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Abstract
We construct a non-polynomial generalization of the q-Askey scheme. Whereas the
elements of the q-Askey scheme are given by q-hypergeometric series, the elements
of the non-polynomial scheme are given by contour integrals, whose integrands are
built from Ruijsenaars’ hyperbolic gamma function. Alternatively, the integrands can
be expressed in terms of Faddeev’s quantum dilogarithm, Woronowicz’s quantum
exponential, or Kurokawa’s double sine function.We present the basic properties of all
the elements of the scheme, including their integral representations, joint eigenfunction
properties, and polynomial limits.

Keywords q-Askey scheme · Orthogonal polynomial · Confluent limit · Conformal
field theory · Virasoro fusion kernel · Ruijsenaars’ hypergeometric function ·
Quantum dilogarithm
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1 Introduction

An important tool in the classification of the different families of classical (basic)
hypergeometric orthogonal polynomials is the (q-)Askey scheme [25]. It provides
a tree (drawn upside down) of the different families of (q-)orthogonal polynomi-
als, where each downward oriented edge corresponds to an explicit limit transition
from one family to another. In particular, each family in the q-Askey scheme satisfies
orthogonality relations, a 3-term recurrence relation, and a second-order q-difference
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equation. At the top of the q-Askey scheme lies the celebrated family ofAskey–Wilson
(AW) polynomials [3] which additionally admits a duality relation exchanging its geo-
metric and spectral parameter.

The theory of hypergeometric series and integrals has four levels: rational, trigono-
metric, hyperbolic and elliptic, with increasing complexity. Moreover, there exist
formal limits of the form elliptic → hyperbolic/trigonometric → rational. The asso-
ciated Gamma functions are the ordinary one (rational), the q-Gamma function
(trigonometric, requiring |q| < 1), the hyperbolic Gamma function, and the elliptic
Gamma function. The Askey scheme and the q-Askey scheme describe the rational
and trigonometric levels, respectively. The q-Askey scheme has a trivial extension
to the hyperbolic level, with the families now consisting of products of polynomi-
als Pn P̃m , where Pn (resp. P̃m) corresponds to the associated family in the q-Askey
scheme relative to the base q = e2iπb

2
(resp. q̃ = e2iπb

−2
). However, in this case

the orthogonality relations break down when b ∈ R, which corresponds to the natu-
ral hyperbolic regime. Finally, there is no elliptic Askey scheme; however, there is a
fairly well understood theory of elliptic hypergeometric biorthogonal functions which
generalizes the classical basic hypergeometric orthogonal polynomials. For instance,
it was shown in [6] that all families in the q-Askey scheme are obtained as limits of
elliptic hypergeometric biorthogonal functions.

Non-polynomial extensions of (q-)Askey schemes have been less extensively stud-
ied in the literature. In particular, the first two levels of a trigonometric non-polynomial
extension of the q-Askey scheme were introduced in [28, 29]. The top-level family
generalizing the AW polynomials consists of a very-well poised 8φ7 basic hypergeo-
metric series called the AW-function (see also [9, 18, 23, 28, 59]). The q = 1 analog
of the AW-function is the Wilson function, which is a non-polynomial generalization
of theWilson polynomials [17]. The second level consists of the big and little q-Jacobi
functions, and both these functions arise as limits of the AW-function.

Our goal in this paper is to provide a complete hyperbolic non-polynomial q-Askey
scheme. In fact, we will only be interested in continuous (as opposed to discrete)
orthogonal polynomials and we will therefore only consider the part of the q-Askey
scheme originating from the Askey–Wilson polynomials shown in Fig. 1. Just like
the Askey and q-Askey schemes, the non-polynomial scheme we present has five
levels, see Fig. 2. Whereas each element in the q-Askey scheme is a family of poly-
nomials, each element of the non-polynomial scheme is a meromorphic function.
These meromorphic functions are given by contour integrals whose integrands are
built from Ruijsenaars’ hyperbolic gamma function [50] (alternatively, the integrands
can be expressed in terms of Faddeev’s quantumdilogarithm [14],Woronowicz’s quan-
tum exponential [62], or Kurokawa’s double sine function [37]). The non-polynomial
scheme is a generalization of the q-Askey scheme in the sense that each element in
Fig. 1 is obtained from an element at the same level in Fig. 2 when one of the variables
is suitably discretized.

Just like in the q-Askey scheme, the elements in the non-polynomial scheme are
joint eigenfunctions. Indeed, we will show that each meromorphic function in the
non-polynomial scheme satisfies two pairs of difference equations. In the polynomial
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Fig. 1 The part of the q-Askey scheme relevant for the present paper

Fig. 2 The elements of the scheme constructed in the present paper. It is a non-polynomial generalization
of the scheme in Fig. 1

limit, one of these pairs reduces to the recurrence relation, while the other pair reduces
to the q-difference equation.

The first (top) level of the non-polynomial scheme consists of a single function,
namely, Ruijsenaars’ hypergeometric function R1 [51]. Below this top level, there
are four further levels involving functions which can be obtained from R by taking
various limits; we denote these functions by H, S, X , Q, L, W , and M, where the
letters are chosen so that H is a non-polynomial generalization of the continuous
dual q-Hahn polynomials which are denoted by Hn in “Appendix B”, S is a non-
polynomial generalization of the Al-Salam Chihara polynomials which are denoted
by Sn in “Appendix B”, etc.

Each of the functions in the non-polynomial scheme depends on a number of param-
eters as well as two variables. For example,H depends on the parameters b, θ0, θt , θ∗
as well as the two variables σs, ν, while S depends on the parameters b, θ0, θt as well
as the two variables σs, ρ, see Fig. 2. As a matter of notation, we will refer to the

1 Ruijenaars’ hypergeometric function is usually referred to as R in the literature. However, we denote the
Askey–Wilson polynomials in (B.1) by Rn . Thus, to avoid confusion,we denoteRuijenaars’ hypergeometric
function by R.
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top level of the scheme (which involves R) as the first level, to the next level (which
involves H) as the second level, etc. Each function at levels 2–5 will be defined as a
limit of the function above it in the scheme. We will show that this limit exists (at least
for a certain range of the two variables). We will also derive an integral representation
for the function, show that it extends to a meromorphic function of each of the two
variables everywhere in the complex plane, and establish two pairs of difference equa-
tions (one in each of the two variables). Finally, we will establish the polynomial limit
to the corresponding element in the q-Askey scheme. Actually, two of the functions
in the non-polynomial scheme, namely H and S, possess two different polynomial
limits: H reduces to the continuous dual q-Hahn polynomials when ν is discretized
and to the big q-Jacobi polynomials when σs is discretized; similarly, S reduces to
the Al-Salam Chihara polynomials when ρ is discretized and to the little q-Jacobi
polynomials when σs is discretized.

The orthogonal polynomials in the Askey and q-Askey schemes are of fundamental
importance in a wide variety of fields. Elements in the q-Askey scheme have found
applications, for instance, in models of statistical mechanics [11, 56, 60, 61], in rep-
resentation theory of quantum algebras [1, 4, 15, 30, 31, 33, 34, 42, 43, 63], and in
the geometry of Painlevé equations [41]. We expect the functions in the proposed
non-polynomial scheme to also be relevant in many different contexts (see Sect. 1.1
for a related discussion). This is certainly true of the top element, Ruijsenaars’ R-
function. As an example of the broad relevance ofR, we note that one of the authors
recently showed [48] that R is equivalent (up to a change of variables) to the Vira-
soro fusion kernel which is a central object in conformal field theory [10, 45–47].
In fact, it was in the context of conformal field theory that we first conceived of the
non-polynomial scheme presented in this paper. First, in [38], we introduced a family
of confluent Virasoro fusion kernels Ck while studying confluent conformal blocks of
the second kind of the Virasoro algebra. Later, we realized that the Ck can be viewed as
non-polynomial generalizations of the continuous dual q-Hahn and the big q-Jacobi
polynomials, which led us to conjecture that there exists a non-polynomial general-
ization of the q-Askey scheme with the Virasoro fusion kernel as its top member [39].
In this paper, we prove this conjecture. However, instead of adopting the Virasoro
fusion kernel as the top element of the scheme, we use Ruijsenaars’R-function as our
starting point. The result of [48] implies that these two choices are equivalent, but we
have found that the scheme originating from R is simpler and mathematically more
convenient.

Let us alsomention that amore general degeneration scheme of hyperbolic hyperge-
ometric integrals was studied in [8, 9] (see in particular [8, Fig. 5.8]) whose top-family
consists of a hyperbolic hypergeometric integral depending on 8 parameters and pos-
sessing an E7-symmetry. It was shown in [9, Sect. 4.6] that Ruijsenaars’ R-function
is a special case of this function. Although [8] and [9] do not focus on constructing
non-polynomial extensions of Askey schemes, the results of these works are relevant
for the constructions in this paper. Another relevant work is [5] where a systematic
description of limits from elliptic hypergeometric functions to basic hypergeometric
functions is described.
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1.1 Relations to Other Areas

We discuss some relations that deserve to be studied in more detail in the future.

1.1.1 Relation to Quantum Relativistic Integrable Systems

The function R was introduced in [49] in the context of relativistic systems of
Calogero-Moser type, and studied in greater detail in [51–53]. In particular, after a
proper change of parameters, the difference operator DR defined in (3.6) corresponds
to the rank one hyperbolic van Diejen Hamiltonian. Strong coupling (or Toda) limits
of DR and of its higher rank generalizations were considered in [12]. In this paper, we
have shown that each element in the non-polynomial scheme is a joint eigenfunction
of four difference operators, which, by construction, are confluent limits of DR. Thus
it would be desirable to understand if each confluent limit considered in the present
article corresponds to a Toda-type limit. In fact, a renormalized version of the function
Q (see (7.6)), which is one of the two elements at the fifth level of the non-polynomial
scheme, was studied in [24, 54] and was interpreted as the eigenfunction of a q-Toda
type Hamiltonian.

1.1.2 Relation to Two-Dimensional CFTs

As mentioned in the introduction, Ruijsenaars’ hypergeometric function is essentially
equal to the Virasoro fusion kernel [48]. The latter plays a key role in the conformal
bootstrap approach to Liouville conformal field theory on punctured Riemann spheres
[45]. The Virasoro fusion kernel also appears in four-dimensional supersymmetric
gauge theory as a result of the AGT correspondence [2]. We believe that the various
confluent limits considered in the present article correspond to collisions of punctures
in Liouville theory. Therefore, we expect the other elements in the non-polynomial
scheme to play a role in Liouville theory on different Riemann surfaces with punctures
and cusps [16].

1.1.3 Relation to Quantum Groups and Double Affine Hecke Algebras (DAHA)

Families in the Askey scheme have a well-understood group theoretic interpretation
[32]. As for the q-Askey scheme, the AW polynomials are well-rooted in the repre-
sentation theory of quantum groups [43] and of DAHA [44]. Similar interpretations
have been found for the AW-function [57, 58]. On the other hand, motivated by the
application of quantum groups in two-dimensional conformal field theories, Faddeev
introduced in [13] the modular double of Uq(sl2(R)), denoted Uqq̃(sl2(R)). Both
the functions R and Q can be obtained from the viewpoint of harmonic analysis on
Uqq̃(sl2(R)) [7, 24, 45, 46]. More generally, we expect that all the elements of the
non-polynomial scheme can be obtained from the viewpoint of harmonic analysis on
Uqq̃(g), where g is the Lie algebra of a non-compact Lie group. Examples of such
modular doubles were studied in [20–22]. Finally, an understanding of theR-function
from the viewpoint of DAHA is currently lacking.
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1.2 Outlook

It was shown in [52, Theorem 1.1] that a renormalized version of the function R
has a hidden D4 symmetry in its four external parameters. It would be interesting to
determine what this D4 invariance becomes after taking the various confluent limits
presented in this article.

TheR-function can be expressed as a sum of two terms, where each term is propor-
tional to a product of two AW-functions [9, Theorem 6.5] (this is a non-polynomial
analog of the hyperbolic extension of the q-Askey scheme described in the intro-
duction). It is therefore natural to study the relation between our non-polynomial
hyperbolic scheme and the non-polynomial trigonometric scheme of [27].

A Fourier transform admitting the AW-function as kernel was constructed in [28]
(see also [26, 29] for the little and big q-Jacobi functions, respectively). Moreover,
in a certain region of the external parameter space, Ruijsenaars constructed in [53] a
unitary Hilbert space transform admitting the function R as a kernel. An important
project is to handle the Hilbert space theory of the other difference equations studied
in this article. This project would be of particular interest, since the theory of lin-
ear (analytic) difference equations is much less understood than the theory of linear
discrete difference, or linear differential equations. In particular, it is not known if
the existence of joint eigenfunctions implies that they can be promoted to kernels of
unitary Hilbert space transforms.

Furthermore, the Askey–Wilson polynomials Rn(z;α, β, γ, δ, q) are symmetric
under the exchange z → z−1. The non-symmetric Askey–Wilson polynomials, intro-
duced in [44, 55], are Laurent polynomials satisfying a difference/reflection equation.
A symmetrization procedure described in [44] can be used to recover the symmetric
Askey–Wilson polynomials from their non-symmetric counterparts. More generally,
a non-symmetric extension of the q-Askey scheme was initiated in [36, 40]. Finally,
a non-symmetric AW-function, as well as its associated Fourier transform, was con-
structed in [57]. It would be interesting to construct a non-symmetric R-function
generalizing the non-symmetric AW-function, and study its transition limits.

1.3 Organization of the Paper

In Sect. 2, we introduce the function sb(z) which is the basic building block
used to define the elements of the non-polynomial scheme. The eight functions
R,H,S,X ,Q,L,W,M that make up the non-polynomial scheme are considered
one by one in the eight Sects. 3–10. In Sect. 11, we derive—as an easy application
of the non-polynomial scheme—a few duality formulas that relate members of the
q-Askey scheme. In the two appendices, we have collected relevant definitions and
properties of q-hypergeometric series and of the q-Askey scheme.

1.4 Standing Assumption

Throughout the paper, we make the following assumption.
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Assumption 1.1 (Restrictions on the parameters) We assume that

(b, θ∞, θ1, θt , θ0, θ∗, θ) ∈ (0,∞) × R
6. (1.1)

Assumption 1.1 is made primarily for simplicity; we expect that all our results
admit meromorphic continuations to more general values of the parameters, such as
b /∈ iR and (θ∞, θ1, θt , θ0, θ∗, θ) ∈ C

6.

1.5 Notational Conventions

Our choice of parameters for the R-function has its origin in conformal field the-
ory. The parameters θ0, θt , θ1, θ∞ represent the conformal dimensions of the four
Virasoro primary fields. This notation is also frequently used in the context of the
PainlevéVI equation [19].Moreover, the parametersσs andσt are the internalmomenta
characterizing the Virasoro conformal blocks in the s- and t-channels, respectively
[48]. Finally, the parameter b characterizing the quantum deformation parameters
q = e2iπb

2
and q̃ = e2iπb

−2
parametrizes the central charge in conformal field theory

as c = 1 + 6(b + 1/b)2.

2 The Function sb(z)

The elements of the non-polynomial scheme presented in this article are given by
contour integrals, whose integrands involve the function sb(z) defined by

sb(z) = exp

[
i
∫ ∞

0

dy

y

(
sin 2yz

2 sinh(b−1y) sinh(by)
− z

y

)]
, |Im z| <

Q

2
, (2.1)

where Q := b+ b−1. The function sb(z) is closely related to Ruijsenaars’ hyperbolic
gamma function [50], Faddeev’s quantum dilogarithm function [14], Woronowicz’s
quantum exponential function [62], and Kurokawa’s double sine function [37]. More
precisely, it is related to Ruijsenaars’ hyperbolic gamma function G in [51, Eq. (A.3)]
by

sb(z) = G(b, b−1; z). (2.2)

It follows from (2.2) and the results in [51] that sb(z) is a meromorphic function of
z ∈ C with zeros {zm,l}∞m,l=0 and poles {pm,l}∞m,l=0 located at

zm,l = i Q

2
+ imb + ilb−1, m, l = 0, 1, 2, . . . , (zeros),

pm,l = − i Q

2
− imb − ilb−1, m, l = 0, 1, 2, . . . , (poles).

(2.3)

The multiplicity of the zero zm,l in (2.3) is given by the number of distinct pairs
(mi , li ) ∈ Z≥0 ×Z≥0 such that zmi ,li = zm,l . The pole pm,l has the same multiplicity
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as the zero zm,l . In particular, if b2 is an irrational real number, then all the zeros and
poles in (2.3) are distinct and simple. The residue sb at the simple pole z = −i Q/2 is
given by

Res
z=− i Q

2

sb(z) = i

2π
. (2.4)

Furthermore, sb is a meromorphic solution of the following pair of difference equa-
tions:

sb(z + ib
2 )

sb(z − ib
2 )

= 2 cosh πbz,
sb(z + i

2b )

sb(z − i
2b )

= 2 cosh
π z

b
. (2.5)

Applying the difference equations (2.5) recursively, it can be verified that, for any
integer m ≥ 0,

sb(x + imb±1)

sb(x)
= e− πb±1m

2 (2x+ib±1m)
(
−eiπb

±2
e2πb

±1x ; e2iπb±2
)
m

, (2.6)

where the q-Pochhammer symbol (a; q)m is defined in “Appendix A”. Finally, the
function sb(z) has the obvious symmetry

sb(z) = sb−1(z) (2.7)

and possesses an asymptotic formula which is a consequence of [51, Theorem A.1]
and (2.2): For each ε > 0,

± ln sb(z) = − iπ z2

2
− iπ

24
(b2 + b−2) + O(e

− 2π(1−ε)

max(b,b−1)
|Re z|

), Re z → ±∞,

(2.8)

uniformly for (b, Im z) in compact subsets of (0,∞) × R.

