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Abstract
Shear strength is a crucial property of soils regarded as its intrinsic capacity to resist failure when forces act on the soil mass. 
This study proposes an advanced meta-leaner to discern the shear strength property and generate a reliable estimation of 
the ultimate shear strength of the soil. The proposed model is named as metaheuristic-optimized meta-ensemble learning 
model (MOMEM) and aims at helping geotechnical engineers accurately predict the parameter of interest. The MOMEM 
was established with the integration of the artificial electric field algorithm (AEFA) to dynamically blend the radial basis 
function neural network (RBFNN) and multivariate adaptive regression splines (MARS). In the framework of forming 
MOMEM, the AEFA consistently monitor the learning phases of the RBFNN and MARS in mining soil shear strength 
property through optimizing their controlling parameters, including neuron number, Gaussian spread, regularization coef-
ficient, and kernel function parameter. Simultaneously, RBFNN and MARS are stacked via a linear combination method 
with dynamic weights optimized by the AEFA metaheuristic. The one-tail t test on 20 running times affirmed that with the 
greatest mean and standard deviation of RMSE (mean = 0.035 kg/cm2; Std. = 0.005 kg/cm2), MAE (mean = 0.026 kg/cm2; 
Std. = 0.004 kg/cm2), MAPE (mean = 7.9%; Std. = 1.72%), and R2 (mean = 0.826; Std. = 0.055), the MOMEM is significantly 
superior to other artificial intelligence-based methods. These analytical results indicate that MOMEM is an innovative tool 
for accurate calculating soil shear strength; thus, it provides geotechnical engineers with reliable figures to significantly 
increase soil-related engineering design.
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1 Introduction

The soil shear strength can be defined as the magnitude of 
shear stress that soil is capable of withstanding [1]. In civil 
engineering, the shear strength of soils is fundamental for 
describing their susceptibility to applied pressures from 
building loads and construction machines/equipment. Geo-
technical engineers use shear strength of soil as an essential 
factor to evaluate the stability of structure on or embedded 
in the ground, such as retaining walls, embankments, air-
field pavements, and foundations of a high-rise building 
[2]. Therefore, obtaining an accurate estimation of the shear 
strength of soil is a highly important task in various geotech-
nical designs [3–5].

In practice, computing this parameter of interest faces 
various difficulties. It is because the mapping function 
between the shear strength and soil properties has been 
proved to be complicated [6–12]. Freitag [13] found that 
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there is a complicated dependency between soil strength and 
properties of moisture content and bulk density; thus, esti-
mation of soil strength based on such factors is by no means 
an easy task. Conventional estimations of shear strength are 
dependent of in the values of the cohesion (c) and the angle 
of internal friction (φ). However, there are inconsistencies in 
the values of the cohesion and the angle of internal friction 
for a particular soil [14].

Fredlund et al. [15] attempted to capture the variation 
of the soil shear via a soil-water characteristic curve and 
the saturated shear parameters of soil [15]. However, the 
closed-form predictions are not applicable to all types of 
soils. Gao et al. [3] pointed out that the shear strength of 
soil varies significantly with different soil types. Moreover, 
performing laboratory tests (e.g., applied triaxial equipment) 
to estimate the shear strength of soils is also found to be 
both time-consuming and costly due to the employments of 
instruments as well as highly trained technicians [16].

Due to such challenges, alternative methods based on 
advanced machine learning models have been recently pro-
posed to deal with the task of soil shear strength prediction. 
Based on existing samples collected from laboratory tests, 
intelligent models can be developed and train to perform 
shear strength calculations automatically and instantly. 
Based on a direct comparison between actual testing out-
comes and results predicted by those intelligent models, the 
reliability of machine learning models can be objectively 
judged.

Adaptive neuro-fuzzy inference system (ANFIS) has been 
employed to predict the shear strength of unsaturated soils 
[17]. This fuzzy neural network model is shown to be a capa-
ble tool for dealing with the problem of interest. A hybrid 
model consisting of artificial neural networks and support 
vector machines with various ensemble strategies (i.e., vot-
ing, bagging, and stacking) has been proposed by Chou 
and Ngo [18] to compute the strength of fiber-reinforced 
soil. Chen et al. [19] proposed a modified linear regression 
method for modeling the variation of shear strength based 
on soil properties. Mbarak et al. [20] predict the undrained 
shear strength of soil with the utilizations of random forest, 
gradient boosting and stacked models.

Recently, metaheuristic approaches have been increas-
ingly harnessed to create intelligent models to copy with the 
task at hand. Pham et al. [21] replaced the conventional gra-
dient descent based algorithm used for training ANFIS mod-
els by well-established metaheuristic algorithms, including 
particle swarm optimization and genetic algorithm. Tien 
Bui et al. [22] recently combines the least square support 
vector machine and metaheuristic method of cuckoo search 
optimization for predicting the shear strength parameter of 
soft soil. Moayedi et al. [23] investigated the feasibility of 
spotted hyena optimizer and ant lion optimization for train-
ing neural networks used for estimating the soil parameter 

of interest. Nhu et al. [24] establish an integrated model of 
support vector regression and particle swarm optimization 
relying on various soil features such as moisture, density, 
components, void ratio, and water content. The dragonfly 
algorithm, whale optimization algorithm, invasive weed 
optimization, elephant herding optimization, shuffled frog 
leaping algorithm, salp swarm algorithm, and wind-driven 
optimization models have been employed to construct 
capable neural network-based prediction models [25, 26]; 
Metaheuristic has shown their capability of improving pre-
dictive accuracy of neural network models by annihilating 
the drawback of conventional backpropagation and gradient 
descent methods [27–29].

Besides, in the fields of data science and civil engi-
neering, there is an increasing trend of applying ensemble 
learning methods to solve complex data modeling tasks [18, 
30–33]. This novel approach of machine learning employs 
multiple learning paradigms to construct combined models 
featuring excellent predictive capability. Ensemble models 
have been shown to attain better prediction accuracy and 
alleviate the overfitting phenomenon [34–37]. A machine 
learning ensemble is generally constructed by aggregating 
results produced by several alternative models; therefore, 
the trained ensemble model often has good flexibility in data 
modeling and strong resilience to noise [38–40].

Following these two trends of research, this study pro-
poses a novel metaheuristic optimized machine learning 
ensemble approach for predicting the soil shear strength. 
The ensemble includes the two capable individual machine 
learning methods of the radial basis function neural network 
(RBFNN) [41, 42] and multivariate adaptive regression 
splines (MARS) [43, 44] which are powerful tools for non-
linear and multivariate data modeling. The two techniques 
also present different types of machine learning; thus, they 
are likely to contribute their reciprocal strengths and cover 
weakness of each other in building a meta-ensemble model 
with an outstanding efficiency [45]. In this integrated frame-
work, individual RBFNN and MARS models are trained and 
their prediction results are combined via the stacking aggre-
gation method [35].

In addition to simultaneously tuning hyper-parameters for 
constituent models in the ensemble model, the weights of 
each individual model’s output must be determined adap-
tively. The training phase of the proposed meta-ensemble 
model is further enhanced by the employment of the arti-
ficial electric field algorithm (AEFA)—a state-of-the-art 
metaheuristic approach. The AEFA [46] is inspired by 
the concept of the electric field, charged particles, and the 
Coulomb’s law of electrostatic force. This algorithm has 
achieved competitive performances against other optimiza-
tion methods in terms of both solution quality and conver-
gence speed. Hence, the AEFA surely optimizes the perfor-
mance of the stacking method-based ensemble model by 



2187Engineering with Computers (2022) 38:2185–2207 

1 3

simultaneously searching for the most suitable set of hyper-
parameter values and weights of constituent models.

A dataset of 249 data samples collected from the geo-
technical investigation process in Hanoi (Vietnam) is used 
to train and test the proposed approach. The variables of the 
depth of the sample, sand percentage, loam percentage, clay 
percentage, moisture content percentage, wet density, dry 
density, void ratio, liquid limit, plastic limit, plastic index, 
and liquidity index are employed as influencing factors.

All in all, the goal of this research is to construct and 
verify a hybrid Metaheuristic-optimized meta-ensemble 
learning model, denoted as MOMEM, to enhance the predic-
tion accuracy of the soil shear strength. The contribution of 
this study is multifold: (1) a novel machine learning ensem-
ble for predicting soil shear strength is proposed; (2) the 
model is adaptively constructed with the employment of the 
AEFA metaheuristic; (3) a superior predictive performance 
is achieved compared to other benchmark machine learning 
models. The rest of the study is organized as follows: the 
collected dataset is described in the second section. The next 
section reviews the research method, followed by a section 
that presents the newly developed machine learning frame-
work. Experimental results and comparisons are reported in 
the fifth section. The final section provides several conclud-
ing remarks of the study.

2  The collected dataset

The dataset used in the present study was collected at the 
geotechnical investigation phase of the Le Trong Tan Gelex-
imco Project, located in the west of Hanoi, Vietnam (Fig.1). 
The site investigation was conducted in April 2009. This 
project covers an area of approximately 135 ha,  which was 
used for  the construction of low-rise housing, high-rise 
housing, public infrastructures, and entertainment centers. 
In order to gather information on the soil conditions, the bor-
ing-based soil sampling is utilized. The boreholes are drilled 
by means of slurry (a mixture of bentonite and water), and 
thin-walled metal tubes to ward off soil collapses. The soil 
samples with a diameter of 91 mm are gathered by the 
method of piston samplers. The sample collection process 
complies with the Vietnamese national standards of the 
TCXDVN-194-2006 (High Rise Building—Guide for Geo-
technical Investigation), the TCN-259-2000 (the procedure 
for soil sampling by boring methods).

There were 65 boreholes with a total of 249 soil sam-
ples collected from the geotechnical investigation process. 
The depth of the collected soil samples ranges from 1.20 
to 39.5 m. The factors measured from soil samples are (1) 
depth of sample (m), (2) sand percentage (%), (3) loam per-
centage (%), (4) clay percentage (%), (5) moisture content 
percentage (%), (6) wet density (g/cm3), (7) dry density (g/

cm3), (8) void ratio, (9) liquid limit (%), (10) plastic limit 
(%), (11) plastic index (%), and (12) liquidity index. These 
12 factors are employed as conditioning variables to estimate 
the shear strength of the soil. Descriptive statistics of the 
soil variables in this study are shown in Table 1. Figure 2 
graphically presents a correlation of soil-shear-strength with 
its conditioning factors.

