabnoos F, Shirzadi A (2020) A localized RBF-MLPG method and its application to elliptic PDEs. Eng Comput 36(1):171–183

    Google Scholar 

  64. Li J et al (2018) Two-level meshless local Petrov Galerkin method for multi-dimensional nonlinear convection–diffusion equation based on radial basis function. Numer Heat Transf Part B Fundam 74(4):685–698

    Google Scholar 

  65. Ilati M, Dehghan M (2017) Application of direct meshless local Petrov-Galerkin (DMLPG) method for some Turing-type models. Eng Comput 33(1):107–124

    Google Scholar 

  66. Onate E et al (1996) A stabilized finite point method for analysis of fluid mechanics problems. Comput Methods Appl Mech Eng 139(1–4):315–346

    MathSciNet  MATH  Google Scholar 

  67. Fang J, Parriaux A (2008) A regularized Lagrangian finite point method for the simulation of incompressible viscous flows. J Comput Phys 227(20):8894–8908

    MathSciNet  MATH  Google Scholar 

  68. Reséndiz-Flores EO, García-Calvillo ID (2014) Application of the finite pointset method to non-stationary heat conduction problems. Int J Heat Mass Transf 71:720–723

    Google Scholar 

  69. Saucedo-Zendejo FR, Reséndiz-Flores EO (2017) A new approach for the numerical simulation of free surface incompressible flows using a meshfree method. Comput Methods Appl Mech Eng 324:619–639

    MathSciNet  MATH  Google Scholar 

  70. Fang J et al (2009) Improved SPH methods for simulating free surface flows of viscous fluids. Appl Numer Math 59(2):251–271

    MathSciNet  MATH  Google Scholar 

  71. Shobeyri G, Afshar MH (2010) Simulating free surface problems using discrete least squares meshless method. Comput Fluids 39(3):461–470

    MATH  Google Scholar 

  72. Shobeyri G, Afshar MH (2012) Corrected discrete least-squares meshless method for simulating free surface flows. Eng Anal Boundary Elem 36(11):1581–1594

    MathSciNet  MATH  Google Scholar 

  73. Afshar MH, Amani J, Naisipour M (2012) A node enrichment adaptive refinement in Discrete Least Squares Meshless method for solution of elasticity problems. Eng Anal Boundary Elem 36(3):385–393

    MathSciNet  MATH  Google Scholar 

  74. Afshar MH, Naisipour M, Amani J (2011) Node moving adaptive refinement strategy for planar elasticity problems using discrete least squares meshless method. Finite Elem Anal Des 47(12):1315–1325

    MATH  Google Scholar 

  75. Firoozjaee AR, Afshar MH (2009) Discrete least squares meshless method with sampling points for the solution of elliptic partial differential equations. Eng Anal Boundary Elem 33(1):83–92

    MathSciNet  MATH  Google Scholar 

  76. Firoozjaee AR, Afshar MH (2011) Steady-state solution of incompressible Navier-Stokes equations using discrete least-squares meshless method. Int J Numer Meth Fluids 67(3):369–382

    MathSciNet  MATH  Google Scholar 

  77. Afshar MH, Firoozjaee AR (2010) Adaptive simulation of two dimensional hyperbolic problems by collocated discrete least squares meshless method. Comput Fluids 39(10):2030–2039

    MathSciNet  MATH  Google Scholar 

  78. Amani J, Afshar MH, Naisipour M (2012) Mixed discrete least squares meshless method for planar elasticity problems using regular and irregular nodal distributions. Eng Anal Boundary Elem 36(5):894–902

    MathSciNet  MATH  Google Scholar 

  79. Gargari SF, Kolahdoozan M, Afshar MH (2018) Mixed Discrete Least Squares Meshfree method for solving the incompressible Navier-Stokes equations. Eng Anal Boundary Elem 88:64–79

    MathSciNet  MATH  Google Scholar 

  80. Faraji S, Kolahdoozan M, Afshar M (2018) Mixed discrete least squares meshless method for solving the linear and non-linear propagation problems. Sci Iran 25(2):565–578

    Google Scholar 

  81. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    MathSciNet  MATH  Google Scholar 

  82. Duan G et al (2019) The truncation and stabilization error in multiphase moving particle semi-implicit method based on corrective matrix: Which is dominant? Comput Fluids 190:254–273

    MathSciNet  MATH  Google Scholar 

  83. Tamai T, Koshizuka S (2014) Least squares moving particle semi-implicit method. Comput Part Mech 1(3):277–305

    Google Scholar 

  84. Shao S, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800

    Google Scholar 

  85. Koshizuka S, Nobe A, Oka Y (1998) Numerical analysis of breaking waves using the moving particle semi-implicit method. Int J Numer Meth Fluids 26(7):751–769

    MATH  Google Scholar 

  86. Martin JC et al (1952) Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos Transact R Soc Lond Ser A Math Phys Sci 244(882):312–324

    Google Scholar 

  87. Duan G, Chen B (2015) Comparison of parallel solvers for Moving Particle Semi-Implicit method. Eng Comput 32(3):834–862

    Google Scholar 

  88. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    MATH  Google Scholar 

  89. Oger G et al (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225(2):1472–1492

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Eini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The authors approve all the ethics in publishing research works.

Consent for publication

The authors consent for publication of their research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eini, N., Afshar, M.H., Faraji Gargari, S. et al. A fully Lagrangian mixed discrete least squares meshfree method for simulating the free surface flow problems. Engineering with Computers 38 (Suppl 1), 331–351 (2022). https://doi.org/10.1007/s00366-020-01157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01157-x

Keywords

Navigation