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Abstract
Structural parameter identification often requires an estimate, at least in a qualitative fashion, of the uncertainty of the solu-
tion. This uncertainty quantification should account for the sensitivity of the response to the sought parameters, the error 
in the measurement and the repeatability of the test. In this paper, repeatability is taken into account into a multi-objective 
framework, while a non-standard definition of Pareto dominance based on a given tolerance in the objective satisfaction 
allows one to consider uncertainty in the experimental data. The solution of the identification is not given as a single value, 
but a region of the parameter space which is compatible with the data and accounts for uncertainties and response sensitiv-
ity to model parameters. The procedure is applied to an experimental test on a masonry panel, showing its effectiveness in 
discriminating identifiable parameters from those affected by higher uncertainty.

Keywords  Inverse problems · Multi-objective optimisation · Sensitivity analysis · Genetic algorithms

1  Introduction

Simulation of the mechanical response of structural systems 
has significantly improved in accuracy in the last decades, 
thanks to the combined availability of more sophisticated 
theories and increased computational resources. Nearly any 
feature of structural behaviour may be now represented by 
a numerical model, and topics as visco-plasticity [1], large 
deformations [2], contact [3] and fracture mechanics [4] 
are familiar to researchers and practitioners. However, any 
numerical representation is accurate insofar as the param-
eters entering its formulation are realistic. In many cases, 
standard material tests are not able to provide the informa-
tion needed to fully characterize the mathematical model of 
the mechanical process. This is particularly true when the 
number of model parameters is large or their physical mean-
ing not straightforward, or when exhaustive material tests 
cannot be performed for practical reasons, e.g., in-situ char-
acterization. In such cases, inverse analysis techniques [5, 6], 
aimed at inferring the material properties/boundary condi-
tions (parameter identification) from the knowledge of the 

response of the structure under certain loading conditions, 
can be effective in estimating material parameters. Differ-
ent procedures may be recognised according to the loading 
condition, i.e., dynamic [7] or static [8], and the numerical 
method to obtain the solution, i.e., direct [9, 10] or indirect 
[6, 11], in which a functional of the mismatch (discrepancy) 
between experimental and computed response is minimised.

In general, the results of an identification process are una-
voidably affected by some uncertainty, mainly deriving from 
(a) propagation of model or measurement errors, (b) low 
sensitivity of the response to the sought parameters and (c) 
scattering coming from the aleatory nature of repeated tests. 
Application of stochastic-based (Bayesian) approaches [5, 
12] to inverse analysis allows one to quantify the propaga-
tion of uncertainty from the data to the parameter estima-
tion [12]. However, probabilistic approaches suffer from two 
limitations that restrict their use, namely (1) they strongly 
depend on the prior assumptions about the nature of uncer-
tainties, and (2) fully describing the posterior probability 
density function is a costly operation in terms of computa-
tional effort, especially when the number of sought param-
eters increases (curse of dimensionality). For this reason, 
deterministic approaches [13] are more widely used, with 
the notable drawback that a single result is the output of the 
process and uncertainty is not directly quantified. Introduc-
ing some sort of uncertainty quantification without resorting 
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to full Bayesian approaches is thus attractive even in deter-
ministic applications.

In [14], fuzzy arithmetic coupled to a formulation making 
use of genetic algorithms and particle swarm optimisation 
method is used to estimate the uncertainty caused by the 
measurement noise in modal parameters, and the proce-
dure is validated by means of a numerical application on a 
frame structure. In [15], interval updating is proposed as a 
means to estimate the uncertainty in the solution based on 
the measured modal response. Uncertainty is also quanti-
fied in [16, 17] through an identification procedure based 
on interval FEM. The method provides an estimation of the 
intervals of material parameter values which are consist-
ent with a prior assumption about the uncertainty of the 
measurements. The presence of model and measurement 
errors, which can be reduced but never removed, has two 
important effects on the optimisation problem: (1) the dis-
crepancy function has a non-zero global minimum, and (2) 
the minimum discrepancy solution may be shifted from the 
true value. This implies that the real solution may not cor-
respond to the global minimum of the discrepancy func-
tion, and other solutions with similar or greater discrepancy 
values should be considered as well. In [18], families of 
model parameters that predict the observed data within the 
same tolerance are considered as equivalent solutions and 
analysed to quantify the confidence to assign to the given 
identification output and the risk in the prediction. In this 
sense, uncertainty quantification is related to the general area 
of calibration and validation [19, 20]. Consistently, in [21] a 
procedure involving parameter identification using calibra-
tion, testing and validation of an Artificial Neural Network 
is developed, and a parent solution is detected. Based on 
this, on ensemble of offspring solutions is created consider-
ing normal, lognormal and uniform statistical distributions 
for the material and geometrical parameters, and finally the 
probability of failure of the system is assessed following 
common procedures of reliability analysis.

The need of improving the usual approach in which a 
single solution showing maximum fidelity to the recorded 
data is given as a solution is also recognised in [22], with the 
observation that in minimising discrepancy, compensations 
between various forms of uncertainties and errors become 
inevitable. In this respect, the authors use info-gap theory 
and multi-objective genetic algorithms (MOGA) to search 
for a solution which is the best compromise in terms of fidel-
ity and robustness.

In this paper, an identification procedure is proposed and 
described. Its main features are:

•	 An optimisation procedure able to handle multiple inputs 
(test responses) in a multi-objective optimisation process, 
to take into account test repeatability;

•	 A non-standard definition for Pareto dominance, account-
ing for the resolution under which two-objective values are 
not distinguishable from each other because of data errors;

•	 A post-processing phase, in which the analysis of the opti-
misation results provides the information needed to deter-
mine the uncertainty in the estimation.

The estimate of the model parameters is not given as a 
single value (as in deterministic inverse analysis), nor can be 
defined as probability density function (as in the probabilis-
tic method), but as a region of the parameter space which is 
compatible with the available data, in the sense which will be 
defined later. All the elements in this region will be considered 
as solutions of the inverse problem, given the data.

2 � Methodology

2.1 � Overview of the deterministic inverse problem

Performing a calibration test implies applying some known 
boundary conditions and loading, which can be described 
by control parameter vector x, to a specimen and recording 
some response data dobs. The test can be formally expressed 
by a relationship as dobs = (x, �) , where ε is an error vector 
which describes aleatory uncertainty of the response. In most 
cases, the aleatory uncertainty is assumed additive, and thus 
the experimental response may be expressed as:

with � sample of a suitable probabilistic distribution.
Correspondingly, a numerical model, resulting from the dis-

cretisation of the differential equations describing the physi-
cal process, represents a vector-valued functional  which 
associates a computed response vector dc to a vector of model 
parameters p ∈ P , with P parameter space, and to the control 
parameters x:

Generally, the computed response is deterministic, and thus 
given p and x, the response is univocally evaluated.