3  Methodology

3.1  Radial basis function neural network (RBFNN)

A typical structure of a RBFNN model [41, 42] used for 
nonlinear function approximation consists of three layers 
and is graphically presented in Fig. 3. The first layer has a 
number of neurons equal to the number of influencing fac-
tors, which is equal to 12 in this study. The next layer com-
prises a set of radial basis function (RBF) neurons, which are 
basic units of information processing. This neuron employs 
the RBF, which is an attenuation, central-radial symmetry, 
non-negative, non-linear function. It is noted that all func-
tions that are dependent only on the distance from a center 
vector are radially symmetric about that vector. The last 
layer, which is the output layer, yields the network output 
by performing a linear combination of outputs produced by 
units in the second layer.

The RBF used in the second layer is mathematically pre-
sented as follows [47]:

where v and � denote the parameter of position and width, 
respectively, of the RBF nodes.

It is proper to note that the number of output neurons 
in this study is 1, which is the shear strength of the soil. 
Accordingly, the soil shear string can be computed via the 
RBFNN model as follows [48–50]:

where x = (x1, x2, …, xu) denotes an u-dimensional vector; 
x − νj is Euclidean distance between the center of the jth 
hidden node and a data point; wj represents the connecting 
weight from the jth hidden node to output layer; b is the bias 
term; Nn denotes the number of hidden neurons; �j(∙) is the 
radial basis function of the jth hidden note.

It is noted that the model construction phase of the 
RBFNN model requires a proper determination of the num-
ber of neurons (Nn) and the RBF width (σ). An appropri-
ate set of Nn and σ ensures the success of establishing a 

(1)�(x) = exp

(

−
(x − v)2

2�2

)

,

(2)y =

Nn∑

j=1

wj�j

(
x − �j

)
+ b,
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Fig. 1  Location of the study site (Zone A—Le Trong Tan Geleximco, Hanoi, Vietnam)

Table 1  Input and output 
parameters

Min. minimum, Max. maximum, Std. standard deviation, Crr. Pearson correlation

No. Properties Par. Min. Max. Mean Median Std. Corr.

1 Depth of sample taken (m) X1 1.20 39.50 9.26 7.00 7.86 0.072
2 Sand proportion (%) X2 6.79 76.05 23.42 22.33 11.48 0.034
3 Loam proportion (%) X3 14.97 63.65 48.45 48.92 9.21 − 0.028
4 Clay proportion (%) X4 8.79 50.21 27.73 28.25 5.11 − 0.033
5 Moisture content (%) X5 18.38 49.75 35.70 35.46 7.12 0.084
6 Wet density (g/cm3) X6 1.70 1.97 1.82 1.82 0.07 − 0.110
7 Dry density (g/cm3) X7 1.14 1.62 1.35 1.36 0.12 − 0.102
8 Void ratio X8 0.67 1.37 1.02 0.99 0.18 0.092
9 Liquid limit (%) X9 23.00 57.11 41.85 41.12 6.17 0.042
10 Plastic limit (%) X10 16.52 41.21 27.55 26.97 5.47 0.038
11 Plastic index X11 4.03 19.10 14.30 14.88 2.59 0.020
12 Liquidity index X12 0.07 0.88 0.57 0.59 0.16 0.187
13 Shear strength of soil (kg/cm2) Y 0.185 0.550 0.349 0.335 0.088 1.000
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Fig. 2  Distributions of the soil parameters used in this research
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robust RBFNN model used for soil shear strength estima-
tion. The parameter Nn dictates the architecture of the infer-
ence model, resulting to either the over-fitted (in case of too 
many RBF nodes assigned) or under-fitted model with low 
accuracy (in case of having a small number of RBF nodes) 
[51, 52]. Additionally, the parameter σ affects the influence 
of RBF nodes on each data point; therefore, it determines 
the generalization of the prediction model.

3.2  Multivariate adaptive regression splines

MARS was developed by Friedman [43], which is formed 
by fitting basic function (term) to distinct intervals of input 
variables. In general, splines (also called piecewise polyno-
mials) have pieces smoothly connected with joining points 
called knots (k). MARS uses two-sided truncated power 
functions as spline basis functions, described as Eqs. (3) 
and (4):

where (q ≥ 0) is the degree the resultant function estimate; 
[]+ indicates to take positive values.

An interaction term is yielded by multiplying an existing 
term with a truncated linear function having a new attribute. 
Accordingly, both the existing term and the newly created 
interaction term are involved in the construction MARS 
model. The search for new terms is limited in a maximum 
order of the user. The formula of interaction term and the 
general MARS function can be referred to Eqs. (5) and (6), 
respectively:

(3)[−(x − k)]
q

+ =

{
(k − x)q if x < k

0 otherwise

(4)[+(x − k)]
q

+ =

{
(k − x)q if x ≥ k

0 otherwise,

(5)Bm(x) =

Km∏

j=1

[sm,j × (xv(m,j) − km,j)]+,

where Km is the number of truncated linear functions multi-
plied in the mth term. Km is less than maximum interaction 
among variables Imax that is pre-defined by the user. xv(m,j) is 
the input variable corresponding to the jth truncated linear 
function in the mth term; km,j is the knot value of xv(m,j); sm,j 
is the selected sign + 1 or − 1; ŷ is the dependent variable 
predicted by the MARS model; c0 is a constant; Tm(x) is the 
mth term, which may be a single spline basis functions; and 
cm is the coefficient of the mth term.

A MARS model is constructed through a two-stage pro-
cess including a forward phase and backward phase. The 
forward phase adds terms until the maximum number of 
terms is reached which is pre-assigned by users (Tmax). This 
phase aims at reducing the sum-of-squares residual error 
and tends to result in the complex and over-fitted model. 
Hence, it needs to have a backward phase to remove the 
redundant terms with less impact on the model’s generaliza-
tion. The generalized cross-validation (GCV) was introduced 
as a criterion to recognize those redundant terms as shown 
in Eq. (7):

where n is the number of data patterns. C(M) is a dynamic 
complexity penalty defined as Eq. (8):

where M is the number of terms in Eq. (8); the parameter 
d is a penalty for each term added into the model and pre-
assigned by the user. Notably, a suitable value of d can lead 
to an under-fitted or over-fitted model with poor generaliz-
ability [53–55]. In general, Tmax, Imax, and d are regarded as 
essential factors to control the MARS model’s performance.

(6)ŷ = f̂M(x) = c0 +

M∑

m=1

cmTm(x),

(7)GCV(M) = (1∕n) ×

n∑

i=1

[yi − f̂M(xi)]
2∕(1 − C(M)∕n)2

(8)C(M) = (M + 1) + d ×M,

Fig. 3  Structure and pseudocode of RBFNN
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3.3  Artificial electric field algorithm

Artificial electric field algorithm was developed by [46] 
which is inspired by the Coulomb’s law of electrostatic 
force, stated that an electrostatic force between two charged 
particles is directly proportional to the product of their 
charges and inversely proportional to the square of the 
distance between their positions. In the AEFA, an agent is 
regarded as a charged particle and its strength is measured 
by electric charge. A particle can either attract or repel oth-
ers by an electrostatic force which is used as a means of 
communication channel among particles. A particle with 
better fitness will possess a greater electrostatic force. In the 
AEFA, the attractive electrostatic force is regulated that a 
charged particle with the greatest charge attract all other par-
ticles of lower charge and move slowly in the search space. 
Figure 4 presents the flowchart of the AEFA.

The AEFA first randomly locates of N particles in 
d-dimensional search space with the position of ith particle 
presented as Xi = [xi1, xi2, xi3, …, xid] with i ∈ [1, 2, 3,… ,N] . 
The position of the particle ith at time t is given by the fol-
lowing equation:

The location of the best particle with the greatest fitness 
is denoted by Pbest = Xbest. The force acting on the charge ith 
from charge jth is calculated as follows:

where Qi(t) and Qj(t) are the charges of ith and jth particle 
at any time t, respectively; K(t) is the Coulomb’s constant at 
any time t; ϵ is a positive constant; and Rij(t) is the Euclidian 
distance between the ith particles and the jth particle. The 
Coulomb’s constant K(t) is given as follows:

where α and K0 are a constant value and initial value, 
respectively; iter is the current iteration and maxiter is the 
maximum number of iterations.

(9)pd
i
(t + 1) =

{
pd
i
(t) if f (Pi(t) < f (Xi(t + 1))

xd
i
(t + 1) if f (Xi(t + 1) ≤ f (Pi(t)).

(10)Fd
ij
(t) = K(t)

Qi(t) + Qj(t)(p
d
j
(t) − Xd

i
(t))

Rij(t) + �
,

(11)K(t) = K(0) ∗ exp
(
−�

iter

maxiter

)
,

The total electric force acts on the ith particle by all the 
other particles is given by the following equation:

where rand() is an uniform random number in the range of 
[0 1].

The electric field of the ith particle at any time t is given 
by the following equation:

The acceleration of the ith particle at any time t is given 
by the following equation:

where Mi(t) is the unit mass of the ith particle at any time 
t. The velocity and position of the ith particle are updated 
as follows:

where rand() is a uniform random number in the interval 
[0, 1].

The charge of a particle is calculated based on the fitness 
functions with an assumption of equal charge for all particles 
as shown in Eq. (10). Fundamentally, the charge of the best 
particle should have the greatest value while other particles 
have charge values in the range of [0 1]. Hence, the particle 
with a larger charge has a greater force for the best fitness 
value:

(12)Fd
i
(t) =

N∑

j

rand()Fd
ij
(t), with i ≠ j,

(13)Ed
i
(t) = Fd

i
(t)∕Qd

i
(t).

