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Abstract
We study the approximation capacity of some variation spaces corresponding to
shallow ReLUk neural networks. It is shown that sufficiently smooth functions are
contained in these spaces with finite variation norms. For functions with less smooth-
ness, the approximation rates in terms of the variation norm are established. Using
these results, we are able to prove the optimal approximation rates in terms of the
number of neurons for shallow ReLUk neural networks. It is also shown how these
results can be used to derive approximation bounds for deep neural networks and con-
volutional neural networks (CNNs). As applications, we study convergence rates for
nonparametric regression using three ReLU neural network models: shallow neural
network, over-parameterized neural network, and CNN. In particular, we show that
shallow neural networks can achieve the minimax optimal rates for learning Hölder
functions, which complements recent results for deep neural networks. It is also proven
that over-parameterized (deep or shallow) neural networks can achieve nearly optimal
rates for nonparametric regression.
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Constructive Approximation

1 Introduction

Neural networks generate very popular function classes used in machine learning
algorithms [2, 28]. The fundamental building blocks of neural networks are ridge
functions (also called neurons) of the form x ∈ R

d �→ ρ((xᵀ, 1)v), where ρ : R → R

is a continuous activation function and v ∈ R
d+1 is a trainable parameter. It is well-

known that a shallow neural network with non-polynomial activation

f (x) =
N∑

i=1

aiρ((xᵀ, 1)vi ), (1.1)

is universal in the sense that it can approximate any continuous functions on any
compact set with desired accuracy when the number of neurons N is sufficiently
large [11, 23, 48]. The approximation and statistical properties of neural networks
with different architectures have also been widely studied in the literature [6, 52, 64,
67], especially when ρ is a sigmoidal activation or ρ is the ReLUk function σk(t) =
max{0, t}k , the k-power of the rectified linear unit (ReLU) with k ∈ N0 := N ∪ {0}.

The main focus of this paper is rates of approximation by neural networks. For clas-
sical smooth function classes, such as Hölder functions, Mhaskar [39] (see also [48,
Theorem 6.8]) presented approximation rates for shallow neural networks, when the
activation function ρ ∈ C∞(�) is not a polynomial on some open interval � (ReLUk

does not satisfy this condition). It is known that the rates obtained by Mhaskar are
optimal if the network weights are required to be continuous functions of the target
function. Recently, optimal rates of approximation have also been established for deep
ReLU neural networks [31, 54, 64, 65], even without the continuity requirement on
the network weights. All these approximation rates are obtained by using the idea that
one can construct neural networks to approximate polynomials efficiently. There is
another line of works [4, 25, 34, 56, 57] studying the approximation rates for functions
of certain integral forms (such as (1.2)) by using a random sampling argument due to
Maurey [49]. In particular, Barron [4] derived dimension independent approximation
rates for sigmoid type activations and functions h, whose Fourier transform ĥ satis-
fies

∫
Rd |ω||̂h(ω)|dω < ∞. This result has been improved and generalized to ReLU

activation in recent articles [25, 56, 57].
In this paper, we continue the study of these two lines of approximation theories

for neural networks (i.e. the constructive approximation of smooth functions and the
random approximation of integral representations). Our main result shows how well
integral representations corresponding to ReLUk neural networks can approximate
smooth functions. By combining this result with the random approximation theory of
integral forms, we are able to establish the optimal rates of approximation for shallow
ReLUk neural networks. Specifically, we consider the following function class defined
on the unit ball Bd of Rd induced by vectors on unit sphere Sd of Rd+1 as

Fσk (M) :=
{
f (x) =

∫

Sd
σk((x

ᵀ, 1)v)dμ(v) : ‖μ‖ ≤ M, x ∈ B
d
}

, (1.2)
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which can be regarded as a shallow ReLUk neural network with infinite width [3]. The
restriction on the total variation ‖μ‖ := |μ|(Sd) ≤ M gives a constraint on the size of
the weights in the network. We study how well Fσk (M) approximates the unit ball of
Hölder class Hα with smoothness index α > 0 as M → ∞. Roughly speaking, our
main theorem shows that, ifα > (d+2k+1)/2, thenHα ⊆ Fσk (M) for some constant
M depending on k, d, α, and if α < (d + 2k + 1)/2, we obtain the approximation
bound

sup
h∈Hα

inf
f ∈Fσk (M)

‖h − f ‖L∞(Bd ) � M− 2α
d+2k+1−2α ,

where for two quantities X and Y , X � Y (or Y � X ) denotes the statement that
X ≤ CY for some constant C > 0 (we will also denote X 
 Y when X � Y � X ).
In other words, sufficiently smooth functions are always contained in the shallow
neural network space Fσk (M). And, for less smooth functions, we can characterize
the approximation error by the variation norm. Furthermore, combining our result
with the random approximation bounds from [3, 55, 57], we are able to prove that
shallow ReLUk neural network of the form (1.1) achieves the optimal approximation
rate O(N−α/d) for Hα with α < (d + 2k + 1)/2, which generalizes the result of
Mhaskar [39] to ReLUk activation.

In addition to shallow neural networks, we can also apply our results to derive
approximation bounds for multi-layer neural networks and convolutional neural net-
works (CNNs) when k = 1 (ReLU activation σ := σ1). These approximation bounds
can then be used to study the performances of machine learning algorithms based on
neural networks [2]. Here, we illustrate the idea by studying the nonparametric regres-
sion problem. The goal of this problem is to learn a function h from a hypothesis space
H from its noisy samples

Yi = h(Xi ) + ηi , i = 1, . . . , n,

where Xi is sampled from an unknown probability distribution μ and ηi is Gaussian
noise. One popular algorithm for solving this problem is the empirical least square
minimization

argmin
f ∈Fn

1

n

n∑

i=1

| f (Xi ) − Yi |2,

whereFn is an appropriately chosen function class. For instance, in deep learning,Fn is
parameterized bydeepneural networks andone solves theminimization by (stochastic)
gradient descent methods. Assuming that we can compute a minimizer f ∗

n ∈ Fn , the
performance of the algorithm is often measured by the square loss ‖ f ∗

n − h‖2
L2(μ)

. A
fundamental question in learning theory is to determine the convergence rate of the
error ‖ f ∗

n −h‖2
L2(μ)

→ 0 as the sample size n → ∞. The error can be decomposed into
two components: approximation error and generalization error (also called estimation
error). For neural networkmodelsFn , our results provide bounds for the approximation
errors, while the generalization errors can be bounded by the complexity of the models
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Table 1 Approximation rates and convergence rates of nonparametric regression for three neural network
models, ignoring logarithmic factors

Model Approximation Nonparametric regression

Hα, α < d+3
2 Fσ (1) Hα, α < d+3

2 Fσ (1)

Fσ (N , M) N− α
d ∨ M− 2α

d+3−2α N− 1
2− 3

2d n− 2α
d+2α n− d+3

2d+3

NN (W , L, M) W− α
d ∨ M− 2α

d+3−2α W− 1
2− 3

2d n− 2α
d+3+2α n− 1

2

CNN (s, L) L− α
d L− 1

2− 3
2d n− α

d+α n− d+3
3d+3

[40, 53]. We study the cases H = Hα with α < (d + 3)/2 or H = Fσ (1) for three
ReLU neural network models: shallow neural network, over-parameterized neural
network, and CNN. The models and our contributions are summarized as follows:

1. Shallow ReLU neural network Fσ (N , M), where N is the number of neurons and
M is a bound for the variation norm that measures the size of the weights.We prove
optimal approximation rates (in terms of N ) for this model. It is also shown that
this model can achieve the optimal convergence rates for learning Hα and Fσ (1),
which complements the recent results for deep neural networks [27, 52].

2. Over-parameterized (deep or shallow) ReLU neural networkNN (W , L, M) stud-
ied in [24], whereW , L are the width and depth respectively, and M is a constraint
on the weight matrices. For fixed depth L , the generalization error for this model
can be controlled by M [24]. When H = Hα , we characterize the approxima-
tion error by M , and allow the width W to be arbitrary large so that the model
can be over-parameterized (the number of parameters is larger than the number
of samples). When H = Fσ (1), we can simply increase the width to reduce the
approximation error so that the model can also be over-parameterized. Our result
shows that this model can achieve nearly optimal convergence rates for learning
Hα and Fσ (1). Both the approximation and convergence rates improve the results
of [24].

3. Sparse convolutional ReLU neural network CNN (s, L) introduced by [67], where
L is the depth and s ≥ 2 is a fixed integer that controls the filter length. This
model is shown to be universal for approximation [67] and universal consistent
for regression [30]. We improve the approximation bound in [67] and give new
convergence rates of this model for learning Hα and Fσ (1).

The approximation rates and convergence rates of nonparametric regression for these
models are summarized in Table 1, where we use the notation a ∨ b := max{a, b}.

The rest of the paper is organized as follows. In Sect. 2, we present our approxima-
tion results for shallowneural networks. Section3 gives a proof of ourmain theorem. In
Sect. 4, we apply our approximation results to study these neural network models and
derive convergence rates for nonparametric regression using these models. Section5
concludes this paper with a discussion on possible future directions of research.
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2 Approximation Rates for Shallow Neural Networks

Let us begin with some notations for function classes. Let Bd = {x ∈ R
d : ‖x‖2 ≤ 1}

and S
d−1 = {x ∈ R

d : ‖x‖2 = 1} be the unit ball and the unit sphere of Rd . We are
interested in functions of the integral form

f (x) =
∫

Sd
σk((x

ᵀ, 1)v)dμ(v), x ∈ B
d , (2.1)

whereμ is a signed Radon measure on Sd with finite total variation ‖μ‖ := |μ|(Sd) <

∞ and σk(t) := max{t, 0}k with k ∈ N0 := N ∪ {0} is the ReLUk function (when
k = 0, σ0(t) is the Heaviside function). For simplicity, we will also denote the ReLU
function by σ := σ1. The variation norm γ ( f ) of f is the infimum of ‖μ‖ over all
decompositions of f as (2.1) [3].By the compactness ofSd , the infimumcanbe attained
by some signed measure μ. We denote Fσk (M) as the function class that contains all
functions f in the form (2.1) whose variation norm γ ( f ) ≤ M , see (1.2). The class
Fσk (M) can be thought of as an infinitely wide neural network with a constraint on
its weights. The variation spaces corresponding to shallow neural networks have been
studied by many researchers. We refer the reader to [8, 44–46, 51, 55–58] for several
other definitions and characterizations of these spaces.

