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Abstract A virtual test facility (VTF) for studying the
three-dimensional dynamic response of solid materials
subject to strong shock and detonation waves has been
constructed as part of the research program of the
Center for Simulating the Dynamic Response of
Materials at the California Institute of Technology.
The compressible fluid flow is simulated with a Carte-
sian finite volume method and treating the solid as an
embedded moving body, while a Lagrangian finite
element scheme is employed to describe the structural
response to the hydrodynamic pressure loading. A
temporal splitting method is applied to update the
position and velocity of the boundary between time
steps. The boundary is represented implicitly in the
fluid solver with a level set function that is constructed
on-the-fly from the unstructured solid surface mesh.
Block-structured mesh adaptation with time step
refinement in the fluid allows for the efficient consid-
eration of disparate fluid and solid time scales. We
detail the design of the employed object-oriented mesh
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refinement framework AMROC and outline its effec-
tive extension for fluid—structure interaction problems.
Further, we describe the parallelization of the most
important algorithmic components for distributed
memory machines and discuss the applied partitioning
strategies. As computational examples for typical VTF
applications, we present the dynamic deformation of a
tantalum cylinder due to the detonation of an interior
solid explosive and the impact of an explosion-induced
shock wave on a multi-material soft tissue body.

1 Introduction

The virtual test facility (VTF) is a software environment
for coupling solvers for compressible computational
fluid dynamics (CFD) with solvers for computational
solid dynamics (CSD). The CFD solvers facilitate the
computation of flows with strong shocks as well as fluid
mixing. The CSD solvers provide capabilities for simu-
lation of dynamic response in solids such as large plastic
deformations, fracture and fragmentation. In addition,
the VTF can be used to simulate highly coupled fluid—
structure interaction problems, such as the high rate
deformation of metallic solid targets forced by the
loading from the detonation of energetic materials, or
the rupture and fragmentation of brittle materials under
shock wave impact. At present, all VTF solvers use time-
explicit shock-capturing schemes.

In order to implement fluid-structure coupling in
the VTF, we apply a loosely coupled, partitioned ap-
proach. The technique operates as follows: one as-
sumes disjoint fluid and solid domains and that the
interaction takes place only at the fluid—solid interface.
In this way, one can apply algorithms that are intrin-
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sically suited for simulation of phenomena such as
shock propagation, detonation or fluid mixing in the
fluid solver, while algorithms similarly optimized for
phenomena such as high-rate plastic deformation or
fracture can be employed in the solid solver. For
example, a Lagrangian representation is most suitable
to account numerically for large solid deformations,
contact and fracture, while the governing equations of
compressible fluid motion are most effectively solved
in an Eulerian frame of reference [1]. In the loose
fluid-structure coupling adopted, the information ex-
change is reduced to communicating the velocities and
the geometry of the solid surface to the Eulerian fluid
and imposing the hydrostatic pressure onto the
Lagrangian solid as a force acting on its exterior [1-7].
This approach offers several advantages. Firstly, it al-
lows for solver reuse (see [8] or [2] for details on the
idea of modularization). Secondly, it becomes
straightforward to take advantage of recent advances
in multiscale constitutive modeling to describe the
dynamic response of both solid and fluid. Such mod-
eling typically also employs a Lagrangian description
for solids and an Eulerian description for the fluid.

A key issue that arises with the proposed approach
is how to represent the evolving surface geometry on
the Eulerian fluid mesh. The application of body-con-
forming meshes is somewhat cumbersome, because the
fluid equations first need to be cast into a local arbi-
trary Lagrangian-Eulerian (ALE) frame of reference
[9]. At each step, the mesh topology would have to be
reconstructed and the solution re-interpolated. While
this is possible (and successfully implemented in many
present-day codes), the issues of mesh tangling and the
requirements of frequent re-meshing in the case of
large deformations remain a challenge. The need to re-
mesh is also an inherent bottleneck in massively par-
allel simulations [6].

An alternative to the use of body-aligned fluid grids
is the application of Cartesian meshes with immersed
or embedded irregular boundaries. Here, there are two
basic approaches: ‘“‘cut-cell” techniques that construct
smaller cells by intersecting the Cartesian mesh exactly
with the (triangulated) boundary and techniques that
“diffuse” the boundary within one cell [10]. Cut-cell
methods have the advantage that they can represent
accurately the boundary flux and thus facilitate the
implementation of discretely conservative fluid solvers.
However, the proposed numerical circumventions of
the severe time step restriction in time-explicit schemes
[11, 12], which can result from very small cells created
by the boundary intersection, are logically quite com-
plicated. Most approaches have not yet been extended
successfully to three spatial dimensions even for pure
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fluid flow problems. In the VTF, we therefore employ a
diffused boundary technique in which some interior
cells are used directly to enforce the embedded
boundary conditions in the vicinity of the solid surface
[4, 13]. This has been called the “ghost fluid”” approach.
One advantage of this approach is that the numerical
stencil is not modified, thus ensuring optimal parallel
scalability. We minimize conservation errors as well as
possible numerical “staircase’ artifacts at the embed-
ded boundary by using block-structured dynamic
adaptation of the fluid mesh. As the solid deforms, the
solid-fluid boundary is represented implicitly with a
scalar level set variable that is updated on-the-fly using
an efficient algorithm described in more detail below.
An important additional advantage of this approach is
the ability to cope with topological transitions such as
fracture or penetration.

The present paper details the implementation of the
VTF approach and also describes its application to
fluid-solid interaction problems wherein detonation
and shock waves impinge on thick three-dimensional
solid materials. An extension of the basic, non-adaptive
fluid—solid coupling algorithm used herein to thin, open
structures has recently been presented in [14]. In Sect. 2,
a Cartesian dynamically adaptive finite volume fluid
solver for Euler equations with one-step chemistry is
described. We detail the design of the underlying mesh
refinement framework and discuss its parallelization.
Section 3 outlines the parallel Lagrangian finite element
solver for solid materials subjected to high-intensity
shock loadings. In Sect. 4, we describe a highly efficient
algorithm to transform a triangulated surface mesh into
a signed distance function on a hierarchical Cartesian
mesh as a prerequisite for coupling. The fluid—structure
interaction methodology, highlighting particular its
incorporation into the adaptive fluid mesh refinement
framework, and an efficient inter-solver communication
library are detailed in Sect. 5. Section 6 provides two
three-dimensional  computational examples. In
Sect. 6.1, we simulate the impact event of a strong
hydrodynamic shock wave on a body comprised of soft-
tissue; in Sect. 6.2 the propagation of a detonation wave
in HMX through a plastic tantalum cylinder is de-
scribed. Both computations were run on distributed
memory machines and we comment briefly on the
overall computational efficiency of the approach.

2 Eulerian fluid dynamics
In this section, we are concerned with the construction

of an FEulerian fluid solver framework suitable for
efficient fluid-structure coupling. Although the pre-
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sentation is tailored to the Euler equations with simple
one-step reaction, the concepts are equally applicable
to general conservation laws with arbitrary source
terms. Within the Center for Simulating the Dynamic
Response of Materials at the California Institute of
Technology, the same framework is also used suc-
cessfully with solvers for the compressible Favre-
averaged Navier-Stokes equations with a large-eddy
turbulence model [15] and for detonation simulation in
thermally perfect gas mixtures with detailed chemical
kinetics [16-20].

2.1 Governing equations

In order to model detonation waves in solid energetic
materials, we utilize the single-phase model proposed
by Fickett and Davis [21], which has also been used by
Clarke et al. [22] to evaluate numerical methods for
detonation simulation. We assume a single chemical
reaction A — B that is modeled by a progress variable
A, which corresponds to the mass fraction ratio be-
tween the density of the product B and the total den-
sity p, i.e. 4 = pg/p. The governing equations of the
model read

ap + V- (pu) =0, (1)
d(pu) +V - (pu@u) + Vp =0, 2)
(pE) +V - ((pE +p)u) =0, (3)
O +u-Vi=y. 4)

Here, u is the velocity vector and E the specific total
energy. The hydrostatic pressure p is given by

p=©0-1)(pE- %puTu + piq) (5)

with y denoting the ratio of specific heats and g the
heat release due to the chemical reaction per unit mass.
The reaction itself is modeled by the simple rate
function

2

o TR(1 - )”)1/2 . (6)

W

In Eq. 6, Tk denotes a typical time associated with the
reaction, in which the depletion from A to B is com-
plete. It is worth mentioning that the above model
includes the Euler equations for a single polytropic gas
as Egs. 1-3 and 5 for y = 0 and g = 0, which is the
appropriate model for purely hydrodynamic shock
wave propagation (cf. Sect. 6.1).

2.2 Cartesian finite volume method with embedded
boundaries

Following Clarke et al. [22], we apply the method of
fractional steps to decouple the chemical reaction and
hydrodynamic transport numerically. The homoge-
neous system of Egs. 1-4 and the scalar ordinary dif-
ferential equation 9,4 = (1) are solved successively
with the data of the preceding step as initial conditions.
As the homogeneous system Egs. 1-4 is a hyperbolic
conservation law that admits discontinuous solutions
(cf. [22]), we use a time-explicit finite volume discret-
ization that achieves a proper upwinding in all char-
acteristic fields. The scheme is based on a
straightforward generalization of the Roe scheme for
the purely hydrodynamic Euler equations 1-3 and is
extended to a multi-dimensional Cartesian scheme via
the method of fractional steps (cf. [23]). To circumvent
the intrinsic problem of unphysical total densities and
internal energies near vacuum due to the Roe lineari-
zation (cf. [24]), the scheme has the possibility to
switch to the simple, but extremely robust Harten-Lax-
Van Leer (HLL) Riemann solver [17-19]. The MUS-
CL-Hancock variable extrapolation technique of Van
Leer [23] is employed to achieve second-order accu-
racy in regions where the solution is smooth.