(14)ad
i
(t) =

Qi(t)E
d
i
(t)

Mi(t)
,

(15)Vd
i
(t + 1) = � ∗ Vd

i
(t) + ad

i
(t)

(16)Xd
i
(t + 1) = Xd

i
(t) + Vd

i
(t + 1),

(17)Qi = Qj i, j ∈ [1, 2, 3,… ,N]

(18)qi(t) = exp

(
fitpi(t) − worst(t)

best(t) − worst(t)

)

(19)Qi(t) =
qi(t)

∑N

i=1
qi(t)

Fig. 4  Artificial electric field 
algorithm’s pseudo-code

Randomly position 
particles

Evaluate fitness of each 
particle Fiti(t) Stopping Condition

Yes

No

Determine K(t), best(t), 
worst(t), ai(t), and Fi(t)

Update velocity Vi(t), 
location Xi(t)

Optimal Solution

g=g+1

Searching loop
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where  fiti is the fitness value of ith particle at any time t; 
best(t) = min(fiti(t)) and worst(t) = max(fiti(t)).

4  The proposed metaheuristic‑optimized 
meta‑ensemble learning model 
for soil‑shear‑strength estimation

This section describes the overall structure of the 
metaheuristic optimized machine learning ensemble, named 
as MOMEM, used for predicting the soil shear strength. The 
proposed model consists of the RBFNN and MARS machine 
learning models. The construct a robust prediction approach, 
the AEFA metaheuristic is employed to optimize the hyper-
parameters of the RBFNN and MARS. Besides, the dynamic 
weight values for model members involved in the ensemble 
MOMEM are also automatically determined by the AEFA 

method. The general workflow of the proposed MOMEM for 
estimating the shear of soil is presented in Fig. 5.

4.1  Initiative phase

As presented in Fig. 5, the initialization phase uses purely 
the training data for the construction. Since greater numeric 
ranges tend to result in undesirable bias in the construc-
tion of a machine learning model; therefore, all attribute 
values are converted into the same range of [0, 1] so that 
these attributes are fed to the construction process of a 
machine learning with the equal weight. Herein, the con-
vertion uses the normalization method with the equation 
presented in Eq. (20). It is worth noticing that the study 
employed 10-cross validation method to divide the whole 
dataset. Hence, the training dataset is the result of gathering 
9 of 10-crossing folds. The remaining fold is used for testing 
the trained machine learning model. The training dataset 

Fig. 5  Procedure for constructing the MOMEM
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is then partitioned into two sets; one set with 70% of data 
patterns is employed to trained model; another set with the 
remaining 30% of data patterns is used to validate the newly 
trained model:

where xi,j is a data value of the attribute jth, xj,min is the 
lowest value for the attribute jth, xj,max is the highest value 
for the attribute jth, and xi,jtran is the transformed value of the 
attribute jth.

Parameters in the MOMEM are composed of a number of 
member inference models integrated into and their control-
ling parameters. Hence, the framework of blending machine 
learners leads to an increase of parameter numbers along 
with the increase of involved inference models. In this study, 
reciprocal merits of the MARS and RBFNN are blended 
to establish the MOMEM, there are seven parameters (Nn, 
σ, Mmax, d, Imax, α, and β) that need to be simultaneously 
fine-tuned to attain the optimal configuration of MOMEM 
with ultimate generalizability. In this phase, each of all seven 
parameters initially was assigned many random values in an 
extensive range to have an evaluation basis for the search-
ing loop at the next phase. The searching boundary for each 
parameter is set to be sufficiently large to cover all poten-
tially suitable values of concerned parameters and shown 
in Table 2.

4.2  Searching phase

At steps 1.1 and 1.2, member models will receive values 
of parameter generated by the AEFA searching engine to 
proceed with the construction of inference models by using 
partitioned training data that is processed at the previous 
phase. This is the construction process of many model can-
didates and thus inevitably consumes time most compared to 
other steps. Further, more inference models blended in this 
meta-ensemble learning framework will entail more com-
putational time. In the MOMEM, particularly, the RBFNN 
model and MARS model are established independently with 

(20)xtran
i,j

=
xi,j − x

j,min

xj,max − x
j,min

,

AEFA-assigned parameter values (Nn and σ) and (Mmax, Imax 
and d), respectively. Eventually, the trained models gener-
ate the prediction values of all data points for training and 
testing sets. It should be emphasized that these parameter 
values purposely attain the greatest prediction accuracy for 
the proposed meta-learning model, the MOMEM, rather 
than individual models. It is important to note that many 
new models are created to potentially replace the old ones 
at each iteration.

As mentioned previously, the final prediction values of 
the MOMEM is calculated by summing up the predictive 
values of blended member models multiplied with their 
dynamic weight of the corresponding models. Notably, val-
ues of dynamic weights (α and β) express the influencing 
level of the corresponding constituent models on the final 
prediction values of the MOMEM which are tuned by the 
AEFA searching engine in the standardized range of [0, 1] 
as shown in Table 3. Formulas of merging predictive val-
ues are expressed in Eq. (21). It is noted that the traditional 
stacking ensemble method; all member models are assumed 
to have an equal role, which is expressed by the average 
weight assigned [56]. These subjective average values may 
diminish the generalizability of the ensemble model. Fur-
ther, the AEFA searching engine can automatically discard 
any member models by assigning a dynamic weight of 0 if 
it recognizes those models undermine the accuracy of the 
MOMEM. At that time, the MOMEM becomes a single 
hybrid machine learner:

where pMNVIM, pRBFNN, and pLSVR indicate the prediction 
values of the MOMEM, RBFNN, and MARS, respectively; 
α and β are the dynamic weight of the RBFNN and MARS, 
respectively.

Setting an appropriate objective function for the AEFA 
searching engineer is crucial to obtain a robust meta-learner 
successfully. Many joined individual models along with the 
support of the AEFA are likely to purely minimize the train-
ing error that causes the final model to be trapped at the 
over-fitting problem. It is worth noticing that this well-fitting 

(21)pMOMEM = � × pRBFNN + � ∗ pMARS,

Table 2  Initial control 
parameter settings

Model member Tuning parameter Notation Lower bound Upper bound

Combination coefficient α, β 0 1
RBFNN model Hidden neuron number Nn 1 100

Gaussian function width σ 10−10 10
MARS model Number of functions Mmax 1 100

Penalty parameter d 10−10 10
Maximum interaction Imax 1 12

AEFA optimizer Iteration number Iter 50
Population size Pop 50
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model has poor generalizability since it is over-trained with 
a high-complex degree to fit the training data only [57]. 
Inspired by successes of other works [58–61], this study 
put forward an objective function expressed by a sum of 
validation error and training error, as shown in Fig. 5. The 
present study prefers to employ the root mean square error 
(RMSE) for the objective functions because this evaluation 
criterion has an additional feature of reducing the number 
of large biases between actual values predictive values. The 
AEFA searching engine thus needs to reduce the sum of 
RMSE of training and validation concurrently as shown in 
Eq. (22). The offered objective function is thus expected to 
alleviate the effect of over-fitting, increase the generalizabil-
ity of the MOMEM, and reduce the number of large unde-
sirable biases. Hence the concerned issued may be stroked 
efficiently:

The set of parameter values (Nn, σ, Mmax, Imax, d, α, and 
β) will be synchronously adjusted by the transformation pro-
cedure of AEA. A bad set of values is replaced by better 
ones based on the obtained values of the objective function. 
Therefore, the values of tuning parameters will be progres-
sively improved after each loop. Accordingly, the learnabil-
ity and generalizability of the MOMEM are progressively 

(22)fitness = RMSEtrain + RMSEvalidation.

improved after each searching loop. The AEFA will select 
the best tuning parameters, i.e., for each searching loop, 
those that provide the lowest value of fitness function. The 
AEFA shall memorize the suitable sets of parameters and 
extend the searching loop to meeting the stopping criterion. 
This study used the iteration number of 50 as the stopping 
criterion.

4.3  Optimal meta‑learner and application phase

The searching process halts when the stopping condition 
is met, indicating that the optimal set of tuning parameters 
(Nn, σ, Mmax, Imax, d, α, and β) is available to train MOMEM 
with the entire training dataset. The trained MOMEM is 
then saved to perform prediction tasks for the testing phase 
or generate prediction value for new data input. It is recom-
mended to update and re-train when having enough num-
ber of new data. More data of soil-shear-strength enable 
MOMEM to further discover more underline features of 
soil-shear-strength thus reaching closer to the underlying 
function of soil’s shear strength.

Table 3  Detailed results of 20 
running times

Model Training Testing

RMSE MAPE MAE R2 RMSE MAPE MAE R2

1 0.034 7.97 0.026 0.846 0.042 10.21 0.031 0.781
2 0.035 8.62 0.028 0.834 0.027 5.16 0.017 0.918
3 0.037 8.72 0.029 0.812 0.033 8.92 0.026 0.877
4 0.036 8.84 0.029 0.833 0.031 7.62 0.024 0.801
5 0.029 7.07 0.023 0.889 0.029 6.54 0.022 0.879
6 0.028 6.92 0.022 0.889 0.045 8.70 0.033 0.813
7 0.025 6.01 0.019 0.918 0.041 8.67 0.030 0.771
8 0.029 7.34 0.023 0.889 0.029 5.62 0.020 0.841
9 0.028 7.00 0.022 0.898 0.029 7.34 0.023 0.791
10 0.032 7.56 0.025 0.863 0.036 9.29 0.030 0.845
11 0.032 7.98 0.025 0.859 0.031 6.46 0.024 0.902
12 0.032 7.49 0.025 0.870 0.033 8.45 0.026 0.816
13 0.036 8.56 0.028 0.832 0.037 9.40 0.031 0.804
14 0.030 7.17 0.023 0.880 0.038 9.90 0.029 0.808
15 0.031 7.80 0.024 0.866 0.041 7.27 0.028 0.772
16 0.034 8.18 0.026 0.841 0.031 7.13 0.020 0.886
17 0.034 8.18 0.027 0.843 0.031 6.74 0.022 0.895
18 0.030 7.12 0.023 0.880 0.034 9.45 0.027 0.799
19 0.035 8.67 0.027 0.840 0.032 7.53 0.024 0.832
20 0.028 6.57 0.021 0.899 0.044 8.41 0.031 0.698
Mean 0.032 7.69 0.025 0.864 0.035 7.94 0.026 0.826
Std. 0.003 0.79 0.003 0.028 0.005 1.42 0.004 0.055
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5  Experimental results and discussions

5.1  Performance evaluation criteria

The performance of an AI-based inference model should 
be evaluated and compared based on many criteria that are 
required to cover different aspects comprehensively. This 
ensures the conclusion of the assessment to be reliable. This 
study uses root mean square error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE), and 
determination of coefficient (R2) to benchmark performance 
of the MOMEM against other models.

