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Abstract

In 2011, Armentano, Beltran and Shub obtained a closed expression for the expected
logarithmic energy of the random point process on the sphere given by the roots
of random elliptic polynomials. We consider a different approach which allows us to
extend the study to the Riesz energies and to compute the expected separation distance.
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1 Introduction and Main Results

Elliptic polynomials, also called Kostlan—Shub—Smale or SU(2) polynomials, are
defined by
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Constructive Approximation

where a,, are i.i.d. random variables with standard complex Gaussian distribution.
These polynomials appeared first in the mathematical physics literature [17, 18, 28]
and were readily studied from a mathematical point of view [31, 38]. One reason
for the interest in these polynomials is that the random point process on S* given by
the stereographic projection of the roots of elliptic polynomials is invariant through
rotations. Moreover, it is the unique point process given by zeros of random analytic
functions with this property [40]. Among its many interesting properties, especially
relevant are the connections, studied in [38], with well conditioned polynomials and
with minimal logarithmic energy points.

The Riesz or logarithmic energy of a set of N different points xq, ..., xy on the
unit sphere S* C R3 is

Eg(x1, ..., xn) = Y follxi = x;,
i#]

where f(r) = r=* fors # 0 and fo(r) = —logr are, respectively, the Riesz and
logarithmic potentials. We denote the extremal (minimal or maximal) energy attained
by a set of N points on the sphere by

min, e Eg(xp, ..., xy) ifs >0,
max,, 2 Eg(x1,...,xn) ifs <O.

gs(N) = {

..... XNE

The condition number of a univariate polynomial, defined by Shub and Smale,
is a measure of how much the roots of a polynomial change when perturbing the
coefficients. It was shown in [39] that points of almost minimal logarithmic energy,
s = 0, are the roots of well conditioned polynomials. In [38], the authors also proved
that, with high probability, elliptic polynomials are well conditioned, see [7, 9] for a
deterministic example. It was therefore natural to study the expected energy of the zeros
of elliptic polynomials. This was done in [3] where the authors obtained the following
closed expression for the expected logarithmic energy of random points xp, ..., xy €
S?, images by the stereographic projection of zeros of elliptic polynomials,

1 1 1
E[Eo(x1, ..., xn)] = (5 — 10g2) N2 — SN logN — (5 — 1og2) N. (1)

The asymptotic expression above is indeed very close to the minimal logarithmic
energy of N points on the sphere, see Sect.4. Working in a more general setting in
[43—45] and [25] for the geodesic distance, the same expression (1) was obtained but
with a o(N) remainder. See also the recent [35] where the authors study fluctuations
of the logarithmic energy. Our main result is an extension of the above result (1) to
the Riesz s-energies for s < 4.

Theorem 1.1 Let x1, ..., xy € S? be the image by the stereographic projection of N
points drawn from zeros of elliptic polynomials. Then,

(1) fors <4,s #0,2and a fixedm > 1,

E[Es(x1,...,xNn)]
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(i) Moreover, the energies with s = —2n for integer n > —1, can be computed
exactly: For s = 0,

MMmmwm=G—mQW—NWN—G—m0N 3)

2 2
Fors =2,

N—1
Nm

4
j=1

]E[EZ(-xl, ey .XN)] = —

ZI&
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\.
\_/
W
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Fors = —2n,n>1,

E[E—2n(-xls ce -xN)]

:22"N2<1—n—nZ%)
2n aR m m n—1
+ 2% N )/+Z( )(—1) ‘/’(ﬁ><n+1m+l> .6

Inthe above result, y is the Euler—Mascheroni constant, Bgﬂ ) (p) are the generalized
Bernoulli polynomials defined by

2p X 2j
t t 2p)
e =% ——B(p)
(e’ - 1) ;0 @i

for 1] < 27, with BS” (p) = 1,

o]

1
(s,a) = — Ms>1,a¢Z
‘ J.X:(:,(J +a) #ls

@ Springer



Constructive Approximation

is the Hurwitz Zeta function and ¥ (z) = I''(z)/ I'(z) is the digamma function.
By considering two terms of the asymptotic expansion of the Hurwitz Zeta function

o (=D ()¢ (s + k)
E(s,1+a)=’§ . a*,

for |a| < 1ands # 1[36,25.11.10] and taking m = 1in (2) we get, for 0,2 # s < 4,

1—s

2
ELE,(x1, oo x)] = 5— N2 4+ CEON2 4 ls—6C(s _ )N

— S

+0(N_1+S/2), (6)

when N — oo, where

=230+ Dr(-3)e(-3)

Remark 1 The result above for the expected Riesz energy allow us to compare the zeros
of elliptic polynomials with other point processes, for example in terms of expected
p-moments of averages. Indeed, from Khintchine’s inequality [30, Theorem 3], it
follows that

N 14
E Z X; ~ Np/2
i=1
when x1, ..., xy are uniform i.i.d. points on the sphere S?and1 < p < oo. For points

drawn from the spherical ensemble, for which there is repulsion between points, it
follows from

N N 2
Do —xjP=2N" =2 xf . (8)
and the results about the expected Riesz energy s = —2 in [1], that the expected 2-

p
moment is bounded. Therefore for the spherical ensemble E Hlez | Xi ‘ ] is bounded

for 1 < p < 2, and numerical simulations suggest that the same holds for p > 2. In
our case, for zeros of elliptic polynomials mapped to the sphere by the stereographic
projection, it follows from (5) and the asymptotic expansion of the digamma function
that

2
73

E =4+ o(N7h ©)

N
D
i=1
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Fig. 1 Plot of 4¢£(3)/N and realizations of | Z,N=1 X |2 for natural N up to 1000

as N — 400, and the average p-moments for 1 < p < 2 converge to zero (Fig. 1).
Again, numerical simulations suggest the same behavior for p > 2. It is well known
that minimal logarithmic points have center of mass in the center of the sphere, i.e.
have zero dipole, [19, Corollary 6.7.5], [12]. Therefore, the behavior of the expected
p-moments matches the particularly low logarithmic energy of zeros of elliptic polyno-
mials. For the comparison with minimal and expected energies of other point processes,
see discussion in Sect.4.

