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Abstract
Complex valued measures of finite total variation are a powerful signal model in
many applications. Restricting to the d-dimensional torus, finitely supportedmeasures
can be exactly recovered from their trigonometric moments up to some order if this
order is large enough. Here, we consider the approximation of general measures, e.g.,
supported on a curve, by trigonometric polynomials of fixed degree with respect to
the 1-Wasserstein distance. We prove sharp lower bounds for their best approximation
and (almost) matching upper bounds for effectively computable approximations when
the trigonometric moments of the measure are known. A second class of sum of
squares polynomials is shown to interpolate the indicator function on the support of
the measure and to converge to zero outside.
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Constructive Approximation

1 Introduction

Data science in general and more specifically signal and image processing relies on
mathematical methods, with the fast Fourier transform as themost prominent example.
Besides its favourable computational complexity, its success relies on the good approx-
imation of smooth functions by trigonometric polynomials. Mainly driven by specific
applications, functions with additional properties together with associated computa-
tional schemes have gained some attention: signals might for instance be sparse like
in single molecule fluorescence microscopy [45], or live on some other lower dimen-
sional structure like microfilaments, again in bio-imaging. Such properties are well
modeled by measures, which can express the underlying structure through the geome-
try of their support, e.g. being discrete or singular continuous. This representation has
in particular led to a better understanding of the sparse super-resolution problem [7,
11, 17], but has also proven useful in many more applications, such as phase retrieval
in X-ray crystallography [3], or contour reconstruction in natural images [49]. In this
work, we consider measures μ supported on the d-dimensional torus. The available
data then consists of trigonometric moments of low to moderate order, i.e.

μ̂(k) =
∫
Td

e−2π ikxdμ(x), k ∈ {−n, . . . , n}d (1.1)

for some n ∈ N, and one asks for the reconstruction or approximation of μ from this
partial information. In this context, our work focuses on approximations by trigono-
metric polynomials, more specifically on two types of asymptotic behaviours: after
setting up some trigonometric polynomials qn based on the knowledge of (1.1), we
distinguish between pointwise convergence to the indicator function of supp μ, i.e.

lim
n→∞ qn(x) =

{
1, x ∈ supp μ,

0, else,

and weak convergence, i.e.

lim
n→∞

∫
Td

f (x)qn(x)dx =
∫
Td

f (x)dμ(x) (1.2)

for all continuous test functions f . The latter is denoted by qn⇀μ and equivalent to
convergencewith respect to theWasserstein distance forwhichwe achieve quantitative
rates.

Related work For discrete measures, there is a large variety of subspace methods
that compute or approximate the parameters (positions and weights) of the measure,
e.g., Prony’s method [16, 30, 32, 53, 58], matrix pencil [17, 27, 46], ESPRIT [2, 40,
55, 57] or MUSIC [41, 60]. Except MUSIC, these methods realise the parameters as
eigenvalues of specific moment matrices and are well understood in the univariate
case [46]. In the multivariate case, an often used randomisation technique [17, 48] has
only been discussed recently in a special case [23].
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On the other hand, MUSIC [41, 60] as well as the variational methods [7, 9, 10,
54] build intermediate trigonometric polynomials which interpolate the value one
at the support points and are smaller otherwise. If the measure is supported on a
positive dimensional variety, the situation is more involved. Specific curves in a two-
dimensional domain are identified by the kernel of moment matrices in [19, 49, 50],
more general discussions can be found in [39, 62] where the support again is described
implicitly by a trigonometric polynomial which takes the value one at the support and
is smaller otherwise. Finally, Christoffel functions offer interesting guarantees both
in terms of support identification [37] or approximation on the support [31, 43, 51],
but, to the best of our knowledge, require regularity assumptions on the underlying
measure, and only come with separate guarantees on and outside the support of the
measure.

Contributions Following the approach of the seminal paper [44] to approximate a
measure by using information about its trigonometric moments, we study easily
computable trigonometric polynomials to approximate an arbitrary measure on the
d-dimensional torus. In contrast to [44], we provide tight bounds on the pointwise
approximation error as well as with respect to the 1-Wasserstein distance, the latter
scaling inverse linearly with respect to the polynomial degree (up to a logarithmic fac-
tor). One of the main contributions of our work lies in the simple connection between
approximation in the 1-Wasserstein distance and known results from approximation
theory for Lipschitz functions. For example,we relate questions on the best approxima-
tion of measures by polynomials to best approximation results in L1(Td) and C(Td).
Additionally, we show analogously to classical approximation theory that near best
approximations can be derived through convolution with certain kernels. As far as
we know, these connections formulated in Sect. 3 where not considered before. On
the other hand, we analyse in Sect. 4 the interpolation behaviour of a sum of squares
polynomial, p1,n , similarly suggested in [32, Thm. 3.5] and [49, Prop. 5.3] (and indeed
closely related to the rational function in theMUSIC algorithm, see [60, Eq. (6)]). The
main contribution of this section is not the invention of this polynomial p1,n but the
analysis of its pointwise convergence to the indicator function of the Zariski closure of
the support of the measure. This justifies to estimate the support of discrete measures
or measures with support on an algebraic curve by considering points where p1,n is
equal or close to its maximal value one. For instance, this might be used in future
works to represent sparse objects in single molecule microscopy.

Organisation of the paper We summarize our main results in an informal way nei-
ther stating technical details nor making the involved constants explicit. After setting
up the notations, Sect. 3 considers the approximation of measures by trigonometric
polynomials. The convolution of the measure with polynomial kernels is studied in
Sect. 3.1 and leads in Theorem 3.3 to the 1-Wasserstein upper bound

W1(pn, μ) ≤ c1 log n

n
,

where pn denotes the convolution of the measure with the n-th Fejér kernel. This
approximation comes with a saturation result in Sect. 3.2, Theorem 3.5, showing that
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for each measure except the Lebesgue measure, there exists a constant c2 with

W1(pn, μ) ≥ c2
n

.

This individual lower bound is complemented with a worst case lower bound for the
best approximation p∗ in Sect. 3.3, Theorem 3.6, showing

sup
μ

W1(p
∗, μ) ≥ c3

n
,

where the subsequent characterisation of the best approximation in the univariate case
in Sect. 3.4, Theorem 3.9, and the following Example 3.10 show that the achieved
constant c3 is sharp.

In Sect. 4, we start by showing a specific sum of squares representation for pn
involving the moment matrix

(
μ̂(k − �)

)
k,�∈[n]. Setting all non-zero singular values

in this representation to a constant yields the so-called signal polynomial p1,n which
identifies the support of the measure in Sect. 4.1, Theorem 4.2, by

p1,n(x)

{
= 1, x ∈ supp μ,

< 1, otherwise.

Ascommon to all subspacemethods, this involves technical assumptions on the support
of the measure and the degree n to be finite but large enough. For discrete measures the
assumptions on the support are met and Sect. 4.2, Theorem 4.6, proves the pointwise
convergence

p1,n(x)

{
≤ 1 − c4n2 dist(x, supp μ)2, x close to supp μ,

≤ c5
n2 dist(x,supp μ)2

, otherwise.

A weak convergence result for discrete measures is proven in Theorem 4.9. Finally,
Sect. 4.3, Theorem 4.10, proves pointwise convergence

p1,m+n(x) ≤ c5(m, x)

n
, x /∈ supp μ,

also for positive dimensional support sets (which are generated in degree m). We end
by illustrating the theoretical results by numerical examples in Sect. 5.

2 Preliminaries

Let d ∈ N, 1 ≤ p ≤ ∞ and let |x − y|p = mink∈Zd ‖x − y + k‖ p denote the wrap-

around p-norm on T
d = [0, 1)d . For d = 1 these wrap-around distances coincide and

wedenote themby |x−y|1 to distinguish them from the absolute value. Throughout this
paper, let μ, ν denote some complex Borel measures on T

d with finite total variation
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‖μ‖TV and normalization μ(Td) = ν(Td) = 1.1 This implies that the trigonometric
moments as defined above are finite with |μ̂(k)| ≤ ‖μ‖TV and μ̂(0) = 1. We denote
the set of all such measures byM and restrict to the real signed and nonnegative case
byMR and M+, respectively.

A function has Lipschitz-constant at most 1 if f : T
d → C admits | f (x)− f (y)| ≤

|x − y|1 for all x, y ∈ T
d and we denote this by the shorthand Lip( f ) ≤ 1. Using

the dual characterisation by Kantorovich-Rubinstein, the 1-Wasserstein-distance of μ

and ν is defined by

W1(ν, μ) = sup
Lip( f )≤1

∣∣∣∣
∫
Td

f (x) d(ν − μ) (x)

∣∣∣∣ ,

for any μ, ν ∈ M. If μ, ν ∈ M+, this distance also admits the primal formulation

W1(ν, μ) = inf
π

∫
T2d

|x − y|1dπ(x, y)

where the infimum is taken over all couplings π with marginals μ and ν, see e.g. [24,
52]. We note in passing that the 1-Wasserstein-distances for other p norms on T

d are
equivalent with lower and upper constant 1 and d1−1/p, respectively. Moreover, the
1-Wasserstein distance defines a metric induced by the norm

‖μ‖Lip∗ = sup
f :Lip( f )≤1,‖ f ‖∞≤ d

2

∣∣∣∣
∫
Td

f (x)dμ(x)

∣∣∣∣

which makes the space of complex-valued Borel measures with finite total variation a
Banach space. By slight abuse of notation, we also writeW1(p, μ) in case the measure
ν has density p, i.e., dν(x) = p(x)dx . Using the trigonometricmoments from (1.1),we
compute in Sect. 3 trigonometric approximations qn ∈ Pn to the underlying measure,
where we define the set Pn of trigonometric polynomials with max-degree n as

Pn =
⎧⎨
⎩p : T

d → C, x 	→ p(x) =
∑

k∈{−n,...,n}d
p̂(k)e2π ikx for p̂(k) ∈ C

⎫⎬
⎭ .

In Sect. 4, we additionally consider causal trigonometric polynomials where the coef-
ficients of the polynomial are only nonzero at the nonnegative frequencies, i.e. for
k ∈ {0, . . . , n}d .

3 Approximation

We study in this section weakly convergent polynomial approximations of measures,
i.e. approximations satisfying the property (1.2). The 1-Wasserstein distance (along

1 The result that any complex measure has finite total variation can be found in [56, Thm.6.4].
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with all the Wasserstein distances) metrizes this notion of convergence for measures
with equal mass [61, Thm.6.9], which allows us to provide both upper and lower
bounds on the rates of convergence with respect to this distance of our constructions.

While our focus is principally on actually computable approximations, based on
convolution with known kernels, we also turn in the last part of this section (Sect. 3.3
below) to more theoretical considerations on the best polynomial approximations with
respect to the 1-Wasserstein distance, which, additionally to giving new perspectives
on polynomial approximations of measures, also highlights the near-optimality of our
constructions.