In detail, MAPE displays the model accuracy in the type 
of percentage that spots the high errors of the small actual 
values. RMSE highlights the undesirably sizable biases 
among actual values and predictive values, while MAE 
gives an average of the prediction bias with equal weight to 
all errors. The greater models will attain smaller values of 
RMSE and MAE. Meanwhile, R2 indicates the capability of 
the model in reasonably inferring future outcomes with the 
highest value of 1. Formulae of RMSE, MAPE, MAE, and 
R2 are expressed as Eqs. (23)–(26):

where SST= total of sum square errors; SSR = sum of 
square residual errors; pi = predicted value; yi = actual value; 
ȳ = average of actual value; and n = number of data patterns.

5.2  Experimental results and discussion

In order to avoid the bias in the data partition process, a 
tenfold cross-validation approach is applied for the splitting 
dataset [62]. Thus, all data patterns will be in turn assigned 
in both training and testing sets. Since this study compares 
AI-inference models based on statistical methods with mean 
and standard deviation, all models will perform the predic-
tion task on 20 run times. Hence, the ten crossing folds are 
used twice. The models were run in MATLAB environment 
version 2018a [63].

(23)RMSE =

√√√
√(1∕n) ×

n∑

i=1

[pi − yi]
2

(24)MAE = (1∕n) ×

n∑

i=1

(|
|pi − yi

|
|
)

(25)MAPE = (1∕n)

n∑

i=1

(|
|pi − yi

|
|∕yi

)
× 100

(26)R2 = SSR∕SST = 1 −

n∑

i=1

(yi − pi)
2∕

n∑

i=1

(yi − ȳ)2

Table 3 displays the performance of the MOMEM on the 
soil-shear-strength for 20 run times. As seen in the table, the 
MOMEM attains a very high accuracy for inferring values of 
soil-shear-strength which is expressed by the relatively low 
average values of RMSE (0.035 kg/cm2), MAPE (7.94%), 
and MAE (0.026 kg/cm2) in the testing phase. Further, 
the low values of the standard deviation of those criteria 
strongly confirm that the high performance of MOMEM is 
retained stable and exiguously affected by the data partition. 
Interestingly, there are a slight difference between the values 
of evaluation criteria between the testing phase and the train-
ing phase. Particularly, the absolute deviations of MAPE and 
RMSE at the two phases are only 0.25% and 0.003 (kg/cm2), 
respectively. These facts indicate that the over-fitting issue 
is addressed efficiently in the MOMEM by summarizing the 
training and validation errors in the objective function.

Sets of parameter values found on 20 run times are shown 
in Table 4. Surprisingly, the values of all parameters vary 
in large ranges. Especially, the optimal spread of Gauss-
ian function in RBFNN lies from 0.018 to 4.979 while the 
maximum number of neurons is 60 that is as many as ten 
times of minimum number, respectively. Those changes are 
obviously interpreted as to grasp the different characters of 
each training and validation dataset. Apparently, the chance 
of the trial-and-error method or experience-based parameter 
setting to successfully determine the optimal configuration 
of MOMEM is limited.

As exhibited in Fig. 6, there is a change of the member 
model’s role in the MOMEM which is identified by the val-
ues of α and β found in a range of [0 0.997]. Especially, the 
RBFNN absolutely dominated the MARS in the construction 
of MOMEM in the 16th run when α and β are found as 0.997 
and 0, respectively. Inversely, the RBFNN was discarded in 
the final MOMEM in the 12th run and the 17th run. The val-
ues of dynamic weights assigned to be 0 dedicated that the 
corresponding constituent model (RBFNN or MARS) was 
recognized to impair the accuracy of the MOMEM model; 
thus, the final prediction values of the MOMEM were pro-
duced by the only one of two constituent models (RBFNN or 
MARS). Accordingly, the MOMEM becomes a pure hybrid 
of the AEFA with the RBFNN or with the MARS, abbrevi-
ated as AEFA-RBFNN and AEFA-MARS, respectively.

It is worth noticing that found values of parameters lie in 
the middle of pre-defined ranges, indicating the boundary 
of each range was sufficient to cover all the potential values 
of parameters. Figure 7 exhibits the convergence curves of 
the particular run, which demonstrated the AEFA to have a 
rapid convergence. In detail, the optimal values were able 
to be found at approximately iteration 35 out of 50, which 
affirmed that the fittest values are always determined before 
the stopping condition is met.
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5.3  Result comparison and discussion

It is necessary to compare the performance of the developed 
models against that of other AI-based inference models so 
that the role of techniques in MOMEM is clearly clarified. 
RBFNN, MARS, generalized regression neural network 
(GRNN), and support vector regression with Gaussian 
function (kernel function)  (SVRgau) are selected because 
they present a different type of machine learner and highly 
perceived in solving engineering-related issues in the lit-
erature. AEFA-MARS and AEFA-RBFNN, and traditional 

MARS + RBFNN ensemble models are selected in the com-
parison to quantify the contribution of each technique inte-
grated into MOMEM. All models were run on MATLAB 
environment 2018a [63] with the trial-and-error method to 
find the potentially suitable configuration. The interface plat-
forms are presented in Fig. 8.

The statistical results shown in Table 5 have demonstrated 
the proposed model, MOMEM, as the greatest model by 
achieving the greatest values in terms of RMSE (0.035 kg/
cm2), MAPE (7.94%), MAE (0.026 kg/cm2). Those values 
are much lower than that of the second-best model, the 

Table 4  The obtained control 
parameters

Run RBFNN MARS Model’s weight

σ Nn Mmax C Imax α β

1 4.979 21 50 4.474 12 0.660 0.314
2 1.372 30 56 4.277 5 0.753 0.210
3 2.630 38 15 7.739 7 0.926 0.003
4 4.795 42 35 9.769 7 0.388 0.569
5 1.738 32 60 2.397 11 0.505 0.483
6 2.621 15 45 2.457 8 0.219 0.760
7 2.396 34 58 0.657 8 0.415 0.591
8 0.921 21 49 0.213 1 0.388 0.633
9 3.906 30 44 1.831 8 0.311 0.694
10 4.247 14 27 4.359 3 0.033 0.953
11 1.357 38 32 8.006 4 0.697 0.323
12 0.018 27 52 0.488 1 0.000 0.970
13 4.765 29 11 0.661 1 0.682 0.278
14 0.677 60 19 0.049 6 0.277 0.713
15 3.506 53 30 2.268 1 0.258 0.740
16 3.005 48 30 1.077 5 0.996 0.000
17 4.973 6 23 4.771 9 0.000 0.997
18 0.645 56 49 0.002 1 0.062 0.907
19 0.927 19 44 6.078 2 0.735 0.295
20 4.116 35 54 0.553 6 0.568 0.403
Minimum 0.018 6 11 0.002 1 0.000 0.000
Maximum 4.979 60 60 9.769 12 0.996 0.997

Fig. 6  The weights of mem-
ber models in the proposed 
MOMEM
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AEFA-RBFNN, which attains values of RMSE, MAPE, 
MAE of 0.039 kg/cm2, 9.05%, 0.029 kg/cm2, respectively, 
in the testing phase. As measured, there are at least 11.4 and 
11.5% improvement in terms of RMSE and MAE, respec-
tively, when using MOMEM to predict soil-shear-strength 
rather than the use of the AEFA-RBFNN and the AEFA-
MARS (third-best model). Notably, in machine learning, 
the generalizability of a model is the first priority since it 
presents the ability of the model to infer new facts. It is thus 
acceptable as MOMEM obtained higher values of RMSE 
(0032 kg/cm2), MAE (0.026 kg/cm2), MAPE (7.69%) than 
the AEFA-RBFNN and the AEFA-MARS in the training 
phase.

In comparison with traditional the MARS + RBFNN 
ensemble model, MOMEM expresses as a dominant model 
because it reduces values of RMSE and MAE up to 16 
and 23%, respectively. These numbers affirmed that the 
AEFA searching engine and re-defined dynamic weights 
already fulfilled the gap of performance of the traditional 
ensemble method. The statistical results revealed that using 
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Fig. 8  Interface platform for performing shear strength of soil on MATLAB GUIDE

Table 5  Shear strength 
prediction performance of the 
MOMEM

Model Training Testing

RMSE MAPE MAE R2 RMSE MAPE MAE R2

SVRgau 0.028 6.37 0.020 0.896 0.045 11.15 0.036 0.708
MARS 0.035 8.61 0.028 0.833 0.045 11.02 0.036 0.696
RBFNN 0.036 8.75 0.028 0.828 0.042 10.55 0.034 0.736
GRNN 0.010 1.91 0.006 0.988 0.044 10.80 0.035 0.711
BPNN 0.040 10.00 0.032 0.765 0.047 12.03 0.038 0.659
MARS + RBFNN 0.035 8.46 0.027 0.840 0.040 9.95 0.032 0.768
AEFA-MARS 0.027 6.45 0.021 0.903 0.041 9.47 0.031 0.758
AEFA-RBFNN 0.030 7.17 0.023 0.879 0.039 9.05 0.029 0.777
AEFA-MARSANN 0.032 7.69 0.025 0.864 0.035 7.94 0.026 0.826
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conventional single machine learners, including the MARS, 
RBFNN, GRNN, and  SVRgau, models are not efficient in 
diminishing of bias in predicting soil-shear-strength.