In our last result, we compute a closed expression for the expected separation
distance between points drawn from zeros of elliptic polynomials mapped to the sphere.
The separation distance of Xy = {x1, ..., xy} is defined by

sep(Xy) = min |x; — x;|,
i#j
and its counting version by G(¢, Xn) = #{i < j : |[x; — x| < t}. Recall that energy
minimizers have a separation distance of order N -2 [19, Section 6.9].

Theorem 1.2 Let Xy be a set of N—points drawn from zeros of elliptic polynomials
mapped to the sphere by the stereographic projection. Then

N2 N 2N?
E[G(I,XN)]=T—E+ N
8@~—ﬂ)<¢#ﬁ) —1>
2N

x| 8—1*—1>N — (10
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Fig. 2 x marks correspond to the values of the minimal separation for realizations of N elliptic zeros for
natural N from 10 up to 1000. The continuous graph are cN —3/4 forc = 1.89 (yellow) and 3.27 (brown):
using Chebyshev’s inequality at least 90% of the realizations are above yellow and at least 10% above
brown (Color figure online)

Therefore,

3.4

N-t
E[G(, Xn)] = Tag (Lo, (11)

ift = o(l/ﬁ), and moreover
3t4

E[G(, Xy)] < 128

12)

fort <2.

Note that sep(Xy) < ¢ implies G(¢, Xy) > 1, hence P(sep(Xy) < 1) <
P(G(t, Xny) = 1) < E(G(¢, Xn)) and therefore, as in the harmonic case, see [11],
an N-tuple drawn from the zeros of elliptic polynomials likely satisfies sep(Xy) =
Q(N73/%), cf. Figure2. See also [1, Corollary 1.6] for the analogue result for the
spherical ensemble.

1.1 Organization of the Paper
In Sect.2 we compute the 2-point intensity function of our point process and explain

how to compute the expected energy. Section 3 contains the proof of our main result,
Theorem 1.1. In Sect. 4 we deduce some bounds for the extremal energy and compare
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our bounds with previous results. Finally, in Sect.5 we prove Theorem 1.2 about
separation.

2 Intensity Function and Expected Riesz Energy

In this section we compute the 2-point intensity function of the random point process
on S? corresponding to the stereographic projection of the roots of random elliptic

polynomials
N
N
Pyn(z) = ",
N (2) nE_()%,/(ﬂ)z

where a, are i.i.d. random variables with standard complex Gaussian distribution.
Let F(x, y) be a measurable function defined on S? x S? whose variables will be
considered in C through the stereographic projection, i.e. F(z, w) = F(x(z), y(w)),
with the points x, y € S* corresponding to z, w € C. By Campbell’s formula [24,
(1.6)],ifx1,...xy € S? are the images of the zeros z1, . . . , zy of elliptic polynomials,
then

B Y Fen | =B| Y PG| = [ [ Fewnt
i#] i#]
(13)

with p2(z, w) the 2-point intensity function. Following [29, Corollary 3.4.2], the inten-
sity function can be computed as the quotient of the permanent and the determinant
of some matrices

per(C — BA™!B¥)
= 14
02(21, 22) det(rA) , (14)

where A, B, C are the 2 x 2 matrices with entries

A, j) = E[Py(zi) Py (z))],
B(i, j) = B[P} (z)) Pxn (z))],
Ci, j) = BIP}(z) Pl (z))].

It is easy to see that when F is rotational invariant we get

E|> F(xi.x;) :n/(CF(Z,O)pz(Z,O)dZ. (15)
i
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Fig.3 ;—i(pz(r, 0) — p1(r)p1(0)) forr > 0and N = 10

Therefore, it is enough to compute p;(z1, z2) forz; = z € C and z; = 0. The matrices
in (14) are then

Ao ((1 + 12N 1)7

1 1
= 2\N—1
B:N(Z(”'E') o)’
z 0
2yN-2 2
C:N((1+|z|) 1(1+N|Z|)i>’

and we obtain

T (4PN -1 (I+[zHV -1
721+ zHN = 1]

2 “1\2
N2 [(1 Lzlz) 1+ zHN-2 + (1 _ NEzPA+zY ‘) }

p2(z,0) =

’

see [28] and Fig.3 where one can notice that this point process is not determinantal
(129, p.83)).
Using the relation with the chordal metric

o 2z—w
VIH1P/T+w?

|x — ¥l
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we get

2|z|
T p2(z,0)dz
|z]

14|z

E[Eo(x1,...xn)] =7 /(; Sfo(z, 0)pa(z, 0)dz = —n/Clog <

= —2N? oorlo —2r (r)dr
B 0 & V1+r2 4 '

and for s # 0

2 —S
E[E, (1, xn)] = 7 /C iz 0)pa(z, 0)dz = 7 [E <ﬁ) (2, 0)dz

(16)
o0
:21—51\/2/ A+ )y (),
0
where
2 201229 N—1\2
(1- ) A+ N2 4 (1= Mot
y(r) = (I4r=)N —1 (I4r=)N —1 (17)

(14N —1

In the logarithmic case, one can compute directly a primitive function that leads to the
correct energy (1). However, we will compute the expected logarithmic energy as the
limit of the Riesz case at s = 0.

3 Proof of Theorem 1.1

In this section we prove first our general result (2) with the auxiliary Proposition 3.1.
Then we prove the cases (4), (5) and finally (3).

Proof To simplify the notation we write E[E,] instead of E[E (xq, ..., xy)]. The
change of variables r = /x in (16) yields

N2 /m x—s/2(1+x)s/2
0

HEI=50 ), arov =P

> [((1 0N 1 —Nx)2(1 4+ x)N-2

+ ((1 +0N - 1-Nx@ +x)N1)2:| dx.

The integrand is equivalent to x> at infinity, which is integrable, and to x'~%/2 at
x = 0, which is integrable iff 1 —s/2 > —1. Then, the energy will be finite iff s < 4.