3.1 Approximation by Convolution and Upper Bounds

Similarly to standard approaches in approximation theory, one may derive easy-to-
compute polynomial estimates for a measure μ, by considering the convolution of the
latter with adequate kernels. For instance, given the first trigonometric moments of μ,
the Fourier partial sums

Snμ(x) = (Dn ∗ μ)(x) =
∑

k∈Zd ,‖k‖∞≤n

μ̂(k)e2π ikx ,

which correspond to convolution with Dirichlet kernels2, might serve as a sequence
of approximations.

We focus in this section on yet another classical sequence of approximations, given
by convolution with Fejér kernels Fn : T

d → R (by slight abuse of notation, we
use the same notation for both the multivariate and univariate kernels), defined for
x = (x1, . . . , xd) ∈ T

d as

Fn(x1, . . . , xd) =
d∏

i=1

Fn(xi )

where, for any x ∈ T,

Fn(x) =
n∑

k=−n

(
1 − |k|

n + 1

)
e2π ikx = 1

n + 1

(
sin((n + 1)πx)

sin(πx)

)2

= 1

n + 1

∣∣∣∣∣
n∑

k=0

e2π ikx
∣∣∣∣∣
2

. (3.1)

The main object of study in this section is the trigonometric polynomial

pn(x) = (Fn ∗ μ) (x) =
∫
Td

Fn(x − y)dμ(y). (3.2)

2 On the univariate torus, the Dirichlet kernel is Dn(x) = 1 + 2
∑n

k=1 cos(2πkx) and its multivariate
version is given by Dn(x1, . . . , xd ) = Dn(x1) · · · Dn(xd ).
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Fig. 1 The example measure (3.3), its approximations by the Fourier partial sum (left) and the convolution
with the Fejér kernel (right). The weight 1

3 of the Dirac measure in 1
8 is displayed by an arrow of height

n/3 for visibility

We give two illustrative examples in Example 3.1.

Example 3.1 Our first example for d = 1 is the measure

μ = 1

3
δ 1
8

+ ν ∈ M+,
dν

dλ
(x) = 8

9
χ[ 1

4 , 58

](x) +
√
2

3

⎛
⎝ 1√∣∣x − 7

8

∣∣ − √
8

⎞
⎠χ[ 3

4 ,1
](x), (3.3)

where λ denotes the Lebesgue measure. Obviously, this measure μ has singular and
absolutely continuous parts including an integrable pole at x = 7

8 .
Both the Fourier partial sums and the Fejér approximations for n = 19 are shown

in the left and right panel of Fig. 1, respectively.
Our second example is a singular continuous measure for d = 2. We take μ =

(2πr0)−1δC ∈ M+ as the uniform measure on the circle

C = {x ∈ T
2 : |x |2 = r0}

for some radius 0 < r0 < 1
2 . The total variation of this measure is

‖μ‖TV = μ̂(0) =
∫
T2

dμ(x) = 1

2πr0

∫
C
dx = 1.

Using a well-known representation of the Fourier transform of a radial function (cf.
[22, p. 574]), we find

μ̂(k) =
∫
T2

e−2π ikxdμ(x) = 1

r0

∫ ∞

0
r J0(2πr‖k‖2)dδr0(r) = J0(2πr0‖k‖2) (3.4)

for the trigonometricmoments ofμ, where J0 denotes the 0-th order Bessel function of
the first kind. These decay asymptotically with rate ‖k‖−1/2

2 , cf. [22, Appendix B.8].
The Fourier partial sum as well as the convolution with the Fejér kernel for n = 29
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Fig. 2 Uniform measure on a circle of radius r0 = 1
3 and its approximations by the Fourier partial sum

(left) and the convolution with the Fejér kernel (right), n = 29

are shown with maximal contrast in the left and right panel of Fig. 2, respectively.
We observe that both approximators peak around the support of the measure and the
approximation by convolution with the Fejér kernel produces less ringing than the
Dirichlet kernel at the cost of a slightly thicker main lobe.

Of course, the construction and efficient evaluation of this approximation by pn
relies on the convolution theorem and the fast Fourier transform (FFT). Given the
trigonometric moments μ̂(k), k ∈ {−n, . . . , n}d , we multiply these with the Fourier
coefficients of the Fejér kernel (3.1) in each dimension and use an inverse FFT to eval-
uate pn on the equispaced grid (2n+1)−1{−n, . . . , n}d . Our next goal is a quantitative
approximation result, for which we need the following preparatory lemma. This result
can be found in qualitative form e.g. in [5, Lemma 1.6.4].

Lemma 3.2 Let n, d ∈ N, then we have

d

π2

(
log(n + 1)

n + 1
+ 1

n + 2

)
≤
∫
Td

Fn(x)|x |1dx ≤ d

π2

log(n) + 4

n + 1
.

Proof First note that

∫
Td

d∏
s=1

Fn(xs)
d∑

�=1

|x�|1dx =
d∑

�=1

∫
Td

d∏
s=1

Fn(xs)|x�|1dx = d
∫
T

Fn(x)|x |1dx,

where the second equality holds since
∫
Fn(xs)dxs = 1. Thus it is sufficient to consider

the univariate case. The representation Fn(x) = 1 + 2
∑n

k=1

(
1 − k

n+1

)
cos(2πkx)

gives

∫
T

Fn(x)|x |1dx = 2
∫ 1/2

0

(
x + 2

n∑
k=1

(
1 − k

n + 1

)
cos(2πkx)x

)
dx
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= 2

[
1

8
+

n∑
k=1

(−1)k − 1

2π2k2
−

n∑
k=1

(−1)k − 1

2(n + 1)π2k

]

= 2

⎡
⎢⎢⎣1

8
−

⌊
n−1
2

⌋
∑
j=0

1

π2(2 j + 1)2
+

⌊
n−1
2

⌋
∑
j=0

1

(n + 1)π2(2 j + 1)

⎤
⎥⎥⎦

since
∫ 1/2
0 cos(2πkx)xdx = ((−1)k − 1)/(4π2k2). Using that

∑∞
j=0

1
(2 j+1)2

= π2

8 ,
we obtain

∫
T

Fn(x)|x |1dx = 2

⎡
⎢⎢⎣ 1

π2

∞∑
j=
⌊
n+1
2

⌋
1

(2 j + 1)2
+ 1

(n + 1)π2

⌊
n−1
2

⌋
∑
j=0

1

2 j + 1

⎤
⎥⎥⎦

≤ 2

π2

⎡
⎢⎢⎣ 1(

2
⌊ n+1

2

⌋+ 1
)2 +

∫ ∞
⌊
n+1
2

⌋ 1

(2y + 1)2
dy +1 +∫

⌊
n−1
2

⌋
0

1
2y+1 dy

n + 1

⎤
⎥⎥⎦

≤
2(

2
⌊
n+1
2

⌋
+1
) + 1

(
2
⌊ n+1

2

⌋+ 1
)
π2

+ 2 + log(n)

(n + 1)π2 ≤ log(n) + 4

π2(n + 1)
.

The lower bound follows similarly by bounding the series from the previous calculation
by integrals from below. ��
Theorem 3.3 Let d, n ∈ N and μ ∈ M, then the measure with density pn converges
weakly to μ with

W1(pn, μ) ≤ d

π2

log(n) + 4

n + 1
· ‖μ‖TV,

which is sharp since μ ∈ M+ implies ‖μ‖TV = μ(Td) = 1 and

sup
μ∈M

W1(pn, μ) ≥ d

π2

(
log(n + 1)

n + 1
+ 1

n + 2

)
.

Proof We compute

W1(pn, μ) = sup
Lip( f )≤1

|〈Fn ∗ μ, f 〉 − 〈μ, f 〉|

= sup
Lip( f )≤1

|〈μ, Fn ∗ f − f 〉|

≤ sup
Lip( f )≤1

∫
Td

∫
Td

Fn(x) | f (y − x) − f (y)| dxd|μ|(y)

≤ ‖μ‖TV
∫
Td

Fn(x)|x |1dx,
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and note that both inequalities become equalities when choosing μ = δ0 and f (x) =
|x |1. Applying Lemma 3.2 gives the result. In particular, we remark in passing that
W1(Fn, δ0) = ∫

Td Fn(x)|x |1dx . ��
Remark 3.4 Similar to classical results, the log-factor can be removed by choosing
another convolution kernel, which then however does not allow for the representation
later found in Lemma 4.1. The Jackson kernel, see [28, pp. 2 ff.],

J2m−2(x) = 3

m(2m2 + 1)

sin4(mπx)

sin4(πx)
, m ∈ N,

has degree n = 2m − 2, is normalised and satisfies by using sin(mπx)
sin(πx) ≤ min(m, 1

2x )

∫
T

Jn(x)|x |1dx ≤ 6

m(2m2 + 1)

[∫ 1/2m

0
m4xdx +

∫ ∞

1/2m

1

16x3
dx

]

≤ 3m

2(2m2 + 1)
≤ 3

2(n + 2)
.

Analogously to Theorem 3.3, we get

W1(Jn ∗ μ,μ) ≤ 3

2

d · ‖μ‖TV
n + 2

, (3.5)

which still is an approximate factor 6 worse than the lower bound in the univariate
case (see Theorem 3.6). By numerical analysis or more detailed analysis of the above
estimate, one can deduce that a factor 3 is due to the above estimate and a factor 2
seems to indicate that the Jackson kernel is not optimal. Moreover, upper and lower
bound differ by a factor d in the multivariate case which might be due to the used
norms or our proof techniques.

3.2 Saturation

Theorem 3.3 gives a worst case lower bound while, on the other hand, the Lebesgue
measure is approximated by Fn ∗ λ = λ without any error. We may thus ask how well
a measure dμ = w(x)dx with smooth (nonnegative) density might be approximated.
For an introductory example, consider the univariate analytical density w(x) = 1 +
cos(2πx). Since Fn ∗ w(x) − w(x) = cos(2πx)/(n + 1), we achieve by testing with
the Lipschitz function f (x) = cos(2πx)/(2π) that

W1(Fn ∗ w,w) ≥ 1

2π(n + 1)

∫
T

cos2(2πx)dx = 1

4π(n + 1)
.

This effect is called saturation (e.g. cf. [5]). In greater generality, such a lower bound
holds for each measure individually and can be inferred by a nice relationship between
the Wasserstein distance and a discrepancy, cf. [18].

123



Constructive Approximation

Theorem 3.5 For each individual measure μ ∈ M different from the Lebesgue mea-
sure, there is a constant c > 0 such that we have for all n ∈ N

W1(pn, μ) ≥ c

n + 1
.

Proof Let ĥ ∈ �2(Zd), ĥ(k) ∈ R \ {0}, ĥ(k) = ĥ(−k), and consider the reproducing
kernel Hilbert space

H = { f ∈ L2(Td) :
∑
k∈Zd

|ĥ(k)|−2| f̂ (k)|2 < ∞}, ‖ f ‖2H =
∑
k∈Zd

|ĥ(k)|−2| f̂ (k)|2.

