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Abstract
By the work of P. Lévy, the sample paths of the Brownian motion are known to
satisfy a certain Hölder regularity condition almost surely. This was later improved
by Ciesielski, who studied the regularity of these paths in Besov and Besov-Orlicz
spaces.We review these results and propose new function spaces of Besov type, strictly
smaller than those of Ciesielski and Lévy, in which the sample paths of the Brownian
motion almost surely lie. In the same spirit, we review and extend the work of Kamont,
who investigated the same question for the multivariate Brownian sheet and function
spaces of dominating mixed smoothness.
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1 Introduction

Already in 1937, Paul Lévy showed [36, Section 52], that the sample paths of the
Wiener process W = (Wt )t≥0 satisfy almost surely the Hölder condition

|Wt ′ − Wt | ≤ c ·
√
2|t ′ − t | log

(
1

|t ′ − t |
)

(1)

for every c > 1 and |t ′ − t | small enough. In general, one can define for a positive
function g on [0, 1] the Hölder space Cg([0, 1]) as the collection of all functions f on
[0, 1] such that

| f (s) − f (t)| ≤ c g(|s − t |) for all 0 ≤ s, t ≤ 1.

Then the result of Lévy shows that the paths of W almost surely lie in the Hölder
space Cg([0, 1]) with g(r) = |r log r |1/2 for r > 0 small. Furthermore, this result is
known to be optimal and this space is the smallest one in the scale of Hölder spaces,
in which the paths of W almost surely lie in [11, 37]. This shows, in particular, that
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the log-factor in (1) is necessary and that the smoothness regularity 1/2, which is
C1/2([0, 1]), i.e., the space above with g(r) = |r |1/2, cannot be achieved in the scale
of Hölder spaces.

Later on, Ciesielski proved in [8], that one can actually obtain smoothness of the
order 1/2 if one gives up slightly on the integrability. Namely, [8] shows that the
paths of W lie almost surely in the Besov space B1/2

p,∞([0, 1]) for 1 ≤ p < ∞.

The excluded endpoint space is again B1/2∞,∞([0, 1]) = C1/2([0, 1]). Shortly after,
Ciesielski and his co-authors [9, 10] refined the analysis of [8] and discovered, that
almost all paths of W lie in the Besov-Orlicz space B1/2

�2,∞([0, 1]), which combines
the technique of Besov spaces together with the Orlicz space generated by the Orlicz
function �2(t) = exp(t2) − 1. This space is (properly) included both in the Hölder
space Cg([0, 1]) discovered by Lévy as well as in the Besov spaces B1/2

p,∞([0, 1]) for
1 ≤ p < ∞. As such, B1/2

�2,∞([0, 1]) represents currently the smallest space in which
the sample paths of the Wiener process are almost surely known to lie. On the other
hand, its definition is certainly more involved than the Hölder condition of Lévy (1).

The results on the regularity of sample Wiener paths were later complemented,
generalized, and applied in several different ways. The optimality of the result of
Ciesielski in the scale of Besov spaces was studied in [47] and [3], where the latter
reference studies the topic in the frame of modulation spaces and Wiener amalgam
spaces. Path regularity of more general processes was investigated in [21, 50, 51] and
we refer to [62] for results on the torus. The approach was also generalized to Wiener
processes with values in Banach spaces in [23], and applied to regularity properties
of stochastic differential equations [43, 44].

Let us also mention that many other properties of sample paths of the Wiener pro-
cess, Brownian sheet, and other random processes were studied extensively. They
include different dimensions of the graph set, small ball probabilities, hitting proba-
bilities or the law of iterated logarithm. We refer in this context to [30, 31, 40, 61, 66,
67] and the references given therein.

The first aim of our work is to present an essentially self-contained proof of the
results of Lévy and Ciesielski, which should be easily accessible to readers familiar
with the theory of function spaces. Thiswill be done byfirst deriving the decomposition
of sampleWiener paths into a series of Faber splines with independent standard Gaus-
sian random coefficients. Afterwards, the proof that almost all paths of the Wiener
process lie in a Hölder space of Lévy or in the Besov or Besov-Orlicz spaces of
Ciesielski, reduces to rather straightforward concentration inequalities for indepen-
dent Gaussian variables. For this purpose we collect basic facts on Gaussian variables
(and some other related random variables), that are needed throughout the manuscript,
in Sect. 4.