A cause-and-effect relationship between the soil’s shear 
strength and its attributes will lead to a high value of R2, 
meaning that the MOMEM mapped a closer underlying 
function of soil’s shear strength by gaining the greatest 
value of R2 (0.864 and 0.826 for training and testing phase, 
respectively). In other words, 82.6% of data patterns can 
be inferred by MOMEM-mapped function while it is only 
77.7% for the second-best model, the AEFA-RBFNN. Fig-
ure 9 presents the actual-versus-prediction value of all data 
patterns in the testing phase. Generally, the obtained results 
have firmly proved a possibility of boosting the accuracy of 
soil-shear-strength estimate by integrating the AEFA in the 
fusion of the MARS and the RBFNN.

5.4  One‑tail t test method for examining the mean 
difference

This study further conducted a one-tailed t test to test for 
the significant differences of the MOMEM’s performance 
in estimating shear strength of soil against that of other AI 
models. The one-tailed t test was calculated on the root 
mean absolute error (RMSE) values with an equal size of 
20 samples (run times) and unknown variances. It is worth 
noting that the RMSE sample is assumed to have a normal 
distribution. The procedure for implementing one-tailed t 
test is as follows:

• H0∶ MAPEMOMEM −MAPEothers = 0

• H1∶ MAPEMOMEM −MAPEothers < 0
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Fig. 9  Actual-versus-prediction values: a MOMEM, b AEFA-MARS, c AEFA-RBFNN, d MARS + RBFNN
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where n is the number of samples (n = 20); ν is the degree 
of freedom; s1

2 and s2
2 are the unbiased estimators of the 

variances of the two samples; the denominator of t is the 
standard error of the difference between two means x̄1 and 
x̄2 (average).

Calculated results with a confidence level of 95% 
(α = 0.05) are presented in Table 6. For all cases, t sta-
tistic < − t-critical one-tailed (− 1.69), indicating MOMEM 
significantly outperformed other models in reducing RMSE 
values of soil-shear-strength. This conclusion may be 
manifested in Fig. 10. In conjunction with a robust perfor-
mance demonstrated as analyzed above, the MOMEM has 
no request for setting up its configuration in the soil-shear-
strength estimate process. In general, Analysis results sup-
port the MOMEM as the best choice for civil engineers; 
this model is able to yield reliable estimate values of soil’s 
shear strength.

In order to achieve efficiency, the construction of the 
MOMEM using the hybrid of several AI techniques inevi-
tably increases the complexity of the model structure. Thus, 
the MOMEM needs more computation time than other mod-
els in the model construction process. Considering the many 
obtained benefits, including significantly improved predic-
tion accuracy of soil-shear-strength and user-friendliness, 
the additional computation time is justified and acceptable.

6  Concluding remarks

The shear strength is the maximum resistance or stress that a 
particular soil can offer against failure over its improper sur-
face loading. The shear strength of soils is essential for any 
stability analysis. Therefore, it is crucial to determine the 
reliable values of soil-shear-strength. A novel meta-learner 
was created based on the framework, called Metaheuris-
tic-optimized meta-ensemble learning model (MOMEM) 
which was a combination of the RBFNN, the MARS, and 

(27)Degree of freedom: v = (n − 1)(s2
1
+ s2

2
)2∕(s4

1
+ s4

2
)

(28)Statistical test: t =
√
n
�
x̄1 − x̄2

�
∕

�
s2
1
+ s2

2
,

the AEFA search engine. In the MOMEM, AEFA applies its 
optimization procedure to organize suitable configuration of 
the inference model member, including RBFNN (Nn and σ) 
and MARS (Mmax, Imax, and d) through adjusting model’s 
control parameters. Simultaneously, AEFA finetunes the 
model weights of RBFNN and MARS (α and β) to eventu-
ally generate prediction values of the MOMEM which is 
calculated by the sum of member models predictive values 
multiplied with their corresponding model weights.

The performance of the MOMEM is validated based 
on 240 data patterns of soil-shear-strength that were col-
lected during the site investigation in the Le Trong Tan 
Project, Hanoi, Vietnam. The statistical results of 20 run 
times based on a tenfold cross-validation technique dis-
play that MOMEM is the best model in predicting shear 
strength of soil by attaining greatest values in terms of 
RMSE (mean = 0.035 kg/cm2; Std. = 0.005 kg/cm2), MAE 
(mean = 0.026  kg/cm2; Std. = 0.004  kg/cm2), MAPE 
(mean = 7.9%; Std. = 1.72%), and R2 (mean = 0.826; 
Std. = 0.055). The one-tail t test endorsed that the obtained 
results are significantly better than that of other compara-
tive AI models, including variants of the RBFNN, the 
MARS, the conventional RBFNN + MARS ensemble, and 
the SVReg.

The findings demonstrated that the AEFA searching 
engine can autonomously determine the best set of param-
eter values to adaptively exploit features of each training 
dataset. The AEFA is able to recognize and discard a model 
member that damages the accuracy of the MEMOM. At that 
time, the MEMOM becomes a purely single hybrid model 
of a metaheuristic algorithm and a machine learner. In sum-
mary, the AEFA plays an integral role in selecting the mer-
its of RBFNN and MARS to make them the best fit in the 
MOMEM.

This study is the first to put forward a novel stacking 
techniques-based ensemble model of hybridizing MARS 
and RBFNN that represent different types of learners in the 
field of machine learning for sharing reciprocal merits in 
the meta-ensemble model. Additionally, the present study 
lifted the operation of ensemble model to a higher level by 
integrating a robust metaheuristic optimization algorithm, 
AEFA, to ascertain automatically attaining the maximum 

Table 6  Hypothesis testing for 
comparing models’ performance

T test MARS RBFNN MARS + RBFNN AEFA-MARS AEFA-RBFNN

Average RMSE 0.045 0.042 0.040 0.041 0.039
Std. RMSE 0.009 0.005 0.005 0.007 0.005
df 31 37 37 37 37
t-Statistical − 4.269 − 4.778 − 3.297 − 3.246 − 2.606
P(T ≤ t) 1-tail 8.61E−05 1.40E−05 0.001 0.001 0.007
t-critical 1-tail 1.696 1.687 1.687 1.687 1.687
Conclusion Reject H0 Reject H0 Reject H0 Reject H0 Reject H0
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performance of the model combination. With the success of 
employing MOMEM for addressing the soil-shear-strength 
prediction problem, this study further contributes a novel 
framework of establishing metaheuristic stacking technique-
based ensemble model which is expected to inspire scholars 
to create new models for solving other practical problems.

Despite possessing many advantages, the MOMEM also 
has two weaknesses: First, the MOMEM performs the infer-
ence process as a black box since the mapped functions of 
soil-shear-strength is not visually formulated. Second, the 
model construction needs a long time due to the optimiza-
tion process and two inference models involved in the trained 
process. However, the computational time problem can be 
sharply shortened by using modern high-speed computers. 
Further, once the optimal model is found, it can quickly infer 
the outcome of new data patterns and saved for use in a long 
time. The saved model should be updated with new data 
points collected which is also a work for authors to imple-
ment in the future.
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Appendix