Given two measures μ, ν, their discrepancy (which also depends on the space H ) is
defined by

D(μ, ν) = sup
‖ f ‖H≤1

∣∣∣∣
∫
Td

f d(μ − ν)

∣∣∣∣ = sup
‖ f ‖H≤1

∣∣∣∣∣∣
∑
k∈Zd

f̂ (k)

ĥ(k)
ĥ(k)μ̂ − ν(k)

∣∣∣∣∣∣ = ‖ĥ · μ̂ − ν‖�2

and fulfils by the geometric-arithmetic inequality3

D(pn, μ)2 =
∑

‖k‖∞≤n

|ĥ(k)|2
∣∣∣∣∣1 −

d∏
�=1

(
1 − |k�|

n + 1

)∣∣∣∣∣
2

|μ̂(k)|2 +
∑

‖k‖∞>n

|ĥ(k)|2|μ̂(k)|2

≥
∑

‖k‖∞≤n

|ĥ(k)|2
∣∣∣∣ ‖k‖1
d(n + 1)

∣∣∣∣
2

|μ̂(k)|2 +
∑

‖k‖∞>n

|ĥ(k)|2|μ̂(k)|2

=
∑

‖k‖∞≤n

|ĥ(k)|2
∣∣∣∣ ‖k‖1
d(n + 1)

∣∣∣∣
2

|μ̂(k) − λ̂(k)|2 +
∑

‖k‖∞>n

|ĥ(k)|2|μ̂(k) − λ̂(k)|2

≥ 1

d2(n + 1)2
‖h ∗ (μ − λ)‖2L2(Td )

where h(x) = ∑
k∈Zd ĥ(k)e2π ikx and λ denotes the Lebesgue measure with λ̂(0) =

1 and λ̂(k) = 0 for k ∈ Z
d \ {0}. Our second ingredient is a Lipschitz estimate

that quantifies the Lipschitz constant of any f ∈ H with ‖ f ‖H ≤ 1. For such a

function f , the Cauchy-Schwarz inequality together with
∣∣e2π iky − e2π ik(y+x)

∣∣2 =
2(1 − cos(2πkx)) gives

| f (y) − f (y + x)|2 =
∣∣∣∣∣∣
∑
k∈Zd

f̂ (k)
(
e2π iky − e2π ik(y+x)

)∣∣∣∣∣∣
2

≤ ‖ f ‖2H
∑
k∈Zd

∣∣∣e2π iky − e2π ik(y+x)
∣∣∣2 |ĥ(k)|2

3 Explicitly, we used
∏d

�=1

(
1 − |k�|

n+1

)
≤
[
d−1∑d

�=1

(
1 − |k�|

n+1

)]d =
[
1 − ‖k‖1

d(n+1)

]d ≤ 1 − ‖k‖1
d(n+1) .
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= ‖ f ‖2H
∑
k∈Zd

(2 − 2 cos(2πkx))|ĥ(k)|2

≤ 2 (K (x, x) − K (x, 0)) ,

where K (x, y) = ∑
k∈Zd |ĥ(k)|2e2π ik(x−y) = (h ∗ h)(x − y) denotes the so-called

reproducing kernel4 of the space H . If this kernel is K (x, y) = h[4](x1 − y1) · . . . ·
h[4](xd−yd) for some nonnegative univariate function h[4] ∈ C2(T) beingmaximal in
zero (and thus

(
h[4])′ (0) = 0), we find by a telescoping sum and the Taylor expansion

K (x, x) − K (x, 0) =
d∏

�=1

h[4](0) −
d∏

�=1

h[4](x�)

=
d∑

�=1

(
h[4](0)�

d−�∏
k=1

h[4](xk) − h[4](0)�−1
d−�+1∏
k=1

h[4](xk)
)

=
d∑

�=1

(
h[4](0)�−1

(
h[4](0) − h[4](xd−�+1)

) d−�∏
k=1

h[4](xk)
)

≤
d∑

�=1

‖h[4]‖d−1∞
[
h[4](0) − h[4](xd−�+1)

]

≤ 1

2
‖h[4]‖d−1∞

∥∥∥∥
(
h[4])′′∥∥∥∥∞

|x |22.

To make a specific choice, let a ∈ (0, 1
8 ) be some irrational number and set

h[2](x) =
∑
k∈Z

(χ[−a,a] ∗ χ[−a,a])(x + k), x ∈ T

as the periodisation of the convolution of the indicator function of [−a, a] with itself.
Based on this, we set h[4] = h[2] ∗ h[2], and h(x1, . . . , xd) = h[2](x1) · . . . · h[2](xd),
which yields a valid kernel.5 Consequently, we derive that f ∈ H with ‖ f ‖H ≤ 1
satisfies Lip( f ) ≤ c′

d,a for some constant c′
d,a > 0 depending on the dimension d and

4 Note that the assumptions ĥ(k) ∈ R\{0} and ĥ(k) = ĥ(−k) lead to K (x, y) =∑
k∈Zd |ĥ(k)|2e2π ik(x−y) = ∑

k∈Zd |ĥ(k)|2 cos(2πk(x − y)) and in particular K is real valued.
5 Note that the Fourier coefficients of h[2] agree with the Fourier transform of χ[−a,a] ∗ χ[−a,a] evaluated
at integers by the Poisson summation formula, and analogously this holds for h[4] and the higher order
spline obtained by threefold convolution of χ[−a,a] with itself. By choosing a < 1

8 , h
[2] and h[4] agree

with these compactly supported convolutions on [− 1
2 , 1

2 ]. One immediately getŝh[4](k) ∈ O(k−4) by the

convolution theorem of the Fourier transform and this indeed yields h[4] ∈ C2(T) by [22, Prop. 3.3.12 or
Ex.2.4.1] meaning that the choice of h[4] is compatible with our previous assumptions on it. In particular,
h[4] is maximal in zero since h[2] is even and nonnegative. Moreover, we directly have summability of
|ĥ(k)|2 for k ∈ Z

d such that K is a valid kernel.
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the parameter a. This allows to conclude

W1(pn, μ) ≥ c′−1
d,aD(pn, μ) ≥ c′−1

d,a

d(n + 1)
‖h ∗ (μ − λ)‖L2(Td ) =: c

n + 1

for some c ∈ R. Since a is irrational, we can directly see6 by Parseval’s theorem that
‖h ∗ (μ − λ)‖L2(Td ) = 0 if and only if μ = λ. For μ �= λ, we obtain the statement
with a positive constant c depending on the measure μ, the constant a, and the spatial
dimension d. ��

3.3 Best Approximation and Lower Bounds

After observing upper (Sect. 3.1) and lower bounds on the approximation by pn =
Fn ∗ μ for individual measures μ (Sect. 3.2), one might ask whether an approxima-
tion rate faster than O(n−1) is possible by some general polynomial approximation.
The following theorem shows that the answer to this question is negative as the best
approximation by a normalised polynomial only yields a O(n−1) worst-case rate.

Theorem 3.6 For any d, n ∈ N and for every μ ∈ M there exists a polynomial with
degree n of best approximation in the 1-Wasserstein distance among all polynomials
with degree n. Moreover, we have

sup
μ∈M

min
p∈Pn
p̂(0)=1

W1(p, μ)

‖μ‖TV ≥ 1

4(n + 1)
.

Proof We have existence of a best approximation by polynomials in the Banach space
of Borel measures with finite total variation.7 For the lower bound, we compute

sup
μ∈M

min
p∈Pn
p̂(0)=1

W1(p, μ) ≥ min
p∈Pn
p̂(0)=1

W1(p, δ0)

= min
p∈Pn
p̂(0)=1

sup
f :Lip( f )≤1

∣∣∣∣ f (0) −
∫
Td

f (x)p(x)dx

∣∣∣∣
= min

p∈Pn
p̂(0)=1

sup
f :‖ f ‖∞≤ d

2
Lip( f )≤1

∥∥ f − p̌ ∗ f
∥∥∞

≥ sup
f :‖ f ‖∞≤ d

2
Lip( f )≤1

min
p∈Pn

‖ f − p‖∞,

6 We remark that ĥ(k) = ∏d
�=1 sin

2 (2πk�a) /
(
π2k2

�

)
�= 0 for a irrational. Hence, ‖h∗(μ−λ)‖L2(Td ) =

0 implies by Parseval’s theorem that μ̂(k) = λ̂(k) for any k ∈ Z
d . The latter is equivalent to μ = λ.

7 For example, see [12, Thm.3.1.1] and observe that the mentioned arguments also work for approximation
by an affine linear subspace. The latter is needed here because of the constraint p̂(0) = 1.
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where we added a suitable constant to obtain the last equality8 and p̌ denotes the
reflection of p, i.e. p̌(x) = p(−x) for all x ∈ T

d . It remains to find the worst case
error for the best approximation of a Lipschitz function by a trigonometric polynomial
of degree n. While this is well-understood for d = 1 (cf. [1, 20]), we did not find a
reference mentioning whether and how d > 1 is possible as well. Therefore, we show
that the idea by [21] for the case d = 1 works also for d > 1 in our situation. A main
ingredient of Fishers proof is the duality relation

inf
x∈Y⊂X

‖x0 − x‖ = sup
�∈X∗

�|Y =0,‖�‖X∗≤1

|�(x0)|

for a Banach space X , x0 ∈ X , with a subspace Y and dual space X∗. A second
ingredient is given by the 1-periodic Bernoulli spline of degree 1, i.e.,9

B1(x) =
∑

k∈Z\{0}

e2π ikx

2π ik
=

∞∑
k=1

sin(2πkx)

πk
=
{

1
2 − x, x ∈ (0, 1),

0, x ∈ {0, 1}. (3.6)

A Lipschitz continuous and 1-periodic function f : T → R with Lip( f ) ≤ 1 has
a derivative f ′ almost everywhere and this derivative satisfies

∫
T
f ′(s) = 0 by the

periodicity of f . Therefore, it follows that

(
f ′ ∗ B1

)
(t) =

∫
T

f ′(s)B1(t − s)ds

= −
∫ t

0
(t − s) f ′(s)ds −

∫ 1

t
(t − s + 1) f ′(s)ds

= f (t) −
∫ 1

0
f (s)ds (3.7)

for 0 < t, s ≤ 1. The dual space of the space of continuous periodic functions is the
space of periodic finite regular Borel measures equipped with the total variation norm
and the duality formulation gives

sup
f :Td→R

‖ f ‖∞≤ d
2 ,Lip( f )≤1

min
p∈Pn

‖ f − p‖∞ = sup
f :Td→R

‖ f ‖∞≤ d
2 ,Lip( f )≤1

sup
μ̂(k)=0,‖k‖∞≤n

‖μ‖TV≤1

∣∣∣∣
∫
Td

f (x)dμ(x)

∣∣∣∣ .