Geometrically complex moving boundaries are
considered within the Cartesian method outlined
above by utilizing some of the finite volume cells as
ghost cells to enforce immersed boundary conditions
[10, 25]. The ghost cell values are set immediately be-
fore the original numerical update to model moving
embedded walls. The boundary geometry is mapped
onto the Cartesian mesh by employing a scalar level set
function ¢ that stores the signed distance to the
boundary surface and allows the efficient evaluation of
the boundary outer normal in every mesh point as
n=—V¢/|V¢| [26]. In coupled Eulerian-Lagrangian
simulations, ¢ is updated on-the-fly by calling the
closest-point-transform algorithm described in detail in
Sect. 4. A cell is considered to be a valid fluid cell
within the interior, if the distance ¢ in the cell midpoint
is positive, and is treated as exterior otherwise. The
unavoidable staircase approximation of the boundary
with this approach is alleviated by using the dynamic
mesh adaptation technique described in the next sec-
tion to also refine the Cartesian mesh appropriately
along the boundary.

For the system of Egs. 1-4, the boundary condition
at a rigid wall moving with velocity w is u-n=w-n.
Enforcing the latter with ghost cells requires the mir-
roring of the primitive values p, w, p, 4 across the
embedded boundary and the velocity modification
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u = 2((w —u) -n)n + u within the ghost cells. We de-
rive mirrored values in a ghost cell center x by calcu-
lating spatially interpolated values at the point
% = X + 2¢n from neighboring interior cells. For in-
stance, in two spatial dimensions a bilinear interpola-
tion between (usually) four adjacent cell values is
employed, but directly near the boundary the number
of cells contributing to the interpolation needs to be
decreased to preserve the monotonicity of the numer-
ical solution. Figure 1 highlights the reduction of the
interpolation stencil for some exemplary cases close to
the embedded boundary. The interpolation locations
are indicated by the origins of the arrows normal to the
complex boundary (dotted).

After the application of the numerical scheme, the
cells that have been used to impose the internal
boundary conditions are set to the entire state vector of
the nearest cell in the interior. This operation achieves
a constant value extrapolation and ensures proper
values in case such a cell becomes a regular interior cell
in the next step due to boundary movement. Note that
the boundary velocity w gets automatically considered
through the velocity modification in the internal ghost
cells and the usual stability condition for time-explicit
methods for system 1-4 also ensures that the embed-
ded boundary propagates at most one cell further in
every time step.

2.3 Structured adaptive mesh refinement

In order to supply the required temporal and spatial
resolution efficiently, we employ the structured adap-
tive mesh refinement (SAMR) method after Berger
and Colella [27], which is tailored especially for
hyperbolic conservation laws on logically rectilinear
finite volume grids. Instead of replacing single cells by
finer ones, as is done in cell-oriented refinement tech-

L
o
g
K
<
g
-
o o e
N -
%
L

. °
% 7
[ ':'
° °‘,‘x
H
o | odpx

Fig. 1 Interpolation from interior cells to construct mirrored
values to be used within internal ghost cells (gray)
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niques, the Berger—-Collela SAMR method follows a
patch-oriented approach. Cells being flagged by vari-
ous error indicators (shaded in Fig. 2) are clustered
with a special algorithm [28] into non-overlapping
rectangular grids. Refinement grids are derived recur-
sively from coarser ones and a hierarchy of successively
embedded levels is thereby constructed (cf. Fig. 2). All
mesh widths on level / are ritimes finer than on level
J 1, ie. A[ll = Atl_l/rl and Axk,l: = Axk,l_l/rl with FIZ 2
for />0 and with ry =1, and a time-explicit finite
volume scheme will (in principle) remain stable on all
levels of the hierarchy.

The numerical scheme is applied on level / by calling
a single-grid routine in a loop over all subgrids. The
subgrids get computationally decoupled by employing
additional ghost cells around each computational grid.
Three different types of ghost cells have to be consid-
ered: cells outside of the root domain are used to
implement physical boundary conditions. Ghost cells
overlaid by a grid on level / have a unique interior cell
analogue and are set by copying the data value from
the grid, where the interior cell is contained (syn-
chronization). On the root level no further boundary
conditions need to be considered, but for / > 0 internal
boundaries can also occur. They are set by a conser-
vative time-space interpolation from two previously
calculated time steps of level / — 1.

Besides a general tree data structure that stores the
topology of the hierarchy (cf. Fig.2), the SAMR
method requires at most two regular arrays assigned to
each subgrid. They contain the discrete vector of state
for the actual and updated time step. The regularity of
the data allows high performance on vector and super-
scalar processors that allow cache optimizations. Small
data arrays are effectively avoided by leaving coarse
level data structures untouched when higher level grids
are created. Values of cells covered by finer subgrids

(=%

Grid hierarchy

parent / child
————— neighbors

Fig. 2 The AMR method creates a hierarchy of rectangular
subgrids
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are subsequently overwritten by averaged fine grid
values. This operation leads to a modification of the
numerical stencil on the coarse mesh and requires a
special flux correction in cells abutting a fine grid. The
correction replaces the coarse grid flux along the fine
grid boundary by a sum of fine grid fluxes and ensures
the discrete conservation property of the hierarchical
method (at least for purely Cartesian problems without
embedded boundaries; see [27] or [19] for details).

2.4 Parallel implementation

Up to now, various reliable implementations of the
SAMR method for single processor computers have
been developed. Even the usage of parallel computers
with shared memory is straightforward, because time-
explicit methods allow the parallel calculation of the
grid-wise numerical update [28]. But the question of an
efficient parallelization strategy becomes more delicate
for distributed memory architectures, because on such
machines the costs for communication cannot be ne-
glected. Due to the technical difficulties of imple-
menting dynamical adaptive methods in distributed
memory environments only a few parallelization
strategies have been considered in practice to date (cf.
[29, 30)).

Parallel SAMR in the VTF at the California Insti-
tute of Technology is provided generically by the
AMROC (Adaptive Mesh Refinement in Object-ori-
ented C++) framework [31]. AMROC has been par-
allelized very effectively for distributed memory
machines [32] and can be used on all systems that
provide the MPI library. The parallelization strategy is
a rigorous domain decomposition approach that par-
titions the SAMR hierarchy from the root level on.
The key idea is that all higher level domains are re-
quired to follow this “floor plan”. A careful analysis of
the SAMR algorithm uncovers that the only parallel
operations under this paradigm are ghost cell syn-
chronization, redistribution of the hierarchical data
and the application of the previously mentioned flux
correction terms. Interpolation and averaging, and, in
particular, the calculation of the flux corrections re-
main strictly local [19]. Currently, we employ a gen-
eralization of Hilbert’s space-filling curve [33] to derive
load-balanced root level distributions at runtime. The
entire SAMR hierarchy is considered by projecting the
accumulated work from higher levels onto the root
level cells. Although rigorous domain decomposition
does not lead to a perfect balance of workload on
single levels, good scale-up is usually achieved for
moderate CPU counts. Figure 3 shows a representative
scalability test for a three-dimensional spherical shock

wave problem for the Euler equations of a single non-
reactive gas (Egs. 1-3 and 5). The test was run on the
ASC Linux cluster (ALC) at Lawrence Livermore
National Laboratories that connects Pentium-4
2.4 GHz dual processor nodes with a Quadrics Inter-
connect. The base grid has 32° cells and two additional
levels with refinement factors 2 and 4. The adaptive
calculation uses approximately 7.0 M cells in each time
step instead of 16.8 M cells in the uniform case. The
calculation on 256 CPUs employs between 1,500 and
1,700 subgrids on each level. Displayed are the average
costs for each root level time step, which involves two
time steps on the middle level and eight on the highest.
All components of the dynamically adaptive algorithm,
especially regridding and parallel redistribution, are
active so that realistic results are obtained. Although
we utilize a finite volume scheme in Fortran 77 within a
C++ framework with full compiler optimization, the
fraction of the time spent in this Fortran routine is
90.5% on four and decreases to only 74.9% on 16
CPUs. Hence, Fig. 3 shows a reasonable scale-up for at
least up to 64 CPUs. We are currently researching
scalability strategies that will allow full scale-up to
thousands of processors.

2.5 Design of the AMROC framework

A salient feature of AMROC compared to other
available SAMR implementations, e.g. [29, 34], is the
realization of object-oriented framework concepts in
C++ on all levels of software design. This allows for
effective code re-use in implementing parallel SAMR
algorithms and extensive capability for customization
through subclass derivation.