The inverse problem consists of using the actual results of 
some measurements dobs to infer the values of the parameters 
p̃ characterising the system. Considering (1) and (2), this 
means solving the equation (x, �) =  (p, x) with respect to 
p. As this equation may not have solution, the identification 
(or calibration) problem is often converted into the following 
optimisation problem:

(1)dobs = (x) + �

(2)dc =  (p, x)

(3)

⎧⎪⎨⎪⎩

Given x, �

find p ∈ P

min �
�
dc, dobs

�
= �( (p, x),(x, �))
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which gives an approximate solution to the inverse problem. 
In it, �

(
dc, dobs

)
 is a suitable discrepancy function measuring 

the inconsistency between the experimental and computed 
quantities. The most common formulation for the discrepancy 
function is:

where ‖⋅‖q with 1 ⩽ q ⩽ ∞ , is the weighted Lq-norm of 
a vector. The choice of a particular norm has a statistical 
meaning, which is implicit but still holding in the determin-
istic framework. In the case of q = 2 (Euclidean norm), the 
solution is in a least-square sense. This is the most common 
formulation for the inverse problem, and it derives directly 
from the assumption that all measurements are samples of a 
Gaussian probability distribution [5]. When measurements 
are significantly affected by errors and outliers not easily 
detectable, a robust formulation as that given by L1-norm is 
preferable [20, 23].

2.2 � Data from different sources

2.2.1 � Multi‑objective optimisation and Pareto dominance

Let us now suppose to have S tests performed on specimens 
made of the same material. They could be either of the same 
type ( xi = xj , with i, j = 1, …, S) or not. As the discrepancy 
function in (3) depends on both x (setup) and � (aleatory error), 
the solution of the optimisation problem pi is generally differ-
ent from any solution pj, even though they nominally refer to 
the same material. The presence of multiple tests may thus 
give a measure of the uncertainty in the identification result 
due to repeatability. Generally speaking, we search for the 
solution p̃ which at the same time minimises the discrepancy 
function for all given tests. This leads to the natural definition 
of multi-objective optimisation problem:

where S is the number of tests, and �i , with i = 1, …,S, is 
the discrepancy function evaluated as in (4) for the ith test. 
The solution of a multi-objective optimisation problem is 
represented by a set of non-dominated alternatives, called 
Pareto Front (PF) [24] after Italian engineer Vilfredo Pareto 
(1848–1923) who first formulated the concept. The charac-
teristic of the elements of the PF is that none of the objective 
functions can be improved in value without degrading some 
of the other objectives. In a minimisation problem, a solution 
p1 is said to dominate p2 ( p1 ≻ p2 ) if and only if:

(4)� =

( ‖‖‖dobs − dcq
‖‖‖
)q

(5)p̃ = argmin
p

[
𝜔1, 𝜔2, … , 𝜔S

]

(6)
𝜔i

(
p1
)
⩽ 𝜔i

(
p2
)
∀i = 1,… , S

𝜔j

(
p1
)
< 𝜔j

(
p2
)
∃j = 1,… , S

The Pareto Front is the set of all solutions which are not 
dominated by any other and represents the general solution 
of the identification problem. From the PF, the analyst can 
select a unique solution a posteriori if needed, as shown, for 
instance, in [25] and in [26] for identification of a bridge 
under ambient vibration and a phenomenological models 
for steel members, respectively.

Having turned the search for a unique solution into track-
ing a set of equally acceptable solutions, some authors have 
proposed to use these to define an uncertainty range for the 
sought parameters. For example, [27] solved the inverse 
problem of detecting damage in truss structures by multi-
objective optimisation and plotted the PF solutions as his-
tograms in the parameter space, to define uncertainty range 
for the parameters. The same approach was proposed by [28] 
for the detection of damage in plates, where all individuals 
in the Pareto Front are considered as solutions. The multi-
objective approach produced a diverse set of solution esti-
mates, which happened to cluster near to the ‘‘true’’ damage 
locations even in the presence of significant measurement 
errors. The rationale under this approach is the following 
[29]. The PF consists of a region of the solution space whose 
members best approximate the experimental responses, 
in the sense defined by the concept of non-domination. It 
means that each element in the PF has different degree of 
fitting to each test response, but, unless a ranking of the 
tests is preliminarily defined, there is no reason to prefer 
one solution over another. The PF solutions may be investi-
gated in the parameter space (Fig. 1), where they identify an 
uncertainty region which may be analysed through simple 
statistical tools. The dispersion of a parameter, its average 
location, possible correlations with other variables may be 
easily detected by post-processing the PF at the end of the 
analysis.

2.2.2 � Tolerance‑based definition of Pareto dominance

While the definition of uncertainty based on Pareto Front 
distribution is not a completely new idea, it should be rec-
ognised that its application to real cases may result in some 
unrealistic results. For example, let us consider a situation 
as that depicted in Fig. 2, where a hypothetical PF is shown. 
Both points P1 and P2 belong to the PF, but while point P2 is 
clearly better than P1 according to objective ω2, the gain in 
objective ω1 shifting from P2 to P1 is hardly visible. In other 
words, while they both numerically belong to PF, intuitively 
P2 is “more optimal” than P1.