Our main contribution to this result is the observation how to transfer the multivariate
setting back to the univariate one. It is easy to verify that f (x) = 1

d

∑d
�=1 f0(x�) for

8 By the constraint that
∫
Td p(x)dx = p0 = 1, we can add an arbitrary constant c ∈ C to f without

changing the value of f (0)− ∫
Td f (x)p(x)dx . By this, we can set f (0) = 0 and obtain | f (x)| = | f (x)−

f (0)| ≤ |x |1 ≤ d
2 such that we can restrict the supremum to all Lipschitz functions with ‖ f ‖∞ ≤ d/2.

9 One can easily see that the Fourier series of g(x) = 1
2 −x, x ∈ [0, 1), is given by the series in (3.6) By the

Dirichlet-Jordan test, one directly obtains the convergence of the Fourier series towards g(x) at x ∈ (0, 1)
and towards zero at the discontinuity point x = 0.
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a univariate Lipschitz function f0, Lip( f0) ≤ d, ‖ f0‖∞ ≤ d
2 fulfils the conditions for

the Lipschitz function f . Additionally,μ∗ = 1
d

∑d
s=1 μs withμs =

(⊗
� �=s λ(x�)

)
⊗

μ∗
0(xs),

μ∗
0(xs) = 1

2(n + 1)

2n+1∑
j=0

(−1) jδ j/(2n+2)(xs)

and λ being the Lebesgue measure on T is admissible.10 Since this choice of μs

integrates
∫
gdμs = 0 if g is constant with respect to xs (and the same holds for

constant univariate functions integrated against μ∗
0), we obtain with (3.7)

sup
f :Td→R

‖ f ‖∞≤ d
2 ,Lip( f )≤1

min
p∈Pn

‖ f − p‖∞ ≥ sup
f0 :T→R

‖ f0‖∞≤ d
2 ,Lip( f0)≤d

∣∣∣∣∣∣
1

d2

d∑
s,�=1

∫
Td

f0(x�)dμs(x)

∣∣∣∣∣∣

= sup
f0 :T→R

‖ f0‖∞≤ d
2 ,Lip( f0)≤d

∣∣∣∣∣
1

d2

d∑
�=1

∫
T

f0(x�)dμ
∗
0(x�)

∣∣∣∣∣

= sup
f0 :T→R

‖ f0‖∞≤ d
2 ,Lip( f0)≤d

1

d

∣∣∣∣
∫
T

f ′
0(s)

(∫
T

B1(t − s)dμ∗
0(t)

)
ds

∣∣∣∣ .

We denote Bμ∗(s) = ∫
T
B1(t − s)dμ∗

0(t) and observe
∫
T
Bμ∗(s)ds = 0. Moreover,

μ∗
0 has moments μ̂∗

0(k) = 1 for k ∈ (n + 1) (2Z + 1) and μ̂∗
0(k) = 0 otherwise.

Together with the Fourier representation (3.6) of B1 where one rewrites the sum over
odd integers as the difference between the sum over all nonzero integers and the sum
of all nonzero even integers, this gives

Bμ∗(s) =
∑

k∈Z\{0}

e2π ik(n+1)s

2π ik(n + 1)
−

∑
k∈Z\{0}

e2π i2k(n+1)s

2π i2k(n + 1)

= 1

n + 1
B1((n + 1)s) − 1

2n + 2
B1((2n + 2)s)

10 Note that ‖μ∗‖TV ≤ 1
d
∑d

s=1 ‖λ‖d−1
TV ‖μ∗

0‖TV = 1 and

d · μ̂∗(k) =
d∑

s=1

μ̂∗
0(ks )

∏
��=s

δk�,0

=
d∑

s=1

1

2(n + 1)

2n+1∑
j=0

e−2π i j n+1+ks
2n+2

∏
��=s

δk�,0 =
d∑

s=1

δks ,n+1+(2n+2)Z
∏
��=s

δk�,0 = 0

for ‖k‖∞ ≤ n. Within this calculation δi, j for indices i, j ∈ Z denotes the usual Kronecker delta being
one if i = j and zero if i �= j .
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=

⎧⎪⎨
⎪⎩

1
4

1
n+1 , (n + 1)s − �(n + 1)s� ∈ (0, 1

2

)
,

− 1
4

1
n+1 , (n + 1)s − �(n + 1)s� ∈ ( 12 , 1

)
,

0, (2n + 2)s ∈ {0, . . . , 2n + 1}.

Here, the last equality is a direct consequence of (3.6). Now, we choose f0 by taking
f ′
0(s) = d · sgn(Bμ∗(s)) and f0(0) = 0 which is possible as it yields

‖ f0‖∞ = max
x∈T | f0(x) − f0(0)| ≤ max

x∈T d|x |1 = d

2
and

∫
T

f ′
0(s)ds = 0.

Finally, we end up with

sup
f :Td→R

‖ f ‖∞≤ d
2 ,Lip( f )≤1

min
p∈Pn

‖ f − p‖∞ ≥
∫
T

∣∣Bμ∗(s)
∣∣ ds

= 1

n + 1

∫
T

∣∣∣∣B1((n + 1)s) − 1

2
B1((2n + 2)s)

∣∣∣∣ ds

= 1

n + 1

∫
T

∣∣∣∣B1(s) − 1

2
B1(2s)

∣∣∣∣ ds = 1

4(n + 1)

and this was the claim. ��

Remark 3.7 (Information theoretic point of view) One should distinguish the above
result on the best approximation by a polynomialwith given degree n from the question
of how well one can recover any measure given its low order trigonometric moments.
While the polynomial approximation calculated in the framework of Theorem 3.6
is based on the knowledge of all moments, the latter information theoretic question
would only consider the moments μ̂(k) for k ∈ {−n, . . . , n}d . A lower bound can be
reformulated as the largest difference

sup
{
W1(μ, ν) : μ, ν ∈ M, ν̂(k) = μ̂(k) for k ∈ {−n, . . . , n}d

}
(3.8)

between two measures, which have equal low order moments and cannot be distin-
guished by a recovery algorithm if no additional prior is known. If μ̂ and ν̂ are equal
up to order n, then convolution with the Jackson kernel yields Jn ∗μ = Jn ∗ ν, so that
the triangle inequality for W1 and Remark 3.4 give

W1(μ, ν) ≤ W1(μ, Jn ∗ μ) + W1(ν, Jn ∗ ν) ≤ 3d

2

‖μ‖TV + ‖ν‖TV
n + 2

,

and thus (3.8) is at most of order O(n−1). This order is also optimal and this can be
seen by choosing μ as the Lebesgue measure λ, ν being absolutely continuous with
dν(x1, . . . , xd) = [1 + cos(2π(n + 1)x1)] dλ(x1, . . . , xd), and f (x) = cos(2π(n +
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1)x1)/(2π(n + 1)) in

W1 (μ, ν) = sup
f :Lip( f )≤1

∫
Td

f (x) cos(2π(n + 1)x1)dx

≥
∫
Td

cos2(2π(n + 1)x1)

2π(n + 1)
dx = 1

4π(n + 1)
.

This shows that the knowledge of the Fourier coefficients of a measure up to order n
without any prior assumption on the measure only allows to approximate the measure
with worst case error of order n−1. This worst case error rate can be decreased if prior
knowledge on the ground truth measure, e.g. sparsity (see [24]), is assumed.

3.4 Univariate Situation and Uniqueness of Best Approximation

On the univariate torusT, theWasserstein distance of two probability measures can be
rewritten as a L1 distance of their cumulative density functions (CDF) shifted by some
constant depending on the measures, see [6]. We extend this to real signed measures
belonging toMR.

Lemma 3.8 (Wasserstein via CDF) For any univariate μ, ν ∈ MR, we have

W1(μ, ν) =
∫ 1

0
|μ([0, x]) − ν([0, x]) − c∗(μ, ν)|dx,

and c∗(μ, ν) ∈ R depends on μ, ν.

Proof Forμ, ν ∈ M+(T) this is [6, Thm.3.7]. Forμ, ν ∈ MR, we can use the Jordan
decomposition of any signedmeasure as a difference of nonnegativemeasures, in other
words we write μ = μ+ − μ−, ν = ν+ − ν− for μ+, μ−, ν+, ν− being nonnegative
measures on T and rewrite

W1(μ, ν) = sup
f :Lip( f )≤1

∣∣∣∣
∫
T

f (x)
[
dν+(x) + dμ−(x) − (dν−(x) + dμ+(x))

]∣∣∣∣
= (ν+ + μ−)(T) sup

f :Lip( f )≤1

∣∣∣∣
∫
T

f (x)

[
dν+(x) + dμ−(x)

(ν+ + μ−)(T)
− dν−(x) + dμ+(x)

(ν+ + μ−)(T)

]∣∣∣∣
(3.9)

and this allows to apply [6, Thm.3.7].11 This then gives

(ν+ + μ−)(T)

∫ 1

0

∣∣∣∣
(

ν+ + μ− − (ν− + μ+)

(ν+ + μ−)(T)

)
([0, x])

−c∗
(

ν+ + μ−
(ν+ + μ−)(T)

,
ν− + μ+

(ν+ + μ−)(T)

)∣∣∣∣ dx
11 Note that by 0 = ν(T)−μ(T) = (ν+ +μ−)(T)− (μ+ + ν−)(T) both measures in the integral in (3.9)
are probability measures. Moreover, observe that (ν+ + μ−)(T) ≥ ν(T) = 1 > 0 and hence it is possible
to normalise as stated.
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=
∫ 1

0

∣∣(ν − μ) ([0, x]) − c∗(ν, μ)
∣∣ dx

for the Wasserstein distance of μ and ν where the constant c∗(ν, μ) depends again
only on the two measures. ��

The question of uniqueness of the best approximation can be equivalently charac-
terised by the uniqueness of the best approximation in L1(T) and thus allows for the
following theorem.

Theorem 3.9 (Best approximation in the univariate case) If d = 1 and μ, ν ∈ MR,
we have

W1(ν, μ) = inf
c∈R

∫
T

|(B1 ∗ ν)(t) − (B1 ∗ μ)(t) − c| dt (3.10)

with B1 being the Bernoulli spline from (3.6). This allows to conclude that for any n ∈
N, any real, normalised measure which does not give mass to atoms (i.e. μ({x}) = 0
for all x ∈ T) admits a unique best approximation by a normalised polynomial of
degree n ∈ N with respect to the 1-Wasserstein distance.

Proof Let μ, ν ∈ MR and B1 denote the Bernoulli spline of degree 1 from the proof
of Theorem 3.6, then we have by (3.7)

W1(ν, μ) = sup
f :Lip( f )≤1

∣∣∣∣
∫
T

f (x) [dν(x) − dμ(x)]

∣∣∣∣
= sup

f :Lip( f )≤1

∣∣∣∣
∫
T

∫
T

f ′(t)B1(x − t) [dν(x) − dμ(x)] dt

∣∣∣∣
= sup

f :Lip( f )≤1

∣∣∣∣
∫
T

f ′(t) [(B1 ∗ ν)(t) − (B1 ∗ μ)(t)] dt

∣∣∣∣ .