In block-structured dynamically adaptive codes,
three abstraction levels can be identified. At the top
level, a particular physical simulation problem is for-
mulated by providing a numerical scheme, by setting

1000

100 |

seconds / time step

10—
4 8 16 32 64 128 256
CPUs

Fig. 3 Representative AMROC scale-up test for fixed problem
size
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boundary and initial conditions, and by specifying
interpolation (prolongation) and averaging (restric-
tion) methods for the inter-level transfer operations.
Characteristic of block-structured methods is that at
this level only single-patch routines need to be pro-
vided. In AMROC, SAMR implementation classes call
the single-patch routines through abstract class inter-
faces. For a fully implemented SAMR algorithm, the
system is used as an application framework invoked by
a generic main program. Classes implementing SAMR
algorithms and their auxiliary components operating
on and manipulating complex hierarchical data make
up the second level. A comparison of typical SAMR
algorithms, e.g. the Berger—Colella technique for time-
explicit finite volume schemes (cf. Sect. 2.3) with geo-
metric adaptive multigrid methods for implicit dis-
cretizations, reveals that the SAMR auxiliary
components show great similarity and can easily be re-
used. In AMROC, components such as the flagging of
cells for refinement depending on various criteria, the
clustering of flagged cells into rectangular regions, in-
ter-level data transfer and flux correction (fixup) reside
in clearly separated classes. This is highlighted in Fig. 4
which displays the most important AMROC classes
and their relationships in unified modeling language
(UML) notation [35] for the purely Cartesian case. The
recursive Berger—Collela SAMR algorithm tailored for
the hyperbolic problems of interest is realized here in
the central class HypSAMRSolver; all others classes
are generic, enabling the utilization of AMROC as a
software framework for the efficient implementation of
different SAMR algorithms typically implemented in
new central SAMRSolver classes.

The intermediate AMROC design level naturally
utilizes classes of the base level that provide hierar-
chical data structures. The base level is divided into
elementary functionality for single grid patches and
the implementation of various lists that store these
patches hierarchically. A common design for the base
level (see also [29]) involves a Box class to specify a
single rectangular box in global integer index space.
Methods for geometric operations on boxes like
concatenation or intersection are available. A Patch
class adds consecutive data storage to a Box. In
AMROC, the geometrical description of all refine-
ment areas is stored in hierarchical lists of Box ob-
jects inside a single GridHierarchy. The templatized
class GridFunction creates Patch objects for various,
possibly complex, data types following exactly the
Box lists of GridHierarchy. As the refinement lists in
GridHierarchy evolve and are dynamically distributed
to an evolving set of processors, the Patch objects in
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BoundaryConditions
+set_patch() +set_patch_boundary()

A A

LevelTransfer

NumericalScheme InitialConditions

+set_patch()

TimeStepControler

Clustering 1

I

+restrict_patch()
+prolong_patch()

1 1 1

+ind_boxes() | g1 HypSAMRSolver 0.1

1

+next_step()
+advance_level()

Criterion +upd§te_level() ]
+evaluate() +regrid() 0.1
O"; Fixup
+flux_correction()
Flagging +add_fine_fluxes()
+add_coarse_fluxes()

+flag_patch() 0.1

1
+Flags

1

GridFunction

+recreate_patches()

0..*"| ' -follows distribution
1

GridHierarchy

+set_new_boxes() :
+redistribute_hierachy() | 1 O-

Fig. 4 UML class diagram for the most important AMROC
components implementing Cartesian Berger-Collela-type
SAMR

GridFunction are automatically re-created, including
parallel redistribution and synchronization.

The design of the hierarchical data structures in
AMROC follows the DAGH (Distributive Adaptive
Grid Hierarchies) package by Parashar and Browne
[30] that itself was intended as software framework for
SAMR algorithms, but the enormous complexity in
SAMR algorithms and their auxiliary components
makes framework concepts at higher design levels (see
above) more effective. As an illustration, Fig. 5 shows
the most important classes that have been added to the
originally Cartesian SAMR framework to implement
arbitrary level-set-based embedded boundary methods
like the one sketched in Sect. 2.2. An abstract class
LevelSetEvaluation is provided to evaluate the scalar
GridFunction ¢ patch-wise; EmbeddedBoundaryCon-
ditions allows the specification of the detailed boundary
value modification. Multiple EmbeddedBoundary-
Methods can also be considered and are incorporated
with minimal implementation overhead into the exist-
ing algorithms of the SAMRSolver class for hyperbolic
problems, HypSAMRSolver, through the derived class
EBMHypSAMRSolver. The only operation that had to
be extended was that of applying physical boundary
conditions.
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LevelSetEvaluation| | EmbeddedBoundaryConditions

+set_cells_in_patch()

+set_patch()

1 1

EBMHypSAMRSolver

1 1,001

EmbeddedBoundaryMethod

0.1 1 +apply_boundary_conditions() \/
HypSAMRSolver
Extra-/Interpolation 1
+calculate_in_patch() 1 | +phi

Fig. 5 Class structure extension of Fig. 4 for level-set-based
embedded boundary methods

3 Lagrangian formulation of solid dynamics

We adopt a conventional Lagrangian formulation [36]
for describing the large, dynamic deformations of solid
materials subject to high-intensity shock loadings. The
formulation accounts for finite kinematics, inertia and
general constitutive behavior, including strength.

3.1 Governing equations

We select the configuration By C R* of the body at
time f, as the reference configuration. The coordinates
X of points in By are used to identify material particles
throughout the motion. The motion of the body is
described by the deformation mapping

x = (X, 1) (7)

(not to be confused with the levelset function). Thus, x
is the position of material particle X at time ¢. The
material velocity and acceleration fields follow from

Eq.7 as ¢(X,1) and {(X,7), where a superposed ()

denotes partial differentiation with respect to time at
fixed X. The local deformation of an infinitesimal
material neighborhood is described by the deformation
gradient

F = Vop(X,1), (8)

where V, denotes the material gradient of a function
defined over By. The scalar function

J = det (F(X, 1)) 9)

is the Jacobian of the deformation and measures the
ratio of the deformed to undeformed volume of an
infinitesimal material neighborhood. The motion of the
body is subject to conservation of linear momentum
(cf. [36]), which takes the form

Vo P+ poB=pyop, (10)

where B(X, ¢) is the body force per unit mass, P(X,t)
denotes the first Piola—Kirchhoff stress tensor and
po(X) the mass density over By. The symmetric Cauchy
stress tensor follows from P through the relation

o =J"'PFT. (11)

For purposes of formulating boundary conditions, we
partition the boundary of Bj into a Dirichlet or
displacement boundary dBg; and a Neumann or
traction boundary 0Bg,. The boundary conditions
then take the form

@ = @ on OBy, (12)
P-N= T on 8B02, (13)

where @(X, 1) is the prescribed deformation mapping
on 0By, N is the unit outward normal to dBy, and
T(X,t) are the prescribed tractions applied to 9Bg,.
Finally, dynamic problems require initial conditions

0o(X) and ¢y(X) to be specified over By.

3.2 Shock-capturing material model

Assuming the material behavior is reversible, the stress
tensor can be computed from an internal energy
function U as

B 8U(FTF)'

P=— (14)

This model is well suited for low-intensity loading (see
Sect. 6.1), but when the solid interacts with high-
intensity fluid shocks, a strong stress wave propagates
within the solid (cf. Sect. 6.2). The inelastic material
behavior then has to be accounted for and a shock-
capturing numerical scheme is also needed to accu-
rately represent evolving stress fronts inside the solid.
Here, we apply a Lagrangian artificial viscosity method
for solids with strength presented in [37]. The addition
of artificial viscosity has the intended effect of
spreading fronts that are too steep to be resolved
accurately over several grid points without altering
their speed of propagation while avoiding the intro-
duction of numerical artifacts such as spurious oscilla-
tions (cf. [38]).

A general constitutive theory of inelastic material
behavior may be based on irreversible continuum
thermodynamics (cf. [39-41] for more extensive ac-
counts). In this context, viscosity may be modeled by
assuming an additive decomposition
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P=P 4P (15)

of the first Piola—Kirchhoff stress tensor into an
equilibrium part P° and a viscous part P".
Additionally, we assume that the local thermodynamic
state of the material is fully described by the local
deformation F, the local absolute temperature 7, and a
collection q of internal state variables. In particular, we
assume that the free energy per unit of undeformed
volume can be expressed as a function A(F, T, q). As in
the reversible case expressed in Eq. 14, the equilibrium
stresses then follow from the free energy as

P°=Ayp(F,T,q). (16)

In materials without strength, A depends on the
deformation only through the Jacobian J and the
hydrostatic pressure p is computed by

p=-Ay. (17)

Here, we adopt the usual fluids convention and regard
compressive pressure as positive. In the presence of
shocks propagating in the solid, the volumetric re-
sponse is described by a suitable equation of state
(EOS). The constitutive library in the VTF is endowed
with well-established phenomenological equations of
state for solids including the Mie-Gruneisen EOS, as
well as others obtained from first-principles quantum
mechanics calculations as part of the Center’s efforts in
multiscale modeling.