Now let us compute the integral. We take r = s/2 for simplicity, so we will be
assuming r < 2 throughout the proof. Using that ﬁ = % Y e, kk — 1x~%+D
for x > 1 and the fact that all the terms are positive we get

@ Springer



Constructive Approximation

E[E>/]
)r—N(k+l)

N2 = © (14 x
=— Y kk-1 | —2
2+l ,(2:; ( )fo x"
x [((1+X)N—1—NX)2 (0N 4 ((1+x)N—1—Nx(1+x)N_l>2} dx

2 M

N
=—— 1 k(k—1
7T i, 2 k= D)

dx

/00 [(1 427 727N 4 (1 40 V6] (40N — 1)
0

xr

Ag

2N fomxl—r [(1 +x) "Nk (g +x)’—1—N’<] ((1 + 0N - 1)dx

By

o0
—|—N2/ X2 [(1+x)r*2*N"+(1+x)f*2*N<k*‘)]dx . (18)
0

C

Using the following integral representation for the beta function (see [27, 8.380 (3)]),

B(x,y)

r r 00 tx—l
—M—/ dt  x,y>0,
0

T Tx4y) (1 +1)*+y

it is immediate to obtain By, Cy in (18)

By =BQ2—r,Nk—1)) — B2 —r, Nk)
+BQ2—r,N(k—1)—1)— BQ —r, Nk — 1), (19)
Ci=B@B—r,Nk—1)+BB3—r,Nk—1)—1), (20)

SO

—2NBy + N*Cy
- |:—2N( T(Nk — 1) TNk I'(NGk—1)—1)
F(Nk—1D+2—r) TWNk+2—-r) T(Nk—D+1-—r)

_ (Nk—1) )+N2(2_r)< FWk—1  TOGk-Dh-1D )]
T(Nk+1—r) I(Nk+2—r) T(Nk—1)+2—r)
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To compute Ay we integrate by parts. Let 8 € {r —2 — Nk, r — N(k 4 1)} denote the
exponentin (1 + x). If r # 1,

[ B N _1)? )
/ LRE2 Rt dx = — (14 x)f ((1 +0N - 1)2‘
0 x’ 1—r 0

L [T [ﬂ(l + x)f! ((1 + 0N - 1)2+2N(1 + x)P NI
1—r 0

x (L+x)N —1)|dx

(a+0¥-1)]

_ ! [ﬂ[ooxl—’(1+x)ﬁ—1 ((1+x)2N—2(l+x)N+l)dx
0

1—r

+ ZN/OOxl_r(1+x)ﬁ+N_l ((1+x)N - 1) dx]
0

=1_—1[/3(B(2—r,—ﬁ—2N—1+r)
—-r

—2BQ—r,—B—N—-14r+BQ2—r,—B—1+7)
+ ONBQ—=r,—B—2N—1+r)—BQ2—r,—B—N —1+71)]

=B(l—r,—B—2N—1+r)
—2B(l—r,—B—=N—14r)+BA—r,—B—1+7).

Then

Ay =B —-r,Nk—=2)+1)—2B(1—r,Nk—1)+ 1)+ B(l —r, Nk + 1)
+ B —r,Nk—=1)—1)—2B(1 —r,Nk— 1)+ B(1 —r,N(k+ 1) — 1),
(2D

or, in terms of the gamma function,

P PNG=2+1) , T(NG=D+1D) I'(Nk+1)
k=T _r)|:F(N(k—2)+2—r)_ T(Nk—1)+2—r) T(Nk+2—r)
PNG=D -1  T(Nk—1) F(N(k+1)—1)}

Ntk —1)—r) I'(Nk—r) T(Nk+1) —r)

provided that » # 1. The case r = 1 will be studied as the limit r — 1.
Therefore, for r # 1, writting all together

N2 M T(N(k—2)+ 1)
ElE2] = 2y fim, L;k(k - bid—=n (I‘(N(k —-2)+2-7r)

TNk —1)+1) T'(Nk + 1)
T(Nk—1)+2—7r)  T(Nk+2—r)

FNG-D—1  T(Nk—1) F(N(k—i—l)—l))
T(Nk—1)—r) T(Nk—r) T((NG+1)—r)
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S PG = 1) (VK
+k§k(k_ bre=n <_2N (F(N(k— D+2—r) T(Nk+2—r)
(NG —1)—1) I(Nk — 1)
T(Nk—D+1-7r) F(Nk+1—r)>

(22)

+N2(2—r)< '(Nk—1) n 'Nk—-1)—1) )):|

I(Nk+2—=r) T(Nk—=1)4+2—r)

The sums get simplified by using the property I'(z 4+ 1) = zI'(z) and changing the
indices in such a way that all quotients have the form I'(Nk + 1)/ T'(Nk+2 —r)

E[E>]

_Td—-nN? 2 2rT (Nk)

=T e Mlinoo|:r(2—r)+1;(1_r+Nk(l+r))F(Nk+2—r)
C(N(M —1)+1)
T(NM —1)4+2—7)

M+ D(r(N(NEM —3) —2M +2) — 1) —=2(N = DN(M — 1) + (N — 1)*r?)

—(M+1)M

N(NM — 1)
L _TovM 41 MM —D)(NM+1) —r)Y(NM+1)+1—7)
T(NM +2—r) NM+1D)((NM+1)—1)

T(N(M+1)+1) ]
CINMM+1)4+2—r)

Taking the asymptotic expansion of the terms in M as M — oo, we get

BlEy)= gt F2UED Y TNk 2

M— o0

(1 —r)N? 2 M PNk +1)
r2—r

+2r(1 - r)z F(Nk(ivl;) 52 +r)N"IM”

— PN+ Ne = N2 (23)

Applying Proposition 3.1 below we obtain the following expression for every r # 0, 1
withr < 2

E[EZr]

Ta-nN? | 2 " B (51— )y
22r+1 re-—r) +2r(l+7) Z Q2

2
_ 2’1 _Nr12]
;( r+2j +2N>
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m—1 pr—=1) ,r—1
By ' (55)(2 — )2 1—r
+2r(l—r) )y . ¢<2—r+2j,1+ )
o @n! 2N

x N'™272 1 0 (Nr—1—2m>i|.

Writing the expression in terms of s = 2r yields the result (2).