Since the integral over f ′ is zero by the periodicity of f , any c ∈ R yields
∣∣∣∣
∫
T

f ′(t) [(B1 ∗ ν)(t) − (B1 ∗ μ)(t)] dt

∣∣∣∣ =
∣∣∣∣
∫
T

f ′(t) [(B1 ∗ ν)(t) − (B1 ∗ μ)(t) − c] dt

∣∣∣∣
≤ inf

c∈R

∫
T

|(B1 ∗ ν)(t) − (B1 ∗ μ)(t) − c| dt .

We proceed by computing explicitly

(B1 ∗ μ)(t) =
∫

[0,t)∪(t,1)
B1(t − x)dμ(x)

=
∫

[0,t)
1

2
− (t − x)dμ(x) +

∫
(t,1)

1

2
− (t − x + 1)dμ(x)

=
(
1

2
− t

)
(μ([0, 1)) − μ({t}))
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+
∫

[0,1)
xdμ(x) − tμ({t}) − μ([0, 1)) + μ([0, t])

= μ([0, t)) + μ([0, t])
2

− μ([0, 1))
(
t + 1

2

)
+
∫

[0,1)
xdμ(x) (3.11)

for t ∈ (0, 1) and

(B1 ∗ μ)(0) =
∫

[0,1)
xdμ(x) − 1

2
μ([0, 1)) + 1

2
μ({0}).

On the other hand, Lemma 3.8 and (3.11) yield

∫ 1

0

∣∣(ν − μ) ([0, x]) − c∗(ν, μ)
∣∣ dx = W1(ν, μ)

≤ inf
c∈R

∫ 1

0

∣∣∣∣(ν − μ) ([0, x]) − (ν − μ) ({x})
2

− c

∣∣∣∣ dx

and thus equality (3.10) for measures that give mass to at most countably many atoms
because in this case the set of x where the integrands from the upper and lower bounds
disagree has Lebesgue measure zero. But in fact, this holds for every measure as the
following argument shows.12 At first, one might consider the case of a finite positive
measure μ. For n ∈ N, consider Nn := {

x ∈ T : μ({x}) ≥ n−1
}
and observe that for

any finite subset N∗ ⊆ Nn

∞ > μ(T) ≥ μ
(
N∗) ≥

∑
x∈N∗

μ({x}) ≥ n−1 · #N∗

and hence #N∗ ≤ n · μ(T), which then implies that Nn is finite with #Nn ≤ n · μ(T).
Therefore, the set

N :=
∞⋃
n=1

Nn = {x ∈ T : μ({x}) > 0}

is countable and the general case follows by decomposing μ = μ+ − μ−.
With this knowledge, the question of approximation of μ by p with degree n and

p̂(0) = 1 can be rewritten as

min
p∈Pn
p̂(0)=1

W1(p, μ) = min
p∈Pn
p̂(0)=1

inf
c∈R

∫
T

|(B1 ∗ p)(t) − (B1 ∗ μ)(t) − c| dt .

By the assumption of an atom-free measure μ we have that B1 ∗ μ is continuous by
(3.11), and hence there exists a unique best L1-approximation p̃ = B1 ∗ p∗ − c (see
e.g. [12, Thm.3.10.9]) which defines the unique best approximation p∗ to μ uniquely
by p̃ = B1 ∗ p∗ − c and the normalisation condition p̂∗(0) = 1. ��
12 This argument was pointed out by a reviewer of this work.
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Example 3.10 Uniqueness and non-uniqueness of L1 approximation is discussed in
some detail in [14, 47] and we note the following:

(i) For μ = 1
2δ0 − 1

2δ1/2 + λ ∈ MR where λ is again the Lebesgue measure, one
finds

(B1 ∗ μ)(t) = 1

2

(
B1(t) − B1

(
t − 1

2

))
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t = 0,
1
4 , t ∈ (0, 1

2

)
,

0, t = 1
2 ,

− 1
4 , t ∈ ( 12 , 1

)
.

For anynormalised polynomial p, we have that the difference B1∗p(t)−B1∗μ(t)
differs from

∫ t
0 p(x)dx − μ([0, t]) by a constant except at the discontinuity

points t = 0, 1
2 . But as they have Lebesgue measure zero, we can derive from

Theorem 3.9

min
p∈Pn
p̂(0)=1

W1(p, μ) = inf
c∈R

∫
T

|(B1 ∗ p)(t) − (B1 ∗ μ)(t) − c| dt . (3.12)

As proven in [47, Thm. 5.1], the function B1 ∗ μ does not have a unique L1

approximation for even n. Thus, μ does not admit a unique best approximation
either.

(ii) For μ = δ0 one has B1 ∗ μ = B1 such that again (3.12) holds for this choice of
μ. According to [47, Lem. 2.2] this function B1 with only one jump has a unique
best L1-approximation given by the interpolation polynomial

p̃(x) =
n∑
j=1

1

2n + 2
cot

(
jπ

2n + 2

)
sin(2π j x).

Deconvolving p̃ = B1 ∗ p∗ gives

p∗(x) = 1 +
n∑
j=1

jπ

n + 1
cot

(
jπ

2n + 2

)
cos(2π j x)

as the unique best approximation to δ0. Since the error of the best L1 approxi-
mation of B1 is known from a theorem by Favard [20] (e.g. this is mentioned in
[12, p. 213]), we can compute

W1(δ0, p
∗) = inf

c∈R

∫
T

∣∣(B1 ∗ p∗)(t) − (B1 ∗ δ0)(t) − c
∣∣ dt

≤ ∥∥B1 ∗ p∗ − B1
∥∥
L1(T)

= 1

4(n + 1)
.

BycomparisonwithTheorem3.6,we notice that equality holds in this calculation
and that the bound from Theorem 3.6 is sharp.
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Fig. 3 Interpolation of B1 (left) and comparison of different polynomial approximations of degree n = 10
to δ0 (right)

Table 1 Convergence rates of different trigonometric polynomials approximating the Dirac delta δ0

Trigonometric polynomial Sign of polynomial W1(δ0, Kn)

Dirichlet Dn Signed ≤
4

π2
log(n)+O(1)

4(n+1) (Inequality (3.13)

Fejér Fn Nonnegative ≤ 1
π2

log(n)+4
n+1 (Theorem 3.3)

Jackson Jn , n even Nonnegative ≤ 3
2

1
n+2 (Remark 3.4)

Best approximation p∗ Signed = 1
4(n+1) (Example 3.10 (ii))

Figure 3 and Table 1 summarize our findings on the approximation of δ0. The best
approximation p∗ as well as the Dirichlet kernel Dn(x) = sin((2n + 1)πx)/ sin(πx)
are signed with small full width at half maximum (FWHM) but positive and negative
oscillations at the sides. The lattermight be seen as an unwanted artifact in applications.
The approximations given by the Fejér and the Jackson kernel are nonnegative.

For completeness, we note that the Dirichlet kernel is the Fourier partial sum of δ0
and allows for the estimate

W1(δ0, Dn) ≤ W1(δ0, p
∗) + W1(p

∗, Dn) ≤ (1 + ‖Dn‖1)W1(δ0, p
∗) ≤

4
π2 log(n) + O(1)

4(n + 1)
(3.13)

which relies on W1(p∗, Dn) = W1(Dn ∗ p∗, Dn ∗ δ0) ≤ ‖Dn‖1W1(δ0, p∗),
the well known bound on the Lebesgue constant [5, Prop. 1.2.3], and Example 3.10

(ii).

Remark 3.11 We close by some remarks which are specific for the univariate setting:

(i) We stress that Theorem 3.9 allows to compute theWasserstein distance as an L1-
distance for real signed univariatemeasures. Similarly, this allows to compute the
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so-called star discrepancy ‖ν([0, ·))‖∞ as suggested in [44, eq. (2.1) and (2.2)].
However note that (3.11) has some additional term such that ν = 1

2δ0 − 1
2δ1/2

with ν(T) = 0 gives

‖ν([0, ·))‖∞ = 1

2
�= 1

4
= ‖B1 ∗ ν‖∞

and thus [44, eq. (2.1) and (2.2)] needs some adjustment.More precisely, it seems
that in the publication [44] a factor 1

2 was lost since the kth Fourier coefficient

of ν([0, ·)) is ν̂(k)
ik whereas B̂1(k) · ν̂(k) = 1

2
ν̂(k)
ik .

(ii) In the univariate case, one can relate our work to a main result in [44]. As
Theorem 3.9 reformulates the Wasserstein distance of two univariate measures
in terms of the L1-distance of their convolution with the Bernoulli spline, one
can view this Bernoulli spline as a kernel of type β = 1 following the notation
of [44]. Thus, one can take p = 1, p′ = ∞ in [44, Thm.4.1] yielding that the
Wasserstein distance between a measure μ and its trigonometric approximation
is bounded from above by c/n. The latter agrees with our Remark 3.4 which
additionally gives an explicit and small constant.

(iii) The observation that the construction of p∗ for δ0 is possible via FFT’smight lead
to the idea to construct near-best approximations to any measureμ by interpolat-
ing B1 ∗μ by some p̃ and to obtain the polynomial p of near best approximation
which satisfies p̃ = B1 ∗ p by dividing with the Fourier coefficients of the
Bernoulli spline B1. A first problem would be that the limited knowledge of
moments only allows to interpolate the partial Fourier sum Sn(B1 ∗ μ), which
does not converge to B1 ∗ μ uniformly as n → ∞ for discrete μ. Secondly,
the near-best approximation p cannot be expected to be nonnegative for a non-
negative measure μ which is another drawback compared to convolution with
nonnegative kernels like the Fejér or Jackson kernel.

4 Interpolation

While Sect. 3 focuses on weak approximations of a measure μ, in particular via con-
volution with smooth kernels, we consider in this section another type of polynomial
estimator, denoted by p1,n (4.4), which depends non-linearly on μ and is able to iden-
tify at a finite degree the support of μ, under some assumptions on the latter: more
precisely, the main results of this section, stated in Theorems 4.6 and 4.10 below, are
quantitative rates for the pointwise convergence

p1,n(x)
n→∞−−−→ χVμ(x) =

{
1, x ∈ Vμ,

0, otherwise
(4.1)

to the indicator function of the Zariski closure Vμ of the support, i.e. the smallest
algebraic variety containing supp μ. After discussing algebraic properties of this esti-
mator (Sect. 4.1), we consider separately the case of discrete measures (Sect. 4.2) and
general measures (Sect. 4.3).
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In the following, let [n] := {0, . . . , n}d and N := (n + 1)d . We use bold type to
designate vectors (resp. matrices) of C

N (resp. C
N×N ) only (vectors of T

d or N
d are

left in normal type). We write

e(n)
x := (

e−2π ikx
)
k∈[n] ∈ C

N

for the vector containing all d-variate trigonometric monomials up to max-degree n.
Unlike previously, we consider in this section causal trigonometric polynomials [15],
i.e. polynomials having zero coefficients at all negative frequencies. We often identify
such a polynomial p ∈ 〈e−2π ik·; k ∈ [n]〉 with its vector of coefficients p ∈ C

N , i.e.

p(x) = e(n)
x

∗
p ∀x ∈ T

d .