In addition to a volumetric equation of state, a
complete characterization of the behavior of the solid
requires a description of its strength, including its
elasticity, yield point, strain hardening, rate sensitivity
and temperature dependence. This is accomplished by
the specification of the internal energy density A, plus
suitable kinetic equations for the internal state vari-
ables q. Owing to the high strain rate under consider-
ation, only adiabatic material models are considered. In
addition, the material is assumed to obey the J,-flow
theory of plasticity. We adopt a standard formulation of
finite-deformation plasticity based on a multiplicative
decomposition of the deformation gradient into elastic
and plastic components: F = F°F’, where F” is assumed
to be volume-preserving. The equilibrium stress—strain
relation 17 is now extended to include the elasticity of
the material in shear, with the result [41, 42]

o — —pl+ rlFE{ u(log \/ce)deV}FeT, (18)

where C° = F7 F° is the elastic Cauchy-Green
deformation tensor, log vC* is the logarithmic elastic
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strain and u is a shear modulus. The plastic
deformation F” is assumed to obey the Prandtl-Reuss
flow rule

. 3s¢
PR =d— 19
e (19)
where s¢ = %9 is the stress deviator, & = , /(3/ 2)sgss;

denotes the von Mises stress, and &’ is the effective
plastic strain. Relation 19 is solved by considering a
hardening law

G=a(eh,,J) (20)

that characterizes the material behavior. The VTF
possesses a large set of constitutive models and algo-
rithmic updates that describe a wide range of material
response, including variational updates for isotropic
and crystal plasticity [41], a multiscale model of single-
crystal b.c.c. tantalum [43] and a polyconvex model for
anisotropic cubic crystals [44].

The viscous part of the stresses (Eq. 15) is assumed
to take the form

P'(F,F) =Jo'F T, (21)

where ¢¥ =2, (symFF)%" and 5, denotes the
viscosity coefficient. In the latter, sym and dev denote
the symmetric and deviatoric components of a tensor,
respectively. In order to construct an artificial-
viscosity-based scheme, we assume that the viscosity
coefficient is comprised of two terms, leading to

Ny =1+ An, (22)

where # is the physical viscosity coefficient of the
material and A y the added artificial viscosity. We refer
to [37, 38, 45] for details about the evaluation of A #.

3.3 Finite-element temporal integration

The preceding continuum formulation is rendered into
a form suitable for computation by combining a time
discretization of the momentum and constitutive
equations with a finite element discretization for the
reference configuration of the solid. More detailed
accounts may be found in [40, 41]. We consider finite
element interpolations of the form

0(X) = 3" XN (X), (23)

where x, is the current position at node a and N, are
the shape functions. The sum on a ranges over the N
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nodes of the mesh. The displacement shape functions
N, must be conforming. In calculations, we employ
standard quadratic, six-noded triangles or ten-noded
tetrahedra (e.g. [46]). Utilizing these definitions, the
weak formulation of the linear-momentum balance
equation 10 is written as

filnert = - fi;m with 24)
fi,nerl _ / p()NaNbinb ~ Mabib7 (25)
By
o= v 2
By
£ = / TN,dS + / PoBr1N,dQ. 27
3B Bo

In these equations, M is the diagonal lumped mass
matrix and £ £ and £ are the inertial, internal
and external forces, respectively.

Here and subsequently, we implement an incre-
mental solution procedure aimed at sampling the
solution at discrete times ¢, t,..,l,, Where
twi1 = t, + At. The integration in time is performed
with the Newmark family of time-stepping algorithms:

1
X, =X+ Ak + A2 (5 = )R + G (28)
K = X 4 af](1 — )R+ px ], (29)
iz-H _ M;})l [fext _ fint] Z+l7 (30)

where § and y are Newmark parameters. The perfor-
mance of the Newmark algorithm, including its range
of stability, has been extensively documented in the
literature (e.g. [47-49]). Our particular case of
=0,y :% is explicit and second-order accurate and
leads to a central difference scheme.

3.4 Parallel implementation

Our finite element solid solver ““Adlib” is implemented
in C following a modular concept that encapsulates
similar functionality in libraries. The main libraries are

— The material library, which provides the material
response to a given deformation history for a set of
complex constitutive material models.

— The mesh manager, which is responsible for the
construction of the elements, connectivity tables and
for the attribution of the properties to the elements.

— The mechanics library, which manages the space and
time integration of the finite element discretization.

— The partitioning library, which is responsible for
distributing the mesh to the processors of a parall-
elized application.

In Adlib, different types of applications are realized
by providing a specific main program that calls the
required library functionality. Problem-specific front-
end routines, e.g. for boundary conditions, are linked
to enable detailed customization. Although more
classical than the concepts discussed in Sect. 2.5, we
achieve effective code re-use in the same application
domain. For instance, the extensive VTF material li-
brary is shared among Adlib and the VTF thin-shell
finite element solver with fracture capability (see [50]
for a computational example).

In the following, we detail the Adlib parallelization
library. The parallelization strategy employed in Adlib
is straightforward domain decomposition. The mesh
distribution is based on heuristic graph partitioning as
provided by the well-established software package
METIS [51]. Optionally, the local mesh can be recur-
sively refined using a mesh subdivision algorithm for
tetrahedral meshes proposed by Liu and Joe [52]. In
every refinement iteration, each tetrahedron is subdi-
vided into eight new ones. For illustration purposes,
this algorithm is applied to the mesh for a beam with
about 10,000 elements shown in Fig. 6 that is distrib-
uted to 16 processors. On each processor, the mesh is
subdivided with one level of refinement leading to the
configuration displayed in Fig. 7. The main advantage
of this algorithm is that only two new classes of slightly
less regular tetrahedra are introduced, independent of
the number of refinement iterations, thus enabling the
creation of distributed meshes in a scalable way. The
uniqueness of the algorithm ensures conforming ele-
ments in every level of subdivision. Note that the
application of the subdivision procedure mandates the
reconstruction of the interprocessor communication
maps.

For parallel fluid—structure interaction simulations,
all the above libraries are linked to the coupled code.
A solid update step begins as usual by applying
boundary conditions (here tractions produced by the
hydrodynamic pressure), and proceeds by computing
the predictor configuration of the solid and per-
forming the necessary constitutive updates at each
element quadrature point as part of the assembly of
the global residual vector. At this point, a point-to-
point communication operation is necessary to ex-
change the incomplete residuals at partition boundary
nodes. After this step, the corrected nodal accelera-
tions and velocities can be obtained locally by
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Fig. 6 Initial tetrahedral mesh for a beam (/10,000 elements)

Fig. 7 Domain decomposition (indicated by color) to 16 pro-
cessors with subdivision of one level for the mesh shown in Fig. 6

applying the unmodified corrector step. As the com-
munication operations involve only partition bound-
ary data, and retain a surface to volume character,
the solid update algorithm shows excellent scalability
properties.

In order to illustrate this fact, a study of strong
scaling has been performed for a tensile test utilizing
the mesh depicted in Fig. 6 (one level of subdivision).
The test was run on a cluster of AMD Opteron-
2.2 GHz quad-core nodes connected with an Infini-
band network. The average compute time per ele-
ment per step is shown in Fig. 8§ and we measure a
constant parallel efficiency of approximately 0.9. The
efficiency of the method has also been confirmed in
several large-scale computations related to the dy-
namic response of polycrystalline materials [53-58]
that have only been made possible by employing the
massively parallel systems provided by the DoE ASC
program.

4 Closest-point-transform algorithm

In Sect. 2, we have introduced the concept of a
signed distance function as a natural way to represent
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Fig. 8 Scalability test for the solid solver

a complex embedded boundary on a Cartesian mesh.
While signed distance functions are easily prescribed
for single elementary geometric objects, their evalu-
ation can be extremely cumbersome for complex
shapes. In coupled Eulerian-Lagrangian simulations,
this complex shape is defined by the boundary of the
solid mesh. Since the solid mesh is tetrahedral (cf.
Sect. 3), the interface is a triangle mesh. In the fol-
lowing, we outline the specific algorithm that we have
developed to effectively transform the explicit
description of a triangulated surface mesh into a
signed distance function. The problem is equivalent
to finding for every discrete point on the Cartesian
SAMR grid the nearest or closest point on this sur-
face mesh. The algorithm is therefore named the
closest point transform (CPT). Without loss of gen-
erality, we assume a single uniform Cartesian grid in
the following discussion.

4.1 Problem description

Let, ¢(x),x € R™, be the distance from the point x to
a manifold Z. If dim(Z) =n —1 and the manifold is
closed, (for example, curves in 2-D or surfaces in 3-
D), then the distance may be signed. The orientation
of the manifold determines the sign of the distance.
We adopt the convention that the outward normal
points in the positive direction. In order for the dis-
tance to be well defined, the manifold must be ori-
entable and have a consistent orientation. A Klein
bottle in 3-D, for example, is not orientable. Two
concentric circles in 2-D have consistent orientations
only if the normals of the inner circle point “inward”
and the normals of the outer circle point ‘“outward”,
or vice versa. Otherwise, the distance would be ill-
defined in the region between the circles. For mani-
folds which are not closed, the signed distance is ill-
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defined in any neighborhood of the boundary. How-
ever, the distance is well-defined in neighborhoods of
the manifold which do not contain the boundary.

The signed distance ¢ to a surface 7 satisfies the
eikonal equation

V| =1 (31)

with boundary conditions ¢|I =0 (see [59]). For
most boundary conditions, a solution to Eq. 31 exists
only in the weak sense. It is continuous, but only
piecewise differentiable. The solution is non-differ-
entiable where characteristics intersect. These are
places that have multiple closest points to the mani-
fold. At differentiable points on the manifold, the
direction of the characteristics of Eq. 31 is given by
the local normal on Z, i.e. V¢/IV¢l, and the charac-
teristics are straight lines.