Let us briefly summarize the main steps of this approach. It is essentially based on
two very well-known properties of the Faber system. This is a system of shifted and
dilated hat functions v j,m , cf. (3), where j ∈ N0 and 0 ≤ m ≤ 2 j − 1, which are
concentrated on the dyadic intervals I j,m = [m · 2− j , (m + 1)2− j ]. The first property
of this system is described in detail in Theorem 3. It states, that if {ξ j,m : j ∈ N0, 0 ≤
m ≤ 2 j − 1} are independent standard Gaussian variables, then the series
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∞∑
j=0

2 j −1∑
m=0

2−( j+2)/2ξ j,mv j,m(t) for t ∈ [0, 1]

converges almost surely uniformly on [0, 1] and its limit coincides with the Wiener
process W = (Wt )t≥0.

The second key property of the Faber system is that it can be used to describe several
classical function spaces of Besov-type. To bemore precise, a function f representable
(in some sense) by the series

f =
∞∑
j=0

2 j −1∑
m=0

μ j,m2
− jsv j,m

belongs to such a Besov-type space if, and only if, the sequence of coefficients
{μ j,m} j,m satisfies some summability and/or integrability condition. Naturally, these
conditions differ from one space to another, but usually they can be rewritten in the
language of the step functions

f j =
2 j −1∑
m=0

μ j,mχ j,m, (2)

where χ j,m is the characteristic function of I j,m . For example, the proof that Wiener

paths almost surely lie in the Besov-Orlicz space B1/2
�2,∞([0, 1]), reduces by this tech-

nique to the statement, that ‖ f j‖�2 is finite and uniformly bounded over j ∈ N0 if
we replace the μ j,m’s in (2) by independent standard Gaussian variables ξ j,m . We use
this approach to re-prove the results of Lévy and Ciesielski and, in the named case
of the Besov-Orlicz space B1/2

�2,∞([0, 1]), we provide an alternative proof, based on a
characterization of the Orlicz space L�2([0, 1]) in terms of non-increasing rearrange-
ments.

The second aim of this paper is to show that this procedure can be stepped up
and that (based on some knowledge about Gaussian variables) one can produce even
smaller function spaces, which still contain the sample Wiener paths almost surely.
The price to pay in this context is that the new spaces do not fall into any standard
scale of function spaces. Let us again briefly sketch the main idea and the main results.
First, we observe that if we use independent Gaussian variables as the coefficients in
(2), then the Orlicz space L�2([0, 1]) measures very effectively the size of the f j ’s
among the function spaces invariant with respect to the rearrangement of a function.
But it does not take any effort to describe the position of large values of f j . Indeed,
if ξ j = (ξ j,0, . . . , ξ j,2 j −1) are independent Gaussian variables, then the maximum of
|ξ j,m | over m is known to behave asymptotically like

√
j with high probability. But

these large values are unlikely to appear close to each other in ξ j . Therefore, we expect
that the averages of randomly constructed f j would be of much smaller size than the
f j ’s themselves. This is indeed the case, as is shown in Theorem 11, where we prove
that ‖Ak f j‖�2 behaves (up to a polynomial factor) as 2(k− j)/2 for 0 ≤ k ≤ j . Here,

123



Constructive Approximation (2024) 59:485–539 489

Ak g is the average of a function g over the dyadic intervals Ik,l , cf. (32). In Theorem 13
and Theorem 15 we provide three more function spaces of this kind, including certain
function spaces based on some sort of ball means of differences.

We study also the generalization of the previous approach to themultivariate setting.
The high-dimensional analogue of the Wiener process is known as the Brownian
sheet, cf. Definition 16. For the sake of brevity, we restrict ourselves to d = 2 and
the Brownian sheet defined on the unit square [0, 1]2 of R2, but higher dimensions
could be treated in the same way with only minor modifications. The known results
in this area go essentially back to the work of Anna Kamont [27, 28] (whose Ph.D.
supervisor was Zbigniew Ciesielski). Note however that in general, certain properties
of Brownian sheets, especially at the end-points of the function space scales (p ≤ 1
or p = ∞), become much more complicated for dimensions d ≥ 3 than for d = 2
(e.g., small deviation/small ball probabilities, cf. [4] and [5]).