Note that from Parseval’s theorem, ‖p‖L2 = ‖ p‖2. Note also that |p|2 ∈ Pn .
The key object of this section is the (truncated) moment matrix associated with the

unknown measure μ, defined as

Tn := (
μ̂(k − �)

)
k,�∈[n] ∈ C

N×N , (4.2)

where μ̂(k) are the trigonometric moments of μ (1.1).

4.1 Algebraic Considerations

It iswell-known that the range andkernel of thematrix (4.2) reveal someof the structure
of themeasure hidden behind themoments, andmethods that aim at recoveringμ using
purely algebraic manipulations on Tn are often referred to as subspace methods, e.g.
MUSIC [60], ESPRIT [55] or matrix pencils [26]. The starting point for these methods
is often the singular value decomposition of Tn , which we denote by

Tn = Un�nV ∗
n =

N∑
j=1

σ
(n)
j u(n)

j v
(n)
j

∗
,

where all matrices are of size N × N , u(n)
j and v

(n)
j are the j-th columns of Un and

V n respectively (left and right singular vectors), and σ
(n)
1 ≥ σ

(n)
2 ≥ . . . ≥ σ

(n)
N are the

diagonal entries of the diagonal matrix �n (singular values). This decomposition is
sometimes explicitly used to design estimators for the support of μ, such as MUSIC’s
frequency estimation function [60], or Christoffel polynomials [43]. In fact, it is inter-
esting as a motivating remark to see that the construction pn from the previous section
can also be expressed in terms of this singular value decomposition.

Lemma 4.1 The polynomial estimator (3.2) fulfils

pn(x) = 1

N
e(n)
x

∗
Tne(n)

x = 1

N

N∑
j=1

σ
(n)
j u(n)

j (x)v(n)
j (x), (4.3)
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where, as explained above, u(n)
j (x) = e(n)

x
∗
u(n)
j and v

(n)
j (x) = e(n)

x
∗
v

(n)
j .

Proof We have, for n ∈ N and x ∈ T
d ,

1

N
e(n)
x

∗
Tne(n)

x = 1

N

∑
k∈[n]

∑
l∈[n]

μ̂(k − l)e2π ikxe−2π ilx

= 1

N

∫
Td

∑
k∈[n]

∑
l∈[n]

e−2π i(k−l)ye2π ikxe−2π ilxdμ(y)

=
∫
Td

1

N

∣∣∣∣∣∣
∑
k∈[n]

e−2π ik(y−x)

∣∣∣∣∣∣
2

dμ(y) =
∫
Td

Fn(y − x)dμ(y)

where the last equality is a consequence of (3.1). Plugging in the singular value decom-
position of Tn yields the second equality of the statement. ��

Note that if μ ∈ MR (the set of real-valued measures), then the moment matrix
Tn is Hermitian.

If μ ∈ M+ (the set of nonnegative measures), then Tn is positive semi-definite,
and we have in particular the sum of squares representation

pn(x) = 1

N

N∑
j=1

σ
(n)
j

∣∣∣v(n)
j (x)

∣∣∣2 .

We now introduce polynomial estimators for the measure, which can be understood
as the unweighted counterparts of pn . Let rn := rank Tn and define signal- and noise-
polynomials p1,n, p0,n : T

d → [0, 1] respectively, by

p1,n(x) = 1

N

rn∑
j=1

∣∣∣v(n)
j (x)

∣∣∣2 and p0,n(x) = 1

N

N∑
j=rn+1

∣∣∣v(n)
j (x)

∣∣∣2 . (4.4)

This signal/noise terminology comes from the notions of signal and noise subspaces,
which were initially introduced in [60] and are at the core of the aforementioned
subspace methods in signal processing (we refer the interested reader to [42, Section
9.6] for an overview). Schematically speaking, they correspond to the spaces spanned
by the vectors (v

(n)
1 , . . . , v

(n)
rn ) (the signal space) and (v

(n)
rn+1, . . . , v

(n)
N ) (the noise

space) respectively.
They are actually independent of the singular value decomposition itself, which

ensures in particular that p1,n and p0,n are indeed well-defined.
The key idea of subspace methods, relating these spaces to the underlying measure

μ, is that, given a causal polynomial p ∈ 〈e−2π ikx ; k ∈ [n]〉 that vanishes on supp μ,
one obtains using (4.2) that the k-th entry (k ∈ [n]) of Tn p is given by

∑
l∈[n]

pl ·
∫
Td

e−2π i(k−l)xdμ(x) =
∫
Td

e−2π ikx p(x)dμ(x) = 0, (4.5)
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and hence p ∈ ker Tn . Thus, finding the common roots of all polynomials contained
in the kernel of the matrix Tn , may allow to identify the support of μ, or more
accurately the smallest algebraic variety (the set of solutions of a polynomial system)
that contains it, i.e. its Zariski closure Vμ. In what follows, we denote by V (ker Tn)

the set consisting of the common roots of all the polynomials in ker Tn , i.e.

V (ker Tn) := {x ∈ T
d : p(x) = e(n)

x
∗
p = 0 for all p ∈ ker Tn}.

We begin in this section with qualitative, purely algebraic considerations about the
polynomials (4.4). The next theorem shows that, under the condition that Vμ =
V (ker Tn), p0,n and p1,n actually identify the set Vμ for finite n. Variants of this
result can be found for the zero-dimensional and positive-dimensional (d = 2, 3)
setting e.g. in [33] and [49, Propositions 5.2, 5.3], respectively.

Theorem 4.2 Let d, n ∈ N, μ ∈ M, and suppose V (ker Tn) = Vμ ⊆ T
d . Then

p0,n(x) + p1,n(x) = 1 for all x ∈ T
d . In particular, we have

p1,n(x)

{
= 1, if x ∈ Vμ,

< 1, otherwise.
(4.6)

Proof We have

p1,n(x) + p0,n(x) = 1

N

N∑
j=1

∣∣∣v(n)
j (x)

∣∣∣2 = 1

N
e(n)
x

∗
V nV ∗

ne
(n)
x = 1

N
e(n)
x

∗
e(n)
x = 1,

(4.7)

so in particular p1,n(x) ∈ [0, 1]. Since V (ker Tn) = Vμ and ker Tn =
〈v(n)

rn+1, . . . , v
(n)
N 〉, it follows that the polynomials v

(n)
rn+1, . . . , v

(n)
N vanish on Vμ, so

p1,n(x) = 1 for all x ∈ Vμ. Conversely, if x ∈ T
d such that p1,n(x) = 1, we claim

that x ∈ Vμ. Indeed, we have 1 − p1,n(x) = ∑N
j=rn+1

∣∣∣v(n)
j (x)

∣∣∣2 = 0, so it follows

that x lies in the vanishing set of v
(n)
rn+1, . . . , v

(n)
N , so x ∈ V (ker Tn) = Vμ. ��

Remark 4.3 The hypothesis V (ker Tn) = Vμ in Theorem 4.2 is well-known in the
theory of super-resolution [32, 58] or polynomial system solving [38], and is hard to
check in practice. Note however that:

(i) It is satisfied for all sufficiently large n if μ ∈ M is finitely supported, see e.g.
[35]. In particular, if μ is supported on r points {x1, . . . , xr }, this ensures that
the rank of Tn is equal to r (while in general, one only has rn ≤ r ). The optimal
n in that case depends on the geometry of the support, but it is sufficient to have
n + 1 > 6d/min j �=k |x j − xk |∞, see [34, Example 4.4] and [33, Cor. 2.10].
Similarly, the condition holds for sufficiently large n ifμ ∈ M+, see for example
[39, Theorem 2.10] or [62, Proposition 4.10].
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(ii) If μ is neither finitely supported nor nonnegative, then V (ker Tn) = Vμ can
fail to hold for any n ∈ N (cf. [62, Example 4.9]). In this case, it is possible to
rephrase the hypothesis in terms of a non-square moment matrix of suitable size
(cf. [62, Theorem 4.3]) to obtain a statement similar to Theorem 4.2.

(iii) Theorem 4.2 and the results below only deal with the Zariski closure Vμ, which
coincides with supp μ only when the latter is the zero locus of a trigonometric
polynomial, but is larger otherwise. In particular, we have Vμ = T

d if supp μ

has an interior point (with respect to the metric on T
d ) and in this case, rn = N

and p1,n ≡ 1. Beyond the scope of this paper, one might adapt the definition
of p1,n by adequately thresholding the singular values of Tn , thus giving rise to
algebraic approximations of the actual support.

Example 4.4 For μ = δ0, we have p1,n(x) = Fn(x)/(n + 1)d and the proof of Theo-
rems 4.6 and 4.9 also show that p1,n is close to a sum of normalized Fejér kernels for
arbitrary discrete measures. A singular continuous measure with support on the zero
locus of a specific trigonometric polynomial is discussed as a numerical example in
Sect. 5.

We conclude this subsection by stating a variational characterization of p0,n , which
will be an important tool in proof in the next sections.

Lemma 4.5 If ker Tn �= {0}, we have that

p0,n(x) = max

{
1

N

|p(x)|2
‖ p‖22

: p ∈ ker Tn \ {0}
}

. (4.8)

Proof As we assume ker Tn �= {0}, we have rn = rank Tn < N and find a matrix
V 0 = (v

(n)
rn+1, . . . , v

(n)
N ) ∈ C

N×(N−rn) whose columns form an orthonormal basis of
ker Tn .

For fixed x ∈ T
d , let qx := V 0V ∗

0e
(n)
x ∈ ker Tn such that we identify this vector of

coefficients with the polynomial satisfying qx (x) = e(n)
x

∗
qx = ∑N

j=rn+1

∣∣∣v(n)
j (x)

∣∣∣2 =
Np0,n(x).

For all p ∈ ker Tn , we have

q∗
x p = e(n)

x
∗
V 0V ∗

0 p = e(n)
x

∗
p = p(x).

In particular, note that

∥∥qx∥∥22 = q∗
xqx = e(n)

x
∗
V 0V ∗

0e
(n)
x = Np0,n(x). (4.9)

Therefore, by the Cauchy–Schwarz inequality, it follows that

|p(x)|2 = ∣∣q∗
x p
∣∣2 ≤ ∥∥qx∥∥22 · ‖ p‖22 = Np0,n(x) · ‖ p‖22.
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Hence, we have

p0,n(x) ≥ max
p∈ker Tn\{0}

|p(x)|2
N‖ p‖22

≥ |qx (x)|2
N
∥∥qx∥∥22

= p0,n(x),

if qx �= 0. The first inequality also holds when qx = 0 such that the result follows
due to (4.9) in this case. ��

4.2 Zero-Dimensional Situation

We now come to the first main result of this section, stated in Theorem 4.6 below,
which gives quantitative rates for the pointwise convergence (4.1) in the case where
μ is a discrete measure. If the measure is given by

μ =
r∑
j=1

λ jδx j

with (Zariski-closed) support Vμ = supp μ = {x1, . . . , xr } ⊂ T
d and complex

weights � = diag(λ1, . . . , λr ), then the moment matrix allows for the Vandermonde
factorisation

Tn = A∗
n�An, An = (e2π ikx j ) j=1,...,r;k∈[n] ∈ C

r×N ,

which will be instrumental.