In computing the distance and closest point to a
triangle mesh surface, one can consider each compo-
nent of the mesh (face, edge or vertex) separately. For
each entity, there are simple geometric formulas for
computing the distance and closest point. For signed
distance, one needs to use the surface normals to
determine the sign of the distance. The surface normal
along an edge is in the direction of the average of the
incident face normals. The surface normal at a vertex is
a weighted average of the incident face normals. The
weighting is proportional to the angle in the face at that
vertex.

For the fluid—solid coupling, we only need to
determine the distance and closest point information in
a narrow band around the interface as the information
is only utilized in the ghost cells. Let 6 be the Cartesian
distance such that all ghost cells are within that dis-
tance of the interface surface. If the distance is com-
puted up to J, then one can flood fill the distance to
determine which of the remaining grid points are inside
or outside the solid.!

4.2 Iteration and tree data structures

In the simplest algorithm for computing distance ¢ and
closest point information C up to a distance J, one
loops over all components of the surface mesh 7 (faces,
edges and vertices) and all Cartesian grid points. This
straightforward algorithm reads:

! Flood filling means looping over the grid points while only
keeping track of the sign of the distance.

simplest( ¢, C, Z, ¢ )
for all i,j k:
#lijk = o
for all face in Z:
for all i,j k:
d = distance from grid point (i,j,k) to face
if |d| < and |d] < |8[i.jK]:
olij k] = d
Cli,j,k] = closest point on face
for all edge in 7:

for all vertex in Z:

return

The algorithm has computational complexity
O(MG), where M is the number of components in the
mesh and G is the number of grid points. Since time-
explicit finite volume methods basically have com-
plexity O(G) for a single time step, this naive algorithm
is not suitable for computing the CPT during the
course of a simulation.

An alternative could be to store the mesh in a data
structure that supports minimum distance queries, like
a bounding box tree [60]. However, the average ex-
pected complexity of a single distance or closest point
computation in this approach would still be O(log M).
This implies an overall complexity of O(Glog M) for
the CPT algorithm. By taking advantage of the fact
that the grid points of the Cartesian mesh form a lat-
tice, we have been able to develop a CPT algorithm
tailored especially for our purposes with better com-
putational complexity.

4.3 The CSC algorithm

One can efficiently compute the distance and closest
point on a grid by solving the eikonal equation with the
method of characteristics and utilizing polyhedron scan
conversion. This is called the characteristics/scan con-
version (CSC) algorithm [61]. For a given grid point,
the closest point on the triangle mesh lies on one of the
primitives (faces, edges and vertices) that comprise the
surface. The characteristics emanating from each of
these primitives form polyhedral shapes, which we call
characteristic polyhedra. A characteristic polyhedron
contains all of the points which are possibly closest to
its corresponding face, edge or vertex. We determine
the grid points that lie within each of these polyhedra,
then use simple geometric formulas to calculate dis-
tance and closest points for the primitive.

The closest points to a triangle face must lie within a
triangular prism defined by the face and its normal.
The prism contains the characteristic lines emanating
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Fig. 9 The characteristic polyhedra for faces, edges, and vertices

from the face (see Fig. 9a for the face polyhedra of an
icosahedron). Each edge in the mesh is shared by two
faces. The closest points to an edge must lie in a
cylindrical wedge defined by the line segment and the
normals to the two incident faces, which is depicted in
Fig. 9b. A single edge polyhedron is shown in Fig. 9c.
Each vertex in the mesh is shared by three or more
faces. The closest points to a vertex must lie in a
polygonal pyramid defined by the normals to the inci-
dent faces. The vertex polyhedra of an icosahedron are
displayed in Fig. 9d.

We can determine the grid points that lie inside a
characteristic polyhedron with polyhedron scan con-
version. The polyhedron is first sliced along each sheet
of the grid lattice to produce polygons. Polygon scan
conversion (or rasterization) is a standard technique in
computer graphics for displaying filled polygons on

Fig. 10 Scan conversion of a polygon in 2-D and slicing of a
polyhedron to form polygons
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raster displays [62, 63]. It is a method for determining
the pixels on the display which lie inside a polygon.
Figure 10 depicts polygon scan conversion and slicing
of a polyhedron. Utilizing the method of characteristics
and scan conversion together, we formulate the algo-
rithm for computing the CPT now as follows:

cpt( ¢, C, Z,0)
for all ij k:
lijk] = oo

for all face in Z:
p = polyhedron containing closest points to face
grid_indices = scan_convert( p )
// Loop over the scan converted points.
for i,j,k in grid_indices:
d = distance from grid point (i,j,k) to face
if |[d| < ¢ and |d| < |¢[i,j.K]l:
okl = d
Cli,j,k] = closest point on face
for all edge in Z:

for all vertex in Z:

return

4.4 Computational complexity

Consider computing the CPT up to a distance of . If 6
is small and the surface is smooth, the computational
complexity of the algorithm is linear in both the size of
the mesh and the number of grid points within ¢ of the
surface. Thus, it has the optimal complexity.

Let the Cartesian grid have N points within a dis-
tance ¢ of the surface, and let v be the ratio of the sum
of the volumes of all the scan converted polyhedra
divided by the volume of the domain within a distance
o of the surface. The ratio v depends on the shape of
the surface and the distance ¢. If the surface is jagged
and ¢ is relatively large, then v will be large. If the
surface is smooth and ¢ is relatively small, then v will
be close to unity. The total computational complexity
of the algorithm is O(vN + M). The O(vN) term again
comes from scan conversion and the closest point and
distance computations for the grid points. The O(M)
term represents the construction of the characteristic
polyhedra. Since we expect both M and N to be small
compared to the total number of grid points G, the
CSC algorithm is suitable for computing the CPT
during the course of a simulation.

The CSC algorithm stores the grids for distance and
closest point and the mesh for which the CPT is com-
puted. Beyond these data structures, which define the
problem, it does not require significant additional
storage. The components of the mesh (i.e. the faces,
edges and vertices) are dealt with one at a time. The
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memory required to scan convert a single polyhedron
is insignificant compared to the memory needs of the
grid and the mesh. Thus, the CSC algorithm essentially
has the minimum storage requirements for the CPT
problem.

4.5 Concurrency and SAMR

If the solid mesh (and hence the solid boundary) is
distributed over multiple processes, the pieces must be
assembled into a cohesive triangle mesh before com-
puting the CPT. This is because one needs to know the
incident faces of edges and vertices in order to com-
pute the correct sign of the distance. We accomplish
this by maintaining global identifiers for the nodes in
the solid mesh.

In the course of a simulation with the SAMR
framework sketched in Sect. 2.4, each fluid process
performs the sequential CSC algorithm. As we use a
rigorous domain decomposition to partition the SAMR
hierarchy, only those components of the triangulated
surface meshes that are within a distance ¢ of the local
domain need to be considered for this computation.
The necessary clipping operation is best performed
before sending the distributed parts of the solid surface
mesh to the receiving fluid processes. The details of our
implementation are outlined in Sect. 5.2.

In order to make efficient use of the CPT algo-
rithm within the SAMR method, we have organized
our CPT implementation such that the algorithm can
be called once for a multitude of subgrids that
effectively lie within the same lattice. This arrange-
ment ensures that each characteristic polyhedron is
constructed and scan converted only once for each
level in the SAMR hierarchy and guarantees com-
putational performance that is basically independent
of the number of subgrids.

5 Fluid-structure coupling

The explicit fluid and solid solvers are weakly coupled
by applying appropriate boundary conditions at the
fluid—solid interface Z via a time-splitting technique
described below. In the case of inviscid flows consid-
ered here, these boundary conditions correspond—in
the Lagrangian notation of Sect. 3, [14]—to the conti-
nuity of the normal component of the velocity field:

[w-n] =0 on T (32)

and the continuity of the normal component of the
traction across the fluid-solid interface, i.e.

[t-n] = [[ojnn;]] = [64] =0 on T. (33)

In the expressions above, [.] represents field jumps and
u is the velocity which in the solid can be expressed in
terms of the deformation mapping ¢(X,?) as

w(x,0) = (¢oo ") (x,0), (34)

where t and n are the spatial surface traction and
normal vectors, respectively, and o; are the
components of the Cauchy stress tensor as defined in
Eq. 11. The resulting boundary conditions at the fluid
solid interface are simply

S F__S F’

u, = u,c,, = P (35)

z
For simplicity, and owing to the extremely short time
scales involved in the problems of interest, it is as-
sumed that heat transfer across the fluid-solid interface
is negligible and, thus, can be ignored.

The following simple temporal splitting scheme is
adopted to accomplish the loose coupling between
fluid and solid solver [2]*
=y (8)]
update_fluid( At)
U;SL‘IL = pp(t + At)‘z
update_solid( At)
t:=1t+ Al

We have implemented this algorithm with an ad-hoc
partitioning into dedicated fluid and solid processes
that communicate to exchange the data along Z. In the
following subsections we will outline some of the spe-
cifics of our approach that make the VTF a highly
efficient framework for fluid—structure simulation on
distributed memory machines.