3 The FunctionR
The top element of the non-polynomial q-Askey scheme presented in this paper is
Ruijsenaars’ hypergeometric functionR [51]. Using the notation of [48], this function
can be expressed as

R
[

θ1 θt

θ∞ θ0
; σs

σt
, b

]
= PR

[
θ1 θt

θ∞ θ0
; σs

σt
, b

] ∫
CR

dx IR
[
x; θ1 θt

θ∞ θ0
; σs

σt
, b

]
, (3.1)

where the prefactor PR isgiven by
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PR
[

θ1 θt

θ∞ θ0
; σs

σt
, b

]
= sb

(
i Q
2 + 2θt

)

×
∏

ε=±1

sb
(
i Q
2 + θ0 + θ1 + εθ∞ + θt

)
sb(εσs − θ0 − θt )sb(εσt − θ1 − θt ),

(3.2)

and the integrand IR is defined by

IR
[
x; θ1 θt

θ∞ θ0
; σs

σt
, b

]
= 1

sb(x + i Q
2 )sb(x + i Q

2 + 2θt )

×
∏

ε=±1

sb(x + θ0 + θt + εσs)sb(x + θ1 + θt + εσt )

sb
(
x + i Q

2 + θ0 + θ1 + εθ∞ + θt

) .

(3.3)

In view of (2.3), the integrand IR possesses eight semi-infinite sequences of poles
in the complex x-plane. With the restriction that b > 0 imposed by Assumption 1.1,
there are four vertical downward sequences starting at x = −θ0 − θt ± σs − i Q

2 and

x = −θ1 − θt ± σt − i Q
2 , and four vertical upward sequences starting at x = 0,

x = −2θt , and x = −θ0 − θ1 ± θ∞ − θt . The contour CR in (3.1) is any curve from
−∞ to +∞ which separates the four upward from the four downward sequences of
poles. If in addition to Assumption 1.1, we also assume that σs, σt ∈ R, then the
contour of integration CR can be chosen to be any curve from −∞ to +∞ lying in
the open strip Im x ∈ (−Q/2, 0).

Thanks to the symmetry (2.7) of the function sb, we have

R
[

θ1 θt

θ∞ θ0
; σs

σt
, b−1

]
= R

[
θ1 θt

θ∞ θ0
; σs

σt
, b

]
. (3.4)

Moreover, it follows directly from (3.1) thatR is even in each of the variables σs and
σt , and that it satisfies the following self-duality symmetry:

R
[

θ1 θt

θ∞ θ0
; σs

σt
, b

]
= R

[
θ0 θt

θ∞ θ1
; σt

σs
, b

]
. (3.5)

3.1 Difference Equations

Let e±ib∂x be the translation operator which formally acts on meromorphic functions
f (x) by e±ib∂x f (x) = f (x ± ib). Let DR be the difference operator defined by

DR
[

θ1 θt

θ∞ θ0
; b, σs

]
= d+

R
[

θ1 θt

θ∞ θ0
; b, σs

]
eib∂σs + d+

R
[

θ1 θt

θ∞ θ0
; b, −σs

]
e−ib∂σs

+ d0R
[

θ1 θt

θ∞ θ0
; b, σs

]
, (3.6)

where
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d+
R

[
θ1 θt

θ∞ θ0
; b, σs

]

= −4
∏

ε=±1 cosh
(
πb

( ib
2 + θt + σs + εθ0

))
cosh

(
πb

( ib
2 + θ1 + σs + εθ∞

))
sinh(2πbσs) sinh(πb(2σs + ib))

(3.7)

and

d0R
[

θ1 θt

θ∞ θ0
; b, σs

]

= −2 cosh (2πb(θ1 + θt + ib
2 )) − d+

R
[

θ1 θt

θ∞ θ0
; b, σs

]
− d+

R
[

θ1 θt

θ∞ θ0
; b, −σs

]
.
(3.8)

For (σs, σt ) ∈ C
2, the function R satisfies the following four difference equations

[51] (using the notation of [48]):

DR
[

θ1 θt
θ∞ θ0

; b, σs

]
R

[
θ1 θt
θ∞ θ0

; σs
σt , b

]
= 2 cosh (2πbσt )R

[
θ1 θt
θ∞ θ0

; σs
σt , b

]
, (3.9a)

DR
[

θ1 θt
θ∞ θ0

; b−1, σs

]
R

[
θ1 θt
θ∞ θ0

; σs
σt , b

]
= 2 cosh (2πb−1σt )R

[
θ1 θt
θ∞ θ0

; σs
σt , b

]
, (3.9b)

DR
[

θ0 θt
θ∞ θ1

; b, σt

]
R

[
θ1 θt
θ∞ θ0

; σs
σt , b

]
= 2 cosh (2πbσs)R

[
θ1 θt
θ∞ θ0

; σs
σt , b

]
, (3.9c)

DR
[

θ0 θt
θ∞ θ1

; b−1, σt

]
R

[
θ1 θt
θ∞ θ0

; σs
σt , b

]
= 2 cosh (2πb−1σs)R

[
θ1 θt
θ∞ θ0

; σs
σt , b

]
. (3.9d)

Note that the difference equations (3.9b), (3.9c), and (3.9d) follow from (3.9a) and
the symmetries (3.4)–(3.5) of the function R.

3.2 Polynomial Limit

It was shown in [51] that the function R reduces to the Askey–Wilson polynomials
when one of the variables σs and σt is suitably discretized. This result was reobtained in
the CFT setting in [39].We now recall the result of [39]. In addition to Assumption 1.1,
we need the following assumption.

Assumption 3.1 (Restriction on the parameters) Assume that b > 0 is such that b2 is
irrational, and that, for ε, ε′ = ±1,

θ∞, θt ,Re σs,Re σt �= 0, Re
(
θ0 − θ1 + εσs + ε′σt

) �= 0,

θ0 + θ1 + εθ∞ + ε′θt �= 0.
(3.10)

Assumption 3.1 implies that the four increasing and the four decreasing sequences
of poles of the integrand in (3.3) do not overlap. The assumption that b2 is irrational
implies that all the poles of the integrand are simple.

Theorem 3.2 [39, Theorem4.2] SupposeAssumptions 1.1 and 3.1 are satisfied.Define
{σ (n)

s }∞n=0 ⊂ C by

σ (n)
s = θ0 + θt + i Q

2 + ibn. (3.11)
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Under the parameter correspondence

αR = e
2πb

(
i Q
2 +θ1+θt

)
, βR = e

2πb
(
i Q
2 +θ0−θ∞

)
, γR = e

2πb
(
i Q
2 −θ1+θt

)
,

δR = e
2πb

(
i Q
2 +θ0+θ∞

)
, q = e2iπb

2
, (3.12)

the Ruijsenaars hypergeometric functionR defined in (3.1) satisfies, for each integer
n ≥ 0,

lim
σs→σ

(n)
s

R
[

θ1 θt

θ∞ θ0
; σs

σt
, b

]
= Rn(e

2πbσt ;αR, βR, γR, δR, q), (3.13)

where Rn are the Askey–Wilson polynomials defined in (B.1).

Remark 3.3 [39, Remark 4.3] The result of Theorem 3.2 can be generalized as follows.
Instead of considering the limit of R as σs approaches one of the points σ

(n)
s defined

in (3.11), we can consider the limit

σs → σ (n,m)
s := σ (n)

s + im

b
, (3.14)

for any integers n,m ≥ 0. In this limit,R reduces to a product of two Askey–Wilson
polynomials of the form Rn × Rm . The first polynomial Rn is expressed in terms of
the quantum deformation parameter q = e2iπb

2
, while the second polynomial Rm is

expressed in terms of q̃ = e2iπb
−2
. In the case m = 0 treated in Theorem 3.2, the

second polynomial reduces to R0 = 1.

A generalization similar to the one described in Remark 3.3 can be formulated for
each of the families described in this article, thereby providing a limit from our scheme
to the hyperbolic extension of the q-Askey scheme. As a matter of brevity, the details
of this construction will be omitted.

4 The FunctionH
The Askey–Wilson polynomials Rn form the top element of the q-Askey scheme. Just
like the elements of the q-Askey scheme are obtained from the polynomials Rn via
various limiting procedures, the elements of the non-polynomial scheme we present
in this paper are obtained by taking various limits of Ruijsenaars’ hypergeometric
function R. The second level of the non-polynomial scheme involves the function
H(b, θ0, θt , θ∗, σs, ν), which is defined as the confluent limit � → −∞ of the top
element R evaluated at

θ∞ = � − θ∗
2

, θ1 = � + θ∗
2

, σt = �

2
+ ν. (4.1)

In this section, we derive an integral representation for the functionH and we show
that it is a joint eigenfunction of four difference operators, two acting on σs and the
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other two on ν. We also show that H reduces to the continuous dual q-Hahn and the
big q-Jacobi polynomials when ν and σs are suitably discretized, respectively. Since
these polynomials lie at the second level of the q-Askey scheme, this shows that H
indeed provides a natural non-polynomial generalization of the elements at the second
level.

4.1 Definition and Integral Representation

Definition 4.1 The function H is defined by

H(b, θ0, θt , θ∗, σs, ν) = lim
�→−∞R

[
�+θ∗

2 θt

�−θ∗
2 θ0

; σs

�
2 +ν

, b

]
. (4.2)

The next theorem shows that, for each choice of (b, θ0, θt , θ∗) ∈ (0,∞) × R
3, H

is a well-defined and analytic function of

(σs, ν) ∈ (C \ �H,σs ) × ({Im ν > −Q/2} \ �ν

)
, (4.3)

where �H,σs ,�ν ⊂ C are discrete sets of points at which H may have poles. In
particular, H is a meromorphic function of σs ∈ C and of ν for Im ν > −Q/2. More
precisely, �H,σs and �ν are given by

�H,σs := {±σs | σs ∈ �′
H,σs

}, (4.4a)

�ν := { θ∗
2 ± θt + i Q

2 + imb + ilb−1}∞m,l=0 ∪ {− θ∗
2 − θ0 + i Q

2 + imb + ilb−1}∞m,l=0

∪ { θ∗
2 + θt − i Q

2 − imb − ilb−1}∞m,l=0 (4.4b)

where

�′
H,σs

:= {θ0 ± θt + i Q
2 + imb + ilb−1}∞m,l=0 ∪ {−θ∗ + i Q

2 + imb + ilb−1}∞m,l=0

∪ {θ0 + θt − i Q
2 − imb − ilb−1}∞m,l=0.

The theorem also provides an integral representation forH for (σs, ν) satisfying (4.3).
In fact, even if the requirement Im ν > −Q/2 is needed to ensure convergence of the
integral in the integral representation for H, we will show later in this section, with
the help of the difference equations satisfied by H, that H extends to a meromorphic
function of (σs, ν) ∈ C

2.

Theorem 4.2 Suppose that Assumption 1.1 holds. Let �H,σs ,�ν ⊂ C be the discrete
subsets defined in (4.4). Then the limit in (4.2) exists uniformly for (σs, ν) in compact
subsets of

�H := (C \ �H,σs ) × ({Im ν > −Q/2} \ �ν

)
.
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Moreover,H is an analytic function of (σs, ν) ∈ �H and admits the following integral
representation:

H(b, θ0, θt , θ∗, σs , ν) = PH (σs , ν)

∫
CH

dx IH (x, σs , ν) for (σs , ν) ∈ �H, (4.5)

where the dependence of PH and IH on b, θ0, θt , θ∗ is omitted for simplicity,

PH (σs, ν) = sb
(
2θt + i Q

2

)
sb

(
θ0 + θ∗ + θt + i Q

2

)
sb

(
ν − θ∗

2 − θt

)

×
∏

ε=±1

sb (εσs − θ0 − θt ) , (4.6)

IH (x, σs, ν) = e
iπx

(
θ∗
2 −θ0+ν− i Q

2

)

×
sb

(
x + θ∗

2 + θt − ν
) ∏

ε=±1 sb(x + θ0 + θt + εσs)

sb
(
x + i Q

2

)
sb

(
x + 2θt + i Q

2

)
sb

(
x + θ0 + θ∗ + θt + i Q

2

) ,

(4.7)

and the contour CH is any curve from −∞ to +∞ which separates the three upward
from the three downward sequences of poles. In particular,H is a meromorphic func-
tion of (σs, ν) ∈ C × {Im ν > −Q/2}. If (σs, ν) ∈ R

2, then the contour CH can be
any curve from −∞ to +∞ lying within the strip Im x ∈ (−Q/2, 0).

Proof Let (b, θ0, θt , θ∗) ∈ (0,∞) × R
3. Using the identity sb(z) = 1/sb(−z), it is

straightforward to verify that

PR
[

�+θ∗
2 θt

�−θ∗
2 θ0

; σs

�
2 +ν

, b

]
IR

[
x;

�+θ∗
2 θt

�−θ∗
2 θ0

; σs

�
2 +ν

, b

]
= PH (σs, ν) X(x,�)IH (x, σs, ν) ,

(4.8)

where the dependence of X(x,�) on b, θ0, θt , θ∗, σs, ν is omitted for simplicity, and

X(x,�)

= eiπx( i Q2 +θ0− θ∗
2 −ν)

sb
(
� + θ0 + θt + i Q

2

)

sb
(
� + θ∗

2 + θt + ν
) sb

(
x + � + θ∗

2 + θt + ν
)

sb
(
x + � + θ0 + θt + i Q

2

) . (4.9)

Due to the properties (2.3) of the function sb, the function IH(·, σs, ν) possesses
three increasing sequences of poles starting at x = 0, x = −2θt and x = −θ0−θ∗−θt ,
as well as three decreasing sequences of poles starting at x = − i Q

2 − θ∗
2 − θt + ν

and x = − i Q
2 ± σs − θ0 − θt . The discrete sets �H,σs and �ν contain all the values

of σs and ν, respectively, for which poles in any of the three increasing collide with
poles in any of the decreasing sequences. Indeed, consider for example the decreasing
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sequence starting at x = − i Q
2 − θ∗

2 − θt + ν and the increasing sequence starting at
x = 0. Poles from these two sequences collide if and only if

ν ∈ { θ∗
2 + θt + i Q

2 + imb + ilb−1}∞m,l=0,

giving rise to the first set on the right-hand side of (4.4b).
Similarly, (2.3) implies that X(·,�) possesses one increasing sequence of poles

starting at x = −� − θ0 − θt and one decreasing sequence of poles starting at
x = − i Q

2 − � − θ∗
2 − θt − ν. The real parts of the poles in these two sequences tend

to +∞ as � → −∞. The increasing sequence lies in the half-plane Im x ≥ 0 and the
decreasing sequence lies in the half-plane Im x ≤ −Im ν − Q/2.

The sets �H,σs and �ν also contain all the values of σs and ν at which the pref-
actor PH(σs, ν) has poles. For example, PH has poles originating from the factor

sb
(
ν − θ∗

2 − θt

)
at

ν = θ∗
2 + θt − i Q

2
− imb − ilb−1, m, l = 0, 1, 2, . . . ,

giving rise to the last set on the right-hand side of (4.4b).
Let Kσs be a compact subset ofC\�H,σs and let Kν be a compact subset of {Im ν >

−Q/2}\�ν . Suppose (σs, ν) ∈ Kσs ×Kν . Then, the above discussion shows that it is
possible to choose a contour CH = CH(σs, ν) from −∞ to +∞ which separates the
four upward from the four downward sequences of poles of X(·,�)IH (·, σs, ν). It
also follows that if we let the right tail of CH approach the horizontal line Im x = −ε

as Re x → +∞, where ε > 0 is sufficiently small, then there exists a N < 0 such
that CH can be chosen to be independent of � for � < −N . Thus, for such a choice
of CH, (3.1) and (4.8) imply that, for all (σs, ν) ∈ Kσs × Kν and all � < −N ,

R
[

�+θ∗
2 θt

�−θ∗
2 θ0

; σs

�
2 +ν

, b

]
= PH (σs, ν)

∫
CH

dx X(x,�)IH (x, σs, ν) . (4.10)

If (σs, ν) ∈ R
2, then CH can be any curve from −∞ to +∞ lying within the strip

Im x ∈ (−Q/2, 0).
Utilizing the asymptotic formula (2.8) for the function sb with ε = 1/2, we find

that

ln (X(x,�)) = O
(
e
− π |�|

max(b,b−1)

)
, � → −∞, (4.11)

uniformly for (σs, ν) ∈ Kσs × Kν and for x in bounded subsets of CH. We deduce
that

lim
�→−∞ X(x,�) = 1, (4.12)

uniformly for (σs, ν) ∈ Kσs × Kν and x in bounded subsets of CH.
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Using the asymptotic formula (2.8) for sb with ε = 1/2, we find that IH obeys the
estimate

IH (x, σs, ν) =
{
O

(
e−2π(

Q
2 +Im ν)|Re x |

)
, Re x → +∞,

O
(
e−2πQ|Re x |) , Re x → −∞,

(4.13)

uniformly for (σs, ν) ∈ Kσs × Kν and Im x in compact subsets of R. Since the
contour CH stays a bounded distance away from the increasing and the decreasing
pole sequences, we infer that there exists a constant C1 > 0 such that

|IH (x, σs, ν) |≤
{
C1e−2π(

Q
2 +Im ν)|Re x |, x ∈ CH, Re x ≥ 0,

C1e−2πQ|Re x |, x ∈ CH, Re x ≤ 0,
(4.14)

uniformly for (σs, ν) ∈ Kσs × Kν . In particular, since Kν ⊂ {Im ν > −Q/2}, IH has
exponential decay on the left and right tails of the contour CH.