Theorem 4.6 (Pointwise convergence) Let μ = ∑r
j=1 λ jδx j , λ j ∈ C\{0}, x j ∈ T

d ,

and let x ∈ T
d such that x �= x j for all 1 ≤ j ≤ r . Let λmin and λmax be the minimal

and maximal weights, in absolute value. If n + 1 > 6d/min j �=� |x j − x�|∞, then

p1,n(x) ≤ 1

(n + 1)2
· |λmax|

|λmin| · 9d
d/2

4

r∑
j=1

1

|x − x j |2∞
.

In particular, this implies the pointwise convergence (4.1). Moreover, for x ∈ T
d such

that min j |x − x j |∞ ≤ √
d/(n + 1), one has

p1,n(x) ≤
{
1 − 3d−1(2d−1)

2dd2+d/2 · (n + 1)2 · min j |x − x j |2∞, d > 1,

1 − π2

2·35 (n + 1)2 · min j |x − x j |2∞, d = 1.

Proof The condition n + 1 > 6d/min j �=�

∣∣x j − x�

∣∣∞ implies rank Tn = r and Vμ =
V (ker An) = V (ker Tn), see [34, Exa. 4.4] and [33, Cor. 2.5, 2.10, and their proofs].
We have p1,n = 1 − pn,0 by Theorem 4.2 and since 〈vr+1, . . . , vN 〉 = ker Tn =
ker An , it follows that p1,n does not depend on the weights λ j , and we assume without
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loss of generality λ j > 0. Let then Tn = V�V ∗ be the moment matrix of this
nonnegative measure. One has, for any x ∈ T

d ,

p1,n(x) = 1

N

r∑
j=1

∣∣∣v(n)
j (x)

∣∣∣2 ≤ 1

N

r∑
j=1

σ
(n)
j

σ
(n)
min

∣∣∣v(n)
j (x)

∣∣∣2 = 1

σ
(n)
min

pn(x)

= 1

σ
(n)
min

r∑
j=1

|λ j |Fn(x − x j ),

where the last two equalities are (4.3) and (3.2), respectively. The final estimate follows
from

Fn(x − x j ) ≤ (n + 1)d−1

(n + 1) sin2
(
π |x − x j |∞

) ≤ (n + 1)d−2

4|x − x j |2∞

where sin(πx) ≥ 2x for x ∈ [0, 1
2 ] was used and σ

(n)
min ≥ 1

9dd/2 (n+1)d |λmin|, see [34,
Exa. 4.4].

We denote the (r + 1)-th standard basis vector by er+1 = (0, . . . , 0, 1)� ∈ C
r+1.

Regarding the second estimate, consider the Vandermonde matrix

Ãn,x =
[
e(n)
x1 · · · e(n)

xr e(n)
x

]
∈ C

N×(r+1)

and note that its pseudo-inverse gives rise to the Lagrange polynomial �r+1(y) =
e∗
r+1 Ã

†
n,x e

(n)
y , satisfying �r+1(x j ) = 0 for j = 1, . . . , r and �r+1(x) = 1.13 We

compute

‖�r+1‖2L2 =
∫
Td

|e∗
r+1 Ã

†
n,x e

(n)
y |2 dy

=
∫
Td

|〈 Ã†∗
n,x er+1, e(n)

y 〉|2 dy = ‖ Ã†∗
n,xer+1‖22 ≤ σmin( Ãn,x )

−2

and use Lemma 4.5 to bound

1 − p1,n(x) = p0,n(x) = max
p

|p(x)|2
N‖p‖2

L2

≥ |�r+1(x)|2
N‖�r+1‖2L2

≥ σmin( Ãn,x )
2

N
.

The assertion follows from known estimates on the smallest singular value for the
Vandermonde matrix with pairwise clustering nodes, see [25, Cor. 3.20] for d > 1 and
[13, Cor. 4.2] for the univariate case d = 1. ��
13 Recall that Ãn,x has full rank if min j |x − x j |∞ > 0 due to the separation of the nodes and [25,

Corollary3.20] or [13, Corollary4.2] for the case d = 1. Hence, we have �r+1(x j ) = e∗r+1 Ã
†
n,x e

(n)
x j =

e∗r+1 Ã
†
n,x Ãn,x e j = e∗r+1e j = 0 for j = 1, . . . , r and analogously �r+1(x) = e∗r+1er+1 = 1.
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Fig. 4 Summary of the bounds on p1,n from Theorem 4.6 and Remark 4.7 for d = 2, n = 20, and a discrete
measure μ supported on four points. The polynomial p1,20 was evaluated on a grid in T

2 and interpolated
on the magenta cross section (left), while the bounds on p1,20 on this cross section are displayed (right). We

see that specifically the bound 1−σmin( Ãn,x )
2/N from the proof of Theorem 4.6 reproduces the behaviour

of p1,n . The constant upper bound on p1,n away from the support of μ can be derived by using estimates

for σmin( Ãn,x ) in the case of separated nodes

Remark 4.7 Actually, Theorem 4.6 shows the correct orders in n and min j |x − x j |2∞
in the upper bound of p1,n(x). First note that 1 − p1,n and all its partial derivatives
of order 1 vanish on x1, . . . , xr . For fixed x ∈ T

d , and j ′ = argmin j |x − x j |∞, the
Taylor expansion at x j ′ thus gives ξ ∈ T

d such that

1 − p1,n(x) = 1

2
(x − x j ′)

�Hx (ξ)(x − x j ′),

where Hx (ξ) := (−∂s∂t p1,n (ξ)
)
1≤s,t≤d is the Hessian of 1 − p1,n at ξ . Thus,

1 − p1,n(x) ≤ 1

2
‖Hx (ξ)‖F · ∣∣x − x j ′

∣∣2
2 ≤ d

2
max
r ,s

∥∥∂r∂s p1,n∥∥L∞ · d ∣∣x − x j ′
∣∣2∞.

One may apply Bernstein’s inequality (see e.g. [12, Chapter 4]) to ys 	→ p1,n(y1, . . . ,
yd) and yr 	→ ∂s p1,n(y1, . . . , yd) successively (both trigonometric polynomials of
degree n), and obtain

2π2d2n2 · min
j

∣∣x − x j
∣∣2∞

since ‖p1,n‖L∞ = 1. A bivariate visualisation of the bounds on p1,n is shown in Fig. 4.

In fact, in this discrete setting, normalizing p1,n differently even leads to a weak
convergence result towards the empirical measure associated with the support points.
This result, stated in Theorem 4.9 below, uses the following technical lemma.
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Lemma 4.8 (Convergence of singular values) Let μ = ∑r
j=1 λ jδx j be a discrete

complex measure whose weights are ordered non-increasingly with respect to their
absolute value. Assume that (n + 1)min j �=� |x j − x�|∞ > d, then the singular values

σ
(n)
j of the moment matrix Tn fulfil

∣∣∣∣∣|λ j | − σ
(n)
j

N

∣∣∣∣∣ ≤ 1

n + 1
· |λ1|

(
1 + √

e
)
r

2min j �=� |x j − x�|∞ , j = 1, . . . , r .

Proof With the polar decomposition 1√
N
A∗
n = PH , where P ∈ C

N×r is unitary and

H ∈ C
r×r is positive-definite, we have that |λ1| ≥ · · · ≥ |λr | are the singular values

of the matrix P
P∗. Therefore, for the singular values of Tn = A∗
n
An , we obtain

max
1≤ j≤r

∣∣∣∣∣
σ

(n)
j

N
− ∣∣λ j

∣∣
∣∣∣∣∣ ≤

∥∥∥∥ 1

N
Tn − P
P∗

∥∥∥∥
2

= ∥∥H
H∗ − 

∥∥
2

≤ ‖H
(H − Ir )‖2 + ‖(H − Ir )
‖2
≤ |λ1| (‖H‖2 + 1) ‖H − Ir‖2
≤ |λ1| (‖H‖2 + 1)

∥∥∥(H + Ir )−1
∥∥∥
2

∥∥∥H2 − Ir
∥∥∥
2

≤ |λ1|
1√
N

σmax(An) + 1

1√
N

σmin(An) + 1

∥∥∥∥ 1

N
AnA∗

n − Ir

∥∥∥∥
F
,

where the first inequality is due to [4, Theorem 2.2.8] and the last inequality is a
consequence of H = P∗PH = 1√

N
P∗A∗

n yielding

H2 = H∗H = 1

N
An P P∗A∗

n = 1√
N

An P P∗PH = An
1√
N

PH = 1

N
AnA∗

n .

Each entry of thematrix 1
N AnA∗

n−Ir is amodifiedDirichlet kernel and can be bounded
uniformly by

∥∥∥∥ 1

N
An A∗

n − Ir

∥∥∥∥
F

= 1

N

⎛
⎜⎝

r∑
j=1

∑
l �= j

∣∣∣∣∣∣
∑
k∈[n]

e2π ik(xl−x j )

∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

≤ r

N
· (n + 1)d−1

2min j �=� |x j − x�|∞ .

Moreover, since (n + 1)min j �=� |x j − x�|∞ > d, it follows from [35, Theorem 2.1]
that

1√
N

σmax(An) ≤
√(

1 + 1

d

)d

≤ √
e.

��
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Theorem 4.9 For λ j ∈ C\{0} and pairwise different x j ∈ T
d , j = 1, . . . , r ,we have

p1,n
‖p1,n‖L1

⇀μ̃ = 1

r

r∑
j=1

δx j

as n → ∞.

Proof Throughout this proof we use that the Vandermonde matrix An has full rank r if
n is sufficiently large. In particular, this impliesV (ker Tn) = Vμ and‖p1,n‖L1 = r/N .
We define p̃n = Fn ∗ μ̃ and observe that for any continuous function f on T

d we have

∣∣∣∣∣∣
∫
Td

p1,n(x)

‖p1,n‖L1
f (x) dx − 1

r

r∑
j=1

f (x j )

∣∣∣∣∣∣

≤
∣∣∣∣
∫
Td

(
p1,n(x)

‖p1,n‖L1
− p̃n(x)

)
f (x) dx

∣∣∣∣+
∣∣∣∣∣∣
∫
Td

p̃n(x) f (x) dx − 1

r

r∑
j=1

f (x j )

∣∣∣∣∣∣
≤
∥∥∥∥Nr p1,n − p̃n

∥∥∥∥
L1

‖ f ‖L∞ +
∣∣∣∣
∫
Td

f d(Fn ∗ μ̃) −
∫
Td

f dμ̃

∣∣∣∣ ,

so, by Theorem 3.3, it is enough to show that
∥∥ N

r p1,n − p̃n
∥∥
L1 converges to zero

for n → ∞. If n is sufficiently large, then by Lemma 4.1 we can write p̃n(x) =
1
N e(n)

x
∗
Ũ�̃Ũ

∗
e(n)
x , where �̃ ∈ C

r×r denotes the diagonal matrix consisting of non-

zero singular values, and Ũ ∈ C
N×r denotes the corresponding singular vector matrix

of the moment matrix of μ̃. As the signal polynomial p1,n = 1 − p0,n only depends
on the kernel of the moment matrix Tn of μ, which agrees with the kernel of An

and with the kernel of the moment matrix of μ̃, it follows by (4.4) that p1,n(x) =
1
N e(n)

x
∗
ŨŨ

∗
e(n)
x and thus

∣∣∣∣Nr p1,n(x) − p̃n(x)

∣∣∣∣ =
∣∣∣∣∣e(n)

x
∗
Ũ

(
Ir
r

− �̃

N

)
Ũ

∗
e(n)
x

∣∣∣∣∣ ≤
∥∥∥e(n)

x
∗
Ũ
∥∥∥
2

2
∥∥∥∥1r Ir − 1

N
�̃

∥∥∥∥
2
.