In this respect, the definition of Pareto dominance given 
in (6) can be sometimes too severe considering the limited 
precision of instruments used to record the experimental 
data and it is reasonable to consider a numerical tolerance 
under which two-objective values should be considered 
undistinguishable. In mathematical terms, the equality and 
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inequality relationships between real numbers a and b under 
uncertainty ε read:

The possibility of embedding a tolerance in the objective 
definition in the context of multi-objective optimisation is 
explicitly considered in [30], using fuzzy arithmetic. With-
out considering such a complex approach, particularly suited 
for many objective optimisation, the resolution (or toler-
ance) εi under which the difference between the objective 
values ωi

a and ωi
b = ωi

a + εi is insignificant may be explicitly 
accounted for by considering a non-standard formulation 
for the Pareto dominance definition. This comes directly 
from definitions (7a) and (7b) and original Pareto optimality 

(7a)a = b ⇒ |a − b| < 𝜀

(7b)a < b ⇒ a < b − 𝜀

(Eq. (6)). A solution p1 is said to dominate p2 with tolerance 
� (p1 ≻ε p2) if and only if:

with εi ≥ 0 being the resolution of the ith objective. The set 
of tolerance-based non-dominated solutions will be called 
tolerance-based Pareto Front PFt. While this definition 
resembles the concept of additive ε-dominance proposed by 
Laumanns et al. [31], it differs from that because of Eq. (8b), 
absent in ε-dominance, which enforces a strict (tolerance-
based) inequality for at least one objective. Even though 
the dominance relation as proposed in Eq. (8a, 8b) is not 
transitive in general, and thus the original pairwise compari-
son could fail in ordering the population and extracting the 
PFt, efficient algorithms have recently been developed [32], 
which convert tolerance-based skyline queries problem into 
Pareto-based dominance checking tasks over grid space. In 
particular, it is demonstrated in [32] that for any given toler-
ance vector ε = [ε1,…, εS], a solution p belongs to PFt if and 
only if ∀r ∈ PF , r ⊁ε p, i.e. r does not dominate p according 
to the definition (8a, 8b).

The effect of relaxing the notion of Pareto dominance 
depends on the shape of the original PF. This is shown in 
Fig. 3, where typical PF configurations of a two-objective 
problem are displayed. In it, ∆ωi is the absolute value dif-
ference in the objective i when going from point P1 to point 
P2 (optimal according to objective ω1 and ω2 respectively), 
while εi is the tolerance in the ith objective. In Fig. 3a, the 
effect of the non-zero resolution εi>∆ωi is to increase the 
spread of the solutions. Conversely, in Fig. 3b, the original 
PF is characterised by nearly horizontal and nearly verti-
cal regions, in which small degradation of the minimum 
objective (ω1 starting from P1 following the arrow) entails 
substantial improvement of the other. In this case, the effect 
of the tolerance-based formulation is to focus on the region 
near the “corner” of the L-shaped PF, which is that in which 

(8a)�i

(
p1
)
⩽ �i

(
p2
)
+ �i ∀i = 1,… , S

(8b)𝜔j

(
p1
)
< 𝜔j

(
p2
)
− 𝜀j ∃j = 1,… , S

Fig. 1   Uncertainty in the 
parameter space as given by the 
Pareto Front

Fig. 2   Pareto Front with almost vertical and horizontal branches
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both objectives assume low values. On the contrary, a con-
cave PF, as that shown in Fig. 3c, has the feature that the 
minimum objective (again ω1 starting from P1) may be sig-
nificantly degraded without improving the other objective 
(almost horizontal branch near P1 and vertical one near P2). 
This is an indicator of scarce consistency of the two objec-
tives, and the introduction of a finite resolution highlights 
this circumstance by splitting the original Pareto Front into 
separate subsets.

Moving to the parameter space, the benefits of using the 
tolerance-based definition of Pareto optimality is avoiding 
either over- or under-confidence in the parameter uncertainty 
estimation. Firstly, if the multiple tests are very consistent 
to each other, i.e., the PF is located in a very small region of 
the objective space (Fig. 3a), low-sensitivity parameters may 
present unrealistic limited associated uncertainty (over-con-
fidence). Secondly, if the PF is characterised by nearly verti-
cal or horizontal branches (Fig. 3b) it may span considerable 
regions of the parameter space for a limited improvement in 
fidelity to one test, leading thus to large uncertainty inter-
vals for the parameters and consequently under-confidence 
in the results. In this respect, the non-standard definition of 
Pareto dominance proposed herein avoids both drawbacks, 
increasing the PF bounds in the first case, and focusing in the 
corner region of the PF in the second case, and thus leading 
to a more realistic uncertainty estimation. The practical use-
fulness of the approach will be shown with reference to an 
identification problem involving masonry panels in Sect. 3.

2.2.3 � Numerical solution of the identification problem

To solve problem (5), it is necessary to use an optimisation 
algorithm able to track the entire PFt. In this respect, pop-
ulation-based meta-heuristics are preferable over gradient-
based algorithms because they work on ensembles of alter-
natives, and thus are naturally designed to converge towards 
a region of the solution space instead of a single value. In 
this work, the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) [33] was used to solve the multi-objective identi-
fication problem. This state-of-art approach to multi-objec-
tive optimisation was implemented in the software TOSCA 
[34]. It exploits the concepts of non-domination ranking 
and crowding distance to reach convergence to the PF while 
maintaining diversity in the population. At the end of each 
generation, the individuals are divided into progressive non-
domination fronts. Inside each front, the individuals are 
ranked based on a density-estimation metric, called crowd-
ing distance, which represents a measure of how close (in 
terms of objective values) an individual is to its neighbours, 
and more isolated points are favoured to increase diversity in 
the population. Even though in the original formulation the 
domination ranking is associated to tournament selection, 
this is not mandatory. In the examples reported in this paper, 
Stochastic Universal Sampling [35] was used as selection 
operator. Blend crossover [36] and aleatory mutation were 
then applied to create a new population.

3 � Estimation of elastic properties 
of masonry from diagonal compression 
tests

The procedure described above was applied onto the 
results of an experimental activity involving brick–mor-
tar unreinforced masonry and carried out at the University 
of Trieste (Italy). This was part of a broader experimen-
tal programme aimed at designing a novel experimen-
tal–numerical procedure for identification of masonry 
properties [37]. Two masonry types (MT1 and MT2) were 
prepared in different periods. The main material param-
eters obtained from standard tests on small specimens are 
reported in Table 1, as average values and coefficients of 
variation (CV).

Fig. 3   Different effects of relaxing Pareto dominance on the spreading of the solutions: a increasing, b decreasing, c splitting into subsets
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3.1 � The experimental programme

Two 640 × 640 × 90 mm3 square panels per masonry type 
were prepared to be tested under diagonal compression. 
The tests are labelled as CDx-MTy, where x the identifica-
tion number of the test and y the masonry type. After cur-
ing, the panels were rotated and placed on a stiffened steel 
angle; a similar angle was applied on the opposite corner 
for the load application. Between the angles and the speci-
men, a thin layer made of chalk and sand in 1:1 propor-
tion by volume (plaster) was applied for a uniform stress 
distribution. The load was applied by means of a hydraulic 
jack (load capacity 200kN). The specimen was loaded until 
20kN, then unloaded and loaded until failure; only for the 
specimen 1 of MT2 (CD1–MT2) the first loading reached 

100kN. Displacements were acquired using 12 Linear Vari-
able Displacement Transducers (LVDTs) of 25 mm stroke, 
with six of them placed on either side of the panel to meas-
ure the diagonal displacements and the displacement of the 
four edges (Fig. 4a). To avoid capturing local effects, the 
sensors were not placed on the first and last brick layers. 
Aluminium bars were used to connect each LVDT to the 
opposite gauge point.