We will also need the notion of classical smoothness of functions on Euclidean
space. Given a smoothness index α > 0, we write α = r + β where r ∈ N0 and
β ∈ (0, 1]. Let Cr ,β(Rd) be the Hölder space with the norm

‖ f ‖Cr ,β (Rd ) := max

{
‖ f ‖Cr (Rd ), max‖s‖1=r

|∂s f |C0,β (Rd )

}
,

where s = (s1, . . . , sd) ∈ N
d
0 is a multi-index and

‖ f ‖Cr (Rd ) := max‖s‖1≤r
‖∂s f ‖L∞(Rd ), | f |C0,β (Rd ) := sup

x �=y∈Rd

| f (x) − f (y)|
‖x − y‖β

2

.

Here we use ‖ · ‖L∞ to denote the supremum norm, since we mainly consider con-
tinuous functions. We write Cr ,β(Bd) for the Banach space of all restrictions to B

d

of functions in Cr ,β(Rd). The norm is given by ‖ f ‖Cr ,β (Bd ) = inf{‖g‖Cr ,β (Rd ) :
g ∈ Cr ,β(Rd) and g = f on B

d}. For convenience, we will denote the unit ball of
Cr ,β(Bd) by

Hα :=
{
f ∈ Cr ,β(Bd) : ‖ f ‖Cr ,β (Bd ) ≤ 1

}
.

Note that, for α = 1, Hα is a class of Lipschitz continuous functions.
Due to the universality of shallow neural networks [48], Fσk (M) can approximate

any continuous functions on Bd if M is sufficiently large. Our main theorem estimates
the rate of this approximation for Hölder class.
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Theorem 2.1 Let k ∈ N0, d ∈ Nandα > 0. Ifα > (d+2k+1)/2orα = (d+2k+1)/2
is an even integer, then Hα ⊆ Fσk (M) for some constant M depending on k, d, α.
Otherwise,

sup
h∈Hα

inf
f ∈Fσk (M)

‖h − f ‖L∞(Bd ) �
{
exp(−αM2), if α = (d + 2k + 1)/2 and α/2 /∈ N,

M− 2α
d+2k+1−2α , if α < (d + 2k + 1)/2,

where the implied constants only depend on k, d, α.

The proof of Theorem 2.1 is deferred to the next section. Our proof uses similar
ideas as [3, Proposition 3],which obtained the same approximation rate forα = 1 (with
an additional logarithmic factor). The conclusion is more complicated for the critical
value α = (d + 2k + 1)/2. We think this is due to the proof technique and conjecture
that Hα ⊆ Fσk (M) for all α ≥ (d + 2k + 1)/2, see Remark 3.4. Nevertheless, in
practical applications ofmachine learning, the dimension d is large and it is reasonable
to expect that α < (d + 2k + 1)/2.

In order to apply Theorem 2.1 to shallow neural networks with finite neurons, we
can approximate Fσk (M) by the subclass

Fσk (N , M) :=
{
f (x) =

N∑

i=1

aiσk((x
ᵀ, 1)vi ) : vi ∈ S

d ,

N∑

i=1

|ai | ≤ M

}
,

where we restrict the measure μ to be a discrete one supported on at most N points.
The next proposition shows that any function in Fσk (M) is the limit of functions in
Fσk (N , M) as N → ∞.

Proposition 2.2 For k ∈ N0, Fσk (1) is the closure of ∪N∈NFσk (N , 1) in L∞(Bd).

Proof Let us denote the closure of ∪N∈NFσk (N , 1) in L∞(Bd) by F̃σk (1). We first
show that Fσk (1) ⊆ F̃σk (1). For any f ∈ Fσk (1) with the integral form f (x) =∫
Sd

σk((xᵀ, 1)v)dμ(v), we can decompose f as

f (x) = ‖μ+‖
∫

Sd
σk((x

ᵀ, 1)v)
dμ+(v)

‖μ+‖ − ‖μ−‖
∫

Sd
σk((x

ᵀ, 1)v)
dμ−(v)

‖μ−‖
=: ‖μ+‖ f+(x) − ‖μ−‖ f−(x),

where μ+ and μ− are the positive and negative parts of μ. If f+, f− ∈ F̃σk (1), then
f ∈ F̃σk (1). Hence, without loss of generality, we can assume μ is a probability
measure. We are going to approximate f by uniform laws of large numbers. Let
{vi }Ni=1 be N i.i.d. samples from μ. By symmetrization argument (see [60, Theorem
4.10] for example), we can bound the expected approximation error by Rademacher
complexity [7]:

E

[
sup
x∈Bd

∣∣∣∣∣ f (x) − 1

N

N∑

i=1

σk((x
ᵀ, 1)vi )

∣∣∣∣∣

]
≤ 2E

[
sup
x∈Bd

∣∣∣∣∣
1

N

N∑

i=1

εiσk((x
ᵀ, 1)vi )

∣∣∣∣∣

]
=: Ek(N ),
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where (ε1, . . . , εN ) is an i.i.d. sequence of Rademacher random variables. For k ∈ N,
the Lipschitz constant of σk on [−√

2,
√
2] is k2(k−1)/2. By the contraction property

of Rademacher complexity [29, Corollary 3.17],

Ek(N ) ≤ k2(k+1)/2

N
E

[
sup
x∈Bd

∣∣∣∣∣

N∑

i=1

εi (x
ᵀ, 1)vi

∣∣∣∣∣

]
≤ k2k/2+1

N
E

[∥∥∥∥∥

N∑

i=1

εivi

∥∥∥∥∥
2

]

≤ k2k/2+1

N

√√√√√E

⎡

⎣
∥∥∥∥∥

N∑

i=1

εivi

∥∥∥∥∥

2

2

⎤

⎦ = k2k/2+1

N

√√√√
E

[
N∑

i=1

‖vi‖22
]

= k2k/2+1

√
N

.

For k = 0, the VC dimension of the function class { fx (v) = σ0((xᵀ, 1)v) : x ∈ B
d}

is at most d [60, Proposition 4.20]. Thus, we have the bound E0(N ) �
√
d/N by [60,

Example 5.24]. Hence, f is in the closure of ∪N∈NFσk (N , 1).
Next, we show that F̃σk (1) ⊆ Fσk (1) for k ∈ N0. Since ∪N∈NFσk (N , 1) ⊆

Fσk (1), we only need to show that Fσk (1) is closed in L∞(Bd). Let fn(x) =∫
Sd

σk((xᵀ, 1)v)dμn(v), where ‖μn‖ ≤ 1, be a convergent sequence with limit
f ∈ L∞(Bd). It remains to show that f ∈ Fσk (1).
For k ∈ N, by the compactness ofSd and Prokhorov’s theorem, there exists aweakly

convergent subsequence μni → μ. In particular, ‖μ‖ ≤ 1 and for any x ∈ B
d ,

lim
ni→∞

∫

Sd
σk((x

ᵀ, 1)v)dμni (v) =
∫

Sd
σk((x

ᵀ, 1)v)dμ(v) =: f̃ .

By the compactness of Bd , fni converges uniformly to f̃ . Hence f = f̃ ∈ Fσk (1).
For k = 0, we use the idea from [58, Lemma 3]. We can view fn as a Bochner

integral
∫
D
iD→L2(Bd )dμn of the inclusion map iD→L2(Bd ), where D := {gv(x) =

σ0((xᵀ, 1)v) : v ∈ S
d}. Notice that the set D ⊆ L2(Bd) is compact, because the

mapping v �→ gv is continuous. By Prokhorov’s theorem, there exists a weakly con-
vergent subsequence μni → μ. Let us denote f̃ = ∫

D
iD→L2(Bd )dμ, then f̃ ∈ Fσk (1)

by viewing the Bochner integral as an integral over Sd . If we choose a countable dense
sequence {g j }∞j=1 of L

2(Bd), then the weak convergence implies that

lim
ni→∞〈g j , fni 〉L2(Bd ) = 〈

g j , f̃
〉
L2(Bd )

,

for all j . The strong convergence fni → f in L∞(Bd) implies that the same equality
for f replacing f̃ . Therefore, 〈g j , f 〉L2(Bd ) = 〈g j , f̃ 〉L2(Bd ) for all j , which shows
f = f̃ ∈ Fσk (1). ��
The proof of Proposition 2.2 actually shows the approximation rate O(N−1/2)

for the subclass Fσk (N , 1). This rate can be improved if we take into account the
smoothness of the activation function. For ReLU activation, Bach [3, Proposition 1]
showed that approximating f ∈ Fσ (1) by neural networks with finitely many neurons
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is essentially equivalent to the approximation of a zonoid by zonotopes [10, 37]. Using

this equivalence, he obtained the rateO(N− 1
2− 3

2d ) for ReLU neural networks. Similar
idea was applied to the Heaviside activation in [32, Theorem 4], which proved the rate

O(N− 1
2− 1

2d ) for such an activation function. For ReLUk neural networks, the general

approximation rate O(N− 1
2− 2k+1

2d ) was established in L2 norm by [57], which also
showed that this rate is sharp. The recent work [55] further proved that this rate indeed
holds in the uniform norm. We summarize their results in the following lemma.

Lemma 2.3 ( [55]) For k ∈ N0 and d ∈ N, it holds that

sup
f ∈Fσk (1)

inf
fN∈Fσk (N ,1)

‖ f − fN‖L∞(Bd ) � N− 1
2− 2k+1

2d .

Combining Theorem 2.1 and Lemma 2.3, we can derive the rate of approximation
by shallow neural network Fσk (N , M) for Hölder class Hα . Recall that we use the
notation a ∨ b := max{a, b}.
Corollary 2.4 Let k ∈ N0, d ∈ N and α > 0.

1. If α > (d + 2k + 1)/2 or α = (d + 2k + 1)/2 is an even integer, then there exists
a constant M depending on k, d, α such that

sup
h∈Hα

inf
f ∈Fσk (N ,M)

‖h − f ‖L∞(Bd ) � N− 1
2− 2k+1

2d .

2. If α = (d + 2k + 1)/2 is not an even integer, then there exists M 
 √
log N such

that

sup
h∈Hα

inf
f ∈Fσk (N ,M)

‖h − f ‖L∞(Bd ) � N− 1
2− 2k+1

2d
√
log N .