Similarly to the one-dimensional case, one first obtains a decomposition of the
paths of the Brownian sheet in a suitable basis, the so-called multivariate Faber
system. This is nothing else than the tensor products of the hat functions of the
one-dimensional Faber system. The coefficients in this decomposition are again inde-
pendent standard Gaussian variables. The corresponding function spaces, the spaces
of dominating mixed smoothness, are very well-known in the field of approximation
theory of functions of several variables. Unfortunately, in [27] Kamont called these
spaces anisotropic Hölder classes, which might explain why her work went essen-
tially unnoticed by the community of researchers investigating function spaces of
dominating mixed smoothness.

Also in this part we re-prove the known results in a way which we hope will
be easily accessible for readers with a background in the theory of function spaces.
Again, we employ a number of different scales of function spaces to describe the path
regularity of the Brownian sheet. These include Besov and Besov-Orlicz spaces of
dominating mixed smoothness, as well as Besov spaces of logarithmic dominating
mixed smoothness (which surprisingly differ from those introduced by Triebel [58]).
Finally, we also propose new function spaces, which are strictly smaller than the best
known spaces so far, in which the paths of the Brownian sheet almost surely belong
to.

The structure of the paper is as follows. Section2 treats the univariate Wiener
process.We first present Lévy’s decomposition of its paths into the Faber system (The-
orem 3). Then (in Sect. 2.2) we review the necessary notation from the area of function
spaces. In Sect. 2.3 we merge these two subjects and re-prove the results of Lévy and
Ciesielski, giving an alternative proof for the Besov-Orlicz space B1/2

�2,∞([0, 1]) in
Sect. 2.4. The new function spaces, where the paths of theWiener process lie in almost
surely, are then investigated in Sect. 2.5. Section3 studies the regularity of Brownian
sheets and follows essentially the same pattern. After reviewing the necessary tools in
the multivariate setting (Lévy’s decomposition, multivariate Faber systems, function
spaces of dominating mixed smoothness) we re-prove the results of [27] and sketch
the new function spaces, in which one can find almost all paths of the Brownian sheet.
Finally, to make the exposition self-contained, Sect. 4 collects basic properties of ran-
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dom variables (including Gaussian variables, their absolute values and the integrated
absolute Wiener process). We also collect some facts about Orlicz spaces.

2 Regularity of Brownian Paths

In this section we discuss the regularity of the sample paths of the classical Wiener
process. Our approach is based on the decomposition, which can be traced back to
Lévy [36]. Essentially, it gives a decomposition of the Wiener paths into the Faber
system of shifted and dilated hat functions, with the coefficients given by independent
Gaussian variables. This, together with characterizations of various function spaces
in terms of the Faber system, will allow us to re-prove the classical results of Lévy
and Ciesielski, as well as to define new function spaces, where the sample paths of
the Wiener process almost surely belong to.

In our work (as it is common in the literature) the notions of Wiener process and
Brownian motion are used as synonyms, which both refer to the following definition.

Definition 1 A real-valued random process W = (Wt )t≥0 is called a Wiener process
(or a Brownian motion) if it satisfies

(1) W0 = 0;
(2) W has almost surely continuous paths, i.e., Wt is almost surely continuous in t ;
(3) W has independent increments, i.e., if 0 ≤ t0 < t1 < · · · < tn , then Wtn −

Wtn−1 , Wtn−1 − Wtn−2 , . . . , Wt1 − Wt0 are independent random variables;
(4) W has Gaussian increments, i.e., Wt − Ws ∼ N (0, t − s) for 0 ≤ s ≤ t .

Let the random variables (Wt )t≥0 be defined on the common probability space
(�,F ,P). Then, for every ω ∈ � fixed, we call the mapping t → Wt (ω) a Brownian
path (or a Wiener path).

2.1 Lévy’s Decomposition of Brownian Paths

We now present Lévy’s representation of Brownian motion, which is essentially a
dyadic decomposition of the paths of Brownianmotion into a series of piecewise linear
functions with random coefficients. Although much of this idea applies to general
continuous functions on any closed interval, we restrict ourselves to (Wt )t∈I , where
I = [0, 1].