The results of the four diagonal compression tests in 
terms of LVDT displacement on the diagonals are sum-
marised in Figs. 5 and 6, assuming positive sign for LVDT 
lengthening and negative for LVDT shortening. An ini-
tial linear elastic branch is generally recognisable, espe-
cially for masonry MT1 (Fig. 5); the same can be noticed 
for specimen CD1-MT2, while behaviour of CD2-MT2 

Table 1   Material properties as 
estimated from tests on small 
samples

Property Symbol Masonry MT1 Masonry MT2

Average CV (%) Average CV (%)

Mortar compressive strength fm 7.855 MPa 6.24 14.15 MPa 5.61
Brick compressive strength fb 18.27 MPa 14.08 24.72 MPa 6.71
Brick tensile strength fvb 4.233 MPa 3.94 5.50 MPa 7.49
Brick Young modulus Eb 11.23 GPa 16.28 8.92 GPa 9.35
Brick Poisson ratio νb 0.19 35.71 0.13 11.12
Masonry compressive strength 

(orthogonal to the bed joints)
fwc, ┴ 12.88 MPa 13.72 19.68 MPa 7.58

Masonry compressive strength
(parallel to the bed joints)

fwc, // 9.32 MPa 2.52 17.74 MPa 3.43

Fig. 4   Masonry panels used for 
the diagonal compression test: 
a scheme of the panel geometry 
and LVDT layout; b photo of 
a representative panel during 
the test
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Fig. 5   Load–displacement 
curves for MT1

Fig. 6   Load–displacement 
curves for MT2
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appears nonlinear from the beginning (Fig. 6). This could 
be due to problems of load eccentricity causing geo-
metrically nonlinear effects onto the specimen. This will 
be taken into consideration and properly analysed in the 
Sect. 3.4. For the calibrations described in Sect. 3.4, the 
elastic stiffness was defined as the secant stiffness between 
20 and 60 kN.

3.2 � Description of the FE model

A three-dimensional finite element model of the test, shown 
in Fig. 7, was created in Abaqus 6.9 [38]. All materials were 
discretised by four-node tetrahedral elements (C3D4) with 
regular patterns along the three axes. The level of refinement 
was based on preliminary convergence analysis, here not 
reported. The characteristic length of the tetrahedral mesh 
element representing the bricks and the steel elements was 
27.5, 45 and 30 mm along x-, y-, and z-axis, respectively, 
while for the mortar and plaster materials the number of ele-
ments along the thickness was set equal to two (5 mm char-
acteristic length). According to this scheme, the total num-
ber of elements was equal to 17,904. The two steel angles 
were modelled using very stiff solid elements (E = 300 GPa) 
at the top and bottom of the panel; the bottom angle was 
fully restrained. Four vertical forces F00, F01, F10, F11, 184 
and 90 mm spaced in X- and Y-directions, respectively, were 
applied on the top angle: by changing the magnitude of each 
relatively to the others it is possible to simulate accidental 
eccentricities in X- and Y-directions (Fig. 7). The parameters 
ex and ey identify the eccentricity of the loading application 
point: the four forces shown in Fig. 7 are related to the total 
force F by the expressions:

It is easy to verify that the sum of the forces is always 
equal to F. Perfectly centred load is characterised by 
ex = ey = 0.5.

The head joint Young modulus was assumed different 
from bed joint Em. Very little is reported in the literature 
about the effects of the head joints on the response of a 
masonry wall. In general, due to lack of significant normal 
stress, shrinkage of the head joints and the subsequent loss 
of bond between the unit and mortar, their contribution to 
the shear transfer is usually considered less than that of the 
bed joints. While many works in the literature focus on the 
influence of head joints on strength [39, 40], to the author’s 
knowledge there is lack of significant studies investigating 
the elastic properties, which are likely to depend on a large 
number of factors, as joint thickness, environmental con-
ditions (shrinkage) and quality of workmanship. For this 
reason, in this work, the effective head joint stiffness contri-
bution was accounted for by considering a different material, 
the Young modulus of which being evaluated as r·Em, with 
0.0 ⩽ r ⩽ 1.0.

The connection between the masonry and steel is a criti-
cal element in the FE approximation. Nonlinear interfaces 
or contact elements would be the most realistic way to 
simulate the connection between the two materials. How-
ever, that would turn the model into nonlinear, dramatically 
increasing computation time and making the identification 
analysis cumbersome. To keep the model elastic, thus, such 
connection types were not applied. However, a rigid con-
nection would be similarly unfeasible as highly inaccurate 
to model the transfer of stress from steel to masonry. For 
all these reasons, a layer of elastic material with differ-
ent elastic properties was used between the steel plate and 
the masonry panel, with elastic properties to be identified. 
Even though the elastic assumption is a very crude repre-
sentation of reality, it allows one to deal with a fully elastic 
model.

3.3 � Global sensitivity analysis

A preliminary global sensitivity analysis was performed on 
the parameters entering the model. The method of elemen-
tary effects (EE) [41] was used in this work because of its 
efficiency and ease to apply. The EE method is a screening 
method aimed at determining if the effect of each parameter 
is (a) negligible, (b) linear and additive, (c) nonlinear or 
involved in interactions with other inputs, with a reasonable 
computational effort (much less than Monte Carlo-based 
methods). It is based on the evaluation of the elementary 
effect EEi of the parameter pi on the scalar response d(p) 

(9)
F00 = ex ⋅ ey ⋅ F F01 = ex ⋅

(
1 − ey

)
⋅ F

F10 =
(
1 − ex

)
⋅ ey ⋅ F F11 =

(
1 − ex

)
⋅

(
1 − ey

)
⋅ F

Fig. 7   View of the FE model of the diagonal compression test
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when it is moved by a step Δi while all the other parameters 
are fixed. It is defined as:

with k number of parameters.
The global sensitivity measure is the finite distribution Fi 

composed of all possible EEi. It may be represented by the 
values of the mean and standard deviation, but Campolongo 

et al. [42] proposed to use the value �∗
i
=

1

N

N∑
i=1

��EEi
�� to rank 

parameters, as a large value of �∗
i
 indicates an input with 

important “overall” influence on the output. This parameter 
was used in this work.