3. If α < (d + 2k + 1)/2, then

sup
h∈Hα

inf
f ∈Fσk (N ,M)

‖h − f ‖L∞(Bd ) � N− α
d ∨ M− 2α

d+2k+1−2α .

Thus, the rate O(N−α/d) holds when M � N (d+2k+1−2α)/(2d).

Proof We only present the proof for part (3), since other parts can be derived similarly.
If α < (d+2k+1)/2, then by Theorem 2.1, for any h ∈ Hα , there exists g ∈ Fσk (K )

such that ‖h − g‖L∞(Bd ) � K− 2α
d+2k+1−2α . By Lemma 2.3, then there exists f ∈

Fσk (N , K ) such that ‖g − f ‖L∞(Bd ) � K N− 1
2− 2k+1

2d . If M ≥ N
d+2k+1−2α

2d , we choose

K = N
d+2k+1−2α

2d then f ∈ Fσk (N , K ) ⊆ Fσk (N , M) and

‖h − f ‖L∞(Bd ) ≤ ‖h − g‖L∞(Bd ) + ‖g − f ‖L∞(Bd )

� K− 2α
d+2k+1−2α + K N− d+2k+1

2d � N− α
d .
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If M ≤ N
d+2k+1−2α

2d , we choose K = M , then

‖h − f ‖L∞(Bd ) � K− 2α
d+2k+1−2α + K N− d+2k+1

2d � M− 2α
d+2k+1−2α .

Combining the two bounds gives the desired result. ��
Wemake somecomments on the approximation rate forHα withα < (d+2k+1)/2.

As shown by [48, Corollary 6.10], the rate O(N−α/d) in the L2 norm is already
known for α = 1, 2, . . . , (d + 2k + 1)/2. For ReLU activation, the recent paper [36]

obtained the rate O(N− α
d
d+2
d+4 ) in the supremum norm. Corollary 2.4 shows that the

rate O(N−α/d) holds in the supremum norm for all ReLUk activations. And more
importantly, we also provide an explicit control on the network weights to ensure that
this rate can be achieved, which is useful for estimating generalization errors (see
Sect. 4.2). It is well-known that the optimal approximation rate for Hα is O(N−α/d),
if we approximate h ∈ Hα by a function class with N parameters and the parameters
are continuously dependent on the target function h [13]. However, this result is not
directly applicable to neural networks, because we do not have guarantee that the
parameters in the network depend continuously on the target function (in fact, this is
not true for some constructions [31, 63, 65]). Nevertheless, one can still prove that the
rateO(N−α/d) is optimal for shallow ReLUk neural networks by arguments based on
pseudo-dimension as done in [31, 63, 64].

We describe the idea of proving approximation lower bounds through pseudo-
dimension by reviewing the result of Maiorov and Ratsaby [33] (see also [1]). Recall
that the pseudo-dimension Pdim (F) of a real-valued function class F defined on Bd

is the largest integer n for which there exist points x1, . . . , xn ∈ B
d and constants

c1, . . . , cn ∈ R such that

|{ sgn ( f (x1) − c1), . . . , sgn ( f (xn) − cn) : f ∈ F}| = 2n . (2.2)

Maiorov and Ratsaby [33] introduced a nonlinear n-width defined as

ρn(Hα) = inf
Fn

sup
h∈Hα

inf
f ∈Fn

‖h − f ‖L p(Bd ),

where p ∈ [1,∞] and Fn runs over all the classes in L p(Bd) with Pdim (Fn) ≤ n.
They constructed a well-separated subclass of Hα such that if a function class F can
approximate this subclass with small error, then Pdim (F) should be large. In other
words, the approximation error of any class Fn with Pdim (Fn) ≤ n can be lower
bounded. Consequently, they proved that

ρn(Hα) � n−α/d .

By [6], we can upper bound the pseudo-dimension of shallow ReLUk neural networks
as n := Pdim (Fσk (N , M)) � N log N . Hence,

sup
h∈Hα

inf
fN∈Fσk (N ,M)

‖h − fN‖L p(Bd ) ≥ ρn(Hα) � (N log N )−α/d ,

123



Constructive Approximation

which shows that the rateO(N−α/d) in Corollary 2.4 is optimal in the L p norm (ignor-
ing logarithmic factors). This also implies the optimality of Theorem 2.1 (otherwise,
the proof of Corollary 2.4 would give a rate better than O(N−α/d)).

3 Proof of Theorem 2.1

Following the idea of [3], we first transfer the problem to approximation on spheres.
Let us begin with a brief review of harmonic analysis on spheres [12]. For n ∈ N0, the
spherical harmonic spaceYn of degree n is the linear space that contains the restrictions
of real harmonic homogeneous polynomials of degree n on R

d+1 to the sphere S
d .

The dimension of Yn is N (d, n) := 2n+d−1
n

(n+d−2
d−1

)
if n �= 0 and N (d, n) := 1 if

n = 0. Spherical harmonics are eigenfunctions of the Laplace-Beltrami operator:

�Yn = −n(n + d − 1)Yn, Yn ∈ Yn,

where in the coordinates u = (u1, . . . , ud+1) ∈ S
d ,

� =
d∑

i=1

∂2

∂u2i
−

d∑

i=1

d∑

j=1

uiu j
∂2

∂ui∂u j
− d

d∑

i=1

ui
∂

∂ui
.

Spherical harmonics of different degrees are orthogonal with respect to the inner
product 〈 f , g〉 = ∫

Sd
f (u)g(u)dτd(u), where τd is the surface area measure of Sd

(normalized by the surface area ωd := 2π(d+1)/2/�((d + 1)/2) so that τd(Sd) = 1).
LetPn : L2(Sd) → Yn denote the orthogonal projectionoperator. For anyorthonor-

mal basis {Ynj : 1 ≤ j ≤ N (d, n)} of Yn , the addition formula [12, Theorem 1.2.6]
shows

N (d,n)∑

j=1

Ynj (u)Ynj (v) = N (d, n)Pn(u
ᵀv), u, v ∈ S

d , (3.1)

where Pn is the Gegenbauer polynomial

Pn(t) := (−1)n

2n
�(d/2)

�(n + d/2)
(1 − t2)(2−d)/2

(
d

dt

)n

(1 − t2)n+(d−2)/2, t ∈ [−1, 1],

with normalization Pn(1) = 1. Applying the Cauchy-Schwarz inequality to (3.1), we
get |Pn(t)| ≤ 1. For n �= 0, Pn(t) is odd (even) if n is odd (even). Note that, for
d = 1 and n �= 0, N (d, n) = 2 and Pn(t) is the Chebyshev polynomial such that
Pn(cos θ) = cos(nθ). We can write the projection Pn as

Pn f (u) = N (d, n)

∫

Sd
f (v)Pn(u

ᵀv)dτd(v).

This motivates the following definition of a convolution operator on the sphere.
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Definition 3.1 (Convolution) Let � be the probability distribution with density cd(1−
t2)(d−2)/2 on [−1, 1], with the constant cd = (

∫ 1
−1(1 − t2)(d−2)/2dt)−1 = ωd−1/ωd .

For f ∈ L1(Sd) and g ∈ L1
�([−1, 1]), define

( f ∗ g)(u) :=
∫

Sd
f (v)g(uᵀv)dτd(v), u ∈ S

d .

The convolution on the sphere satisfies Young’s inequality [12, Theorem 2.1.2]: for
p, q, r ≥ 1 with p−1 = q−1 + r−1 − 1, it holds

‖ f ∗ g‖L p(Sd ) ≤ ‖ f ‖Lq (Sd )‖g‖Lr�([−1,1]),

where the norm is the uniform one when r = ∞. Observe that the projection Pn f =
f ∗ (N (d, n)Pn) is a convolution operator with ‖N (d, n)Pn‖L∞([−1,1]) ≤ N (d, n).
Furthermore, for g ∈ L1

�([−1, 1]), let ĝ(n) denote the Fourier coefficient of g with
respect to the Gegenbauer polynomials,

ĝ(n) := ωd−1

ωd

∫ 1

−1
g(t)Pn(t)(1 − t2)(d−2)/2dt .

By the Funk-Hecke formula, one can show that [12, Theorem 2.1.3]

Pn( f ∗ g) = ĝ(n)Pn f , f ∈ L1(Sd), n ∈ N0. (3.2)

This identity is analogous to the Fourier transform of ordinary convolution.
One of the key steps in our proof of Theorem 2.1 is the observation that functions of

the form f (u) = ∫
Sd

φ(v)σk(uᵀv)dτd(v) are convolutions φ ∗ σk with the activation
function σk ∈ L∞([−1, 1]). [3, Appendix D.2] has computed the Fourier coefficients
σ̂k(n) explicitly. We summarize the result in the following.

Proposition 3.2 For k ∈ N0, σ̂k(n) = 0 if and only if n ≥ k + 1 and n ≡ k mod 2. If
n = 0,

σ̂k(0) = ωd−1

ωd

�(d/2)�((k + 1)/2)

2�((k + d + 1)/2)
.

If n ≥ k + 1 and n + 1 ≡ k mod 2,

σ̂k(n) = ωd−1

ωd

k!(−1)(n−k−1)/2

2n
�(d/2)�(n − k)

�((n − k + 1)/2)�((n + d + k + 1)/2)
.

By the Stirling formula �(x) = √
2πxx−1/2e−x (1 + O(x−1)), we have σ̂k(n) 


n−(d+2k+1)/2 for n ∈ N satisfying σ̂k(n) �= 0.
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Next, we introduce the smoothness of functions on the sphere. For 0 ≤ θ ≤ π , the
translation operator Tθ , also called spherical mean operator, is defined by

Tθ f (u) :=
∫

S⊥
u

f (u cos θ + v sin θ)dτd−1(v), u ∈ S
d , f ∈ L1(Sd),

where S
⊥
u := {v ∈ S

d : uᵀv = 0} is the equator in S
d with respect to u (hence

S
⊥
u is isomorphic to the sphere Sd−1). We note that the translation operator satisfies

Pn(Tθ f ) = Pn(cos θ)Pn( f ). For α > 0 and 0 < θ < π , we define the α-th order
difference operator

�α
θ := (I − Tθ )

α/2 =
∑

j=0

(−1) j
(

α/2

j

)
T j

θ ,

where
(
α
j

) = α(α−1)···(α− j+1)
j ! , in a distributional sense by Pn(�

α
θ f ) = (1 −

Pn(cos θ))α/2Pn f , n ∈ N0. For f ∈ L p(Sd) and 1 ≤ p < ∞ or f ∈ C(Sd)

and p = ∞, the α-th order modulus of smoothness is defined by

ωα( f , t)p := sup
0<θ≤t

‖�α
θ f ‖L p(Sd ), 0 < t < π.