Suppose we can show that there exist constants c > 0 and C > 0 such that

|X(x,�)IH (x, σs, ν) | ≤ Ce−c|Re x | (4.15)

uniformly for all � < −N , x ∈ CH, and (σs, ν) ∈ Kσs × Kν . Then it follows from
(4.10), (4.12), and Lebesgue’s dominated convergence theorem that the limit in (4.2)
exists uniformly for (σs, ν) ∈ Kσs × Kν and is given by (4.5). Since Kσs ⊂ C\�H,σs

and Kν ⊂ C\�ν are arbitrary compact subsets, this proves that the limit in (4.2)
exists uniformly for (σs, ν) in compact subsets of �H and proves (4.5). Moreover,
the analyticity of H as a function of (σs, ν) ∈ �H follows from the analyticity
of R together with the uniform convergence on compact subsets. Alternatively, the
analyticity ofH in �H can be inferred directly from the representation (4.5). Indeed,
the possible poles of H lie at such values of (σs, ν) at which either the prefactor PH
has a pole or at which the contour of integration gets pinched between two poles of the
integrand IH, and the definitions of �H,σs and �ν exclude both of these situations.
Thus to complete the proof of the theorem, it only remains to prove (4.15).

To prove (4.15), we need to estimate the function X defined in (4.9). The asymptotic
formula (2.8) for sb with ε = 1/2 implies that there exist constants C2,C3,C4 > 0
such that the inequalities

∣∣∣∣
sb

(
� + θ0 + θt + i Q

2

)

sb
(
� + θ∗

2 + θt + ν
)

∣∣∣∣ ≤ C2e
π(

Q
2 −Im ν)|�|, � < −N , (4.16)

∣∣∣∣
sb

(
x + � + θ∗

2 + θt + ν
)

sb
(
x + � + θ0 + θt + i Q

2

)
∣∣∣∣ ≤ C3e

−π(
Q
2 −Im ν)|�+Re x |, x ∈ CH, � ∈ R,

(4.17)

|eiπx( i Q2 +θ0− θ∗
2 −ν)| ≤ C4e

−π(
Q
2 −Im ν)Re x , x ∈ CH, (4.18)
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hold uniformly for (σs, ν) ∈ Kσs × Kν . Combining the above estimates, we infer that
there exists a constant C5 such that

|X(x,�)| ≤ C5e
π(

Q
2 −Im ν)(|�|−|�+Re x |−Re x), x ∈ CH, � < −N , (4.19)

uniformly for (σs, ν) ∈ Kσs × Kν . The inequality (4.19) can be rewritten as follows:

|X(x,�)| ≤
{
C5e−2π(

Q
2 −Im ν)(�+Re x), � + Re x ≥ 0,

C5, � + Re x ≤ 0,
x ∈ CH, � < −N ,

(4.20)

uniformly for (σs, ν) ∈ Kσs × Kν .
If ν ∈ Kν is such that −Q/2 < Im ν ≤ Q/2, then (4.20) implies that |X | is

uniformly bounded for all x ∈ CH, � < −N , and (σs, ν) ∈ Kσs × Kν ; hence (4.15)
follows from (4.14) in this case. On the other hand, if ν ∈ Kν is such that Im ν ≥ Q/2,
then (4.14) and (4.20) yield the existence of a constantC6 > 0 independent of x ∈ CH,
� < −N , and (σs, ν) ∈ Kσs × Kν such that

|X(x,�)IH (x, σs, ν) |

≤

⎧⎪⎨
⎪⎩
C6e2π(

Q
2 −Im ν)|�|e−2πQ|Re x | ≤ C6e−2πQ|Re x |, Re x ≥ −�,

C6e−2π(
Q
2 +Im ν)|Re x | ≤ C6e−2πQ|Re x |, 0 ≤ Re x ≤ −�,

C6e−2πQ|Re x |, Re x ≤ 0,

(4.21)

which shows (4.15) also in this case. This completes the proof. �

Furthermore, thanks to the symmetry (2.7) of sb, we have

H(b−1, θ0, θt , θ∗, σs, ν) = H(b, θ0, θt , θ∗, σs, ν). (4.22)

4.2 Difference Equations

Wenowshow that the four difference equations (3.9) satisfiedby the functionR survive
in the confluent limit (4.2). This implies that the function H is a joint eigenfunction
of four difference operators, two acting on σs and the remaining two on ν.

We know from Theorem 4.2 that H is a well-defined meromorphic function of
(σs, ν) ∈ C × {Im ν > −Q/2}. The difference equations will first be derived as
equalities between meromorphic functions defined on this limited domain. However,
the difference equations in ν can then be used to show that: (i) the limit in (4.2) exists
for all ν in the whole complex plane away from a discrete subset, (ii) H is in fact a
meromorphic function of (σs, ν) in all of C2, and (iii) the four difference equations
hold as equalities between meromorphic functions on C

2, see Proposition 4.5.
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4.2.1 First Pair of Difference Equations

Define the difference operator DH(b, σs) by

DH(b, σs) = d+
H(b, σs)e

ib∂σs + d+
H(b,−σs)e

−ib∂σs + d0H(b, σs), (4.23)

where d0H is defined by

d0H(b, σs) = e−πb(i Q+θ∗+2θt ) − d+
H(b, σs) − d+

H(b,−σs), (4.24)

with

d+
H(b, σs)

= −2e
−πb

(
σs+ ib

2

)
cosh(πb( ib2 + θ∗ + σs))

∏
ε=±1 cosh

(
πb

( ib
2 + θt + σs + εθ0

))
sinh(πb(2σs + ib)) sinh(2πbσs)

(4.25)

Proposition 4.3 For σs ∈ C and Im ν > −Q/2, the function H defined by (4.2)
satisfies the following pair of difference equations:

DH(b, σs) H(b, θ0, θt , θ∗, σs, ν) = e−2πbνH(b, θ0, θt , θ∗, σs, ν), (4.26a)

DH(b−1, σs) H(b, θ0, θt , θ∗, σs, ν) = e−2πb−1νH(b, θ0, θt , θ∗, σs, ν). (4.26b)

Proof The proof consists of taking the confluent limit (4.2) of the difference equation
(3.9a). On the one hand, we have

lim
�→−∞

(
eπb�2 cosh 2πbσt |

σt=�
2 +ν

)
= e−2πbν . (4.27)

On the other hand, straightforward computations using asymptotics of hyperbolic
functions show that the following limits hold:

lim
�→−∞ eπb�d+

R

[
�+θ∗
2 θt

�−θ∗
2 θ0

; b, ±σs

]
= d+

H(b,±σs),

lim
�→−∞ eπb�d0R

[
�+θ∗
2 θt

�−θ∗
2 θ0

; b, σs

]
= d0H(b, σs), (4.28)

where d+
R and d0R are defined in (3.7) and (3.8), respectively. Therefore we obtain

lim
�→−∞ eπb�DR

[
�+θ∗
2 θt

�−θ∗
2 θ0

; b, σs

]
= DH(b, σs), (4.29)

where DR is given in (3.6). ByTheorem4.2, the limit in (4.2) existswhenever (σs , ν) ∈
�H. Thus, the difference equation (4.26a) follows after multiplying (3.9a) by eπb�
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and utilizing (4.27), (4.29), and the definition (4.2) ofH. Finally, (4.26b) follows from
(4.26a) and the symmetry (4.22) of H. �

4.2.2 Second Pair of Difference Equations

Define the dual difference operator D̃H(b, ν) by

D̃H(b, ν) = d̃+
H(b, ν)eib∂ν + d̃−

H(b, ν)e−ib∂ν + d̃0H(b, ν), (4.30)

where H̃0
H is defined by

d̃0H(b, ν) = −2 cosh (2πb
( ib
2 + θ0 + θt

)
) − d̃+

H(b, ν) − d̃−
H(b, ν), (4.31)

with

d̃±
H(b, ν) = −4e2πbνe∓πb(θ0+θt ) cosh

(
πb

(
ib
2 + θ0 ± (ν + θ∗

2 )
))

× cosh
(
πb

(
ib
2 + θt ± (ν − θ∗

2 )
))

. (4.32)

Proposition 4.4 For σs ∈ C and Im (ν − ib±1) > −Q/2, the functionH satisfies the
following pair of difference equations:

D̃H(b, ν) H(b, θ0, θt , θ∗, σs, ν) = 2 cosh (2πbσs) H(b, θ0, θt , θ∗, σs, ν), (4.33a)

D̃H(b−1, ν) H(b, θ0, θt , θ∗, σs, ν) = 2 cosh (2πb−1σs) H(b, θ0, θt , θ∗, σs, ν).

(4.33b)

Proof It is straightforward to verify that the following limits hold:

lim
�→−∞ d+

R

[
θ0 θt

�−θ∗
2

�+θ∗
2

; b, ±( �
2 +ν)

]
= d̃±

H(b, ν),

lim
�→−∞ d0R

[
θ0 θt

�−θ∗
2

�+θ∗
2

; b, �
2 +ν

]
= d̃0H(b, ν), (4.34)

where d+
R and d0R are defined in (3.7) and (3.8), respectively. We obtain

lim
�→−∞ DR

[
θ0 θt

�−θ∗
2

�+θ∗
2

; b, �
2 +ν

]
= D̃H(b, ν), (4.35)

where DR is defined in (3.6). The difference equation (4.33a) follows from (3.9c),
(4.2), (4.35), and Theorem 4.2. Finally, (4.33b) follows from (4.33a) and the symmetry
(4.22) of H. �

Using the difference equations (4.33),we can show thatH extends to ameromorphic
function of ν everywhere in the complex plane. More precisely, we have the following
proposition.
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Proposition 4.5 Let (b, θ0, θt , θ∗) ∈ (0,∞) ×R
3 and σs ∈ C\�H,σs . Then there is a

discrete subset� ⊂ C such that the limit in (4.2) exists for all ν ∈ C\�. Moreover, the
function H defined by (4.2) has a meromorphic continuation to (σs, ν) ∈ C

2 and the
four difference equations (4.26) and (4.33) hold as equalities between meromorphic
functions of (σs, ν) ∈ C

2.

Proof Consider ν such that Im ν > −Q/2 but Im (ν − ib) ≤ −Q/2. Solving (3.9c)
for

e−ib∂ν

(
R

[
�+θ∗

2 θt

�−θ∗
2 θ0

; σs

�
2 +ν

, b

] )
,

taking the confluent limit � → −∞, and using (4.2), (4.35), and Theorem 4.2, we
conclude that the limit in (4.2) exists also for ν in the strip {ν ∈ C| − b − Q/2 <

Im ν ≤ −Q/2}\�1, where �1 is a discrete set. By iteration, we conclude that the
limit in (4.2) exists for all ν ∈ C\�, where � is a discrete set. This proves the first
assertion. The remaining assertions now follow by repeating the proofs of Propositions
4.3 and 4.4 with ν ∈ C\�. �

4.3 First Polynomial Limit

In this subsection, we show that the functionH reduces to the continuous dual q-Hahn
polynomials when ν is suitably discretized. In addition to Assumption 1.1, we make
the following assumption.

Assumption 4.6 (Restriction on the parameters) Assume that b > 0 is such that b2 is
irrational, and that

θt ,Re σs �= 0, Re
(

θ∗
2 − ν − θ0 ± σs

) �= 0, θ0 + θ∗ ± θt �= 0. (4.36)

Assumption 4.6 implies that the three increasing and the three decreasing sequences
of poles of the integrand in (4.5) do not overlap. The assumption that b2 is irrational
ensures that all the poles of the integrand are simple and that q = e2iπb

2
is not a root

of unity.
Define {νn}∞n=0 ⊂ C by

νn = θ∗
2 + θt + i Q

2 + inb. (4.37)

The sequence {νn}∞n=0 is a subset of the set�ν of possible poles ofH defined in (4.4b).
The following theorem shows that H still has a finite limit as ν → νn for each n ≥ 0
and that the limit is given by the continuous dual q-Hahn polynomials. The reason the
limit is finite is that the prefactor PH has a simple zero at each νn ; this zero cancels
the simple pole that the integral in (4.5) has due to the contour of integration being
pinched between two poles of the integrand.
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Theorem 4.7 (From H to the continuous dual q-Hahn polynomials) Let σs ∈ C \
�H,σs and suppose that Assumptions 1.1 and 4.6 are satisfied. Under the parameter
correspondence

αH = e2πb(θt+θ0+ i Q
2 ), βH = e2πb(θt−θ0+ i Q

2 ), γH = e2πb(θ∗+ i Q
2 ), q = e2iπb

2
,

(4.38)

the function H defined in (4.5) satisfies, for each integer n ≥ 0,

lim
ν→νn

H(b, θ0, θt , θ∗, σs, ν) = Hn(e
2πbσs ;αH , βH , γH , q), (4.39)

where Hn are the continuous dual q-Hahn polynomials defined in (B.8).

Proof There are two different ways to prove (4.39). The first approach consists of
taking the limit ν → νn in the integral representation (4.5) for H for each n; the
second approach computes the limit for n = 0 and then uses the limit of the difference
equation (4.33a) to extend the result to other values of n. The first approach is described
in detail in Sect. 10 for the function M. Here we use the second approach.

We first show that the limit in (4.39) exists for n = 0 and equals 1. The function
sb(ν − θ∗

2 − θt ) in (4.6) has a simple zero at ν0 = θ∗
2 + θt + i Q

2 . Moreover, in the limit

ν → ν0, the pole of the function sb(x+ θ∗
2 +θt −ν) in (4.7) at x0 := − i Q

2 − θ∗
2 −θt +ν

collides with the pole of sb(x + i Q
2 )−1 located at x = 0, pinching the contour CH.

Therefore, before taking the limit ν → ν0, we deform the contour CH into a contour
C′
H which passes below x0. We obtain

H(b, θ0, θt , θ∗, σs, ν) = −2iπ PH (σs, ν) Res
x=x0

(IH(x, σs, ν))

+PH(σs, ν)

∫
C′
H
dx IH(x, σs, ν). (4.40)

Using the residue (2.4), a straightforward computation yields

−2iπ Res
x=x0

(IH(x, σs, ν)) = e
iπ

(
ν−θ0+ θ∗

2 − i Q
2

)(
ν− θ∗

2 −θt− i Q
2

)

×
sb

(
θ0 − θ∗

2 + ν − i Q
2 − σs

)
sb

(
θ0 − θ∗

2 + ν − i Q
2 + σs

)

sb
(
θ0 + θ∗

2 + ν
)
sb

(
ν − θ∗

2 − θt

)
sb

(
ν − θ∗

2 + θt

) .

(4.41)

The right-hand side of (4.41) has a simple pole at ν = ν0 due to the factor sb(ν − θ∗
2 −

θt )
−1. Moreover, in the limit ν → ν0 the second term in (4.40) vanishes thanks to the

zero of PH. Thus we obtain

lim
ν→ν0

H(b, θ0, θt , θ∗, σs, ν) = −2iπ lim
ν→ν0

(
PH (σs , ν) Res

x=x0
(IH(x, σs , ν))

)
. (4.42)
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Using sb(x) = sb(−x)−1, it is straightforward to verify that the right-hand side equals
1; this proves (4.39).

For each integer n ≥ 0, let Pn denote the left-hand side of (4.39):

Pn := lim
ν→νn

H(b, θ0, θt , θ∗, σs, ν). (4.43)

The same kind of contour deformation used to establish the case n = 0 shows that the
limit in (4.43) exists for all n ≥ 0. To show that Pn equals the continuous dual q-Hahn
polynomials Hn , we consider the limit ν → νn of the difference equation (4.33a).
Using the parameter correspondence (4.38), it is straightforward to verify that

lim
ν→νn

D̃H(b, ν) = LH , (4.44)

where the operators D̃H and LH are defined in (4.30) and (B.10), respectively. Hence
taking the limit ν → νn of the difference equation (4.33a), we see that Pn satisfies

LH Pn =
(
z + z−1

)
Pn, (4.45)

where z = e2πbσs . Thus the Pn satisfy the same recurrence relation (B.9) as the
continuous dual q-Hahn polynomials evaluated at z = e2πbσs . Since we have already
shown that P0 = H0 = 1, we infer that Pn = Hn for all n ≥ 0 by induction, where
Hn is evaluated at z = e2πbσs . This completes the proof of (4.39). �

4.4 Second Polynomial Limit

In this subsection, we show that H reduces to the big q-Jacobi polynomials when σs
is suitably discretized.

Theorem 4.8 (From H to the big q-Jacobi polynomials) Let ν ∈ {Im ν > −Q/2} \
�ν and suppose that Assumptions 1.1 and 4.6 are satisfied. Under the parameter
correspondence

αJ = e4πbθt , βJ = e4πbθ0 , γJ = e2πb(θ0+θ∗+θt ), xJ = e2πb(θt+
θ∗
2 + i Q

2 )e−2πbν,

q = e2iπb
2
, (4.46)

the function H defined in (4.5) satisfies, for each integer n ≥ 0,

lim
σs→σ

(n)
s

H(b, θ0, θt , θ∗, σs, ν) = Jn(xJ ;αJ , βJ , γJ ; q), (4.47)

where σ
(n)
s ∈ C is given in (3.11) and where Jn are the big q-Jacobi polynomials

defined in (B.12).
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Proof We first prove that (4.47) holds for n = 0. The function sb(σs −θ0 −θt ) in (4.6)
has a simple zero located at σs = σ

(0)
s = θ0 + θt + i Q

2 . On the other hand, in the limit

σs = σ
(0)
s , the contour CH is squeezed between the pole of sb(x+θ0+θt −σs) in (4.7)

located at x0 = − i Q
2 +σs − θ0 − θt and the pole of sb(x + i Q

2 )−1 at x = 0. Therefore,

before taking the limit σs → σ
(0)
s , we deform the contour CH into a contour C′

H which
passes below x0. We obtain

H(b, θ0, θt , θ∗, σs, ν) = −2iπ PH (σs, ν) Res
x=x0

(IH(x, σs, ν))

+PH (σs, ν)

∫
C′
H
dx IH(x, σs, ν). (4.48)

A straightforward computation using (2.4) shows that

− 2iπ Res
x=x0

IH(x, σs, ν)

= e
iπ

(
−θ0+ θ∗

2 +ν− i Q
2

)(
−θ0−θt− i Q

2 +σs

) sb
(
2σs − i Q

2

)
sb

(
σs − θ0 + θ∗

2 − ν − i Q
2

)
sb(θ∗ + σs)sb(σs − θ0 − θt )sb(σs − θ0 + θt )

.