The N different EEs may be computed by different tech-
niques, starting from the original formulation based on tra-
jectories [41]. Here, the procedure proposed in [43] based 
on sampling via Sobol sequence was followed. The input 
parameters (and the increments Δi ) are previously made non-
dimensional with respect to their variation range, and so they 

(10)
EEi =

d
(
p1,… , pi−1, pi + Δi, pi+1,… , pk

)
− d

(
p1,… , pk

)
Δi

all can vary from 0 to 1. The parameters entering the model 
can be divided into:

•	 Brick parameters: Eb, υb;
•	 Mortar parameters: Em, υm, r;
•	 Plaster parameters: Epl, υpl;
•	 Boundary conditions: ex, ey.

They represent the parameter vector p. The variation 
ranges for the global sensitivity analysis are shown in 
Table 2.

The discrepancy function on which sensitivity analysis 
must be performed is:

where L = 12 is the number of measurements in the single 
test, ui,exp is the ith measured value and ui,c is the corre-
sponding numerical value computed by the FE model for 
a given value of the parameters p. Since this definition of 
the function regards one single test, it follows that the sen-
sitivity measures should be evaluated for each test and each 
masonry type.

Ten (N = 10) sample points in the parameter space were 
selected according to the procedure proposed in [43]. The 
total number of evaluation is thus N(k + 1) = 100, where k = 9 
is the number of sought parameters. The results in terms of 
�∗ for the cost function in both masonry types are displayed 
in Fig. 8. The plot shows that in all cases, the most influen-
tial parameters in the recorded responses are estimated to be 
ey, Eb and Em. The other parameters have very low influence, 
meaning that they are expected to be identified with greater 
uncertainty.

(11)�(p) =
1

L

L∑
i=1

|||ui,exp − ui,c(p)
|||

Table 2   Variation range for the material parameters in the sensitivity 
analysis

Parameter Lower bound Upper bound

Eb (N/mm2) 5000 20,000
υb 0.0 0.5
Em (N/mm2) 1000 20,000
υm 0.0 0.5
r 0.0 1.0
Epl (N/mm2) 10 2000
υpl 0.0 0.5
ex 0.0 1.0
ey 0.0 1.0

Fig. 8   Results of the global sensitivity analysis for masonry type a MT1 and b MT2
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3.4 � Calibration of the elastic parameters

The procedure described in Sect. 2 was then applied onto the 
results of the diagonal compression tests. For each masonry 
type, the parameter vector p is represented by the material 
parameters Eb, υb, Em, υm, r, Epl, υpl, plus the eccentricity 
parameters ex1, ex2, ey1, ey2 defined for each of the two tests. 
The solution p̃ is attained by solving the multi-objective 
problem:

where NCD1,NCD2 is the number of measurements in test 
CD1 and CD2, respectively; ui is the ith LVDT displacement 
and the subscripts exp and c refer to experimental and com-
puted data. To solve the problem (12), a genetic algorithm 
with the following parameters was utilised:

•	 Population: 50 individuals;
•	 Initial population generated by the Sobol algorithm;
•	 Number of generations: 100;
•	 Selection: Stochastic Universal Sampling, with linear 

ranking based on domination and scaling pressure equal 
to 2.0;

•	 Crossover: Blend-α, with α = 2.0;
•	 Crossover probability: 1.0;
•	 Mutation probability: 0.005.

Both the operators and the GA internal variables were 
selected based on the results of previous research [34]. In 

(12)𝐩̃ = argmin
𝐩

⎡
⎢⎢⎣

1

NCD1

NCD1�
i=1

���u
CD1
i,exp

− uCD1
i,c

(𝐩)
���,

1

NCD2

NCD2�
i=1

���u
CD2
i,exp

− uCD2
i,c

(p)
���
⎤
⎥⎥⎦

particular, quasi-random sequences as the Sobol algorithm 
[44] explore the parameter space more uniformly than sim-
ple random sequence, allowing to reduce the population size, 
which was defined based on preliminary sensitivity analysis. 
Stochastic Universal Sampling avoids the phenomenon of 
genetic drift; Blend-α crossover with α = 2.0 is designed to 
preserve the probability density function of the population, 
while keeping its ability of yielding novel solutions in finite 
population case [45]. According to the same principle, scal-

ing pressure and number of generations were designed to 
gradually narrow the probability distribution function of the 
population. Crossover and mutation probabilities are based 
on previous research and are consistent with the general lit-
erature assumptions.

3.4.1 � Masonry type MT1

The Pareto Front identified by the algorithm considering 
no uncertainty (ε = 0 in Eq. (8a, 8b)) is shown in Fig. 9a 
in the objective plane. It is evident that even though the 
solution is not unique, the deterioration of one objective 
due to the satisfaction of the other objective is quite limited 
(Δω < 0.001 mm).

The good consistency between the two tests is evidenced 
by the scatter plot of the Pareto solutions in the parameter 
space (Fig. 9b–g). Apart from mortar Young modulus and 

Fig. 9   Inverse analysis results for MT1. Pareto front and first non-dominated fronts in terms of: a objectives, b, c boundary conditions, d–g elas-
tic properties for brick, mortar and plaster
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head-joint-to-bed-joint stiffness ratio r, all parameters seem 
to be identified mostly univocally. The load seems to have a 
considerable eccentricity ex in both tests (Fig. 9b), while 
rather smaller out-of-plane eccentricity ey is identified 
(Fig. 9c). The in-plane eccentricity may be due to the acci-
dental rotation of the steel angle due to crushing of the plas-
ter layer beneath. The brick Young modulus is identified as 
about 11.7GPa, very close to the experimental estimation by 
means of compressive tests (Table 1). Conversely, the mortar 
Young modulus is not identified, since all values greater than 
16GPa give discrepancy values belonging to the PF. This is 
reasonable, as if mortar is very stiff, its effect on the dis-
placement field becomes negligible and the deformability is 
governed by brick. The calibration of this parameter is thus 
not bounded, and any upper limit would represent a feasible 
solution. The head-to-bed-joint stiffness ratio r is not ade-
quately identified, assuming values between 0.6 and 1.0. 
Poisson’s ratio for brick and mortar seems identified, but 
while the former assumes reasonable values around 0.13, 
similar to those recorded in the test on brick samples 
(Table 1) and generally reported in the literature [46], the 
value of 0.5 may seem unrealistically high for mortar. It 
should be said, however, that mortar Poisson’s ratio highly 
depends on the stress state and higher values than 0.5 were 
recorded in [47] for different mortar mixtures with low levels 
of confining pressure. The assumption of low confining pres-
sure seems sound in this case, because if the mortar is stiffer 
than the brick, the difference in stiffness results in tension 
for the mortar and compression for the brick [47] orthogo-
nally to the direction along which the masonry is com-
pressed. Finally, plaster properties seem identified too, with 
Epl ≈ 200 MPa and υpl = 0.5. Here, according to the author, 
the high value of Poisson’s ratio are justified by the fact that, 
as previously acknowledged, the linearly elastic behaviour 
for the plaster layer is a rather rough approximation of the 
real mechanical response, which shows an almost immediate 
mode-II (shear) failure. It means that the (damaged) shear 
stiffness is very low compared to the axial stiffness, and, 
since in the numerical elastic model G