Now we prove (4),i.e. r = 1 from the case r # 1. By continuity, the evaluation of
the integral at the beginning of (18) can be performed by taking the limit » — 1 in
Ak, By, Ck, that is, in both sums in (22). The only tricky limit is the first one. It can
be computed using the asymptotic expansion

1 1 Y@
F'a+y) T@ T()

y+o(y),

for y — 0, where a will be a natural number. Considering y =1 —r,

) [ C(Nk—2)+1) 2I(N(k — 1)+ 1)
lim I"'(y) -
y—0 'Nk—=2)+14+y) T'(Nk—D4+1+y)
'(Nk+1) C(Nk—1)—1)
'(Nk+14y) T(NGKk-1)—1+4+1y)
'(Nk—1) I'(Nk+1)—1)

'(Nk—1+41y) F(N(k+1)—1+y)]
=—yYyWNG*k-=2)+D+2¢y Nk -1 +1)

—Yy(Nk+1) =y (Nk—=1) -1 +2y(Nk—=1) =y (NKk+1) — 1),

and we get from (22)

2 M
E[E2] = 1;]—3 Mlg)noo [Zk(k DY NGE=2)+ 1) +2¢ Nk —1)+ 1)
k=2

—YyWNk+1)—yNGk—-1) -1 +2¢y(Nk—=1) =y (NKk+1)—1))

M
> k- 1) <—2N( PV(k—1) TR T(VGE=)-1)
k=2

[(N(k—1)+1) T(Nk+1) T(N(k— 1))

_F(Nk—1)>+N2<F(Nk—1) n F(N(k—l)—l)))] (24)
['(Nk) I'Nk+1) T(WNk—-—1)+1)
The first sum in (24) can be rewritten as
M
= Zk(k —D(—y(NEk=2)4+1D+2¢y Nk —-1)+1) — Y (Nk+ 1)
k=2

— YNk -1 —1)+2¢(Nk—1) —¢y(Nk+1)—1))
=M+2)M+DYy(NM + 1)+ M+ DMy(NM — 1)+ 1)
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M
—2(M + DMY(NM +1) =23 YNk + 1) + (M + DOMy(NM — 1)
k=0

M
— MM~ DY(N(M +1) = 1) =2y (Nk— D),
k=1

while the second becomes

< C(N(k —1)) [(Nk) TNk —1)—1)
¥ o= ,;k(k —1) (—2N (F(N(k 4D Tk D T TwGE= D)

PNk - 1)) N (F(Nk— D TNG—1D - 1)))
T'(Nk) T(Nk+1)  T(NGk—1)+1)

M 1 1 1 1
:Zk(k—l)(—2N<———+ - )
~ Nk—1 Nk Nk-1)—1 Nk—1

+N2< U 1 1 ))
Nk—1 Nk ' Nk—-1)—1 Nk—1)

M YY) 2 2 _ A2
sz(k_1)<21v N?> 2N+N? @N+N%) (2N N))

= Nk Nk-—1) Nk —1 Nk —1)—1
MIokNQ+KN) MM —1) M2k N(=2 + kN)
= — 2N — N2 it S M 4
2. Nk TN N N+ Nk —1
k=1 k=1
M—1
MM —1) 5 2
T JON+NH =M - DA +N)— =
v GV N =—(M = D@E+N) N;k_%
L MM —DN@+N)
NM —1 '

We will use the functional relation ¥ (x +1) = ¥ (x) + )lc for the digamma function,
which allows us to obtain, for instance,

Mzl 1 1
(D) ()
2y v v

Using this we get

2 1 1
Ezz—(M—1)(4+N)—N<1//<M—N)—t/f<l—ﬁ>>

MM — H)NQ2 + N)
NM —1 ‘
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We can simplify X1 with the same property. Since

M M
Zlﬂ(Nk—l):Z(l//(Nk+1)—;_L>
Nk—-1 Nk)’
k=1 k=1
then
M M
23 Wk + 1D =2 YNk - 1)
k=0 k=1
Yo
=2y — 4Z¢(Nk+l)+2¥ — Zgﬁ
:27/—4Z¢(Nk+1)+3( <M+1 i)
k=1 N N
| 1 2 M1
—1ﬁ< _N>>+N(1/f( +1)+y).
Therefore,

Li+E=M+2)M+DYy(NM+ 1D+ M+ DMy(NM - 1)+ 1)

—2M + DMYy(NM + 1)+ (M + DMy (NM — 1)

2 1
—M(M—I)III(N(M+1)—1)+2V+N(W(M+1—N)

—v (1—i))Jr%(l/f(MJrl)—i-V)—(M—1)(4+N)

N

2 1 1 MM —1)NQ2+ N)
_N(w<M_N>_‘”(1_N))+ NM 1

M
—4) YNk +1).

k=1

From the relation [27, 8.365 (6)],

M N .
ZWNHD—%Z w( )+MlogN
k=1 k=1 j=1

1 N M
NZ w( )+MlogN.

j=lk=

~.
—_
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Summation by parts gives

M . . M—1 .

/) = J) - Sy S
];1//<k+ﬁ)_M¢(M+N) 2 <¢(1+1+N> ¢(1+N>)z
j M-1 i

=M1/1<M+—>—
N = Ity
j j ]
=M M+ =)—-(M -1 — -
w( +N) ( HN,;H#
_ I m— el EAN S
M¢<M+N) M — D+ <¢<M+N> 1//<1+N)>
J J J J
_<M+N ¢<M+N>—N1ﬂ<l+—)—(M—l)

forevery 1 < j < N and then

i+ Z=WM+2)M+DYNM+ 1)+ M+ 1My (NM — 1) + 1)
—2M + DMy (NM + 1) + (M + )My (NM — 1)
—MM—-DYy(NM+1)—1)

1

2 1 2
+2y+ﬁ<w<M+l—N>—w(l—ﬁ>>+ﬁ(¢(M+l)+y)

2 1 1
—(M—l)(4+N)—N<w<M—ﬁ)—¢(l—N))

MM —1DNQ2+N) 4 j j
LI Vi _ﬁ;<M+ﬁ>‘”(M+N>

N . .
4 J J
N Ly 1+ ) +4M —1) —4MlogN
+Nj_1N1p(+N)+( ) og

=—-MM—-DYy(NM+1)—1)+2M+ Dy (NM + 1)
MM +1)

+M+DMYy(NM —1)+1) — N

+(M—1)((N2+2N—1)M—2)

2
N1 + M1 = N(M = 1)

N . .
4 J J
—4MlogN — S M+ L)y (m+L
* N§< +5)v (v 5)
N

45~ J j 1
WZN‘”(”NWV(”N)'

j=1
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Using the asymptotic expansion ¥ (z) = logz — zl_z - # + 0 (z"‘) as z — 00, we
obtain