The right-hand side has a simple pole at σs = σ
(0)
s due to the factor sb(σs −θ0−θt )

−1.
Moreover, the second term in (4.48) vanishes at σs = σ

(0)
s thanks to the zero of PH.

Therefore,

lim
σs→σ

(0)
s

H(b, θ0, θt , θ∗, σs, ν) = −2iπ lim
σs→σ

(0)
s

(
PH (σs, ν) Res

x=x0
(IH(x, σs, ν))

)
.

(4.49)

A straightforward computation using sb(x) = sb(−x)−1 shows that the right-hand
side equals 1; this proves (4.47) for n = 0.

We now use the difference equation (4.26a) to show that (4.47) holds also for n ≥ 1.
Let

Pn := lim
σs→σ

(n)
s

H(b, θ0, θt , θ∗, σs, ν), n = 0, 1, . . . . (4.50)

The same kind of contour deformation used for n = 0 shows that the limit in (4.47)
exists for all n ≥ 0. Moreover, under the parameter correspondence (4.46), we have

lim
σs→σ

(n)
s

DH(b, σs) = e−2πb(θt+ θ∗
2 + i Q

2 )L J , (4.51)

where the operators DH and L J are defined in (4.23) and (B.14), respectively. Hence

taking the limit σs → σ
(n)
s of (4.26a) and recalling that xJ = e2πb(θt+

θ∗
2 + i Q

2 )e−2πbν ,
we see that Pn satisfies L J Pn = xJ Pn . Thus the Pn satisfy the same recurrence relation
(B.13) as the big q-Jacobi polynomials Jn , and the limit (4.47) for n ≥ 1 follows by
induction. �
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Remark 4.9 It is also possible to define a function H′ by sending � → +∞ in (4.2)
instead of � → −∞:

H′(b, θ0, θt , θ∗, σs, ν) = lim
�→+∞R

[
�+θ∗

2 θt

�−θ∗
2 θ0

; σs

�
2 +ν

]
. (4.52)

It can be shown that the limit in (4.52) exists for (σs, ν) ∈ �H. Moreover, due to the
asymptotic formula (2.8) for sb, the only difference between H′ and H resides in the
sign of the phases in the representation (4.5). In fact, the following two limits hold:

lim
ν→νn

H′(b, θ0, θt , θ∗, σs, ν) = Hn(e
2πbσs ;α−1

H , β−1
H , γ −1

H , q−1), (4.53)

lim
σs→σ

(n)
s

H′(b, θ0, θt , θ∗, σs, ν) = Jn(x
−1
J ;α−1

J , β−1
J , γ −1

J ; q−1). (4.54)

We expect that a similar phenomenon is present for all families of the non-polynomial
scheme. For simplicity, we will only study one of the two representatives for each
family.

5 The FunctionS
In this section, we introduce the function S(b, θ0, θt , σs, ρ) which is one of the two
elements at the third level of the non-polynomial scheme, see Fig. 2. The function S is
defined as a confluent limit of the functionH. We show that S is a joint eigenfunction
of four difference operators and that it reduces to the Al-Salam Chihara and the little
q-Jacobi polynomials, which lie at the third level of the q-Askey scheme, when ρ and
σs are suitably discretized, respectively.

5.1 Definition and Integral Representation

Let ρ be a new parameter defined in terms of θ∗ and ν by

ν = θ∗
2

+ ρ. (5.1)

Define the open set �S ⊂ C
2 by

�S := (C\�S,σs ) × ({Im ρ > −Q/2}\�ρ), (5.2)

where the discrete subsets �S,σs and �ρ are given by

�S,σs := {±σs | σs ∈ �′
S,σs

},
�ρ := {±θt + i Q

2 + ibm + ilb−1}∞m,l=0 ∪ {θt − i Q
2 − ibm − ilb−1}∞m,l=0,
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with

�′
S,σs

:= {θ0 ± θt + i Q
2 + imb + ilb−1}∞m,l=0 ∪ {θ0 + θt − i Q

2 − imb − ilb−1}∞m,l=0.

Definition 5.1 LetH be defined by (4.2). The function S is defined for (σs, ρ) ∈ �S
by

S(b, θ0, θt , σs, ρ) = lim
θ∗→−∞H

(
b, θ0, θt , θ∗, σs, θ∗

2 + ρ
)

. (5.3)

The next theorem shows that S is a well-definedmeromorphic function of (σs, ρ) ∈
�S , which has a meromorphic continuation to all of C2.

Theorem 5.2 Suppose that Assumption 1.1 is satisfied. The limit in (5.3) exists uni-
formly for (σs, ρ) in compact subsets of�S . Moreover, the function S can be extended
to an analytic function of (σs, ρ) ∈ (C\�S,σs ) × (C\�ρ) and admits the following
integral representation:

S(b, θ0, θt , σs, ρ)

= PS(σs, ρ)

∫
CS

dx IS(x, σs, ρ) for (σs, ρ) ∈ (C\�S,σs ) × (C\�ρ),

(5.4)

where the dependence of PS and IS on b, θ0, θt is omitted for simplicity,

PS(σs, ρ) = sb
(
2θt + i Q

2

)
sb (ρ − θt )

∏
ε=±1

sb (εσs − θ0 − θt ) , (5.5)

IS(x, σs, ρ) = e− iπx2
2 −iπx(i Q+2θ0+θt−ρ) sb(x + θt − ρ)

sb
(
x + i Q

2

)
sb

(
x + i Q

2 + 2θt
)

×
∏

ε=±1

sb(x + θ0 + θt + εσs), (5.6)

and the contour CS is any curve from−∞ to+∞which separates the three decreasing
from the two increasing sequences of poles, with the requirement that its right tail
satisfies

Im x − Im ρ < −δ for all x ∈ CS with Re x sufficiently large, (5.7)

for some δ > 0. In particular, S is a meromorphic function of (σs, ρ) ∈ C
2. If

(σs, ρ) ∈ R
2, then the contour CS can be any curve from −∞ to +∞ lying within the

strip Im x ∈ (−Q/2,−δ).

Proof The proof is similar to the proof of Theorem 4.2, but there are some differences
because the exponent in (5.6) is a quadratic (rather than a linear) polynomial in x . Let
(b, θ0, θt ) ∈ (0,∞) × R

2. It can be verified that
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PH
(
σs,

θ∗
2 + ρ

)
IH

(
x, σs,

θ∗
2 + ρ

)
= PS(σs, ρ)Z(x, θ∗)IS(x, σs, ρ), (5.8)

where

Z(x, θ∗) = e
iπx2
2 e

iπx
(
θ0+θ∗+θt+ i Q

2

) sb
(
θ0 + θ∗ + θt + i Q

2

)

sb
(
x + θ0 + θ∗ + θt + i Q

2

) . (5.9)

Due to the properties (2.3) of the function sb, the function IS(·, σs, ρ) possesses
two increasing sequences of poles starting at x = 0 and x = −2θt , as well as three
decreasing sequences of poles starting at x = − i Q

2 +ρ−θt and x = − i Q
2 ±σs−θ0−θt .

The discrete sets �S,σs and �ρ contain all the values of σs and ρ, respectively, for
which poles in any of the two increasing sequences collide with poles in any of the
three decreasing sequences. The sets �S,σs and �ρ also contain all the values of σs
and ρ at which the prefactor PS(σs, ρ) has poles. Furthermore, Z(x, θ∗) possesses one
increasing sequence of poles starting at x = −θ0 −θ∗ −θt which lies in the half-plane
Im x ≥ 0. The real parts of the poles in this sequence tend to +∞ as θ∗ → −∞.

Let Kσs and Kρ be compact subsets of C\�S,σs and {Im ρ > −Q/2}\�ρ , respec-
tively. Suppose (σs, ρ) ∈ Kσs × Kρ . Then, the above discussion shows that it is
possible to choose a contour CS = CS(σs, ρ) from −∞ to +∞ which separates the
two upward from the three downward sequences of poles of Z(·, θ∗)IS(·, σs, ρ). Let
us choose CS so that its right tail approaches the horizontal line Im x = −Q/2− δ as
Re x → +∞ for some δ > 0. Then there is an N > 0 such that CS is independent of
θ∗ for θ∗ < −N , and (4.5) and (5.8) imply that, for all (σs, ρ) ∈ Kσs × Kρ and all
θ∗ < −N ,

H
(
b, θ0, θt , θ∗, σs, θ∗

2 + ρ
)

= PS(σs, ρ)

∫
CS

dx Z(x, θ∗)IS(x, σs, ρ). (5.10)

Utilizing the asymptotic formula (2.8), it can be verified that the following limit

lim
θ∗→−∞ Z(x, θ∗) = 1, (5.11)

holds uniformly for (σs, ρ) ∈ Kσs ×Kρ and for x in bounded subsets of CS . Moreover,
using (2.8) with ε = 1/2 we find that IS obeys the estimates

IS(x, σs, ρ) =
{
O

(
e2π |Re x |(Im x−Im ρ)

)
, Re x → +∞,

O
(
e−2πQ|Re x |) , Re x → −∞,

(5.12)

uniformly for (σs, ρ) in compact subsets of Kσs × Kρ and Im x in compact subsets of
R. Since the contour CS stays a bounded distance away from the poles of the integrand
IS , we infer that there exists a constant C1 > 0 such that
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|IS(x, σs, ρ)| ≤ C1 ×
{
e2π |Re x |(Im x−Im ρ), Re x ≥ 0,

e−2πQ|Re x |, Re x ≤ 0,
(5.13)

uniformly for (σs, ρ) in compact subsets of Kσs × Kρ . In particular, the integrand IS
has exponential decay along the left and right tails of the contour CS .

Suppose we can show that there exist constants c > 0 and C > 0 such that

|Z(x, θ∗)IS(x, σs, ρ)| ≤ Ce−c|Re x |, (5.14)

uniformly for all θ∗ < −N , x ∈ CS and (σs, ρ) ∈ Kσs × Kρ . Then it follows from
(5.10), (5.11) and Lebesgue’s dominated convergence theorem that the limit in (5.3)
exists uniformly for (σs, ρ) ∈ Kσs × Kρ and is given by (5.4). This proves that the
limit in (5.3) exists uniformly for (σs, ρ) in compact subsets of �S and proves (5.4)
for (σs, ρ) ∈ �S . The analyticity of S as a function of (σs, ρ) ∈ �S follows from the
analyticity of H together with the uniform convergence on compact subsets.

Let c0 < −Q/2 be a constant. Then we can choose the contour CS so that it
satisfies the condition in (5.7) for any ρ ∈ C\�ρ with Im ρ > c0. For such a choice
of CS , the estimate (5.13) ensures that the integral representation (5.4) provides a
meromorphic continuation of S to (σs, ρ) ∈ C × {Im ρ > c0} which is analytic
for (σs, ρ) ∈ (C\�S,σs ) × ({Im ρ > c0}\�ρ). Since c0 was arbitrary, it follows
that S admits a meromorphic continuation to (σs, ρ) ∈ C

2 which is analytic for
(σs, ρ) ∈ (C\�S,σs ) × (C\�ρ).

To complete the proof of the theorem, it only remains to prove (5.14). The
asymptotic formula (2.8) for sb with ε = 1/2 implies that there exist constants
C2,C3,C4 > 0 such that the inequalitites

|sb
(
θ0 + θ∗ + θt + i Q

2

)
|≤ C2 e

πQ|θ∗|
2 , θ∗ < −N , (5.15)

|sb
(
x + θ0 + θ∗ + θt + i Q

2

)−1 |≤ C3 e
− πQ|θ∗+Re x |

2 e−π(Im x)|θ∗+Re x |, x ∈ CS , θ∗ ∈ R,

(5.16)

|e iπx2
2 e

iπx
(
θ0+θ∗+θt+ i Q

2

)
|≤ C4 e

−π(Im x)(θ∗+Re x)e− πQRe x
2 , x ∈ CS , (5.17)

hold uniformly for (σs, ρ) ∈ Kσs × Kρ . Therefore, in view of (5.9), there exists a
constant C5 > 0 such that

|Z(x, θ∗)| ≤ C5 e
−π(Im x+ Q

2 )(θ∗+Re x+|θ∗+Re x |), x ∈ CS , θ∗ < −N , (5.18)

uniformly for (σs, ρ) ∈ Kσs × Kρ . The inequality (5.18) can be rewritten as follows:

|Z(x, θ∗)| ≤
{
C5 e−2π(Im x+ Q

2 )(θ∗+Re x), θ∗ + Re x ≥ 0,

C5, θ∗ + Re x ≤ 0,
x ∈ CS , θ∗ < −N ,

(5.19)
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uniformly for (σs, ρ) ∈ Kσs×Kρ . The inequalities (5.13) and (5.19) yield the existence
of a constant C6 > 0 independent of x ∈ CS , θ∗ < −N and (σs, ρ) ∈ Kσs × Kρ such
that

|Z(x, θ∗)IS(x, σs, ρ)|≤

⎧⎪⎨
⎪⎩
C6 e−2π(Re x)( Q

2 +Im ρ)e−2πθ∗( Q
2 +Im x), Re x ≥ −θ∗,

C6 e2π(Re x)(Im x−Im ρ), 0 ≤ Re x ≤ −θ∗,
C6 e−2πQ|Re x |, Re x ≤ 0,

(5.20)

uniformly for (σs, ρ) ∈ Kσs × Kρ . Since Im ρ > −Q/2 + δ for ρ ∈ Kρ and
Im x < −Q/2 − δ on the right tail of the contour for some δ > 0, this proves (5.14)
and completes the proof. �

Furthermore, thanks to the property (2.7) of sb the function S has the symmetry

S(b, θ0, θt , σs, ρ) = S(b−1, θ0, θt , σs, ρ). (5.21)

5.2 Difference Equations

By taking the confluent limit (5.3) of the difference equations (4.26) and (4.33) satisfied
byH, it follows that the function S is a joint eigenfunction of four different difference
operators, two acting on σs and the remaining two acting on ρ. The four difference
equations will hold as equalities between meromorphic functions on C

2. Since the
derivations are similar to those presented in Sect. 4.2, we state these results without
proofs.

5.2.1 First Pair of Difference Equations

Define the difference operator DS(b, σs) by

DS(b, σs) = d+
S (b, σs)e

ib∂σs + d+
S (b,−σs)e

−ib∂σs + d0S(b, σs), (5.22)

where

d+
S (b, σs) = e−πb(2σs+i Q)

∏
ε=±1 cosh

(
πb

( ib
2 + εθ0 + θt + σs

))
sinh(πb(2σs + ib))sinh(2πbσs)

, (5.23)

d0S(b, σs) = e−πb(2θt+i Q) − d+
S (b, σs) − d+

S (b,−σs). (5.24)

Proposition 5.3 For (σs, ρ) ∈ C
2, the function S satisfies the pair of difference equa-

tions

DS(b, σs) S(b, θ0, θt , σs, ρ) = e−2πbρ S(b, θ0, θt , σs, ρ), (5.25a)

DS(b−1, σs) S(b, θ0, θt , σs, ρ) = e−2πb−1ρ S(b, θ0, θt , σs, ρ). (5.25b)
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5.2.2 Second Pair of Difference Equations

Define the difference operator D̃S(b, ρ) such that

D̃S(b, ρ) = d̃+
S (b, ρ)eib∂ρ + d̃−

S (b, ρ)e−ib∂ρ + d̃0S(b, ρ), (5.26)

where

d̃±
S (b, ρ) = −2eπbρe

∓πb
(
ib
2 +2θ0+θt

)
cosh

(
πb

( ib
2 + θt ± ρ

))
, (5.27)

d̃0S(b, ρ) = −2 cosh
(
2πb

( ib
2 + θ0 + θt

)) − d̃+
S (b, ρ) − d̃−

S (b, ρ). (5.28)

Proposition 5.4 For (σs, ρ) ∈ C
2, the function S satisfies the following pair of differ-

ence equations:

D̃S(b, ρ) S(b, θ0, θt , σs, ρ) = 2 cosh (2πbσs) S(b, θ0, θt , σs, ρ), (5.29a)

D̃S(b−1, ρ) S(b, θ0, θt , σs, ρ) = 2 cosh (2πb−1σs) S(b, θ0, θt , σs, ρ). (5.29b)

5.3 Polynomial Limits

Our next two theorems state that S reduces to the Al-Salam Chihara polynomials
when the variable ρ is suitably discretized and to the little q-Jacobi polynomials when
σs is suitably discretized. The proofs proceed along the same lines as the proofs of
Theorem 4.7 and Theorem 4.8 and are therefore omitted.

We make the following assumption which ensures that the poles of the integrand
IS in (5.6) are simple.

Assumption 5.5 Assume that b > 0 is such that b2 is irrational. Moreover, assume
that

θt ,Re σs �= 0, Re
( ± σs + ρ + θ0

) �= 0. (5.30)

Theorem 5.6 (From S to the Al-Salam Chihara polynomials) Let σs ∈ C\�S,σs and
suppose that Assumptions 1.1 and 5.5 are satisfied. Define {ρn}∞n=0 ⊂ C by

ρn = θt + i Q
2 + inb. (5.31)

Under the parameter correspondence

αS = e2πb(θt+θ0+ i Q
2 ), βS = e2πb(θt−θ0+ i Q

2 ), q = e2iπb
2
, (5.32)

the function S satisfies, for each n ≥ 0,

lim
ρ→ρn

S(b, θ0, θt , σs, ρ) = Sn
(
e2πbσs ;αS, βS; q

)
, (5.33)
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where Sn are the Al-Salam Chihara polynomials defined in (B.17).