For every j ∈ N0 we construct a (random) continuous function W j (t), which is
piecewise linear on all dyadic intervals

I j,m =
[

m

2 j
,

m + 1

2 j

]
, m ∈ {0, . . . , 2 j − 1}

and which coincides with a given path Wt at their endpoints

t j,m = m

2 j
, m ∈ {0, . . . , 2 j }.
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Fig. 1 Hat function v j,m

For j = 0, we put W0(t) = W1 · t and observe that W0(0) = W0 = 0 and
W0(1) = W1, i.e., W0(t) coincides with Wt for t = t0,0 = 0 and t = t0,1 = 1.

For j = 1, we are looking for a continuous function W1(t), which would coincide
with Wt not only in t1,0 = t0,0 = 0 and t1,2 = t0,1 = 1, but also in t1,1 = 1/2. For this
sake, we add to W0(t) a suitablemultiple of a continuous function v(t), which vanishes
at t = 0 and t = 1 and is linear on I1,0 = [0, 1/2] as well as on I1,1 = [1/2, 1].
Therefore, v(t) is the usual hat function supported in I , i.e.,

v(t) =

⎧⎪⎨
⎪⎩
2t if 0 ≤ t < 1

2 ,

2(1 − t) if 1
2 ≤ t < 1,

0 otherwise

and we put

W1(t) = W0(t) + (W1/2 − W0(1/2))v(t), t ∈ [0, 1].

We proceed further inductively. Let j ∈ N be fixed and let us assume that
W0(t), . . . , W j (t) were already constructed. Then Wt − W j (t) vanishes at t j,m

for all m ∈ {0, 1, . . . , 2 j }. For m ∈ {0, 1, . . . , 2 j − 1}, we define W j+1(t) for
t ∈ I j,m by adding to W j (t) a continuous piecewise linear function with support
in I j,m to ensure that W j+1(t) = Wt also in the middle point of I j,m , i.e., in
t j+1,2m+1 = 2m+1

2 j+1 = m
2 j + 1

2 j+1 . Hence, we need to add to W j (t) a multiple of

the hat function v j,m(t) = v(2 j (t − t j,m)) with support in I j,m (see Fig. 1)

v j,m(t) =

⎧⎪⎨
⎪⎩
2 j+1(t − 2− j m) if 2− j m ≤ t < 2− j m + 2− j−1,

2 j+1(2− j (m + 1) − t) if 2− j m + 2− j−1 ≤ t < 2− j (m + 1),

0 otherwise.

(3)

We repeat this procedure for every m ∈ {0, 1, . . . , 2 j − 1} and obtain (Fig. 2)

W j+1(t) := W j (t) +
2 j −1∑
m=0

{
Wt j+1,2m+1 − W j (t j+1,2m+1)

}
v j,m(t), t ∈ [0, 1]. (4)
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Fig. 2 Piecewise linear functions W j (t) approximating Wt

The main disadvantage of (4) is that the coefficients in the sum over m involve both
the values of the Wiener path Wt as well as the values of its approximation W j (t).
Therefore, we rewrite it in such a form, that only the values of Wt at dyadic points get
used.

By its construction, W j (t) is linear on every I j,m and coincides with Wt at its
endpoints and, therefore, we may also write it as

W j (t) = W m
2 j

+
(

t − m

2 j

)
· 2 j ·

[
W m+1

2 j
− W m

2 j

]
, t ∈ I j,m .

This allows us to rewrite the coefficients of (4) as

Wt j+1,2m+1 − W j (t j+1,2m+1) = W 2m+1
2 j+1

− W j

(2m + 1

2 j+1

)
= W 2m+1

2 j+1
−

(
W m

2 j
+ 1

2 j+1 · 2 j ·
[
W m+1

2 j
− W m

2 j

])
= −1

2

(
W 2m+2

2 j+1
− 2W 2m+1

2 j+1
+ W 2m

2 j+1

)
= −1

2
(�2

2− j−1W )
( 2m

2 j+1

)
,

where

(�2
h f )(x) = f (x + 2h) − 2 f (x + h) + f (x) =

(
f (x + 2h) − f (x + h)

)
−
(

f (x + h) − f (x)
)
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are the second order differences of a function f . Together with (4) this leads to

W j+1(t) := W j (t) − 1

2

2 j −1∑
m=0

(�2
2− j−1W )

( 2m

2 j+1

)
v j,m(t), t ∈ [0, 1]. (5)

The reader may notice that all what we did so far, including (5), applies to general
continuous functions on I . We summarize this in the following theorem (and refer to
[58, Theorem 2.1] for a detailed proof and to [16, 18] for historic sources).