The collected dataset

Sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y

1 2.00 36.30 28.19 34.88 33.41 1.87 1.40 0.94 46.16 28.65 17.51 0.27 0.46
2 5.30 25.67 49.76 24.57 42.15 1.76 1.24 1.17 47.78 31.01 16.77 0.66 0.32
3 8.80 22.24 48.19 29.41 35.59 1.84 1.36 0.99 39.60 23.86 15.74 0.75 0.34
4 1.80 18.23 53.89 27.78 27.66 1.90 1.49 0.81 36.19 23.01 13.18 0.35 0.48
5 6.80 24.48 51.60 23.82 49.75 1.70 1.14 1.37 54.12 38.22 15.90 0.73 0.22
6 9.80 19.41 53.50 27.06 46.33 1.72 1.17 1.30 49.78 36.22 13.57 0.75 0.24
7 2.80 13.52 58.41 27.51 34.40 1.85 1.38 0.96 41.18 25.94 15.24 0.56 0.33
8 7.00 15.83 57.91 26.26 36.07 1.78 1.31 1.06 41.65 26.35 15.30 0.64 0.28
9 11.00 8.55 63.02 28.43 37.84 1.83 1.33 1.03 44.97 28.25 16.72 0.57 0.24
10 14.80 13.17 58.57 28.25 45.37 1.74 1.19 1.25 50.11 33.99 16.12 0.71 0.22
11 3.50 11.13 59.17 29.70 34.28 1.84 1.37 0.97 41.22 26.35 14.87 0.53 0.37
12 8.00 21.93 49.79 28.28 45.33 1.74 1.20 1.24 51.05 34.96 16.09 0.64 0.24
13 11.00 12.97 59.78 27.24 40.02 1.75 1.25 1.15 45.98 30.12 15.86 0.62 0.26
14 1.80 16.72 53.36 29.88 24.51 1.92 1.54 0.76 32.65 20.33 12.32 0.34 0.48
15 6.50 29.15 42.97 27.89 40.99 1.75 1.24 1.16 46.51 29.66 16.85 0.67 0.27
16 11.50 37.93 33.25 28.81 38.75 1.76 1.27 1.12 43.12 26.97 16.14 0.73 0.39
17 1.50 14.24 57.03 28.73 28.74 1.94 1.50 0.80 38.65 24.53 14.12 0.30 0.48
18 4.50 13.55 59.17 27.28 38.52 1.81 1.31 1.07 42.36 31.35 11.01 0.65 0.36
19 12.00 12.32 58.95 28.73 39.51 1.79 1.29 1.10 44.32 27.37 16.95 0.72 0.24
20 14.00 24.76 50.16 25.07 31.83 1.88 1.42 0.90 37.69 25.63 12.06 0.51 0.31
21 1.30 10.58 39.17 50.21 23.09 1.90 1.55 0.76 35.44 18.42 17.02 0.27 0.52
22 7.50 13.81 55.86 30.34 44.15 1.75 1.21 1.23 50.09 33.19 16.90 0.65 0.28
23 12.50 26.50 44.98 28.52 41.07 1.78 1.26 1.14 48.55 32.25 16.31 0.54 0.26
24 14.00 12.01 57.02 29.79 35.46 1.86 1.37 0.98 41.25 26.56 14.70 0.61 0.37
25 2.00 13.63 58.00 28.37 27.79 1.91 1.50 0.81 37.02 23.12 13.90 0.34 0.50
26 8.00 23.87 46.07 29.67 47.01 1.72 1.17 1.31 53.17 37.42 15.75 0.61 0.35
27 12.00 21.91 48.82 29.27 45.94 1.72 1.18 1.29 50.32 35.66 14.66 0.70 0.33
28 2.30 10.65 59.12 29.63 24.95 1.92 1.53 0.77 36.25 20.34 15.92 0.29 0.50
29 6.30 17.10 53.02 29.88 41.09 1.71 1.21 1.22 44.34 29.82 14.51 0.78 0.18
30 10.30 14.88 57.32 27.79 38.23 1.76 1.28 1.12 43.00 26.34 16.66 0.71 0.27
31 13.10 15.60 59.41 24.98 30.69 1.76 1.34 1.01 36.11 20.02 16.09 0.66 0.30
32 2.80 9.10 60.63 29.59 28.93 1.91 1.48 0.82 38.54 25.47 13.07 0.26 0.55
33 6.80 22.65 48.36 28.99 38.83 1.74 1.25 1.14 42.36 28.56 13.80 0.74 0.25
34 9.80 19.12 52.79 28.09 47.06 1.71 1.16 1.31 53.12 36.91 16.20 0.63 0.35
35 14.80 15.63 56.92 27.25 43.51 1.73 1.20 1.24 48.53 33.25 15.28 0.67 0.29
36 2.00 10.02 60.89 27.44 25.34 1.95 1.56 0.74 36.21 21.33 14.88 0.27 0.52
37 5.00 13.89 56.35 29.76 32.60 1.88 1.42 0.91 38.56 24.55 14.01 0.57 0.27
38 10.30 11.57 58.74 29.70 44.10 1.76 1.22 1.21 49.91 34.05 15.85 0.63 0.36
39 14.00 18.55 51.81 29.64 39.96 1.76 1.25 1.15 45.23 30.25 14.98 0.65 0.35
40 2.00 21.15 44.53 34.22 31.91 1.87 1.41 0.92 45.05 27.24 17.81 0.26 0.55
41 5.60 7.76 42.62 49.63 35.64 1.86 1.37 0.97 44.52 25.53 18.99 0.53 0.37
42 8.00 13.15 59.07 27.78 46.60 1.73 1.18 1.28 51.02 34.16 16.86 0.74 0.30
43 12.50 34.73 41.42 23.86 37.04 1.79 1.31 1.06 41.52 27.89 13.64 0.67 0.31
44 14.80 32.45 38.82 28.73 46.81 1.73 1.18 1.28 49.62 36.98 12.64 0.78 0.28
45 5.00 45.76 25.59 28.65 40.83 1.80 1.28 1.12 46.25 30.24 16.01 0.66 0.33
46 9.00 32.68 37.58 29.75 35.08 1.80 1.33 1.03 38.69 24.52 14.17 0.75 0.27
47 1.50 21.45 48.92 29.62 28.36 1.92 1.50 0.81 36.52 23.36 13.16 0.38 0.46
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Sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y

48 3.00 16.29 57.33 26.37 25.21 1.94 1.55 0.75 32.63 19.61 13.02 0.43 0.43
49 7.50 12.70 58.70 28.60 34.56 1.87 1.39 0.95 42.36 26.58 15.78 0.51 0.33
50 3.30 22.34 47.67 29.99 25.36 1.90 1.52 0.79 36.32 21.25 15.07 0.27 0.51
51 6.50 10.82 60.04 29.14 35.61 1.85 1.36 0.98 40.23 26.35 13.88 0.67 0.30
52 9.80 11.87 58.93 29.20 38.36 1.78 1.28 1.11 43.23 26.62 16.61 0.71 0.26
53 9.00 16.63 55.27 28.10 30.20 1.92 1.47 0.84 34.55 23.03 11.52 0.62 0.30
54 4.30 11.35 59.35 29.30 37.84 1.82 1.32 1.04 42.51 28.54 13.97 0.67 0.32
55 1.60 25.60 45.28 27.50 26.61 1.95 1.54 0.76 35.24 22.15 13.09 0.34 0.51
56 7.00 20.04 52.97 26.99 40.17 1.79 1.28 1.11 47.00 32.52 14.48 0.53 0.29
57 3.80 10.93 59.59 29.05 40.30 1.74 1.24 1.18 46.81 31.29 15.53 0.58 0.32
58 1.30 15.51 39.00 45.49 33.05 1.87 1.41 0.93 47.05 27.95 19.10 0.27 0.54
59 7.80 25.39 46.33 28.21 41.33 1.78 1.26 1.14 48.92 32.12 16.81 0.55 0.34
60 5.00 9.20 60.91 29.76 32.69 1.88 1.41 0.91 39.83 25.35 14.48 0.51 0.36
61 2.00 10.85 59.44 29.71 25.69 1.95 1.55 0.74 36.26 19.65 16.61 0.36 0.45
62 8.00 70.77 19.89 8.98 18.38 1.85 1.56 0.72 23.12 18.02 5.10 0.07 0.42
63 11.80 76.05 14.97 8.98 20.05 1.84 1.54 0.74 23.00 18.98 4.03 0.27 0.39
64 14.80 68.84 21.25 9.86 21.51 1.87 1.54 0.75 24.15 17.33 6.82 0.61 0.41
65 3.20 28.47 42.28 29.25 44.86 1.74 1.20 1.25 49.21 32.56 16.65 0.74 0.35
66 2.00 20.61 51.47 27.92 27.36 1.91 1.50 0.81 36.54 22.36 14.18 0.35 0.47
67 3.80 13.94 56.79 29.27 38.91 1.78 1.28 1.10 44.56 28.25 16.31 0.65 0.29
68 7.80 20.88 52.47 26.65 37.04 1.83 1.33 1.04 43.96 29.54 14.41 0.52 0.32
69 11.40 15.62 54.56 29.79 39.01 1.81 1.30 1.08 42.63 29.56 13.07 0.72 0.36
70 14.80 23.96 47.38 28.66 42.98 1.77 1.24 1.18 47.24 31.32 15.92 0.73 0.34
71 1.40 26.20 48.19 25.58 26.20 1.91 1.51 0.79 35.26 19.56 15.70 0.42 0.49
72 5.00 16.68 53.92 29.39 31.51 1.86 1.41 0.91 39.25 22.51 16.74 0.54 0.32
73 14.00 29.28 42.05 28.68 39.19 1.81 1.30 1.07 44.12 28.02 16.10 0.69 0.29
74 3.00 12.51 58.57 28.56 30.92 1.87 1.42 0.90 36.25 23.21 13.04 0.59 0.34
75 11.00 22.61 52.00 25.40 30.28 1.87 1.43 0.89 35.69 19.15 16.54 0.67 0.37
76 14.00 22.19 47.94 29.87 39.21 1.74 1.25 1.16 42.15 30.14 12.01 0.76 0.27
77 1.60 13.64 58.55 27.81 20.57 1.95 1.62 0.67 32.69 16.52 16.17 0.25 0.44
78 4.00 20.94 50.37 28.68 47.73 1.72 1.16 1.32 53.23 37.22 16.01 0.66 0.30
79 9.00 11.83 58.98 29.19 43.72 1.74 1.21 1.24 48.77 32.09 16.68 0.70 0.31
80 14.00 34.26 39.16 26.06 45.45 1.72 1.18 1.28 50.56 36.12 14.44 0.65 0.33
81 3.80 11.25 59.56 29.19 37.09 1.76 1.29 1.10 40.23 28.56 11.67 0.73 0.29
82 1.80 13.98 56.52 27.47 29.72 1.90 1.47 0.85 36.58 25.24 11.34 0.39 0.48
83 8.80 23.62 51.84 24.54 43.35 1.73 1.21 1.24 49.21 33.12 16.09 0.64 0.29
84 14.20 24.54 50.00 25.19 48.93 1.71 1.15 1.35 54.01 38.67 15.34 0.67 0.26
85 2.50 15.21 55.97 28.83 38.88 1.75 1.26 1.14 43.23 29.63 13.59 0.68 0.32
86 7.00 11.84 57.66 29.85 31.03 1.90 1.45 0.87 37.44 22.24 15.20 0.58 0.31
87 2.20 10.33 60.81 28.86 28.33 1.87 1.45 0.86 33.65 23.65 10.00 0.47 0.41
88 6.80 59.44 30.31 10.25 32.22 1.82 1.38 0.95 34.25 27.97 6.28 0.68 0.40
89 2.70 24.55 47.70 27.62 40.54 1.75 1.24 1.17 44.25 33.62 10.63 0.65 0.31
90 2.80 15.44 45.25 39.21 29.88 1.91 1.47 0.84 42.16 24.11 18.05 0.32 0.46
91 5.00 13.29 59.53 27.18 41.46 1.75 1.24 1.18 48.22 32.94 15.28 0.56 0.34
92 7.00 15.95 55.82 28.23 45.12 1.73 1.19 1.26 50.14 34.93 15.22 0.67 0.26
93 11.00 9.76 63.24 27.00 47.08 1.73 1.18 1.28 53.44 36.63 16.81 0.62 0.29
94 14.80 10.18 59.56 29.83 44.23 1.74 1.21 1.23 50.93 35.16 15.77 0.57 0.24
95 3.10 28.96 42.50 28.43 31.05 1.85 1.41 0.91 39.65 27.51 12.14 0.29 0.44
96 4.00 27.53 43.89 28.58 29.27 1.89 1.46 0.85 36.12 20.14 15.98 0.57 0.38
97 11.80 7.67 63.65 28.68 46.02 1.72 1.18 1.28 51.18 34.56 16.63 0.69 0.25
98 14.80 42.55 27.65 29.80 40.78 1.72 1.22 1.20 46.12 30.15 15.96 0.67 0.26
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Sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y