Theorem 5.7 (From S to the little q-Jacobi polynomials) Let ρ ∈ C\�ρ and suppose
that Assumptions 1.1 and 5.5 are satisfied. Under the parameter correspondence

αY = e4πbθt , βY = e4πbθ0 , xY = eπb(i Q+2θt )e−2πbρ, q = e2iπb
2
,

(5.34)

the function S satisfies, for each n ≥ 0,

lim
σs→σ

(n)
s

S(b, θ0, θt , σs, ρ) = Yn (xY ;αY , βY , q) , (5.35)

where σ
(n)
s is defined in (3.11) andwhere Yn are the little q-Jacobi polynomials defined

in (B.24).

6 The FunctionX
In this section, we define the function X (b, θ, σs, ω) which generalizes continuous
big q-Hermite polynomials. It lies at the fourth level of the non-polynomial scheme
and is defined as a confluent limit of S. We show thatX is a joint eigenfunction of four
difference operators and that it reduces to the continuous big q-Hermite polynomials,
which lie at the fourth level of the q-Askey scheme, when ω is suitably discretized.

6.1 Definition and Integral Representation

Let θ and ω be two new parameters defined by

θ0 = θ + �

2
, θt = θ − �

2
, ρ = −�

2
+ ω. (6.1)

Definition 6.1 The function X is defined by

X (b, θ, σs, ω) = lim
�→+∞S (

b, θ+�
2 , θ−�

2 , σs,−�
2 + ω

)
, (6.2)

where S is given in (5.4).

The next theorem shows that for each choice of (b, θ) ∈ (0,∞) × R, X is a well-
defined analytic function of (σs, ω) ∈ (C\�X ,σs ) × (C\�ω), where �S,σs ,�ω ⊂ C

are discrete sets of points where S may have poles. The proof is omitted since it
involves computations which are similar to those presented in the proofs of Theorems
4.2 and 5.2.
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Theorem 6.2 Suppose that Assumption 1.1 is satisfied. The limit (6.2) exists uniformly
for (σs, ω) in compact subsets of

�X := (C\�X ,σs ) × (C\�ω), (6.3)

where

�X ,σs := {±σs | σs ∈ �′
X ,σs

},
�ω := { θ

2 + i Q
2 + ibm + ilb−1}∞m,l=0 ∪ { θ

2 − i Q
2 − ibm − ilb−1}∞m,l=0,

with

�′
X ,σs

:= {θ + i Q
2 + imb + ilb−1}∞m,l=0 ∪ {θ − i Q

2 − imb − ilb−1}∞m,l=0.

Moreover, the function X admits the following integral representation:

X (b, θ, σs, ω) = PX (σs, ω)

∫
CX

dx IX (x, σs, ω) for (σs, ω) ∈ �X , (6.4)

where

PX (σs, ω) = sb
(
ω − θ

2

) ∏
ε=±1

sb(εσs − θ), (6.5)

IX (x, σs, ω) = e−iπx2e
−iπx

(
5θ
2 + 3i Q

2 −ω
)
sb

(
x + θ

2 − ω
)

sb(x + i Q
2 )

∏
ε=±1

sb (x + θ + εσs) ,

(6.6)

and the contour CX is any curve from−∞ to+∞which separates the three decreasing
from the increasing sequences of poles, with the requirement that its right tail satisfies

Im x + Q

4
− Imω

2
< −δ for x ∈ CX with Re x sufficiently large, (6.7)

for some δ > 0. In particular, X is a meromorphic function of (σs, ω) ∈ C
2. If

(σs, ω) ∈ R
2, then the contour CX can be any curve from −∞ to +∞ lying within

the strip Im x ∈ (−Q/2,−Q/4 − δ).

Furthermore, as a consequence of (2.7), X satisfies

X (b, θ, σs, ω) = X (b−1, θ, σs, ω). (6.8)

6.2 Difference Equations

The function X (b, θ, σs, ω) is a joint eigenfunction of four difference operators, two
acting on σs and the remaining two on ω. This follows by taking the confluent limit
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(6.2) of the difference equations (5.25) and (5.29) satisfied by S. The proofs of the
following two propositions are omitted since they are similar to those presented in
Sect. 4.2.

6.2.1 First Pair of Equations

Introduce a difference operator DX (b, σs) such that

DX (b, σs) = d+
X (b, σs)e

ib∂σs + d+
X (b,−σs)e

−ib∂σs + d0X (b, σs), (6.9)

where

d+
X (b, σs) = −e− 3

2πb(2σs+ib) cosh
(
πb

( ib
2 + θ + σs

))
2 sinh(2πbσs) sinh(πb(2σs + ib))

, (6.10)

d0X (b, σs) = e−πb(θ+i Q) − d+
X (b, σs) − d+

X (b,−σs). (6.11)

Proposition 6.3 For (σs, ω) ∈ C
2, the function X satisfies the following pair of dif-

ference equations:

DX (b, σs) X (b, θ, σs, ω) = e−2πbω X (b, θ, σs, ω) (6.12a)

DX (b−1, σs) X (b, θ, σs, ω) = e−2πb−1ω X (b, θ, σs, ω). (6.12b)

6.2.2 Second Pair of Equations

Introduce the difference operator D̃X (b, ω) such that

D̃X (b, ω) = d̃+
X (b, ω)eib∂ω + d̃−

X (b, ω)e−ib∂ω + d̃0X (b, ω), (6.13)

where

d̃+
X (b, ω) = e−2πb(θ+ i Q

2 ), d̃−
X (b, ω) = −2eπb

( ib
2 + 3θ

2 +ω
)
cosh

(
πb

( ib
2 + θ

2 − ω
))

,

d̃0X (b, ω) = −2 cosh(πb(2θ + ib)) − d̃+
X (b, ω) − d̃−

X (b, ω) = eπb(θ+2ω).

Proposition 6.4 For (σs, ω) ∈ C
2, the function X satisfies the following pair of dif-

ference equations:

D̃X (b, ω) X (b, θ, σs, ω) = 2 cosh (2πbσs) X (b, θ, σs, ω), (6.14a)

D̃X (b−1, ω) X (b, θ, σs, ω) = 2 cosh (2πb−1σs) X (b, θ, σs, ω). (6.14b)
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6.3 Polynomial Limit

Our next theorem shows that X reduces to the continuous big q-Hermite polynomials
when ω is suitably discretized. Wemake the following assumption, which implies that
all the poles of the integrand IX are simple and that q = e2iπb

2
is not a root of unity.

Assumption 6.5 Assume that b > 0 is such that b2 is irrational and that

Re σs �= 0, Re
(
ω + θ

2 ± σs
) �= 0. (6.15)

The proof of the next theorem is analogous to the proof of Theorem 4.7 and is
omitted.

Theorem 6.6 (From X to the continuous big q-Hermite polynomials) Let σs ∈
C\�X ,σs and suppose that Assumptions 1.1 and 6.5 are satisfied. Define {ωn}∞n=0 ⊂ C

by

ωn = θ

2
+ i Q

2
+ ibn. (6.16)

Under the parameter correspondence

αX = e2πb(θ+ i Q
2 ), q = e2iπb

2
, (6.17)

the function X satisfies, for each n ≥ 0,

lim
ω→ωn

X (b, θ, ω, σs) = Xn(e
2πbσs ;αX , q), (6.18)

where Xn are the continuous big q-Hermite polynomials defined in (B.37).

7 The FunctionQ
The function Q(b, σs, η) is defined as a confluent limit of X and is one of the two
elements at the fifth and lowest level of the non-polynomial scheme. We show thatQ
is a joint eigenfunction of four difference operators, two acting on σs and two acting on
η. Finally, we show that Q reduces to the continuous q-Hermite polynomials, which
lie at the lowest level of the q-Askey scheme, when η is suitably discretized.

Interestingly, the mechanism behind the polynomial limit for Q is different from
that of all the other polynomial limits in this paper. In all other cases, the simple pole
of the contour integral which compensates for the simple zero in the prefactor arises
because the contour of integration is squeezed between two poles of the integrand.
However, in the case of Q, the simple pole of the contour integral arises because the
integrand loses its decay at infinity in the relevant polynomial limit.

The derivation of the difference equations forQ also presents some novelties com-
pared to the other derivations of difference equations appearing in this paper. More
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precisely, the first pair of difference equations forQ obtained by taking the confluent
limit of the difference equations for X are “squares” of the simplest possible differ-
ence equations forQ. By finding square roots of the relevant difference operators, we
obtain the equations in their simplified form (this is the form that reduces to the stan-
dard difference equations for the continuous q-Hermite polynomials in the polynomial
limit).

7.1 Definition and Integral Representation

Let η be a new parameter defined as follows:

ω = θ

2
+ η. (7.1)

Moreover, define the normalization factor K by

K (η, θ) = e
2iπ

(
η− i Q

2

)(
θ+ i Q

2

)
. (7.2)

The factor K is a non-polynomial analog of the factor α−n in (B.40).

Definition 7.1 The function Q is defined by

Q(b, σs, η) = lim
θ→−∞

(
K (η, θ)X (b, θ, σs,

θ
2 + η)

)
. (7.3)

The next theorem shows that Q is a well-defined and analytic function of (σs, η) ∈
C × ({Im η < Q/2}\�η), where �η is a discrete set of points at which Q may
have poles. The theorem also provides an integral representation for Q. Even if the
requirement Im η < Q/2 is needed to ensure that the integral in the representation
for Q converges, it will follow from the difference equations established later that Q
extends to a meromorphic function of η ∈ C.

Theorem 7.2 Suppose that Assumption 1.1 is satisfied. The limit (7.3) exists uniformly
for (σs, η) in compact subsets of

�Q := C × ({Im η < Q/2}\�η), (7.4)

where

�η := {− i Q
2 − imb − ilb−1}∞m,l=0. (7.5)

Moreover, the function Q admits the following integral representation:

Q(b, σs, η) = PQ(σs, η)

∫
CQ

dx IQ(x, σs, η) for (σs, η) ∈ �Q, (7.6)
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where

PQ(σs, η) = e
iπ

(
1
6+ 7Q2

24 − η2

2 +iηQ−σ 2
s

)
sb(η), (7.7)

IQ(x, σs, η) = e−iπx2e2iπx(η− i Q
2 )sb (x + σs) sb (x − σs) , (7.8)

and the contour of integration CQ is any curve from −∞ to +∞ passing above the
points x = ±σs − i Q/2 and with the requirement that its right tail satisfies

Im x + Q
4 − Im η

2 < −δ for all x ∈ CQ with Re x sufficiently large, (7.9)

for some δ > 0. If (σs, η) ∈ R
2, then the contour CQ can be any curve from −∞ to

+∞ lying within the strip Im x ∈ (−Q/2,−Q/4 − δ).

Proof The proof will be omitted since it involves computations which are similar to
those presented in the proofs of Theorems 4.2 and 5.2. However, we point out that
before taking the limit θ → −∞ of the integral representation (6.4) forX , one should
make the change of variables x → x − θ and thus write

K (η, θ)PX (σs,
θ
2 + η)IX (x − θ, σs,

θ
2 + η) = PQ(σs, η)ZQ(x, θ)IQ(x, σs, η),

(7.10)

where

ZQ(x, θ) := e
iπ
6 (3η2+ 5Q2

4 +6σ 2
s −1)e

πQ
2 (x−θ)e−iπηx

× eiπθ(η+θ) sb(x − η − θ)sb(σs − θ)sb(−σs − θ)

sb(x − θ + i Q
2 )

(7.11)

satisfies ZQ(x, θ) → 1 as θ → −∞. �
Thanks to (2.7), we have

Q(b, σs, η) = Q(b−1, σs, η). (7.12)

Remark 7.3 A close relative of the function Q has appeared in [24, 54] in the context
of quantum relativistic Toda systems. More precisely, the functionH(a−, a+, x, y) in
[54, Eq. (5.56)] is related to Q by

Q(b, σs, η) = e
1
4 iπ

(
Q2
4 + 1

2−η2−8σ 2
s

)
gb(η) H(b, b−1,−η, 2σs), (7.13)

where gb(z) satisfies sb(z) = gb(z)/gb(−z) and is defined by

gb(z) = exp

{∫ ∞

0

dt

t

[
e2i zt − 1

4 sinh bt sinh b−1t
+ 1

4
z2

(
e−2bt + e− 2t

b

)
− i z

2t

]}
,

for Im z > −Q

2
. (7.14)
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7.2 Difference Equations

We show that Q(b, σs, η) is a joint eigenfunction of four difference operators, two
acting on σs and the remaining two on η.

We know fromTheorem 7.2 thatQ is a well-defined analytic function of σs ∈ C and
a meromorphic function of η for Im η < Q/2. The difference equations will first be
derived as equalities between meromorphic functions defined on this limited domain.
However, the difference equations in η can then be used to extend the results to η ∈ C,
see Proposition 7.8.

7.2.1 First Pair of Equations

Define the difference operator DQ(b, σs) by

DQ(b, σs) = d+
Q(b, σs)e

ib∂σs + d+
Q(b,−σs)e

−ib∂σs + d0Q(b, σs), (7.15)

where

d+
Q(b, σs) = − e−2πb(2σs+ib)

4 sinh(2πbσs) sinh(πb(2σs + ib))
, (7.16)

d0Q(b, σs) = e−iπbQ − d+
Q(b, σs) − d+

Q(b,−σs). (7.17)

Proposition 7.4 For σs ∈ C and Im η < Q/2, the function Q satisfies the following
pair of difference equations:

DQ(b, σs) Q(b, σs, η) = e−2πbη Q(b, σs, η), (7.18a)

DQ(b−1, σs) Q(b, σs, η) = e−2πb−1η Q(b, σs, η). (7.18b)

Proof It is straightforward to verify that the following limits hold:

lim
θ→−∞ eπbθd+

X (b,±σs) = d+
Q(b,±σs), lim

θ→−∞ eπbθd0X (b, σs) = d0Q(b, σs),

(7.19)

where d+
X and d0X are defined in (6.10) and (6.11), respectively. It follows that

lim
θ→−∞ eπbθ DX (b, σs) = DQ(b, σs). (7.20)

where DX is defined in (6.9). The difference equation (7.18a) follows after taking the
confluent limit (7.3) of the difference equation (6.12a) and utilizing (7.20). �

In what follows, we show that the functionQ satisfies a pair of difference equations
which is more fundamental than (7.18).
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Proposition 7.5 Define the difference operator D̂Q(b, σs) by

D̂Q(b, σs) = d̂+
Q(b, σs)e

ib
2 ∂σs + d̂−

Q(b, σs)e
− ib

2 ∂σs , (7.21)

with

d̂+
Q(b, σs) = − e

−πb
(
2σs+ i Q

2

)

2 sinh(2πbσs)
, d̂−

Q(b, σs) = d̂+
Q(b,−σs). (7.22)

The following operator identity holds:

(
D̂Q(b, σs)

)2 = DQ(b, σs), (7.23)

where DQ is defined in (7.15).

Proof The left-hand side of (7.23) can be written as

(
D̂Q(b, σs)

)2 = d̂+
Q(b, σs)d̂

+
Q(b, σs + ib

2 )eib∂σs + d̂−
Q(b, σs)d̂

−
Q(b, σs − ib

2 )e−ib∂σs

+ d̂+
Q(b, σs)d̂

−
Q(b, σs + ib

2 ) + d̂−
Q(b, σs)d̂

+
Q(b, σs − ib

2 ) (7.24)

and straightforward computations show that the right-hand side coincides with the
operator DQ(b, σs). �

We next show that the difference equations (7.18) satisfied by the functionQ can be
simplified using the identity (7.23). The simplified equations can be viewed as “square
roots” of the equations in (7.18).

Proposition 7.6 For σs ∈ C and Im η < Q/2, the function Q satisfies

D̂Q(b, σs) Q(b, σs, η) = e−πbη Q(b, σs, η), (7.25a)

D̂Q(b−1, σs) Q(b, σs, η) = e−πb−1η Q(b, σs, η). (7.25b)

Proof Let us rewrite (7.6) as

Q(b, σs, η) =
∫
CQ

dx ψ(x, σs, η)e2iπxη, (7.26)

where

ψ(x, σs, η) = e
iπ

(
1
6+ 7Q2

24 − η2

2 +iηQ−σ 2
s

)
sb(η)e−iπx2eπQxsb (x + σs) sb (x − σs) ,

(7.27)

and where the contour CQ is such that it passes above the points x = ±σs , and such
that Im x <

Im η
2 − Q/4 − δ for some small but fixed δ > 0 as Re x → +∞. The
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following estimates, which are easily established with the help of (2.8), imply that the
integrand has exponential decay on CQ as Re x → +∞:

ψ(x, σs, η)e2iπxη =
⎧⎨
⎩
O

(
e4π(Re x)(Im x+ Q

4 − Im η
2 )

)
, Re x → +∞,

O
(
e2πRe x(

Q
2 −Im η)

)
, Re x → −∞,

(7.28)

uniformly for (b, Im x, σs, η) in compact subsets of (0,∞) × R × C
2.

Utilizing the difference equation (2.5), we verify that the following identity holds:

D̂Q(b, σs)ψ(x, σs, η) = ψ(x − ib
2 , σs, η). (7.29)

Letting the difference operator D̂Q act inside the contour integral in (7.26) and using
(7.29), we obtain

D̂Q(b, σs)Q(b, σs, η) =
∫
CQ

dx ψ(x − ib
2 , σs, η)e2iπxη.

Performing the change of variables x = y + ib/2, we find

D̂Q(b, σs)Q(b, σs, η) = e−πbη
∫
CQ− ib

2

dy ψ(y, σs, η)e2iπ yη.