5.1 Coupled simulations with Eulerian SAMR

Unsteady compressible fluid flows typically show a
wide range of temporal and spatial scales. While the
correct numerical representation of supersonic shock
and detonation waves usually requires very fine reso-
lution only in a small band around the phenomenon of
interest, a considerably coarser resolution is often
sufficient in the majority of the fluid domain. This is in
particular true in our case of strong pressure waves
arising from the detonation of highly energetic mate-
rials; one is interested mainly in the stress waves pro-
duced by shock impact in the solid target materials and

2 More general implicit and staggering schemes for coupled
systems have been proposed and studied in detail in [64, 65].
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the resulting material response. Hence, incoming fluid
waves and the near-body fluid-structure interaction
have to be captured with high accuracy, but resolution
can be reduced for outgoing fluid phenomena and in
the far field. We achieve the required solution adap-
tation in the fluid by applying the dynamic mesh
adaptation algorithm described in Sect. 2.3. The fluid—
solid interface Z is treated herein as a discontinuity
with a-priori refinement at least up to the coupling
level /.. As the wave phenomena in solid materials are
usually at least as fast as the waves in compressible
fluids, the coupling level /. will usually be the highest
computationally permissible choice in order to ensure
an accurate wave transmission. But special care is re-
quired to initiate the data exchange according to the
above basic coupling method in a way that is compat-
ible with the recursive SAMR algorithm.

The coupled SAMR method is implemented below
in the routine advance_level() that calls itself recur-
sively with the current level as argument /:

advance_level( 1)
repeat r; times
if time to regrid
regrid( 1)
cpt( ¢, CL T, 61)
update_fluid_level( Q', ¢', C*, ub\I, Aty )
if level [ + 1 exists
advance_level(l + 1)
Correct Q!(t + At;) with Q1 (¢ + At))
ifl=1,
send_interface_data( p”'(t + At;)],; )
if t + At < to+ Aty
receive_interface_data( Z, u®|, )
t:=t+ A
return

The algorithm calls the routine cpt() from Sect. 4.3
to evaluate the signed distance ¢ and the closest point
information C for the actual level / based on the cur-
rently available interface Z. Together with the recent
solid velocity on the interface u’ |, the discrete vector
of state in the fluid Q is updated for the entire level
with the numerical scheme outlined in Sect. 2.2. The
SAMR method then proceeds as usual recursively to
higher levels and utilizes the (more accurate) data from
the next higher level to correct the values in cells of the
current level overlaid by refinement. If level [ is the
coupling level /., we use the updated fluid data to
evaluate the pressure values to be sent to the solid and
to receive an updated interface mesh and velocities
u’| . The recursive order of the SAMR algorithm
automatically ensures that updated interface mesh
information is available for later time steps on coarser
levels and to adjust the grids on level /. dynamically
before the current mesh (i.e. the level set information
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derived from it) is actually used to again advance level
l.. In order to achieve a proper matching of commu-
nication operations, we start the cycle by posting a
receive-message in the routine fluid_step(), which does
one fluid time step on level 0, before entering into the
SAMR recursion. The routine fluid_step() below
highlights a straightforward automatic time step
adjustment for the SAMR method coupled to a solid
solver.

fluid_step( )
At = min
1=0.-

mx(Rp stable_fluid_timestep(1), A7)

Atl = ATF/RZ forl:07~~- ,L
receive_interface_data( Z, u®|, )
advance_level( 0 )

return

During one root level time step at level 0, the time
steps on all levels remain fixed and are calculated in
advance by employing the refinement factor with re-
spect to the root level R; = Hfzo ry (cf. Sect. 2.3). The
root level time step Atp itself is taken to be the mini-
mum of the stable time step estimations from all levels
and a corresponding time step Atg in the solid. We
define Atg as a multiple of the stable time step esti-
mation in the solid solver with respect to the commu-
nication frequency R;. in one fluid root level step and
an additional factor K that allows sub-iterations in the
solid solver in case of considerably smaller solid time
steps. The solid update algorithm used to advance the
solid by one fluid root level step Atr is given below.

solid_step( )
Aty :=min(K - R, - stable_solid_timestep(), A7)
repeat R;_ times
tend =1+ ATs/Rlcv At = ATS/(KRIC)
while ¢ < tena
send_interface_data( Z(t), u®|(t) )
receive interface_data( p’’|, )
update solid( p”|,, At )
t:=t+ At
At := min(stable_solid_timestep(), tend — t)
return

The data exchange between solid_step() and
fluid_step(), within advance_level(), is visualized in
Fig. 11 for an exemplary SAMR hierarchy with two
additional levels with r; = r, = 2 and K = 4 sub-itera-
tions in solid_step(). As in the simulations in the
Sects. 6.1 and 6.2, the coupling level /. = 1 is not the
maximal level of refinement. Figure 11 visualizes the
recursion in the SAMR method by numbering the fluid
update steps (F) according to the order determined by
advance_level(). The order of the solid update steps
(S) on the other hand is strictly linear. The flow of
coupling information between solid_step() and ad-
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vance_level() is visualized by the red and blue arrows.
The red arrows correspond to the sending of the
interface pressure values p” |, from fluid to solid at the
end of advance_level(/.). The blue arrows represent
the sending of the interface mesh 7 and its nodal
velocities uS|I after at least K solid steps. Note that the
receive_interface_data() call for the latter operation is
placed into fluid_step() and advance_level() such that
the updated mesh information can be employed to
adjust the adaptive refinement in regrid() before it is
actually used in an update_fluid_level() operation. The
modification of refinement meshes is indicated in
Fig. 11 by the gray arrows; the initiating base level that
remains fixed throughout the regridding operation is
indicated by gray circles.

The incorporation of the algorithms described
above into the AMROC framework is relatively
straightforward. Utilizing the design for general
embedded boundary methods sketched in Sect. 2.5,
we have implemented fluid_step() and the fluid—
structure coupled version of advance_level() in a
class CoupledHypSAMRSolver derived from EBM-
HypSAMRSolver (cf. Fig. 12). CoupledHypSAMR-
Solver interpolates the pressure values p” |, along the
surface mesh and communicates them to the Cou-
pledSolidSolver through the coupling module Inter-
SolverCommunication (see next section for details).
CoupledHypSAMRSolver receives an updated inter-
face mesh Z that it passes to the ClosestPointTrans-
form which is naturally made available as a concrete
class based on LevelSetEvaluation. Further, Cou-
pledHypSAMRSolver receives updated interface
velocities u’ |, to be used in EmbeddedMovingWalls
as the necessary concretization of EmbeddedBoun-
daryConditions. In order to re-use our standard
TimeStepControler we have incorporated Coupled-

F1
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A

Y F3 | F4 |\ F6 | F7
I‘I/‘I‘I/I
L ] 1 L [l | | | |

'S1'S2'S3 'S4 S5 S6 S7 S8

Time

Fig. 11 Data exchange between the recursive fluid SAMR solver
and the linear solid solver throughout one root level time step.
Red and blue arrows: flow of interface data from fluid to solid
and vice-versa. Gray arrows: regridding of higher SAMR levels,
the base level (gray circles) stays fixed

HypSAMRSolver and CoupledSolidSolver as attri-
butes into a single CoupledSolver that encapsulates
the extended method.

5.2 Efficient inter-solver communication

Critical to the performance of the coupled algorithms
are the inter-solver communication routines
send_interface_data() and receive_interface_data(). In
order to ensure good communication performance, we
have implemented InterSolverCommunication as a
dedicated asynchronous communication module that
sets up detailed point-to-point communication patterns
between the fluid and solid processes and avoids
assembling global data structures.

The domain decomposition of the solid mesh across
the solid processes also partitions the triangle surface
mesh (cf. Sect. 3.4). A simple approach to coupling is
to assemble the global boundary of the solid (i.e.
gather the pieces from each process and merge them
into a single mesh) and broadcast it to all fluid pro-
cesses. Each fluid process then uses the relevant por-
tion of the global boundary for the CPT and supplies
pressure information for a portion of the boundary.
Next, the pressure information is merged and broad-
cast to each solid process. Unfortunately, this simple
strategy is not efficient for large solid meshes owing to
the costs of assembling, storing, and communicating
the global boundary and global pressure data struc-
tures.

| LevelSetEvaluation |

ZT +set_cells_in_patch()

ClosestPointTransform

+cpt() |
-scan_convert()

EmbeddedBoundaryConditions

EmbeddedMovingWalls |

1

TimeStepControler

CoupledHypSAMRSolver -

Hiuid_step() CoupledSolver
-advance_level() +next_step() 11
-stable_fluid_timestep()

CoupledSolidSolver
+solid_step()

-stable_solid_timestep()
\/
EBMHypSAMRSolver

1 1 J7
InterSolverCommunication

SolidSolver
+update_solid()

- 1

+send_interface_data()
+receive_interface_data()

Fig. 12 Class structure of the fluid-structure coupling method
realized as a concrete embedded boundary method in AMROC,
see Fig. 5 for base classes
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A better approach is to use point-to-point commu-
nications between the solid and fluid processes. Each
solid process sends its portion of the boundary only to
those fluid processes which require it on order to
compute the CPT. Consider a single fluid process
whose grids lie in a domain Q and suppose that the
CPT will be computed to a distance of ¢. Then the fluid
process needs only those portions of the interface that
are within a distance ¢ of Q. If the fluid process re-
ceives only the relevant portions of the interface, it can
assemble them into a local triangle mesh that is suffi-
cient for computing the CPT and setting the boundary
conditions in the ghost cells.