For even integers α = 2s, one can also use combinations of Tjθ and obtain [15, 50]

ω2s( f , t)p 
 sup
0<θ≤t

∥∥∥∥∥∥

2s∑

j=0

(−1) j
(
2s

j

)
Tjθ f

∥∥∥∥∥∥
L p(Sd )

, s ∈ N. (3.3)

Another way to characterize the smoothness is through the K -functionals. We first
introduce the fractional Sobolev space induced by the Laplace-Beltrami operator. We
say a function f ∈ L p(Sd) belong to the Sobolev space Wα,p(Sd) if there exists a
function in L p(Sd), which will be denoted by (−�)α/2 f , such that

Pn((−�)α/2 f ) = (n(n + d − 1))α/2Pn f , n ∈ N0,

where we assume f , (−�)α/2 f ∈ C(Sd) for p = ∞. Then we can define the α-th
K -functional of f ∈ L p(Sd) as

Kα( f , t)p := inf
g∈Wα,p(Sd )

{
‖ f − g‖L p(Sd ) + tα‖(−�)α/2g‖L p(Sd )

}
, t > 0.

It can be shown [12, Theorem 10.4.1] that the moduli of smoothness and the K -
functional are equivalent:

ωα( f , t)p 
 Kα( f , t)p. (3.4)

To prove Theorem 2.1, we denote the function class

Gσk (M) :=
{
g ∈ L∞(Sd) : g(u) =

∫

Sd
σk(u

ᵀv)dμ(v), ‖μ‖ ≤ M

}
,
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as the corresponding function class ofFσk (M)onSd .Abusing thenotation,wewill also
denote γ (g) = infμ ‖μ‖ as the variation norm of g ∈ Gσk (M). The next proposition
transfers our approximation problem on the unit ball Bd to that on the sphere Sd .

Proposition 3.3 Let k ∈ N0, d ∈ N and α = r + β where r ∈ N0 and β ∈ (0, 1].
Denote � := {(u1, . . . , ud+1)

ᵀ ∈ S
d : ud+1 ≥ 1/

√
2} and define an operator

Sk : L∞(�) → L∞(Bd) by

Skg(x) := (‖x‖22 + 1)k/2g

(
1√‖x‖2 + 1

(
x
1

))
, x ∈ B

d .

The operator Sk satisfies: (1) If g ∈ Gσk (M), then Skg ∈ Fσk (M). (2) For any h ∈ Hα ,
there exists h̃ ∈ C(Sd) such that Sk h̃ = h, ‖h̃‖L∞(Sd ) ≤ C and ω2s∗ (̃h, t)∞ ≤ Ctα ,
where s∗ ∈ N is the smallest integer such thatα ≤ 2s∗ andC is a constant independent
of h. Furthermore, h̃ can be chosen to be odd or even.

Proof 1. If g(u) = ∫
Sd

σk(uᵀv)dμ(v) for some ‖μ‖ ≤ M , then for x ∈ B
d ,

Skg(x) = (‖x‖22 + 1)k/2
∫

Sd
σk

(
(‖x‖22 + 1)−1/2(xᵀ, 1)v

)
dμ(v)

=
∫

Sd
σk
(
(xᵀ, 1)v

)
dμ(v).

Hence, Skg ∈ Fσk (M) by definition.
2. Given h ∈ Hα , for any u = (u1, . . . , ud+1)

ᵀ ∈ �, we define h̃(u) :=
ukd+1h(u−1

d+1u
′), where u′ = (u1, . . . , ud)ᵀ. It is easy to check that Sk h̃ = h.

Note that h is completely determined by the function values of h̃ on �. Observe
that the smoothness of h̃ on � can be controlled by the smoothness of h. We can
extend h̃ toRd+1 so that ‖h̃‖Cr ,β (Rd+1) ≤ C0 for some constant C0 independent of
h, by using (refined version of) Whitney’s extension theorem [17–19]. It remains
to show that ω2 s∗ (̃h, t)∞ � tα .
By the equivalence (3.3),

ω2s∗ (̃h, t)∞ � sup
0<θ≤t

sup
u∈Sd

∣∣∣∣∣∣

2s∗∑

j=0

(−1) j
(
2s∗

j

)∫

S⊥
u

h̃(u cos jθ + v sin jθ)dτd−1(v)

∣∣∣∣∣∣

≤ sup
0<θ≤t

sup
u∈Sd

sup
v∈S⊥

u

∣∣∣∣∣∣

2s∗∑

j=0

(−1) j
(
2s∗

j

)
h̃(u cos jθ + v sin jθ)

∣∣∣∣∣∣

=: sup
0<θ≤t

sup
u∈Sd

sup
v∈S⊥

u

|H(u, v, θ)|.

Next, we estimate sup0<θ≤t |H(u, v, θ)| for small t > 0 and fixed u, v. One can
check that the function f (·) := h̃(u cos(·) + v sin(·)) is in Cr ,β([0, t0]) for small
t0 > 0, and ‖ f ‖Cr ,β ([0,t0]) � ‖h̃‖Cr ,β (Rd+1). Let �̃θ f (·) := f (· + θ)− f (·) be the
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difference operator and �̃n+1
θ := �̃θ �̃

n
θ for n ∈ N. The binomial theorem shows

H(u, v, θ) = �̃2 s∗
θ f (0). Then, the classical theory of moduli of smoothness [14,

Chapter 2.6-−2.9] implies

sup
0<θ≤t

|H(u, v, θ)| ≤ sup
0<θ≤t

|�̃2s∗
θ f (0)| � ‖ f ‖Cr ,β ([0,t0])t

α.

Consequently, we get the desired bound ω2s∗ (̃h, t)∞ � tα .
Finally, in order to ensure that h̃ is odd or even, we can multiply h̃ by an infinitely
differentiable function, which is equal to one on � and zero for ud+1 ≤ 1/(2

√
2),

and extend h̃ to be odd or even. These operations do not decrease the smoothness
of h̃. ��
By Proposition 3.3, for any h ∈ Hα and g ∈ Gσk (M), we have

‖h − Skg‖L∞(Bd ) = ‖Sk h̃ − Skg‖L∞(Bd ) ≤ 2k/2‖h̃ − g‖L∞(Sd ),

for some h̃ ∈ C(Sd). Since Skg ∈ Fσk (M), we can derive approximation bounds for
Fσk (M) by studying the approximation capacity of Gσk (M). Now, we are ready to
prove Theorem 2.1.

Proof of Theorem 2.1 By Proposition 3.3, for any h ∈ Hα , there exists h̃ ∈ C(Sd)

such that Sk h̃ = h, ‖h̃‖L∞(Sd ) ≤ C and ω2s∗ (̃h, t)∞ ≤ Ctα , where s∗ ∈ N is the
smallest integer such that α ≤ 2s∗. We choose h̃ to be odd (even) if k is even (odd).
Using ωs (̃h, t)2 ≤ 2s−2 s∗+2ω2 s∗ (̃h, t)2 for s > 2 s∗ [12, Proposition 10.1.2] and the
Marchaud inequality [15, Eq.(9.6)]

ωs (̃h, t)2 � t s
(∫ 1

t

ω2s∗ (̃h, θ)22

θ2s+1 dθ

)1/2

, s < 2s∗,

we have

ωs (̃h, t)2 �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t s, if s < α,

tα, if s = α = 2s∗,
tα
√
log(1/t), if s = α �= 2s∗,

tα, if s > α.

(3.5)

We study how well g ∈ Gσk (M) approximates h̃. It turns out that it is enough to
consider a subset of Gσk (M) that contains functions of the form

g(u) =
∫

Sd
φ(v)σk(u

ᵀv)dτd(v), u ∈ S
d ,

for some φ ∈ L2(Sd). Note that γ (g) ≤ infφ ‖φ‖L1(Sd ) ≤ infφ ‖φ‖L2(Sd ), where
the infimum is taken over all φ ∈ L2(Sd) satisfy the integral representation of g.
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Observing that g = φ ∗ σk is a convolution, by identity (3.2), Png = σ̂k(n)Pnφ.
Hence, we have the Fourier decomposition

g =
∞∑

n=0

Png =
∞∑

n=0

σ̂k(n)Pnφ,

which converges in L2(Sd). This implies that g ∈ Gσk (M) if g is continuous,Png = 0
for any n ∈ N0 satisfying σ̂k(n) = 0 and

γ (g)2 ≤
∑

σ̂k (n) �=0

σ̂k(n)−2‖Png‖2L2(Sd )
≤ M2.

By Proposition 3.2, we know that σ̂k(n) = 0 if and only if n ≥ k+1 and n ≡ k mod 2.
For σ̂k(n) �= 0, we have σ̂k(n) 
 n−(d+2k+1)/2.

We consider the convolutions gm := h̃ ∗ Lm = ∫
Sd

h̃(u)Lm(uᵀv)dτd(v) with

Lm(t) :=
∞∑

n=0

η
( n
m

)
N (d, n)Pn(t), m ∈ N,

where η is aC∞-function on [0,∞) such that η(t) = 1 for 0 ≤ t ≤ 1 and η(t) = 0 for
t ≥ 2. Since η is supported on [0, 2], the summation can be terminated at n = 2m−1,
so that gm is a polynomial of degree at most 2m − 1. Since h̃ is odd (even) if k is even
(odd), Pngm = η(n/m)Pnh̃ = 0 for any n ≡ k mod 2. Furthermore, [12, Theorem
10.3.2] shows that

Ks (̃h,m−1)p 
 ‖h̃ − gm‖L p(Sd ) + m−s‖(−�)s/2gm‖L p(Sd ). (3.6)

By the equivalence (3.4) andω2s∗ (̃h,m−1)∞ � m−α , the equivalence (3.6) for p = ∞
implies that we can bound the approximation error as

‖h̃ − gm‖L∞(Sd ) � m−α.