E
=

1

2(1+�)
 , the high 

plaster Poisson’s ratio tries to reproduce this loss of stiffness. 

Conversely, the value for the plaster Young modulus seems 
reasonable.

Figure 10a compares numerical results and experimen-
tal data for the 12 measurements. The numerical values are 
those obtained using the best solutions of each objective. It 
is possible to notice that the solution fits seven data points, 
which is a feature of L1-norm regression. The other points, 
some of which appear to be outliers, present greater discrep-
ancy values.

Even though some counter-intuitive results (i.e., the high 
mortar Poisson’s ratio) may be explained, it seems unrealis-
tic to be able to identify with the low uncertainty displayed 
in Fig. 9 plaster properties or mortar and brick Poisson’s 
ratio. The reason may be found in the high consistency 
between the two tests, in a situation similar to that shown in 
Fig. 3a. In Fig. 11 the results of the identification analysis 
with resolution ε = 0.002 mm (typical of the LVDTs used 
to acquire the experimental data) are shown. It is now pos-
sible to distinguish the parameters which are identified with 
low uncertainty (ex, ey, Eb) and those that, under the chosen 
resolution, are not identifiable (Em, r, Epl). High values for 
υm and υpl (greater than 0.4), and low values for υb (less 
than 0.2) are detected, so the arguments previously made 
still hold.

3.4.2 � Masonry type MT2

The PF with associated uncertainty ε = 0 in the objective 
plane is displayed in Fig. 12a. Unlike the previous case, the 
satisfaction of one objective implies a considerable increase 
in the other objective (Δω ≈ 0.01 mm). Implicitly, in the 
definition of PF, if the solutions of the “basic” optimisation 
problems (i.e., in which the two objectives are considered 
separately) are very different, the front becomes wider, both 
in the objective space (Fig. 12a), and in the parameter space 
(Fig. 12b–g). This provides a more uncertain identification 
of most parameters.

Like in the previous case, the determination of the bound-
ary condition parameters ex and ey seems affected by low 
uncertainty, but here the eccentricities seem more pro-
nounced. Brick Young modulus is very narrowly dispersed 

Fig. 10   Comparison of numeri-
cal results and experimental 
data for MT1: specimens a 
CD1-MT1, b CD2-MT1
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around a value of 8.8 GPa, which corresponds well to the 
experimental outcome reported in Table 1. Similarly to 
MT1, it is not possible to state anything about mortar Young 
modulus because of the high uncertainty, except that it is 
higher than brick Young modulus. All the other parame-
ters (Fig. 12e–g) cannot be identified because of the high 
scattering.

This gives us the opportunity to underline the features 
of the proposed multi-objective approach. The availability 
of several tests, which are processed in the multi-objec-
tive optimisation framework, allows for the definition of 

the reliability in the estimation due to repeatability. For 
masonry-type MT1, since the two tests were consistent with 
each other, the reliability was high, and thus the estimated 
parameters showed little scattering in the parameter space. 
For masonry type MT2, a large spread of PF solutions in 
the parameter space can be observed. The uncertainty in 
the estimation of some parameters, i.e., mortar and plaster 
properties and brick Poisson’s ratio, is thus larger. In Fig. 13 
the comparison between numerical and experimental meas-
urement is shown.

Fig. 11   Inverse analysis results for MT1 with resolution ε = 0.002. Pareto Front and first non-dominated fronts in terms of: a objectives, b, c 
boundary conditions, d–g elastic properties for brick, mortar and plaster

Fig. 12   Inverse analysis results for MT2. Pareto Front and first non-dominated fronts in terms of: a objectives, b, c boundary conditions, d–g 
elastic properties for brick, mortar and plaster



393Engineering with Computers (2019) 35:381–395	

1 3

3.4.3 � The role of sensitivity analysis

As last remark, it is interesting to see that a global sensitivity 
analysis, as the EE method utilised in this work, may identify 
a parameter as important while in the specific case it is not. 
An example is the mortar Young modulus of this example. 
The reason is that the sensitivity indices may largely vary 
in the variation range of the parameter: when Em is small 
compared to Eb, its influence on the response is large as it 
governs the deformation field. On the contrary, when the 
mortar is very stiff, the displacement of the specimen is con-
trolled by the brick Young modulus, while large variations 
in the Em have low or negligible influence. Conversely, the 
parameter ex was detected as having low influence, meaning 
that based on the preliminary sensitivity analysis one could 
have removed it from the set of the parameters to identify, 
possibly leading to wrong results in the estimation. The 
approach followed in this paper overcomes these drawbacks. 
It does not impose a preliminary choice of the identifiable 
parameters by means of a sensitivity analysis, but is still 
able to associate a solution to its uncertainty derived by 
sensitivity, test repeatability and precision of experimen-
tal data. In Table 3, the PF solutions are shown in form of 

mid-range value and interval as final results of the identifica-
tion procedure.

4 � Discussion and conclusions

In this paper, a strategy for identification of material param-
eters in structural problems accounting for uncertainty has 
been proposed. It is based on multi-objective optimisation 
of an appropriate functional of the discrepancy between 
experimental and numerical results, formulated for multiple 
experimental responses. The solution of the multi-objective 
optimisation is represented by the Pareto Front of the non-
dominated solutions, which is then post-processed to study 
the uncertainty of the identification. A non-standard formu-
lation for Pareto dominance allows one to account for limited 
precision of the experimental data.