99 2.30 14.06 57.15 28.79 28.82 1.93 1.50 0.80 37.25 23.51 13.74 0.39 0.52
100 6.00 30.40 41.58 28.02 44.99 1.72 1.19 1.27 50.01 33.19 16.82 0.70 0.22
101 12.30 45.79 25.52 28.69 47.82 1.72 1.16 1.32 52.12 36.19 15.93 0.73 0.27
102 14.30 41.87 35.87 22.23 38.66 1.81 1.31 1.06 42.19 28.33 13.86 0.75 0.28
103 2.70 23.15 50.13 26.73 36.59 1.81 1.33 1.04 42.36 29.63 12.73 0.55 0.36
104 6.30 18.47 52.01 29.52 43.12 1.75 1.22 1.21 48.56 32.16 16.40 0.67 0.26
105 11.80 14.19 56.65 28.76 46.53 1.72 1.18 1.29 48.52 41.21 7.31 0.73 0.31
106 1.80 16.79 53.78 29.43 27.03 1.91 1.51 0.80 35.20 20.04 15.16 0.46 0.50
107 6.00 34.30 38.04 27.66 48.30 1.71 1.15 1.34 53.21 37.12 16.10 0.69 0.24
108 8.80 38.84 32.94 28.22 47.08 1.71 1.16 1.32 53.21 37.12 16.09 0.62 0.25
109 2.00 30.56 39.49 29.86 30.24 1.90 1.46 0.86 37.11 23.02 14.09 0.51 0.37
110 4.30 23.64 50.53 25.20 27.62 1.89 1.48 0.83 38.23 22.31 15.92 0.33 0.49
111 1.80 22.46 48.35 28.90 30.42 1.90 1.46 0.87 39.81 24.12 15.70 0.40 0.49
112 5.50 28.66 44.73 26.61 49.20 1.71 1.15 1.35 54.12 37.82 16.30 0.70 0.29
113 9.20 9.84 60.57 29.58 37.72 1.79 1.30 1.08 45.02 29.52 15.50 0.53 0.29
114 14.00 30.70 41.45 27.85 46.31 1.73 1.19 1.28 49.81 34.16 15.65 0.78 0.27
115 2.00 13.43 54.97 31.60 28.29 1.90 1.48 0.83 37.52 20.02 17.51 0.47 0.50
116 6.00 21.85 53.59 24.56 26.77 1.91 1.50 0.80 32.69 19.77 12.93 0.54 0.35
117 2.80 10.52 40.79 48.65 35.74 1.81 1.33 1.03 46.22 27.41 18.81 0.44 0.46
118 7.80 7.48 42.30 50.21 25.60 1.90 1.51 0.80 37.82 19.75 18.08 0.32 0.50
119 3.00 16.76 48.46 34.74 49.65 1.72 1.15 1.36 57.11 39.85 17.27 0.57 0.36
120 5.00 12.65 60.36 26.99 43.20 1.76 1.23 1.20 50.22 34.22 16.01 0.56 0.34
121 8.80 6.79 63.63 29.57 43.99 1.73 1.20 1.25 46.52 36.52 10.00 0.75 0.28
122 11.80 31.46 40.81 27.73 38.42 1.82 1.32 1.05 45.12 28.33 16.78 0.60 0.33
123 14.80 10.48 57.69 29.93 29.31 1.91 1.47 0.83 37.99 24.52 13.47 0.36 0.48
124 1.80 19.30 44.99 35.71 35.84 1.81 1.33 1.03 45.19 27.02 18.18 0.49 0.44
125 4.80 21.82 53.27 24.90 40.18 1.76 1.26 1.14 44.99 29.19 15.80 0.70 0.25
126 8.80 10.46 61.29 28.25 38.43 1.82 1.32 1.05 43.12 27.00 16.12 0.71 0.26
127 3.00 17.26 54.91 27.83 31.08 1.88 1.43 0.88 36.75 21.05 15.70 0.64 0.24
128 5.50 19.87 50.22 29.92 33.53 1.86 1.39 0.93 37.21 24.36 12.85 0.71 0.28
129 9.80 68.67 15.60 8.79 40.19 1.76 1.25 1.14 44.02 38.41 5.61 0.32 0.39
130 3.10 28.96 42.50 28.43 31.05 1.85 1.41 0.91 39.65 27.51 12.14 0.29 0.44
131 2.30 14.06 57.15 28.79 28.82 1.93 1.50 0.80 37.25 23.51 13.74 0.39 0.52
132 2.70 23.15 50.13 26.73 36.59 1.81 1.33 1.04 42.36 29.63 12.73 0.55 0.36
133 1.80 16.79 53.78 29.43 27.03 1.91 1.51 0.80 35.20 20.04 15.16 0.46 0.50
134 2.00 30.56 39.49 29.86 30.24 1.90 1.46 0.86 37.11 23.02 14.09 0.51 0.37
135 4.30 23.64 50.53 25.20 27.62 1.89 1.48 0.83 38.23 22.31 15.92 0.33 0.49
136 1.80 22.46 48.35 28.90 30.42 1.90 1.46 0.87 39.81 24.12 15.70 0.40 0.49
137 2.30 12.74 58.76 28.51 23.66 1.97 1.59 0.70 34.23 19.26 14.97 0.29 0.54
138 2.50 15.20 55.88 28.56 26.32 1.92 1.52 0.78 35.84 21.24 14.60 0.35 0.46
139 3.50 17.01 50.93 27.99 25.99 1.93 1.53 0.77 36.25 21.25 15.00 0.32 0.51
140 2.50 12.09 59.67 28.24 31.25 1.87 1.43 0.89 40.36 27.12 13.24 0.31 0.49
141 2.00 17.64 51.50 30.86 29.02 1.94 1.51 0.80 36.21 22.65 13.56 0.47 0.45
142 4.50 23.03 48.68 28.28 31.21 1.87 1.42 0.90 36.95 23.25 13.70 0.58 0.31
143 2.50 10.76 59.26 29.88 32.22 1.84 1.39 0.94 41.14 25.36 15.78 0.43 0.44
144 2.00 25.19 47.73 27.08 26.32 1.92 1.52 0.78 35.84 21.24 14.60 0.35 0.47
145 1.40 16.34 55.51 27.31 30.26 1.88 1.44 0.88 37.41 26.58 10.83 0.34 0.45
146 1.20 19.72 51.68 28.21 28.42 1.90 1.48 0.83 35.68 21.21 14.47 0.50 0.42
147 2.80 36.69 36.43 26.73 25.69 1.91 1.52 0.78 33.21 19.63 13.58 0.45 0.45
148 1.80 19.21 49.54 28.92 25.60 1.93 1.54 0.76 32.14 21.32 10.82 0.40 0.47
149 1.80 22.33 42.06 29.77 27.54 1.93 1.52 0.79 38.51 22.14 16.37 0.33 0.52
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150 2.00 25.21 32.99 28.04 27.44 1.96 1.53 0.77 36.52 23.32 13.20 0.31 0.47
151 1.80 26.67 45.02 27.25 26.33 1.96 1.55 0.74 36.25 21.25 15.00 0.34 0.45
152 2.50 16.70 53.41 29.06 30.54 1.90 1.45 0.86 36.25 21.36 14.89 0.62 0.33
153 3.80 29.41 42.97 27.62 30.12 1.86 1.43 0.90 40.92 24.99 15.93 0.32 0.45
154 2.20 16.20 56.64 27.01 28.32 1.90 1.48 0.84 38.54 24.21 14.33 0.29 0.51
155 3.80 21.43 48.94 29.60 27.51 1.88 1.48 0.83 39.88 23.16 16.72 0.26 0.45
156 3.80 34.76 37.27 27.97 32.20 1.90 1.44 0.89 39.75 25.33 14.42 0.48 0.38
157 1.80 29.24 45.92 24.84 28.13 1.90 1.48 0.83 37.48 23.12 14.36 0.35 0.46
158 3.80 32.61 41.37 26.03 31.27 1.87 1.43 0.89 38.77 26.02 12.76 0.41 0.42
159 1.80 33.56 37.53 28.91 25.61 1.90 1.52 0.79 37.02 21.20 15.82 0.28 0.51
160 4.00 27.53 43.89 28.58 29.27 1.89 1.46 0.85 36.12 20.14 15.98 0.57 0.38
161 11.80 7.67 63.65 28.68 46.02 1.72 1.18 1.28 51.18 34.56 16.63 0.69 0.25
162 6.00 30.40 41.58 28.02 44.99 1.72 1.19 1.27 50.01 33.19 16.82 0.70 0.22
163 7.80 25.79 48.37 25.50 48.02 1.71 1.15 1.34 51.22 36.95 14.28 0.78 0.24
164 5.50 28.66 44.73 26.61 49.20 1.71 1.15 1.35 54.12 37.82 16.30 0.70 0.29
165 9.20 9.84 60.57 29.58 37.72 1.79 1.30 1.08 45.02 29.52 15.50 0.53 0.29
166 14.00 30.70 41.45 27.85 46.31 1.73 1.19 1.28 49.81 34.16 15.65 0.78 0.27
167 6.30 13.11 58.71 27.51 43.92 1.73 1.20 1.25 49.22 36.19 13.03 0.59 0.28
168 10.30 13.63 54.96 28.62 40.09 1.75 1.25 1.16 46.89 32.12 14.77 0.54 0.34
169 6.50 21.56 50.21 27.38 36.25 1.79 1.31 1.06 41.36 29.58 11.78 0.57 0.34
170 10.50 13.23 53.82 26.39 40.20 1.74 1.24 1.17 44.22 28.67 15.55 0.74 0.32
171 14.80 16.64 53.94 29.42 36.21 1.84 1.35 1.00 41.12 27.00 14.12 0.65 0.34
172 6.80 22.89 48.87 28.25 34.12 1.85 1.38 0.96 41.36 26.58 14.78 0.51 0.26
173 9.80 31.54 36.89 28.50 45.32 1.71 1.18 1.29 50.22 39.63 10.59 0.54 0.29
174 9.80 40.07 31.09 26.61 27.25 1.93 1.52 0.78 32.14 21.32 10.82 0.55 0.30
175 8.50 24.18 46.43 29.39 47.41 1.72 1.17 1.30 51.25 36.36 14.89 0.74 0.29
176 4.80 26.59 43.60 29.75 45.66 1.74 1.19 1.26 50.23 34.26 15.97 0.71 0.30
177 5.40 19.24 48.83 29.17 33.62 1.84 1.38 0.96 41.25 25.33 15.92 0.52 0.27
178 5.80 18.87 52.62 28.52 28.39 1.90 1.48 0.82 32.12 21.36 10.76 0.65 0.35
179 6.20 25.56 44.77 29.48 33.41 1.82 1.37 0.98 40.31 25.33 14.98 0.54 0.26
180 14.20 27.45 46.11 26.44 30.21 1.84 1.42 0.91 37.54 21.51 16.03 0.54 0.28
181 5.20 14.20 56.20 29.60 34.60 1.86 1.38 0.96 41.11 27.53 13.58 0.52 0.25
182 9.80 7.14 62.95 29.91 38.52 1.76 1.27 1.13 43.21 28.54 14.67 0.68 0.19
183 14.20 23.25 47.86 26.59 42.55 1.73 1.21 1.23 44.95 33.58 11.37 0.79 0.21
184 3.20 23.81 48.89 27.09 30.54 1.87 1.43 0.89 35.24 24.12 11.12 0.58 0.34
185 6.30 25.41 48.30 26.28 34.19 1.85 1.38 0.97 38.74 22.60 16.14 0.72 0.33
186 9.80 17.86 52.41 29.73 34.63 1.77 1.31 1.05 40.36 26.11 14.25 0.60 0.31
187 7.80 29.66 43.22 27.12 37.19 1.81 1.32 1.04 39.85 27.22 12.63 0.79 0.23
188 11.80 29.46 45.71 24.84 37.83 1.83 1.32 1.04 42.62 26.97 15.65 0.69 0.33
189 7.80 29.19 44.35 24.86 32.25 1.87 1.41 0.92 38.51 22.66 15.85 0.60 0.36
190 7.80 32.54 44.20 23.26 45.32 1.72 1.19 1.27 47.23 32.52 14.70 0.87 0.21
191 11.80 34.20 39.46 26.34 46.33 1.73 1.18 1.28 48.93 32.95 15.98 0.84 0.20
192 15.80 27.92 48.11 23.97 36.23 1.82 1.34 1.02 43.82 27.99 15.83 0.52 0.33
193 14.80 42.55 27.65 29.80 40.78 1.72 1.22 1.20 46.12 30.15 15.96 0.67 0.26
194 12.30 45.79 25.52 28.69 47.82 1.72 1.16 1.32 52.12 36.19 15.93 0.73 0.27
195 14.30 41.87 35.87 22.23 38.66 1.81 1.31 1.06 42.19 28.33 13.86 0.75 0.28
196 6.30 18.47 52.01 29.52 43.12 1.75 1.22 1.21 48.56 32.16 16.40 0.67 0.26
197 11.80 14.19 56.65 28.76 46.53 1.72 1.18 1.29 48.52 41.21 7.31 0.73 0.31
198 6.00 34.30 38.04 27.66 48.30 1.71 1.15 1.34 53.21 37.12 16.10 0.69 0.24
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Sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y