Applying the estimate (3.5) to the equivalence (3.6) with p = 2, we get

‖(−�)s/2gm‖L2(Sd ) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if s < α,

1, if s = α = 2s∗,√
logm, if s = α and α �= 2s∗,

ms−α, if α < s ≤ 2s∗.
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Using Pn((−�)s/2gm) = (n(n + d − 1))s/2Pngm , we can estimate the norm γ (gm)

as follows

γ (gm)2 ≤
∑

σ̂k (n) �=0

σ̂k(n)−2‖Pngm‖2L2(Sd )

� σ̂k(0)
−2‖P0gm‖2L2(Sd )

+
2m−1∑

n=1

nd+2k+1n−2s‖Pn((−�)s/2gm)‖2L2(Sd )

� 1 +
2m−1∑

n=1

nd+2k+1−2s‖Pn((−�)s/2gm)‖2L2(Sd )

� 1 + ‖(−�)s/2gm‖2L2(Sd )
,

where we choose s = (d + 2k + 1)/2 in the last inequality. We continue the proof in
three different cases.

Case I: α > (d + 2k + 1)/2 or α = (d + 2k + 1)/2 is an even integer. In this case,
s < α or s = α = 2 s∗. Thus,

γ (gm)2 ≤
∑

σ̂k (n) �=0

σ̂k(n)−2‖Pngm‖2L2(Sd )
� 1 + ‖(−�)s/2gm‖2L2(Sd )

� 1.

Since Pngm = η(n/m)Pnh̃ = Pnh̃ for n ≤ m, we have

γ (̃h)2 ≤ lim
m→∞

∑

n≤m,σ̂k (n) �=0

σ̂k(n)−2‖Pnh̃‖2L2(Sd )

≤ lim
m→∞

∑

σ̂k (n) �=0

σ̂k(n)−2‖Pngm‖2L2(Sd )

� 1.

This shows that h̃ ⊆ Gσk (M) for some constant M . Hence, h = Sk h̃ ∈ Fσk (M) by
Proposition 3.3.

Case II: α = (d + 2k + 1)/2 is not an even integer. We have s = α �= 2s∗ and

γ (gm)2 � 1 + ‖(−�)s/2gm‖2L2(Sd )
� logm.

This shows that gm ∈ Gσk (M) with M � √
logm. Therefore,

‖h̃ − gm‖L∞(Sd ) � m−α � exp(−αM2).

By Proposition 3.3, f := Skgm ∈ Fσk (M) and

‖h − f ‖L∞(Bd ) ≤ 2k/2‖h̃ − gm‖L∞(Sd ) � exp(−αM2).
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Case III: α < (d + 2k + 1)/2. In this case, s > α and

γ (gm)2 � 1 + ‖(−�)s/2gm‖2L2(Sd )
� md+2k+1−2α.

This shows that gm ∈ Gσk (M) with M � m(d+2k+1−2α)/2. Therefore,

‖h̃ − gm‖L∞(Sd ) � m−α � M− 2α
d+2k+1−2α .

By Proposition 3.3, f := Skgm ∈ Fσk (M) and

‖h − f ‖L∞(Bd ) ≤ 2k/2‖h̃ − gm‖L∞(Sd ) � M− 2α
d+2k+1−2α ,

which finishes the proof. ��

Remark 3.4 Since we are only able to estimate the smoothness ω2s∗ (̃h, t)∞ for even
integer 2s∗, we have an extra logarithmic factor for the boundωs (̃h, t)2 � tα

√
log(1/t)

in (3.5) when s = α �= 2s∗, due to the Marchaud inequality. Consequently, we can
only obtain exponential convergence rate when α = (d + 2k + 1)/2 is not an even
integer. We conjecture the bound ωs (̃h, t)2 � tα holds for all s ≥ α. If this is the case,
then the proof of Theorem 2.1 implies Hα ⊆ Fσk (M) for some constant M when
α ≥ (d + 2k + 1)/2.

4 Nonparametric Regression

In this section, we apply our approximation results to nonparametric regression using
neural networks. For simplicity, we will only consider ReLU activation function (k =
1), which is the most popular activation in deep learning.

We study the classical problem of learning a d-variate function h ∈ H from its
noisy samples, where we will assume H = Hα with α < (d + 3)/2 or H = Fσ (1).
Note that, due to Theorem 2.1, the results for Fσ (1) can be applied to Hα with
α > (d + 3)/2 by scaling the variation norm. Suppose we have a data set of n ≥ 2
samples Dn = {(Xi ,Yi )}ni=1 ⊆ B

d × R which are independently and identically
generated from the regression model

Yi = h(Xi ) + ηi , Xi ∼ μ, ηi ∼ N (0, V 2), i = 1, . . . , n, h ∈ H, (4.1)

where μ is the marginal distribution of the covariates Xi supported on B
d , and ηi is

an i.i.d. Gaussian noise independent of Xi (we will treat the variance V 2 as a fixed
constant). We are interested in the empirical risk minimizer (ERM)

f ∗
n ∈ argmin

f ∈Fn

Ln( f ) := argmin
f ∈Fn

1

n

n∑

i=1

| f (Xi ) − Yi |2, (4.2)
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where Fn is a function class parameterized by neural networks. For simplicity, we
assume here and in the sequel that the minimum above indeed exists. The performance
of the estimation is measured by the expected risk

L( f ) := E(X ,Y )[( f (X) − Y )2] = EX∼μ[( f (X) − h(X))2] + V 2.

It is equivalent to evaluating the estimator by the excess risk

‖ f − h‖2L2(μ)
= L( f ) − L(h).

In the statistical analysis of learning algorithms, we often require that the hypothesis
class is uniformly bounded. We define the truncation operator TB with level B > 0
for real-valued functions f as

TB f (x) :=
{
f (x) if | f (x)| ≤ B,

sgn ( f (x))B if | f (x)| > B.

Since we always assume the regression function h is bounded, truncating the output
of the estimator f ∗

n appropriately dose not increase the excess risk. We will estimate
the convergence rate of EDn‖TBn f

∗
n − h‖2

L2(μ)
, where Bn � log n, as the number of

samples n → ∞.

4.1 Shallow Neural Networks

The rate of convergence of neural network regression estimates has been analyzed by
many papers [9, 26, 27, 38, 41, 52]. It is well-known that the optimal minimax rate
of convergence for learning a regression function h ∈ Hα is n−2α/(d+2α) [59]. This
optimal rate has been established (up to logarithmic factors) for two-hidden-layers
neural networks with certain squashing activation functions [26] and for deep ReLU
neural networks [27, 52]. For shallow networks, [38] proved a rate of n−2α/(2α+d+5)+ε

with ε > 0 for a certain cosine squasher activation function. However, to the best of our
knowledge, it is unknown whether shallow neural networks can achieve the optimal
rate. In this section, we provide an affirmative answer to this question by proving that
shallowReLUneural networks can achieve the optimal rate forHα withα < (d+3)/2.

We will use the following lemma to analyze the convergence rate. It decomposes
the error of the ERM into generalization error and approximation error, and bounds
the generalization error by the covering number of the hypothesis class Fn .
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Lemma 4.1 ( [27]) Let f ∗
n be the estimator (4.2) and set Bn = c1 log n for some

constant c1 > 0. Then,

EDn‖TBn f
∗
n − h‖2L2(μ)

≤ c2(log n)2 supX1:n∈(Bd )n log(N (n−1B−1
n , TBnFn, ‖ · ‖L1(X1:n)) + 1)

n
+ 2 inf

f ∈Fn

‖ f − h‖2L2(μ)
,

for n > 1 and some constant c2 > 0 (independent of n and f ∗
n ), where X1:n =

(X1, . . . , Xn) denotes a sequence of sample points inBd andN (ε, TBnFn, ‖·‖L1(X1:n))
denotes the ε-covering number of the function class TBnFn := {TBn f , f ∈ Fn} in the
metric ‖ f − g‖L1(X1:n) = 1

n

∑n
i=1 | f (Xi ) − g(Xi )|.

For shallow neural network model Fn = Fσ (Nn, Mn), Lemma 2.3 and Corollary
2.4 provide bounds for the approximation errors. The covering number of the function
class TBnFn can be estimated by using the pseudo-dimension of TBnFn [22]. Choosing
Nn, Mn appropriately to balance the approximation and generalization errors, we can
derive convergence rates for the ERM.

Theorem 4.2 Let f ∗
n be the estimator (4.2) with Fn = Fσ (Nn, Mn) and set Bn =

c1 log n for some constant c1 > 0.

1. IfH = Hα with α < (d + 3)/2, we choose

Nn 
 n
d

d+2α , Mn � n
d+3−2α
2d+4α ,

then

EDn‖TBn f
∗
n − h‖2L2(μ)

� n− 2α
d+2α (log n)4.

2. IfH = Fσ (1), we choose

Nn 
 n
d

2d+3 , Mn ≥ 1,

then

EDn‖TBn f
∗
n − h‖2L2(μ)

� n− d+3
2d+3 (log n)4.

Proof To apply the bound in Lemma 4.1, we need to estimate the covering number
N (ε, TBnFn, ‖ · ‖L1(X1:n)). The classical result of [22, Theorem 6] showed that the
covering number can be bounded by pseudo-dimension:

logN (ε, TBnFn, ‖ · ‖L1(X1:n)) � Pdim (TBnFn) log(Bn/ε), (4.3)
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where Pdim (TBnFn) is the pseudo-dimension of the function class TBnFn , see (2.2).
For ReLU neural networks, [6] showed that

Pdim (TBnFn) � Nn log Nn .

Consequently, we have

logN (ε, TBnFn, ‖ · ‖L1(X1:n)) � Nn log(Nn) log(Bn/ε).

Applying Lemma 4.1 and Corollary 2.4, ifH = Hα with α < (d + 3)/2, then

EDn‖TBn f
∗
n − h‖2L2(μ)

� (log n)2Nn log(Nn) log(nB2
n )

n
+ N

− 2α
d

n ∨ M
− 4α

d+3−2α
n .

By choosing Nn 
 nd/(d+2α) and Mn � N (d+3−2α)/(2d)
n , we get EDn‖TBn f

∗
n −

h‖2
L2(μ)

� n−2α/(d+2α)(log n)4. Similarly, by Lemmas 4.1 and 2.3, ifH = Fσ (1) and
Mn ≥ 1, then

EDn‖TBn f
∗
n − h‖2L2(μ)

� (log n)2Nn log(Nn) log(nB2
n )

n
+ N

− d+3
d

n .