The applicative example regards a diagonal compres-
sion test, generally utilised to estimate the shear strength of 
masonry and here studied as a means to identify elastic prop-
erties of its components. Two tests for each of two different 
masonry types were considered to assess the procedure. The 
main results may be reported in the following list:

1.	 The standard definition of Pareto Front accounts for 
the uncertainty related to the repeatability of the test. 
If the two tests are consistent (like for masonry MT1, 
where the deterioration of one objective to reach the 
optimum in the other objective was limited), the iden-
tification may provide a relatively precise (i.e., with 
low uncertainty) identification of the sought param-
eters, even though they are not actually influential in 
the response. If the two tests are not consistent, i.e. the 
maximum fidelity solution is attained for remarkably 
different choices of parameter values, like for masonry 
type MT2 of the example, the uncertainty estimate will 
be accordingly larger.

2.	 The tolerance-based definition of Pareto optimality 
allows one to consider uncertainty due to the tolerance ε 
typical of the experimental data. In the case of masonry 

Fig. 13   Comparison of numeri-
cal results and experimental 
data for MT2: specimens a 
CD1-MT2, b CD2-MT2

Table 3   Results of the identification process

Parameter MT1
ε = 0.0

MT1
ε = 0.002 mm

MT2
ε = 0.0

Eb (GPa) 11.7 ± 0.2 12.8 ± 1.5 8.8 ± 0.4
υb 0.13 ± 0.0 0.11 ± 0.11 0.14 ± 0.14
Em (GPa) 18.4 ± 1.6 14.3 ± 5.7 18.2 ± 1.79
υm 0.5 ± 0.0 0.45 ± 0.05 0.23 ± 0.23
r 0.86 ± 0.14 0.51 ± 0.49 0.63 ± 0.37
Epl (GPa) 0.18 ± 0.03 0.77 ± 0.76 1.34 ± 0.66
υpl 0.5 ± 0.0 0.44 ± 0.06 0.29 ± 0.21
ex1 0.71 ± 0.01 0.73 ± 0.12 0.87 ± 0.03
ex2 0.40 ± 0.0 0.44 ± 0.10 0.52 ± 0.03
ey1 0.57 ± 0.01 0.56 ± 0.07 0.58 ± 0.03
ey2 0.56 ± 0.01 0.54 ± 0.06 0.31 ± 0.01



394	 Engineering with Computers (2019) 35:381–395

1 3

type MT1, this uncertainty exceeded that due to repeat-
ability of the test.

3.	 The analysis of PF and subsequent determination of 
uncertainty can avoid the reduction of the number of 
parameters based on the preliminary sensitivity analy-
sis, which is a commonly used approach in identifica-
tion problems. This reduction, if not performed care-
fully, may lead to erroneous results when the parameters 
removed are important in the global response.

In the case analysed, with a resolution ε = 0.002 mm, typi-
cal of common LVDTs, only boundary conditions and brick 
Young modulus could be obtained with limited uncertainty. 
In future research, the procedure will be applied to differ-
ent case studies of real-world tests to further validate the 
methodology.

Acknowledgements  The author is grateful to Prof. Amadio from the 
University of Trieste for fruitful discussions about uncertainty in the 
solution, and Dr Franco Trevisan and the laboratory staff of the Uni-
versity of Trieste for the technical support necessary to the successful 
completion of experimental tests described.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

	 1.	 Zienkiewicz O, Cormeau I (1974) Visco-plasticity—plasticity and 
creep in elastic solids—a unified numerical solution approach. Int 
J Numer Meth Eng 8(4):821–845

	 2.	 Moresi L, Dufour F, Mühlhaus H-B (2003) A Lagrangian integra-
tion point finite element method for large deformation modeling 
of viscoelastic geomaterials. J Comput Phys 184(2):476–497

	 3.	 Wriggers P (2006) Computational Contact Mechanics. Springer 
Heidelberg, Berlin

	 4.	 Anderson T (2005) Fracture mechanics: fundamentals and appli-
cations. CRC Press, Boca Raton

	 5.	 Tarantola A (2005) Inverse problem theory and methods for model 
parameter estimation. Society for Industrial and Applied Math-
ematics, Philadelphia

	 6.	 Buljak V (2011) Inverse analyses with model reduction. Springer, 
Berlin

	 7.	 Cunha A, Caetano E (2006) Experimental modal analysis of civil 
engineering structures. Sound Vib 6(40):12–20

	 8.	 Sanayei M, Imbaro G, McClain J, Brown L (1997) Structural 
model updating using experimental static measurements. J Struct 
Eng 123(6):792–798

	 9.	 Caddemi S, Morassi A (2013) Multi-cracked Euler-Bernoulli 
beams: mathematical modeling and exact solutions. Int J Solids 
Struct 50(6):944–956

	10.	 Wang M, Dutta D, Kim K, Brigham J (2015) A computationally 
efficient approach for inverse material characterization combining 

Gappy POD with direct inversion. Comput Methods Appl Mech 
Eng 286:373–393

	11.	 Avril S, Bonnet M, Bretelle A-S, Grediac M, Hild F, Ienny P, 
Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) 
Overview of identification methods of mechanical parameters 
based on full-field measurements. Exp Mech 48(4):381–402

	12.	 Isaac T, Petra N, Stadler G, Ghattas O (2015) Scalable and effi-
cient algorithms for the propagation of uncertainty from data 
through inference to prediction for large-scale problems, with 
application to flow of the Antarctic ice sheet. J Comput Phys 
296:348–368

	13.	 Maier G, Buljak V, Garbowski T, Cocchetti G, Novati G (2014) 
Mechanical characterization of materials and diagnosis of struc-
tures by inverse analyses: Some innovative procedures and appli-
cations. Int J Comput Methods. 11:1343002

	14.	 Erdogan YS, Bakir PG (2013) Inverse propagation of uncertainties 
in finite element model updating through use of fuzzy arithmetic. 
Eng Appl Artif Intell 26(1):357–367

	15.	 Khodaparast HH, Mottershead JE, Badcock KJ (2011) Interval 
model updating with irreducible uncertainty using the Kriging 
predictor. Mech Syst Signal Process 25(4):1204–1226

	16.	 Liu J, Han X, Jiang C, Ning HM, Bai YC (2011) Dynamic load 
identification for uncertain structures based on interval analysis 
and regularization method. Int J Comput Methods 8(4):667–683