We determine the point-to-point communication
pattern with bounding box information. Each solid
process constructs a Cartesian bounding box around its
portion of the interface. Likewise, each fluid process
constructs a Cartesian bounding box around its domain
and enlarges it by J. The solid bounding boxes define
which portion of the interface the solid process has; the
fluid bounding boxes define which portion of the
interface the fluid process needs. These bounding
boxes are gathered to root fluid and solid processes.
The root processes then exchange their sets of
bounding boxes and broadcast the set to either the
fluid or solid processes. Now each fluid process has all
of the solid bounding boxes and vice versa. Each pro-
cess intersects its own bounding box with the received
set of bounding boxes to set up communication data
structures that consider only those portions of the
surface mesh, and the data defined on it, that are rel-
evant to the local process. The communication be-
tween solid and fluid is non-blocking to enable
overlapping communication and computation.

This strategy is much more efficient than assembling
the global boundary. It is far less costly to gather and
broadcast bounding boxes than to gather, assemble,
and broadcast the boundary itself. Intersecting the
bounding boxes to determine the communication pat-
tern is also inexpensive. Note that this pattern is
computed anew for each inter-solver communication
and will in general change as the simulation progresses.

It is worth mentioning that the efficiency of the
above point-to-point communication scheme neces-
sarily relies on the fact that the fluid and solid meshes
by themselves are reasonably partitioned. One could
easily construct pathological cases where each is par-
titioned into long, thin pieces and each fluid process
needs to communicate with each solid process. How-
ever, with the locality-preserving partitioning strategies
employed in AMROC (generalized space-filling curve)
and the parallel solid solver (graph-partitioning pro-
vided by Metis), this never occurs in practice.
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6 Examples of application

In this section, we present two examples of application
of the computational framework described above. The
first example corresponds to the simulation of the ef-
fects of a blast wave on the human body. The second
example is a simulation of a detonation wave confined
in a detonation tube and impacting a tantalum target.
These applications illustrate the robustness and versa-
tility of the coupled computational approach as well as
the computational performance on parallel machines
of moderate size.

6.1 Shock wave impact on soft-tissue body

As a first example, we consider a three-dimensional
fluid—structure interaction problem with y = 0, g = 0,
which requires only the Eqgs. 1-3 and 5 to simulate the
purely hydrodynamic fluid flow. The problem is the
dynamic interaction of a spherical blast pressure wave
with a very simplified human body. Human injuries
caused by the nearby explosion of a small amount of
highly energetic material are divided into primary and
secondary types: primary injuries are due to the blast
wave, while secondary injuries are due to shrapnel.
Primary injuries occur within a close distance of 1-2 m
and lead to strong impulses of 1-2 ms duration. Under
such conditions, conventional ballistic protective armor
has proven to be effective for mitigating the causes
leading to secondary injuries. Unfortunately, armored
vests do not protect against the shock wave and can
even enhance harmful blast effects. In the following,
we study the stress concentrations in the human liver
resulting from a blast event. An idealized geometric
model of the liver is embedded in a homogeneous
model torso of soft material (see Fig. 13). The liver is
assumed softer and denser than the torso. Table 1
enumerates the elastic material properties adopted in
the calculation.

We assume an explosion of 0.5 kg TNT in air at a
distance of 1.5 m from the body. The ambient fluid
pressure is p, =100 kPa and the temperature is
T, = 293 K. The ideal gas relation p = pRT then yields
an ambient density of p, = 1.212 kg/m>, and the ratio
of specific heats is set to the constant value y = 1.4. The
energy release from the TNT explosion is
E; = 2,260 kJ/kg, which, for simplicity, is assumed to be
uniformly distributed over a small sphere of radius
5 cm with its gas initially at rest. The initial tempera-
ture in this sphere is assumed to be 7; = 1,465 K. Using
Eq. 5 and the ideal gas relation together we evaluate
pressure and density within the small sphere to be p; =
1,700 kPa and p; ~ 4,122 kg/m3. These initial condi-
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Table 1 Material properties of soft tissues
Liver Torso
Young modulus 5 MPa 100 MPa
Poisson coefficient 0.3 0.3
Density 1,500 kg/m® 950 kg/m®
E; dp
Aps = K1—, t=Kyy|—2. 36
\Ps ey 2 E; (36)

Fig. 13 Mesh of the liver inside the torso (leff). Domain
decomposition of the solid mesh and fluid mesh adaptation at
the boundary (right)

tions result in the formation of a blast wave in the fluid
(cf. Fig. 14).

The solid mesh used for this simulation has 19,562
nodes, while the SAMR mesh in the fluid has 100 x
100 x 100 cells at the root level and employs two
additional levels, both refined by a factor of 2 (cf.
Fig. 13). The fluid domain is 5 m x 5 m x 5 m. Scaled
gradients of pressure and density are used as refine-
ment criteria to resolve the incoming pressure wave
accurately. The coupling level is set to /. = 1, and we
use K =20 sub-iterations in the solid solver. The
distance ¢ within which the exact signed distance
information around the interface mesh is evaluated
by the CPT algorithm is set to three times the
diagonal of a finite volume cell.®> This setting is suf-
ficient to allow the construction of two internal ghost
cells according to Sect. 2.2. With target CFL condi-
tions of 0.3 in the fluid and 1.0 in the solid, we cal-
culate 420 fluid root level steps to reach a final time
of 6 ms, which involves 16,800 update steps in the
solid solver. The simulation is completed in about
10 h real time on ten dual-processor 2 GHz G5 nodes
of a Linux Beowulf cluster connected with Myrinet.
In this computation, 14 and 6 processes were used for
the fluid and solid solvers, respectively. The size of
the fluid SAMR mesh increases during the simulation
from approximately 1,045,000 cells initially to about
2,026,000 cells, when the pressure wave impacts the
torso.

A non-dimensional analysis due to Taylor for a
localized explosion gives the following relations for the
peak overpressure Ap, and its arrival time ¢ at a dis-
tance d from the center of the explosion [66]:

3 This choice makes & dependent on the mesh width on each
SAMR level.

In these relations, K; and K, are non-dimensional
constants and p, is the ambient density. For air, Taylor
has measured K; = 0.155 and K, = 0.926. More accu-
rate values have been given by Brode who conducted
extensive numerical investigations and summarized the
results in the relations [67]

Apifbar] %7 + 1 bar
Z
if Apy>10p,,
9P 145 585 4 019 bar
d Z

if 0.1p, <Aps;<10p,,

(37)
Ap,[bar]

where all pressures are in bar and z = d/ Wi in mkg ™"

is the distance scaled with the charge mass W expressed
in kilogram of equivalent TNT. In our simulation, we
set W to the value 0.5. Figures 14, 15, 16 and 17 show
the simulation results. The shock wave reaches the
torso at t=1.55 ms (see Fig. 16). This value is in
reasonable agreement with the prediction from Eq. 36
considering the fact that Eq. 36 is derived for an ideal
spherical shock wave emanating from a point source.
At a distance d =1.5m, the overpressure peak
according to Eq.36 is Apg~ 104 kPa. Our
computation gives a value Aps ~ 175 kPa, which is
close to Brode’s approximation (Eq. 37) with Aps ~
177 kPa at z = 1.89. It leads to an overall pressure peak
of py=p,+ Aps~ 275 kPa. An estimate of the
reflected overpressure Ap, can be calculated from the
standard Rankine-Hugoniot relations for the Euler
equations (cf. [23]). For the normal reflection of a
planar shock on a rigid fixed wall we obtain

1
Apy =28p; + [y + 15p.8,

2 1
Us :Apsca
Par/Ty + 1Aps + 27pa

where u, denotes the fluid velocity behind the shock
and ¢, the ambient sound speed. For y = 1.4, these
relations lead to the simple formular
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Fig. 14 Formation and propagation of the blast

(time = 0.31 ms)

wave
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time = 1.55 ms time =1.93ms

Fig. 15 Stress waves in the torso after the impact

Tpa + 4Ap;

Ap, ~2A
\Dr D Tpa + Aps

€ [2Aps; 8Ap;], (38)

which yields Ap, =~ 560 kPa for Ap, ~ 175 kPa. The
absolute reflected pressures obtained in the simulation
are shown in Fig. 16. The peak values are in the order of
600 kPa, which is lower than the value p, = p, + Ap, =~
660 kPa obtained from Eq. 38, as expected.

Finally, we discuss briefly the effects of the blast
wave on the body. One of the main mechanisms of
internal injury due to blast is related to the impedance
mismatch between air and fluid-filled organs in the
human body. This significantly affects the propagation
of stress waves transmitted by the blast and causes stress
concentrations and localized deformations at high rates
which are responsible for tissue failure and injury. The
mitigating effect of the fluid—solid interaction which

@ Springer

Fig. 16 Interaction of the shock wave with

(time = 1.55 ms)
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Fig. 17 Stress wave reflection in the liver

reduces the amount of impulse transmitted to the body
is not well understood, especially when strong com-
pressibility effects are important, as is the case in air
blasts. Figures 15, 16 and 17 show different snapshots of
the transmitted stress waves propagating in the torso
and their interactions with the liver as measured by the
elastic strain energy density. Despite the significant
idealizations of this simulation, it is clear that this
approach provides a viable strategy for exploring
material systems for blast-injury mitigation.

6.2 HMX detonation in a tantalum cylinder

The second and final simulation we want to discuss is
the propagation of a detonation wave in a high-energy
explosive material confined in a thick-walled solid
cylinder closed at one end. The properties of the
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explosive correspond to HMX (C4HgNgOg) and those
of the cylinder material to tantalum.