Deforming the contour back to CQ, noting that no poles are crossed and that the
integrand retains its exponential decay at infinity throughout the deformation,we arrive
at (7.25a). The difference equation (7.25b) follows from (7.25a) and the symmetry
(7.12) of Q. �

7.2.2 Second Pair of Equations

Define the difference operator D̃Q(b, η) by

D̃Q(b, η) = eib∂η +
(
1 + e

2πb
(
η− ib

2

))
e−ib∂η . (7.30)

Proposition 7.7 For σs ∈ C and Im (η + ib±1) < Q/2, the function Q satisfies the
pair of difference equations

D̃Q(b, η) Q(b, σs, η) = 2 cosh (2πbσs) Q(b, σs, η), (7.31a)

D̃Q(b−1, η) Q(b, σs, η) = 2 cosh (2πb−1σs) Q(b, σs, η). (7.31b)

Proof The difference equation (6.14a) can be rewritten as follows:

(
K (η, θ)D̃X (b, θ

2 + η)K (η, θ)−1
)
K (η, θ)X (b, θ, σs,

θ
2 + η)
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= 2 cosh (2πbσs) K (η, θ)X (b, θ, σs,
θ
2 + η), (7.32)

where the operator D̃X is given in (6.13). Moreover, we have

lim
θ→−∞ K (η, θ)D̃X (b, θ

2 + η)K (η, θ)−1 = D̃Q(b, η). (7.33)

Taking the limit θ → −∞ of (7.32) and recalling the definition (7.3), we obtain
(7.31a). Finally, (7.31b) follows from (7.31a) and the symmetry (7.12) of Q. �

The next proposition shows that Q extends to a meromorphic function of η every-
where in the complex plane. The proof will be omitted, since it is similar to that of
Proposition 4.5.

Proposition 7.8 Let b ∈ (0,∞) and σs ∈ C. Then there is a discrete subset � ⊂ C

such that the limit in (7.3) exists for all η ∈ C\�. Moreover, the function Q defined
by (7.3) is a meromorphic function of (σs, η) ∈ C

2 and the four difference equations
(7.25) and (7.31) hold as equalities between meromorphic functions of (σs, η) ∈ C

2.

7.3 Polynomial Limit

In this subsection, we show that the function Q reduces to the continuous q-Hermite
polynomials when η is suitably discretized.

Theorem 7.9 (FromQ to the continuousq-Hermite polynomials) Letσs ∈ C. Suppose
that b > 0 is such that b2 is irrational. Define {ηn}∞n=0 ⊂ C by

ηn = i Q
2 + ibn. (7.34)

For each integer n ≥ 0, the function Q satisfies

lim
η→ηn

Q(b, η, σs) = Qn

(
e2πbσs ; e2iπb2

)
, (7.35)

where Qn are the continuous q-Hermite polynomials defined in (B.40).

In order to prove Theorem 7.9, we will need the following two lemmas.

Lemma 7.10 For each ε > 0, the integrand IQ defined in (7.8) obeys the estimates

ln
(
IQ(x, σs, η)

) = A+
Q(x, η) + O

(
e
− 2π(1−ε)

max(b,b−1)
|Re x |)

, Re x → +∞, (7.36a)

ln
(
IQ(x, σs, η)

) = A−
Q(x, η) + O

(
e
− 2π(1−ε)

max(b,b−1)
|Re x |)

, Re x → −∞, (7.36b)

uniformly for (b, Im x, σs, η) in compact subsets of (0,∞) × R × C
2, where

A+
Q(x, η) = −2iπx2 + 2iπx(η − i Q

2 ) − iπ
(
σ 2
s + Q2−2

12

)
, (7.37a)
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A−
Q(x, η) = 2iπx(η − i Q

2 ) + iπ
(
σ 2
s + Q2−2

12

)
. (7.37b)

Proof The lemma follows from (2.8) and (7.8). �
Lemma 7.11 Let

εQ(x, η) = IQ(x, σs, η) − eA
−
Q(x,η), (7.38)

where A−
Q is defined in (7.37b). There is a neighborhood U0 of η0 = i Q/2 and

constants c > 0 and M > 0 such that

∣∣εQ(x, η)
∣∣ ≤ Me−c|Re x | for Re x ≤ 0 and for η ∈ U0 with Im η ≤ Im η0,

(7.39)

uniformly for (Im x, σs) in compact subsets of R × C.

Proof Utilizing the estimate (7.36b) with ε = 1/2, we find that

εQ(x, η) = eA
−
Q(x,η)

(
e
O

(
exp( πRe x

max(b,b−1)
)
)

− 1
)

= O

(
eA

−
Q(x,η)e

− π |Re x |
max(b,b−1)

)
, Re x → −∞, (7.40)

uniformly for (b, Im x, σs, η) in compact subsets of (0,∞) × R × C
2. Since

eReA
−
Q(x,η) = e2π(Re x)( Q

2 −Im η)e−2π(Im x)(Re η)e−2π(Im σs )(Re σs ), (7.41)

the desired conclusion follows. �
Proof of Theorem 7.9 Suppose b > 0 and σs ∈ C. The function IQ(x, σs, η) has two
downward sequences of poles starting at x = ±σs−i Q/2. Consider the representation
(7.6) for Q with the contour CQ passing above the points x = ±σs − i Q/2 and
satisfying (7.9) on its right tail.

Taking ε = 1/2 in the estimate (7.36a), we find that there exists a constant M1 such
that

∣∣IQ(x, σs, η)
∣∣ ≤ M1

∣∣eA+
Q(x,η)

∣∣ = M1e
ReA+

Q(x,η), x ∈ CQ, Re x ≥ 0,

(7.42)

uniformly for (b, σs, η) in compact subsets of (0,∞) × C
2. Using (7.9) and noting

that

eReA
+
Q(x,η) = e

4π(Re x)
(
Im x+ Q

4 − Im η
2

)
e−2π(Im x)(Re η)e2π(Im σs )(Re σs ), (7.43)
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we infer the existence of a neighborhood U0 of η0 = i Q/2 and constants c > 0 and
M > 0 such that

∣∣IQ(x, σs, η)
∣∣ ≤ Me−cRe x (7.44)

for all x ∈ CQ with Re x ≥ 0 and for all η ∈ U0.
Writing CQ = C+

Q∪C−
Q, where C+

Q = CQ∩{Re x ≥ 0} and C−
Q = CQ∩{Re x ≤ 0},

we can express (7.6) as

Q(b, σs, η)

= PQ(σs, η)

∫
C+
Q
dx IQ(x, σs, η) + PQ(σs, η)

∫
C−
Q
dx IQ(x, σs, η).

(7.45)

The prefactor PQ defined in (7.7) has a simple zero at η = η0 = i Q/2. Hence, by
(7.44), the first term on the right-hand side of (7.45) vanishes in the limit η → η0. On
the other hand, by (7.38),

∫
C−
Q
dx IQ(x, σs, η) =

∫
C−
Q
dx eA

−
Q(x,η) +

∫
C−
Q
dx εQ(x, η). (7.46)

In view of Lemma 7.11, there exist constants M3, M4 > 0 such that

∣∣∣∣∣
∫
C−
Q
dx εQ(x, η)

∣∣∣∣∣ ≤ M3

∫
C−
Q
dx e−c|Re x | ≤ M4 (7.47)

for all η in a small neighborhood of η0 with Im η ≤ Im η0.
By Proposition 7.8, Q is a meromorphic function of η ∈ C, and so has at most

a pole at η0. To prove (7.35), it is therefore enough to consider the limit η → η0
with η such that Im η < Im η0 = Q/2. In the remainder of the proof, we assume
Im η < Q/2. Then, after multiplication by the prefactor PQ, the second term on the
right-hand side of (7.46) vanishes in the limit η → η0 as a consequence of (7.47).
Furthermore, employing (7.36b) and using that Im η < Im η0 so that the contribution
from −∞ + ia vanishes, we obtain

∫
C−
Q
dx eA

−
Q(x,η) =

∫ ia

−∞+ia
dx eA

−
Q(x,η) = e

iπ

(
σ 2
s + Q2−2

12

)
e−2πa(η−η0)

2iπ(η − η0)
.

(7.48)

The right-hand side of (7.48) has a simple pole at η = η0. Therefore, collecting the
above conclusions,

lim
η→η0

Q(b, σs, η) = lim
η→η0

PQ(σs, η)

∫
C−
Q
dx eA

−
Q(x,η)

123



Constructive Approximation

= lim
η→η0

PQ(σs, η)e
iπ

(
σ 2
s + Q2−2

12

)
e−2πa(η−η0)

2iπ(η − η0)
, (7.49)

where the limits are taken with Im η < Im η0. Utilizing (7.7) and the identity sb(z) =
sb(−z)−1, we obtain

lim
η→η0

Q(b, σs, η) = 1

2iπ
lim

η→η0

(
1

sb(−η)(η − η0)

)
. (7.50)

Setting z = −η, recalling that η0 = i Q/2, and using (2.4), we find

lim
η→η0

Q(b, σs, η) = − 1

2iπ
lim

z→− i Q
2

(
1

sb(z)(z + i Q
2 )

)
= 1, (7.51)

which proves (7.35) for n = 0.
To show (7.35) also for n ≥ 1,we rewrite the difference equation (7.31a) as follows:

Q(b, σs, η + ib) = −
(
1 + e2πb(η− ib

2 )
)
Q(b, σs, η − ib)

+2 cosh (2πbσs)Q(b, σs, η). (7.52)

Note that 1+ e2πb(η− ib
2 ) vanishes for η = η0. Moreover, the functionQ(b, σs, η− ib)

is analytic at η = η0. Indeed, as η approaches η0, the contour CQ remains above
the two decreasing sequences of poles, and, in view of (7.36) (see also (7.43) and
(7.41)), the integrand IQ retains its exponential decay provided that the right tail of
the contour is deformed downwards. Therefore, evaluating (7.52) at η = η0 and using
(7.51), we obtain Q(b, σs, η1) = 2 cosh (2πbσs). Evaluating the recurrence relation
(B.41) satisfied by the continuous q-Hermite polynomials at n = 0 and z = e2πbσs ,
we find

Q1

(
e2πbσs ; q

)
= 2 cosh (2πbσs) = Q(b, σs, η1), (7.53)

which proves (7.35) for n = 1. More generally, suppose that the functionQ(b, σs, ηn)
exists for all n ≤ N and coincides with the polynomials Qn

(
e2πbσs ; q)

. Evaluating
(7.52) at n = N + 1, we obtain

Q(b, σs, ηN+1) = −
(
1 − qN+1

)
QN

(
e2πbσs ; q

)

+2 cosh (2πbσs)QN−1

(
e2πbσs ; q

)
, (7.54)

and hence the recurrence relation (B.41) implies that

Q(b, σs, ηN+1) = QN+1

(
e2πbσs ; q

)
. (7.55)
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By induction, we conclude that Q(b, σs, ηn) exists for all n ≥ 0 and coincides with
Qn

(
e2πbσs ; q)

. This completes the proof of the theorem. �

8 The FunctionL
In this section, we define the function L(b, θt , θ, λ, μ) which generalizes the big q-
Laguerre polynomials. It is defined as a confluent limit ofH and lies at the third level of
the non-polynomial scheme.We show thatL is a joint eigenfunction of four difference
operators. Finally, we show that L reduces to the big q-Laguerre polynomials, which
lie at the third level of the q-Askey scheme, when λ is suitably discretized.

8.1 Definition and Integral Representation

Let θ,�, λ, μ be defined as follows:

θ0 = θ + �

2
, θ∗ = θ − �

2
, σs = λ + �

2
, ν = μ − �

4
. (8.1)

Define the open set �L ⊂ C
2 by

�L := (C\�λ) × ({Imμ > −Q/2}\�μ), (8.2)

where the discrete subsets �λ and �μ are given by

�λ := { i Q2 ± θt + θ
2 + ibm + ilb−1}∞m,l=0 ∪ { i Q2 − θ

2 + ibm + ilb−1}∞m,l=0

∪ {− i Q
2 + θt + θ

2 − ibm − ilb−1}∞m,l=0,

�μ := { i Q2 ± θt + θ
4 + ibm + ilb−1}∞m,l=0 ∪ { i Q2 − 3θ

4 + ibm + ilb−1}∞m,l=0

∪ {− i Q
2 + θt + θ

4 − ibm − ilb−1}∞m,l=0.

Definition 8.1 Let H be defined by (4.2). The function L is defined for (λ, μ) ∈ �L
by

L(b, θt , θ, λ, μ) = lim
�→−∞H (

b, θ+�
2 , θt ,

θ−�
2 , λ + �

2 , μ − �
4

)
, (8.3)

and is extended meromorphically to (λ, μ) ∈ C
2.

The next theorem shows thatL is a well-defined meromorphic function of (λ, μ) ∈
C
2.

Theorem 8.2 Suppose that Assumption 1.1 is satisfied. The limit in (8.3) exists uni-
formly for (λ, μ) in compact subsets of �L. Moreover, L is an analytic function of
(λ, μ) ∈ (C\�λ) × (C\�μ) and admits the following integral representation:

L(b, θt , θ, λ, μ)= PL(λ, μ)

∫
CL

dx IL(x, λ, μ) for (λ, μ)∈(C\�λ) × (C\�μ),

123



Constructive Approximation

(8.4)

where

PL(λ, μ) = sb
(
2θt + i Q

2

)
sb

(
θ + θt + i Q

2

)
sb

(
λ − θ

2 − θt
)
sb

(
μ − θ

4 − θt
)
,

(8.5)

IL(x, λ, μ) = e
iπx2
2 eiπx( θ

4+θt+λ+μ− i Q
2 )

× sb
(
x + θ

2 + θt − λ
)
sb

(
x + θ

4 + θt − μ
)

sb
(
x + i Q

2

)
sb

(
x + 2θt + i Q

2

)
sb

(
x + θ + θt + i Q

2

) , (8.6)

and the contour CL is any curve from−∞ to+∞which separates the three increasing
from the two decreasing sequences of poles, with the requirement that its right tail
satisfies

Im x + Q
2 + Im λ + Imμ > δ for all x ∈ CL with Re x sufficiently large, (8.7)

for some δ > 0. In particular,L is a meromorphic function of (λ, μ) ∈ C
2. If (λ, μ) ∈

R
2, the contour CL can be any curve from −∞ to +∞ lying within the strip Im x ∈

(−Q/2 + δ, 0).

Furthermore, the function L obeys the symmetry

L(b, θt , θ, λ, μ) = L(b−1, θt , θ, λ, μ). (8.8)

8.2 Difference Equations

The next two propositions, whose proofs are omitted because they are similar to those
presented in Sect. 4.2, show that the two pairs of difference equations (4.26) and
(4.33) satisfied by the function H survive in the confluent limit (8.3), implying that
L(b, θt , θ, λ, μ) is a joint eigenfunction of four difference operators, two acting on
λ and the other two on μ. The four difference equations hold as equalities between
meromorphic functions of (λ, μ) ∈ C

2.

8.2.1 First Pair of Difference Equations

Define a difference operator DL(b, λ) such that

DL(b, λ) = d+
L (b, λ)eib∂λ + d−

L (b, λ)e−ib∂λ + d0L(b, λ), (8.9)

where

d+
L (b, λ) = −4e

−πb
(

θ
2 +θt−2λ

)
cosh

(
πb

( ib
2 + θ

2 + λ
))
cosh

(
πb

( ib
2 − θ

2 + θt + λ
))

,

(8.10)
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d−
L (b, λ) = −2e

πb
(
θt− ib

2 +3λ
)
cosh

(
πb

( ib
2 + θ

2 + θt − λ
))

, (8.11)

and

d0L(λ) = e
−πb

(
θ
2+2θt+i Q

)
− d+

L (b, λ) − d−
L (b, λ). (8.12)

Proposition 8.3 For (λ, μ) ∈ C
2, the function L satisfies the other pair of difference

equations:

DL(b, λ) L(b, θt , θ, λ, μ) = e−2πbμ L(b, θt , θ, λ, μ), (8.13a)

DL(b−1, λ) L(b, θt , θ, λ, μ) = e−2πb−1μ L(b, θt , θ, λ, μ). (8.13b)

8.2.2 Second Pair of Difference Equations

Define a difference operator D̃L(b, μ) such that

D̃L(b, μ) = d̃+
L (b, μ)eib∂μ + d̃−

L (b, μ)e−ib∂μ + d̃0L(b, μ), (8.14)

where

d̃+
L (b, μ) = −4e

−πb
(

θ
2 +θt−2μ

)
cosh

(
πb

( ib
2 + 3θ

4 + μ
))
cosh

(
πb

( ib
2 − θ

4 + θt + μ
))

,

(8.15)

d̃−
L (b, μ) = −2e

πb
(
− ib

2 + θ
4 +θt+3μ

)
cosh

(
πb

( ib
2 + θ

4 + θt − μ
))

, (8.16)

and

d̃0L(b, μ) = e−πb(θ+2θt+i Q) − d̃+
L (b, μ) − d̃−

L (b, μ). (8.17)

Proposition 8.4 For (λ, μ) ∈ C
2, the function L satisfies the pair of difference equa-

tions

D̃L(b, μ) L(b, θt , θ, λ, μ) = e−2πbλ L(b, θt , θ, λ, μ), (8.18a)

D̃L(b−1, μ) L(b, θt , θ, λ, μ) = e−2πb−1λ L(b, θt , θ, λ, μ). (8.18b)

8.3 Polynomial Limit

Ournext theorem,whose proof is similar to that ofTheorem4.7, shows that the function
L reduces to the big q-Laguerre polynomials Ln when λ is suitably discretized.

The following assumption ensures that all the poles of the integrand in (8.4) are
distinct and simple.
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Assumption 8.5 Assume that b > 0 is such that b2 is irrational and that

θt �= 0, θ ± θt �= 0, Re
(

θ
4 − λ + μ

) �= 0. (8.19)

Theorem 8.6 (From L to the big q-Laguerre polynomials) Let μ ∈ {Imμ >

−Q/2}\�μ and suppose that Assumptions 1.1 and 8.5 are satisfied. Define {λn}∞n=0 ⊂
C by

λn = θ

2
+ θt + i Q

2 + ibn. (8.20)

Under the parameter correspondence

αL = e4πbθt , βL = e2πb(θ+θt ), xL = eπb(i Q+ θ
2+2θt )e−2πbμ, q = e2iπb

2
,

(8.21)

the function L satisfies, for each n ≥ 0,

lim
λ→λn

L(b, θt , θ, λ, μ) = Ln(xL ;αL , βL , q), (8.22)

where Ln are the big q-Laguerre polynomials defined in (B.29).