	17.	 Fedele F, Muhanna R, Xiao N, Mullen R (2015) Interval-based 
approach for uncertainty propagation in inverse problems. J Eng 
Mech 141(1):06014013

	18.	 Fernández-Martínez J, Fernández-Muñiz Z, Pallero J, Pedruelo-
González L (2013) From Bayes to Tarantola: new insights to 
understand uncertainty in inverse problems. J Appl Geophys 
98:62–72

	19.	 Roy CJ, Oberkampf WL (2011) A comprehensive framework for 
verification, validation, and uncertainty quantification in scientific 
computing. Comput Methods Appl Mech Eng 200:2131–2144

	20.	 The American Society For Mechanical Engineers (2006) Guide 
for verification and validation in computational solid mechanics. 
ASME

	21.	 Gokce H, Catbas F, Gul M, Frangopol D (2013) Structural iden-
tification for performance prediction considering uncertainties: 
case study of a movable bridge. J Struct Eng 139(10):1703–1715

	22.	 Atamturktur S, Liu Z, Cogan S, Juang H (2014) Calibration of 
imprecise and inaccurate numerical models considering fidelity 
and robustness: a multi-objective optimization-based approach. 
Struct Multidiscip Optim 51(3):659–671

	23.	 Claerbout Jf, Muir F (1973) Robust modeling with erratic data. 
Geophysics 38(5):826–844

	24.	 Miettinen K (1999) Nonlinear multiobjective optimization, 
Springer, New York

	25.	 Jin S-S, Cho S, Jung H-J, Lee J-J, Yun C-B (2014) A new multi-
objective approach to finite element model updating. J Sound Vib 
333(11):2323–2338

	26.	 Chisari C, Francavilla AB, Latour M, Piluso V, Rizzano G, Ama-
dio C (2017) Critical issues in parameter calibration of cyclic 
models for steel members. Eng Struct 132:123–138

	27.	 Jung S, Ok S-Y, Song J (2010) Robust structural damage identifi-
cation based on multi-objective optimization. Int J Numer Meth 
Eng 81:786–804

	28.	 Wang M, Brigham JC (2014) Assessment of multi-objective opti-
mization for nondestructive evaluation of damage in structural 
components. J Intell Mater Syst Struct 25(9):1082–1096

	29.	 Shim M-B, Suh M-W (2002) “A study on multiobjective optimi-
zation technique for inverse and crack identification problems. 
Inverse Probl Eng 10(5):441–465

	30.	 Farina M, Amato P (2004) A fuzzy definition of “optimality” 
for many-criteria optimization problems. IEEE Trans Syst Man 
Cybern Part A Syst Hum 34(3):315–326

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


395Engineering with Computers (2019) 35:381–395	

1 3

	31.	 Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining con-
vergence and diversity in evolutionary multiobjective optimiza-
tion. Evol Comput 10(3):263–282

	32.	 Santoso BJ, Chiu G-M, Mumpuni R (2015) An efficient grid-
based framework for answering tolerance-based skyline queries. 
In: Proceedings of International Conference on Information & 
Communication Technology and Systems (ICTS), Surabaya, 
Indonesia,

	33.	 Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-
ist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol 
Comput 6(2):182–197

	34.	 Chisari C (2015) Inverse techniques for model identification of 
masonry structures, University of Trieste: PhD Thesis,

	35.	 Baker JE (1987) Reducing bias and inefficiency in the selection 
algorithm. In: Proceedings of Second International Conference on 
Genetic Algorithms and their Application, Hillsdale, New Jersey,

	36.	 Eshelman LJ, Schaffer JD (1992) Real-coded genetic algorithms 
and interval schemata. In: Foundations of genetic algorithms. 
Morgan-Kaufman, San Mateo, pp 187–202

	37.	 Chisari C, Macorini L, Amadio C, Izzuddin BA (2015) An exper-
imental-numerical procedure for the identification of mesoscale 
material properties for Brick-Masonry. In: Proceedings of the 
Fifteenth International Conference on Civil, Structural and Envi-
ronmental Engineering Computing, Prague,

	38.	 Dassault Systemes (2009) ABAQUS 6.9 Documentation, Provi-
dence, RI

	39.	 Mann W, Müller H (1982) Failure of shear-stressed masonry—
an Enlarged theory, tests and application to shear walls. Proc Br 
Ceram Soc 30(1):223–235

	40.	 Ganz H (1985) Masonry Walls Subjected to Normal and Shear 
Forces, Institute of Structural Engineering, ETH Zurich: PhD 
Thesis

	41.	 Morris M (1991) Factorial sampling plans for preliminary com-
putational experiments. Technometrics 33(2):161–174

	42.	 Campolongo F, Cariboni J, Saltelli A (2007) An effective screen-
ing design for sensitivity analysis of large models. Environ Model 
Softw 22:1509–1518

	43.	 Campolongo F, Saltelli A, Cariboni J (2011) From screening to 
quantitative sensitivity analysis. A unified approach. Comput Phys 
Commun 182:978–988

	44.	 Antonov IA, Saleev VM (1979) An economic method of com-
puting LP tau-sequence. USSR Comput Math Math Phys 
19(1):252–256

	45.	 Kita H, Yamamura M (1999) A functional specialization hypoth-
esis for designing genetic algorithms. In: IEEE international con-
ference on systems, man, and cybernetics. IEEE SMC’99 confer-
ence proceedings, vol 3. IEEE, pp 579–584

	46.	 CUR (1994) Structural masonry: a experimental/numerical basis 
for practical design rules. CUR, Gouda,

	47.	 McNary W, Abrams DP (1985) Mechanics of masonry in com-
pression. J Struct Eng 111(4):857–870


	Tolerance-based Pareto optimality for structural identification accounting for uncertainty
	Abstract
	1 Introduction
	2 Methodology
	2.1 Overview of the deterministic inverse problem
	2.2 Data from different sources
	2.2.1 Multi-objective optimisation and Pareto dominance
	2.2.2 Tolerance-based definition of Pareto dominance
	2.2.3 Numerical solution of the identification problem


	3 Estimation of elastic properties of masonry from diagonal compression tests
	3.1 The experimental programme
	3.2 Description of the FE model
	3.3 Global sensitivity analysis
	3.4 Calibration of the elastic parameters
	3.4.1 Masonry type MT1
	3.4.2 Masonry type MT2
	3.4.3 The role of sensitivity analysis


	4 Discussion and conclusions
	Acknowledgements 
	References