199 8.80 38.84 32.94 28.22 47.08 1.71 1.16 1.32 53.21 37.12 16.09 0.62 0.25
200 7.00 26.67 47.00 26.33 42.14 1.76 1.24 1.19 47.99 36.11 11.88 0.51 0.32
201 14.60 22.91 48.02 27.91 43.25 1.72 1.20 1.25 49.62 35.54 14.08 0.55 0.32
202 14.30 18.62 52.99 28.30 40.15 1.75 1.25 1.16 44.36 29.85 14.51 0.71 0.27
203 6.80 21.88 50.81 27.31 45.23 1.70 1.17 1.30 47.12 31.32 15.80 0.88 0.23
204 11.00 21.10 50.27 28.63 37.25 1.82 1.33 1.03 41.11 26.14 14.97 0.74 0.30
205 4.20 13.53 58.01 28.30 41.07 1.77 1.25 1.15 43.99 30.18 13.81 0.79 0.21
206 9.20 19.16 52.31 28.47 38.22 1.78 1.29 1.10 42.20 28.22 13.98 0.72 0.27
207 4.50 19.95 51.80 28.25 38.52 1.76 1.27 1.13 40.11 26.32 13.79 0.88 0.27
208 8.00 12.36 59.41 28.24 31.25 1.87 1.43 0.89 36.21 24.63 11.58 0.57 0.26
209 14.00 26.04 46.84 27.12 32.52 1.85 1.40 0.94 39.58 23.21 16.37 0.57 0.26
210 3.80 23.80 44.94 26.83 29.32 1.89 1.46 0.86 34.54 24.36 10.18 0.49 0.52
211 7.20 53.22 35.77 9.92 24.84 1.96 1.57 0.71 26.32 21.58 4.74 0.69 0.38
212 6.50 27.18 43.97 28.84 34.42 1.86 1.38 0.96 39.50 27.36 12.14 0.58 0.32
213 7.80 23.11 48.78 28.11 35.99 1.81 1.33 1.03 42.21 25.65 16.56 0.62 0.34
214 13.80 21.41 50.84 27.75 31.20 1.86 1.42 0.91 38.51 22.03 16.48 0.56 0.36
215 15.80 32.35 39.35 26.30 35.47 1.86 1.37 0.98 40.01 26.96 13.05 0.65 0.33
216 19.80 22.90 52.21 24.89 32.20 1.86 1.41 0.91 36.43 22.94 13.48 0.69 0.31
217 35.50 59.97 28.01 9.42 28.88 1.82 1.41 0.91 33.11 26.55 6.56 0.36 0.41
218 24.60 30.05 46.46 23.49 33.54 1.81 1.36 0.99 37.94 25.20 12.74 0.65 0.27
219 28.00 29.44 42.01 28.40 35.19 1.86 1.37 0.97 39.22 27.18 12.04 0.67 0.35
220 15.20 21.48 51.05 26.89 33.50 1.86 1.40 0.93 40.01 24.12 15.90 0.59 0.33
221 17.00 26.88 48.53 24.59 35.17 1.85 1.37 0.98 40.67 26.35 14.32 0.62 0.34
222 25.40 28.62 41.82 25.18 35.15 1.81 1.34 1.01 37.94 23.16 14.78 0.81 0.34
223 27.80 28.51 41.91 29.58 33.11 1.84 1.38 0.95 38.75 26.20 12.55 0.55 0.33
224 31.80 28.25 48.63 23.12 37.85 1.81 1.32 1.05 41.02 28.70 12.33 0.74 0.36
225 5.80 33.00 40.16 26.84 38.42 1.76 1.27 1.12 45.12 30.08 15.04 0.55 0.32
226 9.80 23.16 52.02 24.83 36.20 1.84 1.35 0.99 38.43 22.94 15.48 0.86 0.25
227 13.80 26.46 44.40 29.15 33.20 1.87 1.40 0.93 36.58 24.14 12.45 0.73 0.34
228 17.80 28.75 41.37 29.85 30.20 1.87 1.44 0.88 35.02 23.99 11.03 0.56 0.37
229 21.80 25.55 49.61 24.84 36.32 1.82 1.34 1.02 40.02 26.99 13.03 0.72 0.31
230 25.80 24.41 45.98 29.61 32.20 1.87 1.41 0.91 37.28 23.85 13.43 0.62 0.34
231 29.80 27.04 42.98 29.97 29.76 1.88 1.45 0.87 36.89 21.02 15.87 0.55 0.37
232 32.80 29.08 41.68 29.10 39.77 1.80 1.29 1.10 43.19 31.05 12.13 0.72 0.34
233 5.80 49.10 38.42 12.48 32.27 1.86 1.41 0.91 35.02 28.95 6.07 0.55 0.41
234 9.80 31.86 44.65 23.49 30.08 1.90 1.46 0.86 36.22 21.23 15.00 0.59 0.35
235 13.80 13.85 56.82 29.33 37.05 1.81 1.32 1.04 42.99 28.31 14.68 0.60 0.34
236 35.80 33.93 39.51 26.56 26.85 1.90 1.50 0.81 36.88 23.20 13.69 0.27 0.46
237 37.50 52.50 35.84 11.66 30.46 1.82 1.40 0.92 33.98 27.82 6.16 0.43 0.42
238 39.50 31.91 40.25 27.84 27.63 1.90 1.49 0.82 38.02 23.99 14.02 0.26 0.42
239 21.80 25.81 46.15 28.04 40.15 1.76 1.26 1.15 46.05 34.12 11.93 0.51 0.33
240 25.80 28.27 46.89 24.84 31.23 1.90 1.45 0.87 38.01 24.41 13.60 0.50 0.37
241 29.80 30.35 41.60 28.05 34.82 1.87 1.38 0.95 39.05 25.44 13.61 0.69 0.35
242 33.80 26.51 47.16 26.33 26.85 1.89 1.49 0.81 37.05 20.19 16.86 0.39 0.43
243 24.80 30.60 44.43 24.97 32.22 1.87 1.42 0.91 39.02 22.42 16.60 0.59 0.34
244 25.80 36.24 35.85 27.91 28.03 1.87 1.46 0.85 35.66 20.19 15.47 0.51 0.36
245 29.80 21.71 51.03 27.26 41.29 1.76 1.24 1.17 46.00 32.95 13.05 0.64 0.32
246 32.80 25.50 44.92 29.58 30.47 1.88 1.44 0.88 35.22 24.01 11.21 0.58 0.35
247 35.80 26.45 52.14 21.41 33.75 1.85 1.39 0.95 38.02 25.00 13.03 0.67 0.36
248 11.00 45.31 42.36 9.42 33.36 1.82 1.37 0.97 35.95 29.25 6.70 0.61 0.35
249 8.00 16.35 54.42 29.14 41.23 1.75 1.24 1.17 44.36 30.21 14.15 0.78 0.19
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