9 The FunctionW
In this section, we define the function W(b, θt , κ, ω) which generalizes the little q-
Laguerre polynomials. It is defined as a confluent limit of L and lies at the fourth
level of the non-polynomial scheme. We show thatW is a joint eigenfunction of four
difference operators and that it reduces to the little q-Laguerre polynomials, which lie
at the fourth level of the q-Askey scheme, when κ is suitably discretized.

9.1 Definition and Integral Representation

Introduce two new parameters κ and ω by

λ = θ

2
+ κ, μ = −3θ

4
+ ω. (9.1)

Definition 9.1 The function W(b, θt , κ, ω) is defined by

W(b, θt , κ, ω) = lim
θ→+∞L(b, θt , θ, θ

2 + κ,− 3θ
4 + ω), (9.2)

where L is defined by (8.4).
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The next theorem,whose proof is similar to that of Theorem 4.2 andwill be omitted,
shows that, for each choice of (b, θt ) ∈ (0,∞) ×R,W is a well-defined and analytic
function of (κ, ω) ∈ (C\�κ)×{Imω < Q/2}, where�κ ⊂ C is a discrete set of points
at whichW may have poles. In particular,W is a meromorphic function of κ ∈ C and
of ω for Imω < Q/2. The theorem also provides an integral representation for W
for (κ, ω) ∈ (C\�κ) × {Imω < Q/2}. In fact, even if the requirement Imω < Q/2
is needed to ensure that the integral representation converges, it will be shown later,
with the help of the difference equations, that W extends to a meromorphic function
of (κ, ω) ∈ C

2.

Theorem 9.2 Suppose that Assumption 1.1 holds. The limit (9.2) exists uniformly for
(κ, ω) in compact subsets of

�W := (C\�κ) × {Imω < Q/2}, (9.3)

where

�κ := { i Q2 ± θt + imb + ilb−1}∞m,l=0 ∪ {− i Q
2 + θt − imb − ilb−1}∞m,l=0.

(9.4)

Moreover,W is an analytic function of (κ, ω) ∈ �W and admits the following integral
representation:

W(b, θt , κ, ω) = PW (κ, ω)

∫
CW

dx IW (x, κ, ω) for (κ, ω) ∈ �W , (9.5)

where

PW (κ, ω) = sb(
i Q
2 + 2θt )sb(κ − θt ), (9.6)

IW (x, κ, ω) = e
iπx2
2 eiπx(θt+κ+2ω) sb(x + θt − κ)

sb
(
x + i Q

2

)
sb

(
x + 2θt + i Q

2

) , (9.7)

and the contour CW is any curve from −∞ to +∞ which separates the decreasing
sequence of poles from the two increasing ones, with the requirement that its right tail
satisfies

Im x + Q
2 + Im κ + Imω > δ for all x ∈ CW with Re x sufficiently large,

(9.8)

for some δ > 0. If (κ, ω) ∈ R
2, then CW can be any curve from −∞ to +∞ lying

within the strip Im x ∈ (−Q/2 + δ, 0).

Furthermore, thanks to the symmetry (2.7),W satisfies

W(b−1, θt , κ, ω) = W(b, θt , κ, ω). (9.9)
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9.2 Difference Equations

By taking the confluent limit (9.2) of the difference equations (8.13) and (8.18) satisfied
by L, we obtain the next two propositions which show thatW is a joint eigenfunction
of four difference operators, two acting on κ and the other two on ω.

The difference equations will first be derived as equalities between meromorphic
functions of κ ∈ C and ω with Imω < Q/2.We will then use the difference equations
in ω to show that (i) the limit in (9.2) exists for all ω in the complex plane away from
a discrete subset, (ii) W is in fact a meromorphic function of (κ, ω) in all of C2, and
(iii) the four difference equations hold as equalities between meromorphic functions
on C2, see Proposition 9.5.

9.2.1 First Pair of Difference Equations

Define the difference operator DW (b, κ) such that

DW (b, κ) = d+
W (b, κ)eib∂κ + d−

W (b, κ)e−ib∂κ + d0W (b, κ), (9.10)

where

d±
W (b, κ) = −2e3πbκe±πb( ib2 −θt ) cosh

(
πb

( ib
2 + θt ± κ

))
, (9.11)

d0W (b, κ) = −d+
W (b, κ) − d−

W (b, κ). (9.12)

Proposition 9.3 For κ ∈ C and Imω < Q/2, the function W satisfies the following
pair of difference equations:

DW (b, κ) W(b, θt , κ, ω) = e−2πbω W(b, θt , κ, ω), (9.13a)

DW (b−1, κ) W(b, θt , κ, ω) = e−2πb−1ω W(b, θt , κ, ω). (9.13b)

9.2.2 Second Pair of Difference Equations

Introduce the difference operator D̃W (b, ω) by

D̃W (b, ω) = d̃+
W (b, ω)eib∂ω + d̃−

W (b, ω)e−ib∂ω + d̃0W (b, ω), (9.14)

where

d̃+
W (b, ω) = −2e

πb
(
ω− ib

2 −2θt
)
cosh

(
πb

(
ω + ib

2

))
, (9.15)

d̃−
W (b, ω) = −e2πb(θt+ω), (9.16)

d̃0W (b, ω) = 2e2πbω cosh(2πbθt ). (9.17)
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Proposition 9.4 For κ ∈ C and Im (ω + ib±1) < Q/2, the function W satisfies the
following pair of difference equations:

D̃W (b, ω) W(b, θt , κ, ω) = e−2πbκ W(b, θt , κ, ω), (9.18a)

D̃W (b−1, ω) W(b, θt , κ, ω) = e−2πb−1κ W(b, θt , κ, ω). (9.18b)

The next proposition is stated without proof since it is similar to that of Proposi-
tion 4.5.

Proposition 9.5 Let (b, θt ) ∈ (0,∞) × R and κ ∈ C\�κ . There is a discrete subset
� ⊂ C such that the limit in (9.2) exists for all ω ∈ C\�. Moreover, the function
W defined by (9.2) is a meromorphic function of (κ, ω) ∈ C

2 and the four difference
equations (9.13) and (9.18) hold as equalities between meromorphic functions of
(κ, ω) ∈ C

2.

9.3 Polynomial Limit

Our next theorem shows thatW reduces to the little q-Laguerre polynomials when κ

is suitably discretized. We omit the proof which is similar to that of Theorem 4.7.

Assumption 9.6 Assume that b > 0 is such that b2 is irrational and

θt �= 0. (9.19)

Assumption 9.6 implies that all the poles of the integrand IW are distinct and simple.

Theorem 9.7 (From W to the little q-Laguerre polynomials) Let ω ∈ C be such
that Imω < Q/2 and suppose that Assumptions 1.1 and 9.6 are satisfied. Define
{κn}∞n=0 ⊂ C by

κn = θt + i Q
2 + ibn. (9.20)

Under the parameter correspondence

αW = e4πbθt , xW = e
−2πb

(
i Q
2 +ω

)
, q = e2iπb

2
, (9.21)

the function W satisfies, for each n ≥ 0,

lim
κ→κn

W(b, θt , κ, ω) = Wn(xW ;αW , q), (9.22)

where Wn are the little q-Laguerre polynomials defined in (B.33).
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10 The FunctionM
In this section, we define the function M(b, ζ, ω) which generalizes the little q-
Laguerre polynomials (B.33) evaluated at α = 0. It lies at the fifth and lowest level
of the non-polynomial scheme and is defined as a limit of the function W . We show
that M is a joint eigenfunction of four difference operators, two acting on ζ and the
other two on ω. Finally, we show thatM reduces to the little q-Laguerre polynomials
evaluated at α = 0 when ζ is suitably discretized.

10.1 Definition and Integral Representation

Introduce a new parameter ζ such that κ = θt + ζ .

Definition 10.1 The function M(b, ζ, ω) is defined by

M(b, ζ, ω) = lim
θt→−∞W(b, θt , θt + ζ, ω), (10.1)

where the function W is defined in (9.2).

The next theorem shows that, for each choice of b ∈ (0,∞),M is a well-defined and
analytic function of

(ζ, ω) ∈ {Imω < Q/2, Im (ζ + ω) > 0} \ (�ζ × C), (10.2)

where �ζ ⊂ C is a discrete set of points at whichMmay have poles. More precisely,
�ζ is defined by

�ζ := { i Q2 + ibm + ilb−1}∞m,l=0 ∪ {− i Q
2 − imb − ilb−1}∞m,l=0. (10.3)

The theorem also provides an integral representation for M for (ζ, ω) satisfying
(10.2). The restrictions in (10.2) are needed to ensure convergence of the integral in
the integral representation. Nevertheless, it will be shown later, with the help of the
difference equations satisfied by M, that M extends to a meromorphic function of
(ζ, ω) ∈ C

2.

Theorem 10.2 Suppose that Assumption 1.1 holds. Let �ζ ⊂ C be the discrete subset
defined in (10.3). Then the limit (10.1) exists uniformly for (ζ, ω) in compact subsets
of

�M := {(ζ, ω) ∈ C
2 | Imω < Q/2, Im (ζ + ω) > 0} \ (�ζ × C). (10.4)

Moreover,M is an analytic function of (ζ, ω) ∈ �M and admits the following integral
representation:

M(b, ζ, ω) = PM(ζ, ω)

∫
CM

dx IM(x, ζ, ω) for (ζ, ω) ∈ �M, (10.5)

123



Constructive Approximation

where

PM(ζ, ω) = sb(ζ ), (10.6)

IM(x, ζ, ω) = e
iπx

(
ζ− i Q

2 +2ω
)
sb(x − ζ )

sb
(
x + i Q

2

) , (10.7)

and the contour CM is any curve from −∞ to +∞ which separates the increasing
from the decreasing sequence of poles. If Imω ∈ (0, Q/2) and ζ ∈ R, then the contour
CM can be any curve from −∞ to +∞ lying within the strip Im x ∈ (−Q/2, 0).

Thanks to the identity (2.7), M satisfies

M(b−1, ζ, ω) = M(b, ζ, ω). (10.8)

10.2 Difference Equations

The two pairs of difference equations (9.13) and (9.18) satisfied by the function W
survive in the confluent limit (10.1). This implies that M is a joint eigenfunction of
four difference operators, two acting on ζ and two acting on ω.

We know from Theorem 10.2 that M is a well-defined holomorphic function of
ω for Imω < Q/2 and is meromorphic in ζ for Im (ζ + ω) > 0. The difference
equations will first be derived as equalities between meromorphic functions defined
on this limited domain and then extended to equalities betweenmeromorphic functions
on C2, see Proposition 10.5.

10.2.1 First Pair of Difference Equations

Consider the difference operator DM(b, ω) defined by

DM(b, ζ ) = e2πbζ
(
1 − eib∂ζ

)
. (10.9)

Proposition 10.3 For Imω < Q/2 and Im (ζ + ω) > 0, the function M satisfies the
difference equations

DM(b, ζ ) M(b, ζ, ω) = e−2πbω M(b, ζ, ω), (10.10a)

DM(b−1, ζ ) M(b, ζ, ω) = e−2πb−1ω M(b, ζ, ω). (10.10b)

Proof The proof consists of taking the confluent limit (10.1) of the difference equation
(9.13a). It is straightforward to verify that

lim
θt→−∞ d+

W (b, θt + ζ ) = −e2πbζ , lim
θt→−∞ d−

W (b, θt + ζ ) = 0, (10.11)
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where d±
W is defined in (9.11). From (9.12), this implies

lim
θt→−∞ d0W (b, θt + ζ ) = e2πbζ . (10.12)

Therefore we obtain

lim
θt→−∞ DW (b, θt + ζ ) = DM(b, ζ ), (10.13)

where DM is given in (10.9). By Theorem 10.2, the limit in (10.1) exists whenever
(ζ, ω) ∈ DM. Thus, the difference equation (10.10a) follows after utilizing (10.13)
and the definition (10.1) of M. Finally, (10.10b) follows from (10.10a) and the sym-
metry (10.8) of M. �

10.2.2 Second Pair of Difference Equations

Define the dual difference operator D̃M(b, ω) by

D̃M(b, ω) = e2πbω − 2eπb(ω− ib
2 ) cosh (πb( ib2 + ω))eib∂ω . (10.14)

Proposition 10.4 For Im (ω + ib±1) < Q/2 and Im (ζ + ω) > 0, the function M
satisfies the following pair of difference equations:

D̃M(b, ω) M(b, ζ, ω) = e−2πbζ M(b, ζ, ω), (10.15a)

D̃M(b−1, ω) M(b, ζ, ω) = e2πb
−1ζ M(b, ζ, ω). (10.15b)

Proof It is straightforward to show that the following limit holds:

e2πbθt D̃W (b, ω) = D̃M(b, ω), (10.16)

where D̃W and D̃M are defined by (9.14) and (10.14), respectively. By Theorem 10.2,
the limit in (10.1) exists whenever (ζ, ω) ∈ DM. Thus, the difference equation
(10.15a) follows after multiplying (9.18a) by e2πbθt and utilizing (10.16) and the def-
inition (10.1) of M. Finally, (10.15b) follows from (10.15a) thanks to the symmetry
(10.8) of M. �
Proposition 10.5 Let b ∈ (0,∞). Then there exist discrete subsets �,�′ ⊂ C such
that the limit in (10.1) exists for all (ζ, ω) ∈ (C\�)× (C\�′). Moreover, the function
M defined by (10.5) is a meromorphic function of (ζ, ω) ∈ C

2 and the four difference
equations (10.10) and (10.15) hold as equalities between meromorphic functions of
(ζ, ω) ∈ C

2.

Proof The proof utilizes the difference equations in ζ and ω and is similar to the proof
of Proposition 4.5. �
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10.3 Polynomial Limit

We now show that the function M reduces to the little q-Laguerre polynomials with
α = 0 when ζ is suitably discretized.

Theorem 10.6 (FromM to the littleq-Laguerre polynomialswithα = 0) Assume that
b > 0 is such that b2 is irrational. Suppose ω ∈ C satisfies −Q/2+ δ < Imω < Q/2
for some δ > 0. Define {ζn}∞n=0 ⊂ C by

ζn = i Q

2
+ ibn. (10.17)

For each n ≥ 0, the function M satisfies

lim
ζ→ζn

M(b, ζ, ω) = Wn(xW ; 0, q), (10.18)

where Wn are the little q-Laguerre polynomials defined in (B.33) and where xW , q
are given in (9.21).

Proof We prove (10.18) by computing the limit ζ → ζn of the representation (10.5)
for each n ≥ 0. Let m, l ≥ 0 be integers and define xm,l ∈ C by

xm,l = ζ − i Q

2
− imb − il

b
. (10.19)

The function sb(x − ζ ) in (10.7) has a simple pole located at x = xm,l for any integers
m, l ≥ 0. In the limit ζ → ζn , the pole xn,0 collides with the pole of sb(x + i Q

2 )

located at x = 0, and the contour CM is squeezed between the colliding poles. Hence,
before taking the limit ζ → ζn , we deform CM into a contour C′

M which passes below
xn,0, thus picking up residue contributions from all the poles x = xm,l which satisfy
Im xm,l ≥ Im xn,0, i.e., from all the poles xm,l such that mb + l

b ≤ nb. This leads to

M(b, ζ, ω) = −2iπ PM(ζ, ω)
∑
m,l≥0

mb+ l
b≤nb

Res
x=xm,l

(IM(x, ζ, ω))

+ PM(ζ, ω)

∫
C′
M

dx IM(x, ζ, ω). (10.20)

Utilizing the generalized difference equation (2.6) satisfied by the function sb and the
residue formula (2.4), straightforward calculations show that

− 2iπ Res
x=xm,l

(IM(x, ζ, ω))

= e
−iπ

(
b2m2
2 +bm(Q+i(ζ+2ω))+

(
ζ− i Q

2

)(
i Q
2 −ζ−2ω

))
e−iπb−2( l

2
2 +ibl(ζ−ibm−i Q+2ω))
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× 1(
e
− 2ilπ

b2 ; e 2iπ
b2

)
l
(
e−2ib2mπ ; e2ib2π )

m

1

sb
(
ζ − il

b − ibm
) . (10.21)

Because of the factor sb(ζ − il
b − ibm)−1, we deduce from (2.3) that the right-hand

side of (10.21) has a simple pole at ζ = ζn if the pair (m, l) satisfies m ∈ [0, n] and
l = 0, but is regular at ζ = ζn for all other choices of m ≥ 0 and l ≥ 0. On the other
hand, the prefactor PM in (10.6) has a simple zero at ζ = ζn . Therefore, in the limit
ζ → ζn the second term on the right-hand side of (10.20) vanishes, and the first term
is nonzero only if m ∈ [0, n] and l = 0. We conclude that

lim
ζ→ζn

M(b, ζ, ω)

= M(b, ζn, ω) = −2iπ lim
ζ→ζn

PM(ζ, ω)

n∑
m=0

Res
x=xm,0

(IM(x, ζ, ω)) ,

(10.22)

or, more explicitly,

M(b, ζn, ω)

=
n∑

m=0

e
−iπb2

(
m2
2 −mn+n2

)
e
2πb

(
ω(m−n)− imQ

4

)
1(

e−2ib2mπ ; e2ib2π )
m

sb(ibn + i Q
2 )

sb(ib(n − m) + i Q
2 )

.