Since
∫
Td

∥∥∥e(n)
x

∗
Ũ
∥∥∥
2

2
dx = N‖p1,n‖L1 = r is constant, the result follows from

Lemma 4.8. ��

4.3 Positive-Dimensional Situation

For a measure μ whose support is contained in a non-trivial algebraic variety of
any dimension, we derive a pointwise convergence rate p1,n(x) = O (n−1

)
outside

of the variety in Theorem 4.10 and together with Theorem 4.2 this proves (4.1) if
V (ker Tn) = Vμ. It is not clear whether this is already optimal, as we found O (n−2

)
as an approximation rate in the case of a discrete measure.
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Theorem 4.10 Let y ∈ T
d and let g ∈ 〈e2π i〈k,x〉 | k ∈ [m]〉 be a trigonometric

polynomial of max-degree m such that g(y) �= 0 and g vanishes on supp μ. Then

p1,n+m(y) ≤ 1 − (n + 1)d

(n + m + 1)d
· |g (y)|2(

Fn ∗ |g|2) (y)
≤ ‖g‖2

L2

|g(y)|2
m(4m + 2)d

n + 1
+ dm

(n + m + 1)
,

for n ∈ N, n ≥ m.

Proof Set Nn = (n + 1)d for n ∈ N and define the trigonometric polynomial p(x) =
en,y(x)g(x) of max-degree n+m, where en,y(x) := e(n)

x
∗
e(n)
y . Furthermore, we define

f (x) := |g(x)|2. Then

|p(x)|2 = NnFn(x − y) f (x),

for all x ∈ T
d . On the other hand,

‖p‖2L2 = Nn (Fn ∗ f ) (y).

The existence of a trigonometric polynomial g which vanishes on the support of the
measure μ but not at y ∈ T

d shows already that p ∈ 〈e2π i〈k,x〉 | k ∈ [n + m]〉
satisfies these conditions as well and thus ker Tn+m �= {0} by (4.5). This allows to use
Lemma 4.5 in order to obtain

1 − p1,n+m(y) ≥ |p(y)|2
Nn+m ‖p‖2L2

= Nn

Nn+m
· f (y)

(Fn ∗ f ) (y)

≥
(
1 − m

n + m + 1

)d 1

1 + hn
, (4.10)

where we define hn := ‖Fn ∗ f − f ‖L∞/ f (y). This proves the first statement. For
the second upper bound, we compute14

|(Fn ∗ f − f )(x)| =

∣∣∣∣∣∣∣∣
∑

k∈{−m,...,m}d

∑
s∈{0,1}d
1≤|s|≤d

(−1)|s||ks |
(n + 1)|s|

f̂ (k)e2π ikx

∣∣∣∣∣∣∣∣
14 We remind that the coefficients of the multivariate Fn can be written as

∏d
�=1(1 − |k�|

n+1 ) =
∑

s∈{0,1}d
0≤|s|≤d

(−1)|s||ks |
(n+1)|s| with the multi-index notation ks := k

s1
1 · · · ksdd and |s| = s1 + · · · + sd .
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=

∣∣∣∣∣∣∣∣
∑

k∈{−m,...,m}d

∑
s∈{0,1}d
1≤|s|≤d

(−1)|s||ks |
(n + 1)|s|

∫
Td

|g(z)|2 e2π ik(x−z)dz

∣∣∣∣∣∣∣∣
≤

∑
s∈{0,1}d
1≤|s|≤d

(
m

n + 1

)|s|
(2m + 1)d‖g‖2L2

≤ ‖g‖2L2

m(4m + 2)d

n + 1

by using that f = |g|2 is a trigonometric polynomial of degree m. Then it follows
from (4.10) that

p1,n+m(y) ≤ 1 −
(
1 − m

n + m + 1

)d (
1 − hn

1 + hn

)

≤ 1 −
(
1 − dm

n + m + 1

)(
1 − hn

1 + hn

)

= hn
1 + hn

+ dm

(n + m + 1)
− hn

1 + hn
· dm

(n + m + 1)

≤ ‖g‖2
L2

|g(y)|2
m(4m + 2)d

n + 1
+ dm

(n + m + 1)
,

since we can apply hn
1+hn

≤ hn . ��

5 Numerical Examples

We illustrate in this section the asymptotic behaviour of pn and p1,n for several
types of singular measures, with respect to the 1-Wasserstein distance. We compute
the distance using a semidiscrete optimal transport algorithm, described below. The
code to reproduce the figures is available at https://github.com/Paulcat/Measure-trigo-
approximations.

Our experiments focus on three examples on T
2: a discrete measure μd supported

on 15 points, with (nonnegative) random amplitudes, a uniformmeasureμcu supported
on the trigonometric algebraic curve

cos(2πx) cos(2π y) + cos(2πx) + cos(2π y) = 1

4
, (5.1)

and a uniform measureμci supported on the circle centered in c0 = ( 12 ,
1
2 )with radius

r0 = 0.3.
The moments of μcu are computed numerically up to machine precision using Arb

[29] with a parametrization of the implicit curve (5.1). It follows from (3.4) that the
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Algebraic curve Circle

10 -2

10 -1

n=10 10 2

Effect of sampling

Fig. 5 The two example measures μs
cu (left) and μs

ci (middle) used in our numerical tests. In this display
the two continuous measures are discretized using s = 60 samples. The amplitudes of the spikes in both
measures are taken equal, and normalized. The last plot shows the 1-Wasserstein distanceW1(Fn∗μcu, μ

s
cu)

for degrees n = 1, . . . , 250 and several values of s

trigonometric moments of the measure μci are given by

μ̂ci(k) = e−2π ikc0 J0(2πr0‖k‖2).

The polynomials pn , Jn ∗ μ, and p1,n can be evaluated efficiently via the fast Fourier
transform over a regular grid inT

2. For the polynomial p1,n , the singular value decom-
position of the moment matrix Tn can be computed at reduced cost by exploiting that
Tn has Toeplitz structure and resorting only to matrix–vector multiplications which
can be computed by means of the FFT.

To compute transport distances to the measure μ ∈ {μcu, μci}, let the curve C =
supp μ ⊂ T

d denote its support with arc-length L . Now let s ∈ N, take a partition
C = ⋃s

�=1 C� into path-connected curves with measure μ(C�) = s−1 and arc-length
L�, and any x� ∈ C�, then

W1

(
1

s

s∑
�=1

δx�
, μ

)
= sup

f :Lip( f )≤1

∣∣∣∣∣
∑

�

∫
C�

[ f (x) − f (x�)] dμ(x)

∣∣∣∣∣

≤
s∑

�=1

∫
C�

|x − x�|1dμ(x) ≤
s∑

�=1

√
dL�μ(C�) =

√
d · L
s

.

We denote the resulting discrete measures by μs
cu and μs

ci, respectively (see Fig. 5).
In our tests, we use s = 3000 samples, which offers a satisfactory tradeoff between
computational time and accuracy for our range of degrees n. Indeed, the computational
cost of evaluating the objective (5.2) or its gradient grows linearly in s, while for
degrees up to n = 250, sampling beyond 3000 points has no effect on the output of
our algorithm for computing W1(pn, μs), see Fig. 5.

Now let μ = ∑s
j=1 λ jδx j refer to either μd, μs

cu or μs
ci. The semidiscrete opti-

mal transport between a measure with density p and the discrete measure μ may be
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Fig. 6 Asymptotics of pn and p1,n . For p1,n , the distance is computed with respect to the unweighted

measure μ̃s , that is μ̃s = 1
s
∑s

j=1 δx j where {x1, . . . , xs } is the support of μ

computed by solving the finite-dimensional optimization problem

max
w∈Rs+

f (w), f (w) =
s∑

j=1

λ jw j +
s∑

j=1

∫
� j (w)

(
∣∣x j − y

∣∣− w j )p(y)dy (5.2)

where the Laguerre cells associated to the weight vector w are given by

� j (w) =
{
y ∈ T

d : ∣∣x j − y
∣∣− w j ≤ |xk − y| − wk, k = 1, . . . , s

}
,

see e.g. [52, Sec. 5.2]. In our implementation, the density measure (and the Laguerre
cells) are computed over a 502 × 502 grid. We use a BFGS algorithm to perform the
maximization, using the Matlab implementation [59]; we stop the iterations when the
change of value of the objective goes below 10−9, or when the infinity norm ‖∇ f ‖∞
goes below 10−5. Note that this last condition has a geometrical interpretation since
the j-th component of ∇ f corresponds to the difference between the measure of the
Laguerre cell � j (w) and the amplitude λ j . We set the limit number of iterations to
100.

In the discrete case, our numerical results (see Fig. 6) show that the Wasserstein
distance W1(pn, μs) decreases at a rate close to the worst-case bound derived in
Theorem 3.3. This is also the case forW1(p1,n, μ̃s), which is coherent with the bound
given in the proof of Theorem 4.9. In the positive dimensional cases, one would
need to compute the Wasserstein distances for degrees larger than n = 250 to be
able to reliably estimate a rate, but this would require better optimized algorithms, in
the spirit for instance of [36], which goes beyond the scope of this paper. Still, our
preliminary results seem to indicate that the rates for Fn ∗μ and Jn ∗μ in the positive
dimensional situation are similar to the ones for discrete measures, but with better
constants, see Fig. 6. For p1,n on the other hand, although the theory does not foresee
weak convergence in that case, if it were to occur, our results indicate that the rate
would then be worse than in the discrete case.
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6 Summary and Outlook

We provided tight bounds on the pointwise approximation error as well as with respect
to the 1-Wasserstein distancewhen approximating arbitrarymeasures by trigonometric
polynomials.We recently generalised this also to the approximationwith respect to the
p-Wassersteinmetric where stronger localised kernels are used [8]. Future workmight
address the truncation of the singular value decomposition in Sect. 4 if the support
of the measure is only approximated by the zero set of an unknown trigonometric
polynomial or the available trigonometric moments are disturbed by noise.
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