We choose Nn 
 nd/(2d+3), then EDn‖TBn f
∗
n − h‖2

L2(μ)
� n−(d+3)/(2d+3)(log n)4. ��

Remark 4.3 The Gaussian noise assumption on the model (4.1) can be weaken for
Lemma4.1 and hence for Theorem4.2.We refer the reader to [27,AppendixB, Lemma
18] for more details. Theorem 4.2 can be easily generalized to shallow ReLUk neural
networks for k ≥ 1 by using the same proof technique. For example, one can show
that, if h ∈ Hα with α < (d+2k+1)/2, then we can chooseFn = Fσk (Nn, Mn)with

Nn 
 n
d

d+2α andMn � n
d+2k+1−2α

2d+4α , such thatEDn‖TBn f
∗
n −h‖2

L2(μ)
� n− 2α

d+2α (log n)4.

Theorem 4.2 shows that least square minimization using shallow ReLU neural

networks can achieve the optimal rate n− 2α
d+2α for learning functions in Hα with α <

(d + 3)/2. For the function class Fσ (1), the rate n− d+3
2d+3 is also minimax optimal as

proven by [46, Lemma 25] (they studied a slightly different function class, but their
result also holds forFσ (1)). Specifically, [57, Theorem 4 and Theorem 8] give a sharp
estimate for the metric entropy

logN (ε,Fσ (1), ‖ · ‖L2(Bd )) 
 ε− 2d
d+3 .

Combining this estimate with the classical result of Yang and Barron (see [61, Propo-
sition 1] and [60, Chapter 15]), we get

inf
f̂n

sup
h∈Fσ (1)

EDn‖ f̂n − h‖2L2(Bd )

 n− d+3

2d+3 ,

where the infimum taken is over all estimators based on the samples Dn , which are
generated from the model (4.1).

123



Constructive Approximation

4.2 Deep Neural Networks and Over-Parameterization

There is a direct way to generalize the analysis in the last section to deep neural
networks: we can implement shallow neural networks by sparse multi-layer neural
networks with the same order of parameters, and estimate the approximation and gen-
eralization performance of the constructed networks. Since the optimal convergence
rates of deep neural networks have already been established in [27, 52], we do not pur-
sue in this direction. Instead, we study the convergence rates of over-parameterized
neural networks by using the idea discussed in [24]. The reason for studying such
networks is that, in modern applications of deep learning, the number of parameters
in the networks is often much larger than the number of samples. However, in the
convergence analysis of [27, 52], the network that achieves the optimal rate is under-
parameterized (see also the choice of Nn in Theorem 4.2). Hence, the analysis can not
explain the empirical performance of deep learning models used in practice.

Following [24], we consider deep neural networks with norm constraints on weight
matrices. For W , L ∈ N, we denote by NN (W , L) the set of functions that can be
parameterized by ReLU neural networks in the form

f (0)(x) = x ∈ R
d ,

f (�+1)(x) = σ(A(�) f (�)(x) + b(�)), � = 0, . . . , L − 1,

f (x) = A(L) f (L)(x) + b(L),

(4.4)

where A(�) ∈ R
N�+1×N� , b(�) ∈ R

N�+1 with N0 = d, NL+1 = 1 and
max{N1, . . . , NL} = W . The numbers W and L are called the width and depth of
the neural network, respectively. Let us use the notation fθ to emphasize that the neu-
ral network function is parameterized by θ = ((A(0), b(0)), . . . , (A(L), b(L))). We can
define a norm constraint on the weight matrices as follows

κ(θ) := ‖(A(L), b(L))‖
L−1∏

�=0

max
{
‖(A(�), b(�))‖, 1

}
,

where we use ‖A‖ := sup‖x‖∞≤1 ‖Ax‖∞ to denote the operator norm (induced by the
�∞ norm) of a matrix A = (ai, j ) ∈ R

m×n . It is well-known that ‖A‖ is the maximum
1-norm of the rows of A:

‖A‖ = max
1≤i≤m

n∑

j=1

|ai, j |.

Themotivation for such a definition of κ(θ) is discussed in [24]. ForM ≥ 0, we denote
by NN (W , L, M) as the set of functions fθ ∈ NN (W , L) that satisfy κ(θ) ≤ M .
It is shown by [24, Proposition 2.5] that, if W1 ≤ W2, L1 ≤ L2, M1 ≤ M2, then
NN (W1, L1, M1) ⊆ NN (W2, L2, M2). (Strictly speaking, [24] use the convention
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that the bias b(L) = 0 in the last layer. But the results can be easily generalized to the
case b(L) �= 0, see [62, Section 2.1] for details.)

To derive approximation bounds for deep neural networks, we consider the rela-
tionship of Fσ (N , M) and NN (N , 1, M). The next proposition shows the function
classesNN (N , 1, M) andFσ (N , M) have essentially the same approximation power.

Proposition 4.4 For any N ∈ N and M > 0, we have Fσ (N , M) ⊆
NN (N , 1,

√
d + 1M) and NN (N , 1, M) ⊆ Fσ (N + 1, M).

Proof Each function f (x) = ∑N
i=1 aiσ((xᵀ, 1)vi ) inFσ (N , M) can be parameterized

in the form (4.4) with W = N , L = 1 and

(A(0), b(0)) = (v1, . . . , vN )ᵀ, (A(1), b(1)) = (a1, . . . , aN , 0).

Since vi ∈ S
d , it is easy to see that κ(θ) ≤ √

d + 1M . Hence, Fσ (N , M) ⊆
NN (N , 1,

√
d + 1M).

On the other side, let fθ ∈ NN (N , 1, M) be a function parameterized in the form
(4.4) with (A(0), b(0)) = (a(0)

1 , . . . , a(0)
N )ᵀ and (A(1), b(1)) = (a(1)

1 , . . . , a(1)
N , b(1)),

where a(0)
i ∈ R

d+1 and a(1)
i , b(1) ∈ R. Then, fθ can be represented as

fθ (x) =
N∑

i=1

a(1)
i ‖a(0)

i ‖2σ
(

(xᵀ, 1)
a(0)
i

‖a(0)
i ‖2

)
+ b(1)σ (1),

where we assume ‖a(0)
i ‖2 �= 0 without loss of generality. Since

γ ( fθ ) ≤
N∑

i=1

|a(1)
i |‖a(0)

i ‖2 + |b(1)| ≤ ‖(A(0), b(0))‖
N∑

i=1

|a(1)
i | + |b(1)| ≤ κ(θ),

we conclude that NN (N , 1, M) ⊆ Fσ (N + 1, M). ��
As a corollary of Theorem 2.1 and Lemma 2.3, we get the following approximation

bounds for deep neural networks.

Corollary 4.5 For Hα with 0 < α < (d + 3)/2, we have

sup
h∈Hα

inf
f ∈NN (W ,L,M)

‖h − f ‖L∞(Bd ) � W− α
d ∨ M− 2α

d+3−2α .

For Fσ (1), there exists a constant M ≥ 1 such that

sup
h∈Fσ (1)

inf
f ∈NN (W ,L,M)

‖h − f ‖L∞(Bd ) � W− 1
2− 3

2d .

Proof The first part is a direct consequence of Corollary 2.4 and the inclusion
Fσ (W , M) ⊆ NN (W , L,

√
d + 1M). The second part follows from Lemma 2.3

and we can choose M = √
d + 1. ��
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In the first part of Corollary 4.5, if we allow the width W to be arbitrary large, say
W � M2d/(d+3−2α), thenwe can bound the approximation error by the size ofweights.
Hence, this result can be applied to over-parameterized neural networks. (Note that, in
Theorem 4.2, we use a different regime of the bound.) For the approximation ofFσ (1),
the size of weights is bounded by a constant. We will show that this constant can be
used to control the generalization error. Since the approximation error is bounded by
W and is independent of M , we do not have trade-off in the error decomposition of
ERM and only need to choose W sufficiently large to reduce the approximation error.
Hence, it can also be applied to over-parameterized neural networks.

The approximation rateM− 2α
d+3−2α forHα in Corollary 4.5 improves the rateM− α

d+1

proven by [24]. Using the upper bound for Rademacher complexity ofNN (W , L, M)

(see Lemma 4.6), [24] also gave an approximation lower bound (M
√
L)−

2α
d−2α . For

fixed depth L , our upper bound is very close to this lower bound.We conjecture that the
rate in Corollary 4.5 is optimal with respect to M (for fixed depth L). The discussion
of optimality at the end of Sect. 2 implies that the conjecture is true for shallow neural
networks (i.e. L = 1).

To control the generalization performance of over-parameterized neural networks,
we need to have size-independent sample complexity bounds for such networks. Sev-
eral methods have been applied to obtain such kind of bounds in recent works [5, 21,
42, 43]. Here, we will use the result of [21], which estimates the Rademacher com-
plexity of deep neural networks [7]. For a set S ⊆ R

n , let us denote its Rademacher
complexity by

Rn(S) := Eξ1:n

[
sup

(s1,...,sn)∈S
1

n

n∑

i=1

ξi si

]
,

where ξ1:n = (ξ1, . . . , ξn) is a sequence of i.i.d. Rademacher random variables. The
following lemma is from [21, Theorem 3.2] and [24, Lemma 2.3].

Lemma 4.6 For any x1, . . . , xn ∈ [−1, 1]d , let S := {( f (x1), . . . , f (xn)) : f ∈
NN (W , L, M)} ⊆ R

n, then

Rn(S) ≤ M
√
2(L + 2 + log(d + 1))√

n
.

Now, we can estimate the convergence rates of the ERM based on over-
parameterized neural networks. As usual, we decompose the excess risk of the ERM
into approximation error and generalization error, and bound them by Corollary 4.5
and Lemma 4.6, respectively. Note that the convergence rates in the following theorem
are worse than the optimal rates in Theorem 4.2.

Theorem 4.7 Let f ∗
n be the estimator (4.2) withFn ={TBn f : f ∈ NN (Wn, L, Mn)},

where L ∈ N is a fixed constant, 1 ≤ Bn � log n in case (1) and
√
2 ≤ Bn � log n in

case (2).
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1. IfH = Hα with α < (d + 3)/2, we choose

Wn � n
d

d+3+2α , Mn 
 n
1
2− 2α

d+3+2α ,

then

EDn‖ f ∗
n − h‖2L2(μ)

� n− 2α
d+3+2α log n.

2. IfH = Fσ (1), we choose a large enough constant M and let

Wn � n
d

2d+6 , Mn = M,

then

EDn‖ f ∗
n − h‖2L2(μ)

� n− 1
2 log n.