(10.23)

Using (2.6), we obtain

M(b, ζn, ω) =
n∑

m=0

eπb
(
2(m−n)ω−ibn2−imQ

) (q1+n−m; q)
m(

q−m; q)
m

. (10.24)

We now apply the q-Pochhammer identity

(α; q)n = (−α)nq
n(n−1)

2

(
α−1q1−n; q

)
n

(10.25)

with α = q1+n−m and with α = q−m to find

M(b, ζn, ω) =
n∑

m=0

eπb(2m−n)(2ω+ibn)eiπm
(
b2+2ibω−1

) (q−n; q)
m

(q; q) m
. (10.26)

After replacing m → n − m, in the sum and using the parameter correspondence
(9.21), we obtain

M(b, ζn, ω) =
n∑

m=0

eiπ(2m−n)e−iπb2(2m−n)(n+1)

(
q−n; q)

n−m

(q; q) n−m
(qxW )m . (10.27)
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Using the q-Pochhammer identity

(α; q)n−m

(β; q)n−m
= (α; q)n

(β; q)n

(β−1q1−n; q)m

(α−1q1−n; q)m

(
β

α

)m

, α, β �= 0, m = 0, 1, . . . , n,

(10.28)

with α = q−n and β = q, we arrive at

M(b, ζn, ω) = eiπn
(
b2(n+1)−1

) (q−n; q)
n

(q; q) n

n∑
m=0

(
q−n; q)

m

(q; q) m
(qxW )m . (10.29)

Finally, utilizing the q-Pochhammer identity (10.25) with α = q−n , we find

eiπn
(
b2(n+1)−1

) (q−n; q)
n

(q; q) n
= 1. (10.30)

Therefore we conclude that

M(b, ζn, ω) = 2φ1

(
q−n, 0

0

∣∣∣∣ q; qxW
)

= Wn(xW ; 0, q). (10.31)

This concludes the proof of (10.18). �

11 A Simple Application: Duality Formulas

As a simple application of the constructions presented above, we show how the non-
polynomial scheme can be used to easily obtain various duality formulas which relate
members of the q-Askey scheme.

11.1 Duality Formula for the Askey–Wilson Polynomials

The duality formula (B.7) for the Askey–Wilson polynomials is an easy consequence
of Theorem 3.2 and the self-duality property (3.5) of the function R defined in (3.1).
Indeed, suppose Assumptions 1.1 and 3.1 are satisfied and define {σ (n)

t }∞n=0 ⊂ C by

σ
(n)
t = i Q

2 + θ1 + θt + ibn. (11.1)

Under the parameter correspondence

α̃R = e
2πb

(
i Q
2 +θ0+θt

)
, β̃R = e

2πb
(
i Q
2 +θ1−θ∞

)
, γ̃R = e

2πb
(
i Q
2 −θ0+θt

)
,

δ̃R = e
2πb

(
i Q
2 +θ1+θ∞

)
, q = e2iπb

2
,
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the function R satisfies, for each integer n ≥ 0,

lim
σt→σ

(n)
t

R
[

θ1 θt

θ∞ θ0
; σs

σt
, b

]
= Rn(e

2πbσs ; α̃R, β̃R, γ̃R, δ̃R, q), (11.2)

where Rn are the Askey–Wilson polynomials defined in (B.1). Moreover, evaluating
R at σs = σ

(n)
s and σt = σ

(m)
t with n,m ∈ Z≥0 and using (3.13) and (11.2), we

obtain

R
[

θ1 θt

θ∞ θ0
; σ

(n)
s

σ
(m)
t

, b

]
= Rn(e

2πbσ (m)
t ;αR, βR, γR, δR, q)

= Rm(e2πbσ
(n)
s ; α̃R, β̃R, γ̃R, δ̃R, q). (11.3)

Employing the symmetry Rn(z;α, β, γ, δ, q) = Rn(z−1;α, β, γ, δ, q) and observing
that the parameters in (3.12) satisfy

α2
R = α̃R β̃R γ̃R δ̃R

q
, βR = α̃R β̃R

αR
, γR = α̃R γ̃R

αR
, δR = α̃R δ̃R

αR
,

(11.4)

and that

e−2πbσ (n)
s = α−1

R q−n, e−2πbσ (m)
t = α̃−1

R q−m, (11.5)

we recover the duality formula (B.7) for the Askey–Wilson polynomials.

11.2 Duality Formula Relating the Continuous Dual q-Hahn and the big q-Jacobi
Polynomials

Suppose that Assumptions 1.1 and 4.6 are satisfied. Evaluating the function H at
ν = νn and σs = σ

(m)
s with n,m ∈ Z≥0 and utilizing the polynomial limits (4.39) and

(4.47), we obtain a duality formula relating the polynomials Hn and Jn :

H(b, θ0, θt , θ∗, σ (m)
s , νn) = Hn(e

2πbσ (m)
s ;αH , βH , γH , q)

= Jm(q−n;αJ , βJ , γJ ; q). (11.6)

Employing the symmetry Hn(z;α, β, γ, q) = Hn(z−1;α, β, γ, q) and observing that
the parameters in (4.38) and (4.46) are related by

αJ = αHβH

q
, βJ = αH

βH
, γJ = αHγH

q
, e−2πbσ (m)

s = α−1
H q−m,

(11.7)

we recognize the duality formula (B.16).
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Remark 11.1 It is natural to ask whether there exists a well-defined limit of the duality
formula (3.5) for R, such that (11.6) follows directly by polynomial specialisation
of the resulting duality formula for H. However, we expect that H does not satisfy a
duality relation analogous to (3.5) exchanging the parameters σs and ν. One apparent
obstruction for the existence of such a duality formula is that, unlike the R-function,
the two dual difference operators D̃H(b, ν) and DH(b, σs) defined in (4.30) and (4.23),
respectively, possess different analytic properties. More precisely, the coefficients
of D̃H(b, ν) are entire functions of ν, whereas the coefficients of DH(b, σs) are
meromorphic functions of σs . If our expectation is true, it means that all other families
in the non-polynomial scheme also do not exhibit a duality formula of this kind.

11.3 Duality Formula Relating the Little q-Jacobi and the Al-Salam Chihara
Polynomials

Suppose that Assumptions 1.1 and 5.5 are satisfied. Evaluating S(b, θ0, θt , σs, ρ) at
ρ = ρn and σs = σ

(m)
s with n,m ∈ Z≥0 and utilizing the limits (5.33) and (5.35), we

obtain a duality formula relating the polynomials Sn and Yn :

Sn(e
2πbσ (m)

s ;αS, βS, q) = Ym(q−n;αY , βY , q), n,m = 0, 1, 2, . . . . (11.8)

Employing the symmetry Sn(z;αS, βS, q) = Sn(z−1;αS, βS, q) and observing that

αY = αSβS

q
, βY = αS

βS
, e−2πbσ (m)

s = α−1
S q−m, (11.9)

we recover the duality formula (B.28).
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Appendix A: q-Hypergeometric Series

The q-hypergeometric series s+1φs is defined by

s+1φs

[
a1, . . . , as+1
b1, . . . , bs

; q, z

]
=

∞∑
k=0

(a1, . . . , as+1; q)k

(b1, . . . , bs, q; q)k
zk, (A.1)

where the q-Pochammer symbols (a; q)n and (a1, a2, . . . , am; q)n are given by

(a; q)n =
n−1∏
k=0

(1 − aqk) and (a1, a2, . . . , am; q)n =
m∏
j=1

(a j ; q)n . (A.2)

Note that the sum in (A.1) contains only finitely many terms if one of the ai in the
numerator is equal to q−n for some integer n ≥ 1. Otherwise, the sum converges for
|z| < 1.

Appendix B: The q-Askey Scheme

B.1 Askey–Wilson Polynomials

The Askey–Wilson polynomials Rn , defined by

Rn(z;α, β, γ, δ, q) = 4φ3

(
q−n, αβγ δqn−1, αz, αz−1

αβ, αγ, αδ

∣∣∣∣ q; q
)

, (B.1)

are the most general polynomials of the q-Askey scheme. The normalization in (B.1)
for Rn is related to the standard normalization of [25, Eq. (14.1.1)] by

pn
(
z+z−1

2 ;α, β, γ, δ, q
)

= α−n(αβ, αγ, αδ; q)n Rn(z;α, β, γ, δ, q). (B.2)

Since pn(x;α, β, γ, δ, q) is a polynomial of order n in x , Rn is a polynomial of order
n in z + z−1. The polynomials Rn satisfy the three-term recurrence relation

(LR Rn)(z;α, β, γ, δ, q) = (z + z−1)Rn(z;α, β, γ, δ, q), (B.3)

where the operator LR is given by

LR = a+
n T

+ + (α + α−1 − a+
n − a−

n ) + a−
n T

−, (B.4)
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with T± pn(x) := pn±1(x) and

a+
n = (1 − αβqn) (1 − αγ qn) (1 − αδqn)

(
1 − αβγ δqn−1

)
α

(
1 − αβγ δq2n−1

) (
1 − αβγ δq2n

) ,

a−
n = α (1 − qn)

(
1 − βγ qn−1

) (
1 − βδqn−1

) (
1 − γ δqn−1

)
(
1 − αβγ δq2n−2

) (
1 − αβγ δq2n−1

) .

(B.5)

The Askey–Wilson polynomials also possess a symmetry exchanging the parameters
n and z [36]. More precisely, define dual parameters α̃, β̃, γ̃ , δ̃ such that

α2 = q−1α̃β̃γ̃ δ̃, β = α̃β̃

α
, γ = α̃γ̃

α
, δ = α̃δ̃

α
. (B.6)

Then, by [36, Eq. (27)],

Rn(α
−1q−m;α, β, γ, δ, q) = Rm(α̃−1q−n; α̃, β̃, γ̃ , δ̃, q), n,m = 0, 1, 2, . . . .

(B.7)

B.2 Continuous dual q-Hahn Polynomials

The continuous dual q-Hahn polynomials Hn(z;α, β, γ, q) are defined by

Hn(z;α, β, γ, q) = Rn(z;α, β, γ, 0, q) = 3φ2

(
q−n, αz, αz−1

αβ, αγ

∣∣∣∣ q; q
)

. (B.8)

They satisfy the three-term recurrence relation

(LH Hn) (z;α, β, γ, q) = (z + z−1) Hn(z;α, β, γ, q), (B.9)

where the operator LH is defined by

LH = b+
n T

+ +
(
α + α−1 − b+

n − b−
n

)
+ b−

n T
−, (B.10)

with

b+
n = α−1(1 − αβqn)(1 − αγ qn), b−

n = α(1 − qn)(1 − βγ qn−1). (B.11)

B.3 Big q-Jacobi Polynomials

The big q-Jacobi polynomials Jn(x;α, β, γ ; q) are defined by

Jn(x;α, β, γ ; q) = lim
λ→0

Rn

(
x

λ
; λ,

αq

λ
,
γ q

λ
,
λβ

γ
, q

)
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= 3φ2

(
q−n, αβqn+1, x

αq, γ q

∣∣∣∣ q; q
)

. (B.12)

They satisfy the three-term recurrence relation

L J Jn(x;α, β, γ ; q) = x Jn(x;α, β, γ ; q), (B.13)

where the operator L J is defined by

L J = c+
n T

+ + (
1 − c+

n − c−
n

) + c−
n T

−, (B.14)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c+
n =

(
1 − αqn+1

) (
1 − αβqn+1

) (
1 − γ qn+1

)
(
1 − αβq2n+1

) (
1 − αβq2n+2

) ,

c−
n = −αγ qn+1 (1 − qn)

(
1 − αβγ −1qn

)
(1 − βqn)(

1 − αβq2n
) (
1 − αβq2n+1

) .

(B.15)

There exists a duality between the big q-Jacobi and the continuous dual q-Hahn poly-
nomials which is inherited from the duality (B.7) of the Askey–Wilson polynomials.
More precisely, by [36, Eq. (44)],

Hn

(
α−1q−m;α, β, γ, q

)
= Jm

(
q−n; q−1αβ, αβ−1, q−1αγ ; q

)
,

n,m = 0, 1, 2, . . . . (B.16)

B.4 Al-Salam–Chihara Polynomials

The Al-Salam Chihara polynomials Sn(z;α, β, q) are defined by

Sn(z;α, β, q) = Hn(z;α, β, 0, q)

= αn

(αβ; q)n
(αz; q)n z

−n
2φ1

(
q−n, βz−1

α−1q1−nz−1

∣∣∣∣ q;α−1qz

)
, (B.17)

where Hn are the continuous dual q-Hahn polynomials defined in (B.8). In (B.17),
we use the normalization of [36, Eq. (59)]. The polynomials Sn satisfy the three-term
recurrence relation

LSSn(z;α, β, q) =
(
z + z−1

)
Sn(z;α, β, q), (B.18)

where the operator LS is defined by

LS =
(
α−1 − βqn

)
T+ + (α + β) qn + α

(
1 − qn

)
T−. (B.19)
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B.5 Little q-Jacobi Polynomials

The Little q-Jacobi polynomials pn(x;α, β, q) are defined by (see [36, Eq. (66)])

pn(x;α, β, q) = 2φ1

(
q−n, αβqn+1

αq

∣∣∣∣ q; qx
)

, (B.20)

or, equivalently, by [35, Eq. (3.38)]

pn(x;α, β, q) = (−qβ)−nq− n(n−1)
2

(qβ; q)n

(qα; q)n
3φ2

(
q−n, qn+1αβ, qβx

qβ, 0

∣∣∣∣ q; q
)

.

(B.21)

They arise as limits of the big q-Jacobi polynomials in two ways. First, we have (see
[36, Eq. (68)])

pn(x;α, β, q) = lim
γ→∞ Jn(γ qx;α, β, γ ; q). (B.22)

Second, we have

pn(x;α, β, q) = (−qβ)−nq− n(n−1)
2

(qβ; q)n

(qα; q)n
Yn(qβx;β, α, q), (B.23)

where

Yn(x;α, β, q) = lim
γ→0

Jn(x;α, β, γ, q) = 3φ2

(
q−n, qn+1αβ, x

αq, 0

∣∣∣∣ q; q
)

. (B.24)

The polynomials Yn satisfy the three-term recurrence relation (see [36, Eqs. (73)–
(74)])

LY Yn(x;α, β, q) = xYn(x;α, β, q), (B.25)

where the operator LY is defined by

LY = y+
n T+ + 1 − y+

n − y−
n + y−

n T−, (B.26)

with

y+
n =

(
1 − αqn+1

) (
1 − αβqn+1

)
(
1 − αβq2n+1

) (
1 − αβq2n+2

) ,

y−
n = q2n+1α2β

(1 − qn) (1 − βqn)(
1 − αβq2n

) (
1 − αβq2n+1

) . (B.27)
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Finally, there exists a duality between the little q-Jacobi polynomials and theAl-Salam
Chihara polynomials which is inherited from (B.16). More precisely, from [36, Eq.
(75)] we have

Sn
(
α−1q−m;α, β, q

)
= Ym

(
q−n; q−nαβ, αβ−1, q

)
, n,m = 0, 1, 2, . . . .

(B.28)

B.6 Big q-Laguerre Polynomials

The big q-Laguerre polynomials Ln(x;α, β; q) are defined by setting β = 0 in the
big q-Jacobi polynomials (see [25, Eq. (14.11.1)]):

Ln(x;α, β; q) = Jn(x;α, 0, β; q)

= 1(
β−1q−n; q)

n
2φ1

(
q−n, αqx−1

αq

∣∣∣∣ q; xβ−1
)

. (B.29)

The polynomials Ln satisfy the three-term recurrence relation

LL Ln(x;α, β, q) = x Ln(x;α, β, q), (B.30)

where the operator LL is defined by

LL = l+n T+ + (1 − l+n − l−n ) + l−n T−, (B.31)

with

l+n =
(
1 − αqn+1

) (
1 − βqn+1

)
, l−n = −αβqn+1 (

1 − qn
)
. (B.32)

B.7 Little q-Laguerre Polynomials

The little q-Laguerre (or Wall) polynomials Wn(x;α, q) are obtained from the big
q-Laguerre polynomials as follows:

Wn(x;α, q) = lim
β→−∞ Ln(βqx;α, β; q) = 2φ1

(
q−n, 0

αq

∣∣∣∣ q; qx
)

. (B.33)

They satisfy the recurrence relation

LWWn(x;α, q) = −xWn(x;α, q), (B.34)

where the operator LW is defined by

LW = w+
n T

+ − (w+
n + w−

n ) + w−
n T

−, (B.35)
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with

w+
n = qn

(
1 − αqn+1

)
, w−

n = αqn
(
1 − qn

)
. (B.36)

B.8 Continuous Big q-Hermite Polynomials

The continuous big q-Hermite polynomials Xn(z;α, q) are defined by

Xn(z;α, q) = lim
β→0

Sn(z;α, β, q) = αnzn2φ0

(
q−n, αz

−
∣∣∣∣ q; qnz−2

)
, (B.37)

where Sn are the Al-Salam-Chihara polynomials defined in (B.17). The normalization
in (B.37) is obtained by multiplying Hn(

1
2 (z + z−1), α|q) in [25, Eq. (14.18.1)] by

αn . They satisfy the recurrence relation

RXn Xn(z;α, q) =
(
z + z−1

)
Xn(z;α, q), (B.38)

where the operator RXn is defined by

RXn = α−1T+ + αqn + α
(
1 − qn

)
T−. (B.39)

B.9 Continuous q-Hermite Polynomials

The continuous q-Hermite polynomials Qn(z; q) are defined by

Qn(z; q) = lim
α→0

α−n Xn(z;α, q) = zn2φ0

(
q−n, 0

−
∣∣∣∣ q; qnz−2

)
. (B.40)

They satisfy the recurrence relation

LQQn(z; q) =
(
z + z−1

)
Qn(z; q), (B.41)

where the operator LQ is defined by

LQ = T+ + (
1 − qn

)
T−. (B.42)
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