N
3 4 X
S 4+ = —1— > +2log N O(M*‘) -y L
1+ 22 N+ og N + +Nj_1lef
oy (14
y v )
Then
NZ
BLEa) = g Jim, [0+ %]

N2 3 4 & J 1
= -1=-242l0eN+—-S"Ly(1+L)+2p (14—
>3 v T2z +N]§_1Nw(+N)+ y(+N>

N2 3 a1 a Xy o 1
= -1= 2 4210gN+ =L N Ly (L) oy (14—
23 N Feloe +N;1 N+N§Nw<N>+ y<+N)
[ —
=N

N
N J J
=% (3N 3+2N10gN+4JE_1Nw <N> +2y (N+l))

N

N—1 .
=5 (3N—3+2NlogN+4 1{/1//<1<]>+2y(N—1))

Finally, using
N—-1 . . . .
J Y N T J mj
Yy l=)==Z(N-1)— =logN—= Y cot|=]),
Nl/f( ) (V=D =7 loeN =7, NCO(N)
j=1 j=1
[16, (B.11)], we get (4)
N—-1
Nm j wj 3N?> 3N
E[E2]=—Tzﬁc0t<—>+———.

° N 8 8
j=1

To compute E[E_»,] and E[E(], we start observing that for r < 1 formula (23)
yields
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22 T'(Nk+2—r)

ad I'(Nk)
> F(Nk+2—r)>

k=1

N2 o0
BiEy, ] < A=V (r(zl . )Z PWNEED

since both sums are convergent in this case. Using the expression of the beta function
in terms of gamma function and the monotone convergence theorem, we get

N

N%2 [/ 1 ! ot
IE[Ezr]:27<Tr‘|'7‘(1+1’)‘/0 1—-1 rl—l‘th

1
1 tN—l
+rf0 (1-;)1—r1_tN dt). (25)

For r = —n, the energy is

1 1 N
E[E_y,] = 2'"N?[ —— —n(1 — / 1—1)" dr —
[E_2.] <n+l n(l=m) | (1= 0" g di=n

I

1 thl
X/O (1-[)]+nmd[>. (26)

I

To compute /1 and I, we will use the following integral representation [27, 8.361 (7)]
for the digamma function

ltzfl_l
l/f(Z)Z/ —dt — vy, 7> 0,
0 t—1

from which we get

1 a0 1 @+)/N=1 _ 1/N—1
t 1 1
| imma=y [ 2 A
0 11—tV N Jo 1—y

DR @

for any @ > —1. Then
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[ G- [

th+m_1
m=0 m:O< )( 1) — «
m m—+1 1
= 2 (e ( (—N “1)-v(3))

Q)

where we have used ) _ ( )( 1)™ = 0 in the second and last equality. Applying
Yx+1) =v¢vx)+1/x,

=__Z< )( D™y <mT+l>+”§)< )( 1)’"“ml+1

and it is trivial to check that the second sum equals —1/(n + 1).
The integral I can be computed in a similar way

1n+l tN H_m_l n+1 m
12—/ < )( i = ( )(—D’"vf M
m=0 — Y Z <N )
n+1 n+l
:%(V_Z(’Hl)( 1),%( )>+Z(n+1>( l)m+11

m=1

where the second sum is Z"'H , as stated in [27, 0.155 (4)].
Finally from (26) we get (5)

E[Ez]zthZ[;_n(l_n) RS n>(_1)mw(m+1>_ 1
1 n+1 n+1 . m n+11
_"(N(V_mz_l<m)( ”‘”(ﬁ)>+ .

1
_ 21 _n(n—l)_nn+l
n+1 n+1 —m

o ntl n+1 m m n—1
+22uN y+Z< N )( "y ﬁ><mm+l> .

m=1
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In order to compute E[Ep], i.e. formula (3) from [3], we take the derivative of
E[E,] at s = 0. Consider the continuous function

_ | E[E2 ], forr #0,
8(r) = {Nz—N, for r =0,

where r = 0 matches the Riesz 0-energy, which trivially is N> — N for any configu-
ration of points. Then

1
E[Eo] = zg/(0)~

Since g’(0) exists, we can derive it by restricting to r < 0

—g(0
Z(0) = lim g(r) —g( )’
r—0— r
where
g(r) =277 N? L+r(1+r)/l(1—r)’ o dt
l—r 0 l—tN
1 | tN_l
1—-0~" dr |,
+r/0 ( ) R )
according to (25).
Then
1 N
lim g(r) = N>+ N? lim r(1~|—r)/ 1-0" dt
r—0- r—0- 0 1—1tN
) 1 | IN_I
N° 1i 11— " dt
im0t
1 N
=N24+N%1lim r(+r) | A=0)" dt,
r—>0- 0 1—1tN

because (1—7)1~" 1+ (1—¢t)whenr — 0~ and fol(l —t)% dt < oo. By continuity,
we also have lim,_,o- g(r) = g(0) = N2 — N, so we deduce that

! N 1
li 1-07" dt = ——. 28
r—lj})l* r/o ( ) 1 —1tN N (28)
Therefore,
rd+r) rl —r_tV 1
g T =0T ey di+
v == log ¢ i r
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[Nl

1
+ lim ;Tfo(l N o
r—0— r
r ol —r N 1
==t dt + <
= (1 —log4) + lim = Jo N
r—0— r
1 N
li 1—-0H7" dt
+rirg—r,/() ( ) 1 —tN
=—1/N by (28)
r 1 —r N 1
~2r fo (1 _t) 1—tN dt + N
I=D—gdr=(—logd) + I 2
f( ( og4) + im -
I3

1 1
—N—N<1/f(1)—1/f< —>> (29)

where we have applied (27).
It remains to compute the limit /3

1 _ N 1
# Jo1=1) (ﬁw—m) di

I3 = lim
r—0— r
1
1 s Jo (=) = dt +1
+— lim o
r—0— r
1 N —2r
t 1 1 -2 1
—1lim [ (1= - di 4+ — fim =1
r—0~Jo 1 —1tN N1 —1) N r4>0_ r
/1 a ! dt + 2 log?2
= — — 10 s
o \T—/N “ N1 —1) N %
Iy

where the limit of the last integral is justified by monotone convergence theorem.
Using (27), we obtain

N—-1_j N—1 ,
1 leN—Z;:o t/ 1 LyN _4j
——dt dt

0

z| =

1 1 1N+
=‘ﬁ‘”(”ﬁ)+—z._o‘”<—N )
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where we have used that ZN 01 W (JT> =—NlogN —yN.
From (29) we finally get

2E[Eo]

1 1 1 2
=)= —logd) N> + N> ——v¢ (1+— ) —— (log N Zlog?2
g (0)=( og4) N° + Nl/f +N N(og +y)+N0g

—N—-N (yf 1) —y (1 + %)) =(1—1log4) N> — NlogN — (1 —log4) N.