Proof The proof is essentially the same as [24, Theorem 4.1]. Observe that, for any
f ∈ Fn ,

‖ f ∗
n − h‖2L2(μ)

= L( f ∗
n ) − L(h)

= [
L( f ∗

n ) − Ln( f
∗
n )
]+ [

Ln( f
∗
n ) − Ln( f )

]+ [Ln( f ) − L( f )] + [L( f ) − L(h)]

≤ [
L( f ∗

n ) − Ln( f
∗
n )
]+ [Ln( f ) − L( f )] + ‖ f − h‖2L2(μ)

.

Using EDn [Ln( f )] = L( f ) and taking the infimum over f ∈ Fn , we get

EDn‖ f ∗
n − h‖2L2(μ)

≤ inf
f ∈Fn

‖ f − h‖2L2(μ)
+ EDn

[
L( f ∗

n ) − Ln( f
∗
n )
]
. (4.5)

Let us denote the collections of sample points and noises by X1:n = (X1, . . . , Xn)
and η1:n = (η1, . . . , ηn). We can bound the generalization error as follows

EDn

[L( f ∗
n ) − Ln( f

∗
n )
]

= EDn

[
‖ f ∗

n − h‖2L2(μ)
+ V 2 −

(
1

n

n∑

i=1

( f ∗
n (Xi ) − h(Xi ))

2 − 2ηi ( f
∗
n (Xi ) − h(Xi )) + η2i

)]

= EDn

[
‖ f ∗

n − h‖2L2(μ)
− 1

n

n∑

i=1

( f ∗
n (Xi ) − h(Xi ))

2

]
+ 2EDn

[
1

n

n∑

i=1

ηi ( f
∗
n (Xi ) − h(Xi ))

]

≤ EX1:n

[
sup

φ∈�n

(
EX [φ2(X)] − 1

n

n∑

i=1

φ2(Xi )

)]
+ 2EX1:nEη1:n

[
sup

φ∈�n

1

n

n∑

i=1

ηiφ(Xi )

]
,

(4.6)

where we denote �n := { f − h : f ∈ Fn}. By a standard symmetrization argument
(see [60, Theorem 4.10]), we can bound the first term in (4.6) by the Rademacher
complexity:
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EX1:n

[
sup

φ∈�n

(
EX [φ2(X)] − 1

n

n∑

i=1

φ2(Xi )

)]
≤ 2EX1:n

[
Rn(�

2
n(X1:n))

]
,

where �2
n(X1:n) := {(φ2(X1), . . . , φ

2(Xn)) ∈ R
n : φ ∈ �n} ⊆ R

n is the set of
function values on the sample points. Recall that we assume Bn ≥ 1 in case (1) and
Bn ≥ √

2 in case (2). Hence, we always have ‖h‖L∞(Bd ) ≤ √
2 and ‖φ‖L∞(Bd ) ≤ 2Bn

for any φ ∈ �n . By the structural properties of Rademacher complexity [7, Theorem
12],

EX1:n
[
Rn(�

2
n(X1:n))

]
≤ 8BnEX1:n [Rn(�n(X1:n))]

≤ 8Bn

(
EX1:n [Rn(Fn(X1:n))] + ‖h‖L∞(Bd )√

n

)

� Mn log n√
n

,

where we apply Lemma 4.6 in the last inequality. Note that the second term in (4.6)
is a Gaussian complexity. We can also bound it by the Rademacher complexity [7,
Lemma 4]:

EX1:nEη1:n

[
sup

φ∈�n

1

n

n∑

i=1

ηiφ(Xi )

]
� EX1:n [Rn(�n(X1:n))] log n � Mn log n√

n
.

In summary, we conclude that

EDn

[
L( f ∗

n ) − Ln( f
∗
n )
]

� Mn log n√
n

. (4.7)

IfH = Hα with α < (d + 3)/2, by Corollary 4.5, we have

sup
h∈Hα

inf
f ∈Fn

‖h − f ‖L∞(Bd ) � W
− α

d
n ∨ M

− 2α
d+3−2α

n .

Combining with (4.5) and (4.7), we know that if we choose Mn 
 n
1
2− 2α

d+3+2α and

Wn � n
d

d+3+2α , then

EDn‖ f ∗
n − h‖2L2(μ)

� W
− 2α

d
n ∨ M

− 4α
d+3−2α

n + Mn log n√
n

� n− 2α
d+3+2α log n.

Similarly, if H = Fσ (1), by Corollary 4.5, then there exist a constant M ≥ 1 such
that, if Mn = M ,

EDn‖ f ∗
n − h‖2L2(μ)

� W
− d+3

d
n + M log n√

n
.
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Thus, for any Wn � nd/(2d+6), we get EDn‖ f ∗
n − h‖2

L2(μ)
� n−1/2 log n, ��

4.3 Convolutional Neural Networks

In contrast to the vast amount of theoretical studies on fully connected neural net-
works, there are only a few papers analyzing the performance of convolutional neural
networks [16, 20, 30, 35, 47, 66–68]. The recent work [30] showed the universal con-
sistency of CNNs for nonparametric regression. In this section, we show how to use
our approximation results to analyze the convergence rates of CNNs.

Following [67], we introduce a sparse convolutional structure on deep neural net-
works. Let s ≥ 2 be a fixed integer, which is used to control the filter length. Given a
sequence w = (wi )i∈Z on Z supported on {0, 1, . . . , s}, the convolution of the filter
w with another sequence x = (xi )i∈Z supported on {1, . . . , d} is a sequence w ∗ x
given by

(w ∗ x)i :=
∑

j∈Z
wi− j x j =

d∑

j=1

wi− j x j , i ∈ Z.

Regarding x as a vector of Rd , this convolution induces a (d + s) × d Toeplitz type
convolutional matrix

Aw := (wi− j )1≤i≤d+s,1≤ j≤d .

Note that the number of rows of Aw is s greater than the number of columns. This
leads us to consider deep neural networks of the form (4.4) with linearly increasing
widths {N� = d + �s}L�=0. We denote by CNN (s, L) the set of functions that can be

parameterized in the form (4.4) such that A(�) = Aw(�)
for some filter w(�) supported

on {0, 1, . . . , s}, 0 ≤ � ≤ L − 1, and the biases b(�) take the special form

b(�) =
(
b(�)
1 , . . . , b(�)

s , b(�)
s+1, . . . , b

(�)
s+1, b

(�)
N�−s+1, . . . , b

(�)
N�

)ᵀ
, 0 ≤ � ≤ L − 2,

(4.8)
with N� − 2s repeated components in the middle. By definition, it is easy to see that
CNN (s, L) ⊆ NN (d + Ls, L). The assumption on the special form (4.8) of biases
is used to reduce the free parameters in the network. As in [67], one can compute that
the number of free parameters in CNN (s, L) is (5s + 2)L + 2d − 2s, which grows
linearly on L .

The next proposition shows that all functions in NN (N , 1) can be implemented
by CNNs.

Proposition 4.8 [67] If N , L ∈ N satisfy L ≥ � Nd
s−1 + 1�, then NN (N , 1) ⊆

CNN (s, L).

Proof This result is proven in [67, Proof of Theorem 2]. We only give a sketch of
the construction for completeness. Any function f ∈ NN (N , 1) can be written as
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f (x) = ∑N
i=1 ciσ(aᵀ

i x + bi ) + c0, where ai ∈ R
d and bi , ci ∈ R. Define a sequence

v supported on {0, . . . , Nd−1} by stacking the vectors a1, . . . , aN (with components
reversed) by

(vNd−1, . . . , v0) = (aᵀ
N , . . . , aᵀ

1 ).

Applying [67, Theorem 3] to the sequence v, we can construct filters {w(�)}L−1
�=0 sup-

ported on {0, 1, . . . , s} such that v = w(L−1) ∗ w(L−2) ∗ · · · ∗ w(0), which implies
Aw(L−1) · · · Aw(0) = Av ∈ R

(d+Ls)×d . Note that, by definition, for i = 1, . . . , N ,
the id-th row of Av is exactly aᵀ

i . Then, for � = 0, . . . , L − 2, we can choose b(�)

satisfying (4.8) such that f (�+1)(x) = Aw(�) · · · Aw(0)
x + B(�), where B(�) > 0 is

a sufficiently large constant that makes the components of f (�+1)(x) positive for all
x ∈ B

d . Finally, we can construct b(L−1) such that f (L)
k (x) = σ(aᵀ

i x + bi ) for
i = 1, . . . , N and k = id, which implies f ∈ CNN (s, L). ��

Note that Proposition 4.8 shows each shallow neural network can be represent
by a CNN, with the same order of number of parameters. As a corollary, we obtain
approximation rates for CNNs.

Corollary 4.9 Let s ≥ 2 be an integer.

1. For Hα with 0 < α < (d + 3)/2, we have

sup
h∈Hα

inf
f ∈CNN (s,L)

‖h − f ‖L∞(Bd ) � L− α
d .

2. For Fσ (1), we have

sup
h∈Fσ (1)

inf
f ∈CNN (s,L)

‖h − f ‖L∞(Bd ) � L− 1
2− 3

2d .

Proof For any N ∈ N, we take L = � Nd
s−1 +1� 
 N , thenFσ (N , M) ⊆ NN (N , 1) ⊆

CNN (s, L) for any M > 0, by Proposition 4.8. (1) follows from Corollary 2.4 and
(2) is from Lemma 2.3. ��

Since the number of parameters in CNN (s, L) is approximately L , the rate
O(L−α/d) in part (1) of Corollary 4.9 is the same as the rate in [64] for fully con-
nected neural networks. However, [31, 65] showed that this rate can be improved to
O(L−2α/d) for fully connected neural networks by using the bit extraction technique
[6]. It would be interesting to see whether this rate also holds for CNN (s, L).

As in Theorem 4.2, we use Lemma 4.1 to decompose the error and bound the
approximation error by Corollary 4.9. The covering number is bounded again by
pseudo-dimension.

Theorem 4.10 Let f ∗
n be the estimator (4.2) with Fn = CNN (s, Ln), where s ≥ 2 is

a fixed integer, and set Bn = c1 log n for some constant c1 > 0.
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1. IfH = Hα with α < (d + 3)/2, we choose

Ln 
 n
d

2d+2α ,

then

EDn‖TBn f
∗
n − h‖2L2(μ)

� n− α
d+α (log n)4.

2. IfH = Fσ (1), we choose

Ln 
 n
d

3d+3 ,

then

EDn‖TBn f
∗
n − h‖2L2(μ)

� n− d+3
3d+3 (log n)4.