The volumetric response (Eq. 17) of tantalum is
modeled by recourse to Vinet’s EOS as fitted to first-
principle calculations by Cohen et al. [68]. The devia-
toric part of Eq. 18 is computed by considering a
plastic flow (Eq. 20) of the form of a power-law rate-

sensitivity, hardening and Steinberg-Guinan [69]
pressure dependence
7 ! PN
s e, gy =g (1 +6p) (1+‘;) (39)
Ho € €

in which &f denotes a reference plastic strain, ¢ a ref-
erence plastic strain rate, m the rate sensitivity expo-
nent, n the hardening exponent, ¢, the initial yield
stress, and uo the shear modulus at zero pressure. The
material parameters used in the calculation are col-
lected in Table 2. The dependence of the shear mod-
ulus of tantalum on pressure has been computed by
Cohen from first principles [68]. We neglect the tem-
perature effect (which is small according to [68]), the
anisotropy of the crystal and assume isotropic elastic
behavior in terms of a shear modulus. The material
behavior is assumed to be adiabatic.

The fluid part of this simulation uses the entire set of
Egs. 1-5 and in particular the reaction term (Eq. 6).
The cylinder has length 100 mm and an outer radius of
18.5 mm. An inner detonation chamber filled with
HMX with radius 8.5 mm and depth 55 mm opens at
the left end of the cylinder. For the fluid initial con-
ditions at ¢t = 0, we assume a fully developed steady
detonation wave with its front located at x = 10 mm.
The detonation is propagating in the positive direction,
which is enforced by the prescription of constant inflow
boundary conditions at the open left end (cf. Fig. 18).
No deformations are allowed in the entire solid for
x < 10 mm to model a fully rigid material downstream
of the initial wave. Further, no deformations are pos-
sible on the outer hull of the Ta cylinder for 10 mm <x
< 30 mm.

According to Mader [70], unreacted HMX has a
density of po = 1,900 kg/mS, and we assume atmo-
spheric pressure py = 100 kPa in the unreacted mate-
rial. The detonation velocity for a freely propagating
Chapman—Jouguet detonation (cf. [21]) in HMX is

Table 2 Mgterlal paramet.ers 55 5% 10
corresponding to the plastic ) :
response of tantalum & 3x 10
(ST units) m 12.5

n 5

a, 5x 10°

experimentally known to be approximately 9,100 m/s
and the entire hydrodynamic flow can be described
with reasonable accuracy with a constant adiabatic
exponent of y = 3 [70]. The rate factor Tg is unknown;
we therefore set it to Tz = 1 us, which is a reasonable
value for most solid explosives [21].

The above values specify the process of steady one-
dimensional detonation propagation completely. A
detonation wave consists of a leading hydrodynamic
shock wave followed by a region of decaying continu-
ous combustion toward chemical equilibrium. The
simplified Chapman-Jouguet theory can be used to
evaluate the energy release of our configuration to be
q = 5,176 kJ/kg and to predict the hydrodynamic val-
ues in the equilibrium state pcy~ 39.3 GPa and pcy=
2,533 kg/m®. The steady internal structure can be cal-
culated with the theory of Zeldovich, Neumann, and
Doring (ZND), which constructs an analytic solution of
Egs. 1-6. Detailed derivations of the ZND solution can
be found in the book by Fickett and Davis [21] or, for
instance, in [32]. According to the ZND solution, the
peak values at the head of the detonation are pyn~
78.7 GPa and p,n~ 3,800 kg/m>. We use the analytic
ZND solution as our hydrodynamic initial conditions.
Figure 18 displays the initial pressure distribution and
its steady propagation in a one-dimensional simulation
on a uniform mesh with 960 finite volume cells. At
considerably coarser resolutions, the reaction front is
not resolved with sufficient accuracy, resulting in an
incorrect speed of propagation and a significant
underestimation of the peak value p,N. However, this
high resolution is necessary only inside the reaction
zone, which makes the application of very effective
dynamic mesh adaptation possible.

We therefore simulate the three-dimensional fluid
problem in the detonation chamber with a SAMR base
grid of 60 x 60 x 120 cells and use two additional levels
of refinement with factors r; = 2, r, = 4. While the
solid boundary is adequately refined at the coupling
level I. = 1, level 2 is necessary to capture the deto-
nation wave accurately (adaptation criteria are scaled
gradients of pressure and mass fraction A). Its effective
resolution corresponds to the uncoupled one-dimen-
sional simulation shown in Fig. 18. To allow for large
deformations of the cylinder walls, the fluid domain
spans 30 mm x 30 mm x 60 mm, but only the flow in
the inner detonation chamber is simulated. Zero
pressure values are exported to all interface mesh
points at the outer hull within the fluid domain. The
simulation shown in the Figs. 19, 20 and 21 uses a solid
mesh of 56,080 elements. With target CFL conditions
of 0.6 in the fluid and 0.2 in the solid, we simulate the
entire detonation process and a small portion of the
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purely hydrodynamic shock wave reflection at the
closed end of the tube propagating backward through
the fully reacted material. The final time is set to 5.8 ps,
and it takes about 400 fluid root level base steps to
reach it. K = 4 sub-iterations are used in the solid,
which corresponds to approximately 3,200 solid update
steps. The distance parameter J is chosen as in
Sect. 6.1.

Throughout the simulation, the SAMR mesh in-
creases from an initial size of approximately 706 k cells
on level 1 and 6.5 M on level 2 to about 930 k and
10.0 M, respectively. The number of grids on both
levels varies between 400 and 1,000. Compared with a
uniform fluid mesh of 480 x 480 x 960= 221 M cells,
that would otherwise be necessary to capture the det-
onation with similar accuracy, mesh adaptation clearly
provides enormous savings. Figure 21 shows the highly
localized fluid mesh refinement in the midplane for the
second snapshot shown in Fig. 19.

The simulation ran on four nodes of a Pentium-4
2.4 GHz dual-processor system connected with Quad-
rics interconnect for about 63 h real time. Six processes
were dedicated to the adaptive fluid simulation, while
two were used for the smaller solid problem. The
signed distance calculation with the CPT algorithm
takes only 0.8% of the computational costs on the fluid
nodes, which impressively confirms the practical
applicability of the idea of implicit geometry repre-
sentation for evolving surface meshes of moderate size.

Snapshots of the simulation displaying a cut through
the hydrodynamic pressure distribution and the normal
stress in the axial direction are shown in the Figs. 19
and 20. The graphics show several salient features of
this coupled problem: the superseismic loading of the
lower-impedance cylinder walls leading to an inclined
shock front in the solid (Fig. 19), the ensuing large
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Fig. 18 Pressure distributions of the detonation wave in HMX in

the inner detonation chamber from a purely hydrodynamic one-
dimensional simulation
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Fig. 19 Initiation of stress waves in the solid and compression of
the wall material next to the detonation chamber due to the
detonation passage

deformations of the cylinder wall (Fig. 20 and lower
graphic of Fig. 19), the reflection of the shocks in the
solid at the constrained outer cylinder wall (Fig. 20),
and the transmission of a high-intensity shock into the
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Fig. 20 Strong material compression in constrained and outward
movement of unconstrained walls and the strong compression in
axial direction due to the impact event
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Fig. 21 Schlieren plot of the density on regions covered by
SAMR level 1 (blue) and 2 (red) inside the deforming cylinder
for t = 3.0pus

solid target (lower graphic of Fig. 20). In the last shown
time step, the HMX is fully depleted and a non-reac-
tive, purely hyrdodynamic, shock wave, caused by the
reflection of the detonation wave at the target, can be
seen to propagate upstream in the fluid.

7 Conclusions

A loosely coupled fluid—structure interaction method
for the time-accurate simulation of solid materials
responding dynamically to strong shock and detonation
waves arising from the detonation of high-energetic
materials has been presented. The approach utilizes a
Lagrangian finite element solver for large deforma-
tions and a Cartesian dynamically adaptive finite vol-
ume solver with the capability to deal with moving
embedded boundaries via a ghost fluid approach. Both
solvers have been parallelized for distributed memory
machines utilizing domain decomposition, and an
effective inter-solver communication module has been
outlined. An algorithm has been presented that trans-
forms the triangular solid surface mesh very efficiently
into a signed distance function on the Cartesian grid.
The application of the methodology to two distinct
fluid—structure interaction problems has also been de-
scribed. We note that the combined approach can lead
to high efficiencies in the solution of coupled problems.
Particular, our second computational example, in
which a detonation wave in a high-energetic material
impinges on a dynamically deforming tantalum cylin-
der, demonstrates the enormous savings in computa-
tional costs that can be obtained through structured
dynamic mesh adaptation in the fluid for the consid-
ered problem class. This calculation required only
504 h CPU, whereas a simulation with an equivalent
fluid unigrid mesh can be expected to be in the range of
>10,000 h CPU.

The overall coupling method has been realized as a
natural extension of the object-oriented C++ frame-
work on which the adaptive finite volume fluid solver
with embedded boundary capability has been built. We
have discussed its design in detail and highlighted
particular the implementation efficiency that we have
gained by utilizing framework concepts. Further, all
newly developed components are now generically
available within the fluid framework, which already has
enabled new, industry-strength, non-coupled fluid
applications in which very complicate surface meshes
derived from CAD drawings have been used as com-
plex embedded boundaries.

Future development efforts will focus on the
implementation of dynamic adaptation and mesh
smoothing techniques for the solid solver, as well as
investigations of the integration of time-implicit
methods for both fluid and solid into the VTF.
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