O
Proposition3.1 Letr <2 andm > 1. Then
M M
['(Nk + 1 I'(Nk
lim |:2r(1+r)2¥+2r(1_r)24
M=o0 = T(Nk+2—71) = T(Nk+2-r)
— 200+ N"'M" —r(N+r+Nr— r2)N’_2M’_1:|
. m— 1B§7( )(l_r)sz“‘*zf .
SR My f(—r“ o)
B r=1
By ()2 =1y, 1—r
+2r(1—r)Z @i N c(2-r+2i 1+ —
+0 (Nr7172m> (30)

as N — +o0.

Proof We will use the following Fields’ approximation for the quotient of gamma
functions, see [36, Eq. 5.11.14] or [26]

_ 2 _p—2j
FGc+a) "= BEP ()b —a)jw' b2

R 1o} a—b—2m ,
re+b & @) +0 (w72

as w — oo with |arg(w + p)| < 7w where a and b are fixed complex numbers,
w=z+pand2p =1+ a — b. Then,

M D(Nk+ 1)
D v s

T (Nk+2—7)

X

r—1 m— lB(r)( Y1 —7r)a; M 7 _ r—1-2j
r J r
—_— Nk
) D ey k;( +5)

j=1
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M 2 _ r—1-2m M 2y r—1
o[ Nk = N1 k
+,§ (( M) ) ) Z( * 2N>

1

k=1
D
+le By (A =rhy oy A I
| —oN1—r+2j
= @! im0 (k+1+%0)
Ej
Moo
—1-2
+ o (Nr m) Z k17r+2m ’
k=1
———
F
and
% T'(Nk) % S
ZT(Nk+2-r) &= 2
m—1 pr=1) r—1 M _2_2j
By (5h@2 -, L=\ 2
J 2 J
Nk
t2 @) Z( " )
j=1 k=1
f: ( _y r—2—2m 2M*1
+) 0 (Nk+ ) ):N’—
2 iz (k+1+
G
1 pr=1) r=1 M1
+'"Z By =y, Z’Z
; 2—r+2j
=R S
Hj
Mo
—2-2
+0<N" m)ZkZ—r+2m .
k=1
——

1

To compute the limit as M — oo, observe that £; — ¢ (1 —r+2j,1 —I—

€19

(32)

) and

H—>§( —r+2j, 1+ )forj>lsmce1—r+21 2—r—|—2]>1The

sums F and [ are convergent and G can be written as (see [36, Eq. 25.11.5])

1—r

M 1—-r\"
1 1—r (M+W
Zj=§<2_r,l+ 2N>_

> x — |x]

—2—-r) dx.

Mot (x4 14 0)
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The same formula holds to approximate D for r < 1

M _ M 2—r\"
Z—l =§<1—r,1+2 r>+( )

o k5 2N

PR N S

M-l (x+1+ 22;N’)2_r

dx, (33)

while if r > 1, by the Euler—-Maclaurin formula,

M 2—r\"! 1 2—r\"! 2—r\"!
= —_— d — M+ — 1
/1<x+2N> x+2<+2N) +<+2N)

—I—(r—l)/ Sl zl/rzdx

x+2N
—r\" 1 M\
R, R )
r 2 r
—m\r—1
+m_|_(r_1)fM de—(r—l)
2 () (< +5F)
y ! x—LxJ—1/2

o r 2 B r + 2
Moy~ x)—1/2 2-r\"!
el R ()
() ()’ 2N
N 1
L) (+%)
r 2
2—r\" 2;rr—l
/M x—le 12, 2—r>’1 34
Lo ) |

where the last integral converges for 1 < r <2 when M — 4o00to ¢ (1 —r, ZZ;N’) ,
see [36, Eq. 25.11.26].
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Using all the previous computations, we get

M M

, I'(Nk + 1) I'(Nk) .
lim |2r(1 2r(1 — —2(14+r)N"'M”
Mli“oo[ r( +r>kZ rvkr2—n T2 ’); rNkr2—p 2D
2 24 ,r—1 1 2-r\"!
—r(N Nr—rHN2M" | = lim |2r(1 N~ k
r(N+r+Nr—r) } Jim 1 2r(1+7) ;( + ZN)
B A -y M 12 A
+Z @n! : Z 2—p\1=r+2j O(Nrilizm)Zkl—H—Zm
i=1 I im0 (k+1+55) k=1
—1
1—-r\ (M+5%)
2r(l—r) | N2 2—r,1 - N
e r)< (;( ' +2N) 1—r

m lB(r D M—1

® QoG -lx) (SN2 = )y
_/ 3=r >+Z ’ @) Z

M1 (x+ 1+ 57) im0 (k+1+ 5

Nr—2—2j
)27r+2j

M
1
+0 (N2 3 M) ~2(1+r)N""'M" — (N +r + Nr — rz)N’_zM’_1:|
k=1

2 r—1
Jim |:2r(1+r)Nr 1Z(k+ 2Nr> —2(1 4+ 1N M

1—r
2N

-1
—2rN"2 (M—i— ) —r(N+r+Nr—r2)N’_2M’_li|

m— lB(r l)(r—l)(z_ ) .
+2r(l—r)z 2j (22j)‘ r)2j

i 1—r
N22e(2—r+2j,1
¢ r+2j5,1+ N

= 1B“( (1= r)o; 2
. r—1-2j _ r—1-2m
+2r(1+)2 i N ;( r+2j, 1+ 2N)+0(1v ).
(35)
Everything reduces to compute the limit appearing in (35). If r < 1, using (33),
1 M 2—r\"! 1
lim |2r(14+7r)N"~ k4+—— —2(1+r)N""'M"
Mgnoo[ r(14r) ;( + N ) 1+r)
1 _ 71
—2rN"? (M + oy ) —r(N+r+Nr— rZ)N’ZM”}
— tim |20+ N (e (1—r 14 20
T M=o 2N
M+ =Y 00 _
M) 1—-r) x - L — dx) —2(1+r)N"IM”
r M=l (x + 14 53F)

2—r
=2r(1 N le(1=r,1
r(l+4r) 4“( rol+ 2N>
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+2(14+7)N""" lim
M— o0

([ 557) )

2
=2r(1+r)Nr_1§' (1—r,1+ r).