Proof The proof is the same as Theorem 4.2 and [68]. We can use (4.3) to bound the
covering number by the pseudo-dimension. For convolutional neural networks, [6]
gave the following estimate of the pseudo-dimension:

Pdim (TBnFn) � Ln p(s, Ln) log(q(s, Ln)) � L2
n log Ln,

where p(s, Ln) = (5 s + 2)Ln + 2d − 2 s � Ln and q(s, Ln) ≤ Ln(d + sLn) � L2
n

are the numbers of parameters and neurons of the network CNN (s, Ln), respectively.
Therefore,

logN (ε, TBnFn, ‖ · ‖L1(X1:n)) � L2
n log(Ln) log(Bn/ε).

Applying Lemma 4.1 and Corollary 4.9, ifH = Hα with α < (d + 3)/2, then

EDn‖TBn f
∗
n − h‖2L2(μ)

� L2
n log(Ln)(log n)3

n
+ L

− 2α
d

n .

We choose Ln 
 nd/(2d+2α), then EDn‖TBn f
∗
n − h‖2

L2(μ)
� n−α/(d+α)(log n)4. Sim-

ilarly, if H = Fσ (1), then

EDn‖TBn f
∗
n − h‖2L2(μ)

� L2
n log(Ln)(log n)3

n
+ L

− d+3
d

n .

We choose Ln 
 nd/(3d+3), then EDn‖TBn f
∗
n − h‖2

L2(μ)
� n−(d+3)/(3d+3)(log n)4. ��

Finally, we note that the recent paper [68] also studied the convergence of CNNs
and proved the rate O(n−1/3(log n)2) for Hα with α > (d + 4)/2. The convergence
rate we obtained in Theorem 4.10 for Fσ (1), which includesHα with α > (d + 3)/2
by Theorem 2.1, is slightly better than their rate.
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5 Conclusion

This paper has established approximation bounds for shallowReLUk neural networks.
We showed how to use these bounds to derive approximation rates for (deep or shallow)
neural networkswith constraints on theweights and convolutional neural networks.We
also applied the approximation results to study the convergence rates of nonparametric
regression usingneural networks. In particular,we established the optimal convergence
rates for shallow neural networks and showed that over-parameterized neural networks
can achieve nearly optimal rates.

There are a few interesting questions we would like to propose for future research.
First, for approximation by shallow neural networks, we establish the optimal rate
in the supremum norm by using the results of [55] (Lemma 2.3). The paper [55]
actually showed that approximation bounds similar to Lemma 2.3 also hold in Sobolev
norms. We think it is a promising direction to extend our approximation results in the
supremum norm (Theorem 2.1 and Corollary 2.4) to the Sobolev norms. Second, it is
unclear whether over-parameterized neural networks can achieve the optimal rate for
learning functions inHα . It seems that refined generalization error analysis is needed.
Finally, it would be interesting to extend the theory developed in this paper to general
activation functions and study how the results are affected by the activation functions.
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26. Kohler, M., Krzyżak, A.: Adaptive regression estimation with multilayer feedforward neural networks.

J. Nonparametr. Stat. 17(8), 891–913 (2005)
27. Kohler, M., Langer, S.: On the rate of convergence of fully connected deep neural network regression

estimates. Ann. Stat. 49(4), 2231–2249 (2021)
28. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–444 (2015)
29. Ledoux,M., Talagrand,M.: Probability inBanach Spaces: Isoperimetry and Processes. Springer, Berlin

(1991)
30. Lin, S.-B., Wang, K., Wang, Y., Zhou, D.-X.: Universal consistency of deep convolutional neural

networks. IEEE Trans. Inf. Theory 68(7), 4610–4617 (2022)
31. Lu, J., Shen, Z., Yang, H., Zhang, S.: Deep network approximation for smooth functions. SIAM J.

Math. Anal. 53(5), 5465–5506 (2021)
32. Ma, L., Siegel, J.W., Jinchao, X.: Uniform approximation rates and metric entropy of shallow neural

networks. Res. Math. Sci. 9(3), 46 (2022)
33. Maiorov, V., Ratsaby, J.: On the degree of approximation by manifolds of finite pseudo-dimension.

Constr. Approx. 15(2), 291–300 (1999)
34. Makovoz, Y.: Random approximants and neural networks. J. Approx. Theory 85(1), 98–109 (1996)

123



Constructive Approximation

35. Mao, T., Shi, Z., Zhou, D.-X.: Approximating functions with multi-features by deep convolutional
neural networks. Anal. Appl. 21(01), 93–125 (2023)

36. Mao, T., Zhou, D.-X.: Rates of approximation by ReLU shallow neural networks. J. Complex. 79,
101784 (2023)

37. Matoušek, J.: Improved upper bounds for approximation by zonotopes. Acta Math. 177(1), 55–73
(1996)

38. McCaffrey, D.F., Ronald, G.A.: Convergence rates for single hidden layer feedforward networks.
Neural Netw. 7(1), 147–158 (1994)

39. Mhaskar, H.N.: Neural networks for optimal approximation of smooth and analytic functions. Neural
Comput. 8(1), 164–177 (1996)

40. Mohri,M., Rostamizadeh,A., Talwalkar, A.: Foundations ofMachine Learning.MITPress, Cambridge
(2018)

41. Nakada, R., Imaizumi, M.: Adaptive approximation and generalization of deep neural network with
intrinsic dimensionality. J. Mach. Learn. Res. 21(174), 1–38 (2020)

42. Neyshabur,B., Bhojanapalli, S., Srebro,N.:APAC-Bayesian approach to spectrally-normalizedmargin
bounds for neural networks. In: 6th International Conference on Learning Representations (2018)

43. Neyshabur, B., Tomioka, R., Srebro, N.: Norm-based capacity control in neural networks. In: Proceed-
ings of the 28th Conference on Learning Theory, vol. 40, pp. 1376–1401. PMLR (2015)

44. Ongie, G., Willett, R., Soudry, D., Srebro, N.: a function space view of bounded norm infinite width
ReLU nets: the multivariate case. In: 8th International Conference on Learning Representations (2020)

45. Parhi, R., Nowak, R.D.: What kinds of functions do deep neural networks learn? insights from varia-
tional spline theory. SIAM J. Math. Data Sci. 4(2), 464–489 (2022)

46. Parhi, R., Nowak, R.D.: Near-minimax optimal estimation with shallow ReLU neural networks. IEEE
Trans. Inf. Theory 69(2), 1125–1140 (2023)

47. Petersen, P., Voigtlaender, F.: Equivalence of approximation by convolutional neural networks and
fully-connected networks. Proc. Am. Math. Soc. 148(4), 1567–1581 (2020)

48. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numer. 8, 143–195
(1999)

49. Pisier, G.: Remarques sur un résultat non publié de B. Maurey. Séminaire d’Analyse fonctionnelle
(dit“ Maurey-Schwartz”) pp. 1–12 (1981)

50. Rustamov, K.P.: On equivalence of different moduli of smoothness on the sphere. Trudy Matematich-
eskogo Instituta im V. A. Steklova 204, 274–304 (1993)

51. Savarese, P., Evron, I., Soudry, D., Srebro, N.: How do infinite width bounded norm networks look in
function space? In: Proceedings of the 32nd Conference on Learning Theory, vol. 99, pp. 2667–2690.
PMLR (2019)

52. Schmidt-Hieber, J.: Nonparametric regression using deep neural networks with ReLU activation func-
tion. Ann. Stat. 48(4), 1875–1897 (2020)

53. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, Cambridge (2014)

54. Shen, Z., Yang, H., Zhang, S.: Deep network approximation characterized by number of neurons.
Commun. Comput. Phys. 28(5), 1768–1811 (2020)

55. Siegel, J.W.:Optimal approximation of zonoids and uniform approximation by shallowneural networks
(2023). arXiv:2307.15285

56. Siegel, J.W., Jinchao, X.: Approximation rates for neural networks with general activation functions.
Neural Netw. 128, 313–321 (2020)

57. Siegel, J.W., Xu, J.: Sharp bounds on the approximation rates, metric entropy, and n-widths of shallow
neural networks. Found. Comput. Math. (2022). https://doi.org/10.1007/s10208-022-09595-3

58. Siegel, J.W.: Characterization of the variation spaces corresponding to shallow neural networks. Con-
struct. Approx. 57, 1109–1132 (2023)

59. Stone, C.J.: Optimal global rates of convergence for nonparametric regression. Ann. Stat. 10(4), 1040–
1053 (1982)

60. Wainwright, M.J.: High-Dimensional Statistics: A Non-asymptotic Viewpoint, vol. 48. Cambridge
University Press, Cambridge (2019)

61. Yang, Y., Barron, A.: Information-theoretic determination of minimax rates of convergence. Ann. Stat.
27(5), 1564–1599 (1999)

62. Yang, Y.: Learning distributions by generative adversarial networks: approximation and generalization.
PhD thesis, The Hong Kong University of Science and Technology (2022)

123

http://arxiv.org/abs/2307.15285
https://doi.org/10.1007/s10208-022-09595-3


Constructive Approximation

63. Yang, Y., Li, Z., Wang, Y.: Approximation in shift-invariant spaces with deep ReLU neural networks.
Neural Netw. 153, 269–281 (2022)

64. Yarotsky, D.: Error bounds for approximations with deep ReLU networks. Neural Netw. 94, 103–114
(2017)

65. Yarotsky, D.: Optimal approximation of continuous functions by very deep ReLU networks. In: Pro-
ceedings of the 31st Conference on Learning Theory, vol. 75, pp. 639–649. PMLR (2018)

66. Zhou, D.-X.: Theory of deep convolutional neural networks: downsampling. Neural Netw. 124, 319–
327 (2020)

67. Zhou, D.-X.: Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 48(2),
787–794 (2020)

68. Zhou, T.-Y., Huo, X.: Learning ability of interpolating deep convolutional neural networks. Appl.
Comput. Harmon. Anal. 68, 101582 (2024)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Optimal Rates of Approximation by Shallow ReLUk Neural Networks and Applications to Nonparametric Regression
	Abstract
	1 Introduction
	2 Approximation Rates for Shallow Neural Networks
	3 Proof of Theorem 2.1
	4 Nonparametric Regression
	4.1 Shallow Neural Networks
	4.2 Deep Neural Networks and Over-Parameterization
	4.3 Convolutional Neural Networks

	5 Conclusion
	Acknowledgements
	References