2N

If r > 1, using (34),

M
2—vr

lim |2r(1+nN Y (k
Mgnoo[ ran k_1< TN

1 _ r—1
—2rN"? <M + 2—Nr> —r(N+r+Nr— r2)N’_2M’_1]

r—1
> —204+r)N""'M"

- |
= Tim {2r(1+r)N""! (M +35%) , (M+55)
M—o0 r 2

M -1 - -1 _ r—1
) R (2o ) s
2N

2
1 _ r—1
—2rN"? (M + 2—Nr> —r(N+r+Nr— r2)N’_2M’_1}

im |2 ontar (14 220) 24
Moo INM
2_r r-1 l_r r—1
Nr72Mr7] 1 l N_2 l
o <( +r)< +2NM> < +2NM)
—(N+r+Nr_rz))}
+2r(1 + )N~} L 2o 2\
r r é‘ r, N N

= lim [rN"zM’—l[(l +1Q =1+ A +1N—2— (N +7+Nr—r2)]

+0 (M’—Z)} :

2-r 2—r
2r(l+r)N" e (1 =7, 14— ) =2r1 N (1 1
+2r(1+r) C( r, 1+ 2N> r(14r) é‘( r, 1+ N >

where we have used that (s, a) —a™* = ¢(s, | + a).
Applying this limit on (35) we get the desired result.
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4 Bounds for the Minimal Energy Asymptotic Expansion

We will start this section by recalling some known results, and some conjectures, about
the asymptotic expansion of the extremal energy & (/N) attained by a set of N points
on the sphere S?. For a more complete picture see [19].

The current knowledge about the asymptotic expansion of the minimal energy is
far from complete even in the case of S?, but for s < —2 the situation is well known.
Indeed, the minimizers of the Riesz energy for s < —2 are points placed at each of
the two endpoints of some diameter (for even N), [15], and for s = —2, formula (8)
shows that any configuration with center of mass at the origin attains the maximum
2N2.

For 0 < |s| < 2, it is known that there exist ¢, C > 0 (depending on s) such that

1—s

2
— N2 < E(N) — > N%? < —CN's/2, (36)
— S

see [37, 41, 42] and [1, 21] for improvements in the value of the constants leading to
the bounds

21-s Ol —s/2
Es(N) — <- =5/ )N”W, if0 <s <2,
2—5 25 37)
21=s r(1—s/2
E(N) — > — ( <S/ )N1+S/2, if —2<s5 <0,
2—=s 28

which were obtained with the bound given by the expected energy of random points
from the spherical ensemble [1].
In the boundary case s = 2, it was shown in [22, Proposition 3] that

1 1 1
—ZN2 + O(NlogN) < &(N) — ZN2 logN < ZNZ loglog N + O(N?),
and the upper bound was improved in [1] to
1 Y N2
E(N) — ZN logN < ZN , (38)

where y is the Euler—-Mascheroni constant.
For the logarithmic potential, it is known that there exists a constant, Clog, such
that

VT _ —0.0556...,

1 2
—0.0569... < Cipg <2log2+ —log = + 31 =
< Clog <2log2 + 2 og -~ + 3log r(1/3)

3
for which

1 1
E(N) = (5 — 10g2> N? — 3 Nlog N + Ciog N +0o(N) as N — 400, (39)
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see [13, 33] and [10] for a recent direct computation of the lower bound. The upper
bound for Cjog has been conjectured to be an equality by two different approaches [13,
22].

For —2 < s < 4, s # 0, the asymptotic expansion of the optimal Riesz s-energy
has been conjectured in [22] to be, for s # 2,

21-s 3/2)%/ : ;

E(N) = N? (3/2) £As(8) 1 +o(N'"2)as N > 400, (40)
2 — (4m)s/?

where ¢, (s) is the zeta function of the hexagonal lattice, while for s = 2 the conjec-

tured expansion is

1
&E(N) = ZNzlogN+CN2+O(l)asN—> +00, (41)

where C = 1 [)/ — 1og(2ﬁn)] +¥211(2/3) — y1(1/3)] ~ —0.08577. Here, y, (a)
is the generalized Stieltjes constant in the Laurent expansion of the Hurwitz zeta
function ¢ (s, @) around s = 1.

It is clear that the minimal energy is always bounded by the expected energy with
respect to a given random configuration. Therefore, one can bound the asymptotic
expansion of the minimal energy by the asymptotic expansion of the expected energy.
This idea was used in [3] to get bounds for the minimal logarithmic energy using (1)
andin [1] to get (37) and (38). For other computations of expected energies in different
settings, see [2, 4-6, 8, 11, 20, 34]. From our main result, Theorem 1.1, we obtain the
asymptotic expansion (6) which is close to the conjectured expansion for the minimal
energy, see Fig.4, and we can prove the following bounds.

Corollary 4.1 Let C(s) be the constant in (7). Then
(1) For0 < s < 2, there exists an No = No(s) such that, for any N > N,

1—s

2—5

E(N) — N? < C(s)N'13/2,

(i) For =2 < s < 0 and a given € > 0, there exists an N1 = N1 (€, s) such that, for

any N > Nj,
21—s
E(N) = 5 N? = C(s)(1 + )N/,
— 5
(iii)) Forany N > 2,
N?logN 1 (3 )
E(N) — —7 < A log(2m) +y | N-. (42)
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\ °r
\ e (V3/2) 7, (5)
\ [ (4m)s/?
\ “r
' : L —s/2)
\\ : 5
\ 3 ——-— (2v2m)

1—,
Fig. 4 All curves are related to (%N2 — & (N)) /Nl'”/z. The dashed blue curve is given by the
conjectured valued for the second order constant, (40). The dotted yellow and the dash-dotted green curves

corresponds to [1] and [37], respectively, and the thick red is our constant (7)

Remark 2 These bounds improve (37) and (38) from [1]. In the proof we show also
that

N%logN 1 /3 N
E[E;] = Tg + I <§ —log(2m) —i—y) N? — N +0(1) as N - +o0,

see (46). In fact, it is possible to write complete asymptotic expansions of the energy
with the known asymptotic expansions of the cotangent sum (4), the so called Vasyunin
sum, see [14].

Proof For 0 < s < 2, from (6),

2—s
N1+s/2 - N1+s/2

— C(s) + %C(s — )N+ O(N"?) as N — +oo.

1—s 1—s
E(N) = 5N? _EIE] - 5N°

Since C(s — 2) is negative, the last expression is bounded above by C(s) for N big
enough.
For —2 < s < 0, using (6) again,

E(N)—3=N?  E[E]-3=N?
N1+s/2 = N1+5/2 N oo C(s).
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Therefore, given § > 0, for N large enough the right-hand side is bounded from below

by C(s) —§. Since the constant C (s) is negative, we can choose § = —e C(s) to obtain
the result.

For s = 2, the energy is (4):

N—1
Nrm

j wj 3N?2 3N
E[E;] = ——— —cot | — _ .
[E2] 4 2N <N>+ 3 3
j=1
We can rewrite the sum as
N—1 . . -1 . . N—1
j Tj Jj j 1 1
— —cot| =)= ——cot| — |- ———— |+ —
— N <N) , [ N (N) JT(I—J/N)} n(1—j/N)’
j=1 j=1 j=1
A B
(43)

in such a way that the term corresponding to j = N in the first sum is well-defined. Let

us apply the Euler—-Maclaurin formulato f(x) = g(x/N), with g(x)
)

a(l—x)"

= —xcot(mwx)—

N
A= "F() = f©O) = f(N)

Jj=0

0 N
/f()d W+—mm £10)]

+ I[f“)(N) ~ PO+ Ry

1
=N/ 2(x) dx — g(0) +g(1) 1
0
1

5 + 12N[g (D — g (0)]

— ol V(M =P 1+ Ry,

where B; are the Bernoulli numbers and Rf, is the remainder term, that satisfies

2¢(5) ) __205) / L ®
IR NI_ a3 Jy If ()| dx = 2Ny g (x)|dx. (44)

We get

Az_log(2n)N i+n2+3_ 7t +45 4

T 2 36N 5400m N3 +
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The second sum in (43) is

N—-1 N—1
N N 1 1
mianN N-—j i) JT( N N)

where Hy is the N-th harmonic number. Its expansion as N — o0, see [23]

|
Hy =log N — i
N=leN Ay + oy T N

where
1
45)

With these expansions, formula (43) reads

2 +3  at+45 A
_|_

= 1j 71] log(Zn)N+ 3 +
p NE N 27 36xN 54007 N3
+N log N + ! ! +R
o \loeN +y = o0 — o + Ry
1 72 7t +45
=—|NlogN log(2 N+1+— RE _— = 4 7Ry,
n[ OgN + (=logQm) + V)N + 1+ - + NRy — = o mm + N]
Plugging this into the formula (4), we obtain
N 3
E[E>(x1, ,xN)]=Z Nlog N + E—log(Zn)—i—y N 3
2 4
T Tt +45 1 s
- - = 4 7R
T3en T 5400 N3 T N]
N%logN 1/(3 , 1 (46)
=2 4+ (= —log2 N?——-N
1 T3 (2 0g2m) + 7/) 8
+n2+N2RfVI L #4451 CANRA
144 4 4 5400 N2 N
C D
Finally, from (45), we have
72 1 72 1 N
< <025 < =3

C<-— -
T 144 * 480N2 ~ 144 ' 480
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forany N > 2, and D < 0 because

2n§(5) / ), §(5) o n4 +45 1
N|R% dx AR
if N > 2. This proves (42). O

5 Proof of Theorem 1.2

Proof Since the function F(p,q) = 1j,—4|<s) is rotational invariant, we can apply
the formula (15)

2E[G(t, Xn)]

=E |:Z l(p[p/<r}:| = 77/ . 2(z,0)dz
L zeC, ===t

i i S
L (7 A+ 0N = 1= Nx)2 A+ 0N 2 4 (L + 0N — 1= Ne( 4 0)V-1)?
=N / dx,
0 (1 +x)N —1)3

where we have applied the change of variables r = /x. After a lengthy computation
one can compute a primitive of above integral to get

2E[G(t, Xn)]
5 ( s 1 s2+5) NStV
)2

l+s N (I+9)(A+sN=1) (145) ((1+ )N -

with s = 12/(4 — %) and then (10) follows.
Now we prove inequality (12). In terms of s, since 1> = 4s/(1 + s), it reads

N2 ([ 2 2s 252 +5) 2Ns2(1 4 s)N
4\ N Its A4+ (A+9Y =1)  (A+45)(1+9)Y 1)
N3s?
< 0.
~ 8(1+9)2

Then, with the substitution X = (1 + s)" — 1, we have to show that

l+s sQ+s) Ns?2(1+X) Ns?
— + <

N X X2 ~4(1+s)
and since s > 0,
143 2+
So N w1
Ns2 X X2~ 41 45)
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Rearranging terms and completing a square we arrive to

2
1 1 N —1)2 1
- Ns +—(—( ))+ )zo.

b% 2 4 N2 1+s

If N > 2ands > 0 are such that — W=D% + ﬁ > 0, then the above inequality is

N2
(N—-1)?)

. . 1 A . N2
trivially satisfied. Let now —*—=—+ 7= < 0, whichis equivalenttos > W~ 1.

We have to show that

1 EE—1 1 [(N=1)?) 1

X 2 2 N2 145
24s _1)2
1 ot Ljw=py 1) _,
X 2 2 N2 1+s |~
or, equivalently,
2, 1_1+§_ (N=1% 1
X N N2 1+
142 _1)2
3+ . + < N-D> 1 0.
X N N2 1+s

1+ [(N—12 1
1— > — >0
N N2 1+s
and both factors in the factorization above are non-negative for X > 0. O
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