Theorem 2 Let f ∈ C(I ). Then

f (t) = f (0) · (1 − t) + f (1) · t − 1

2

∞∑
j=0

2 j −1∑
m=0

(�2
2− j−1 f )(2− j m)v j,m(t) (6)

for every 0 ≤ t ≤ 1 and the series converges uniformly on I .

To transform (5) into a series representation of Wt , we note that the variables
W 2m+2

2 j+1
− W 2m+1

2 j+1
and W 2m+1

2 j+1
− W 2m

2 j+1
are independent and have by Definition 1 the

distribution N (0, 2−( j+1)). Hence, by the 2-stability of the normal distribution, cf.

Lemma 26, Wt j+1,2m+1 − W j (t j+1,2m+1) = − 1
2 (�

2
2− j−1W )

(
2m
2 j+1

)
is normally dis-

tributed with mean zero and variance 2−( j+2).
We can therefore rewrite (5) as

W j+1(t) = W j (t) +
2 j −1∑
m=0

2−( j+2)/2ξ j,mv j,m(t), t ∈ [0, 1],

where ξ j,m are standard normal variables. An explicit formula for Wt can then be
obtained by noting that the series

∞∑
j=0

(
W j+1(t) − W j (t)

)
(7)

converges almost surely uniformly to

Wt − W0(t) = Wt − W1 · t with W1 = ξ−1 ∼ N (0, 1).

This follows by the tail bound for normal variables, cf. Lemma 27, and a straightfor-
ward union bound, which give for every real A > 1 that

P

(
∃ j ∈ N0 : ‖W j+1 − W j‖∞ > A · 2− j/4

)
≤

∞∑
j=0

2 j −1∑
m=0

P(|ξ j,m | > 2A · 2 j/4)

≤
∞∑
j=0

2 j exp(−2A2 · 2 j/2).
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If A goes to infinity, the last sum tends to zero and, therefore, the probability that
‖W j+1 − W j‖∞ ≤ A · 2− j/4 for all j ∈ N0 grows to one. This ensures that (7)
converges uniformly almost surely.

This yields that we have almost surely

Wt = ξ−1 · t +
∞∑
j=0

2 j −1∑
m=0

2−( j+2)/2ξ j,mv j,m(t), t ∈ [0, 1]. (8)

As the last step, we need to complement (8) by the crucial observation that the
random variables {ξ−1} ∪ {ξ j,m, j ∈ N0, 0 ≤ m ≤ 2 j − 1} are independent. For that
sake, let ξ j1,m1 , . . . , ξ jN ,m N be fixed and let us put

J = max( j1, . . . , jN ).

We collect the independent Gaussian variables

W l = W l+1
2J+1

− W l
2J+1

, l = 0, 1, . . . , 2J+1 − 1,

into a vector W̃ J = (W 0, . . . , W 2J+1−1)T . Using this notation, we observe that

ξ−1 = W1 − W0 =
2J+1−1∑

l=0

W l = 〈(1, . . . , 1)T , W̃ J 〉.

Similarly, for every 0 ≤ j ≤ J and m ∈ {0, . . . , 2 j − 1}, we get

−2− j/2ξ j,m =
(

W 2m+2
2 j+1

− W 2m+1
2 j+1

)
−

(
W 2m+1

2 j+1
− W 2m

2 j+1

)

=
2J− j −1∑

l=0

W (2m+1)2J− j +l −
2J− j −1∑

l=0

W 2m·2J− j +l = 〈h J
j,m, W̃ J 〉,

where

(h J
j,m)l =

⎧⎪⎨
⎪⎩

+1 if (2m + 1)2J− j ≤ l < (2m + 2)2J− j ,

−1 if 2m · 2J− j ≤ l < (2m + 1)2J− j ,

0 otherwise

(9)

for 0 ≤ l ≤ 2J+1 − 1 are the discrete version of the usual Haar functions. The
independence of ξ j1,m1 , . . . , ξ jN ,m N now follows from the orthogonality of the vectors
(h J

ji ,mi
)N
i=1, cf. Lemma 26. This leads to the following representation.
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Theorem 3 Let (Wt )t∈I be the Brownian motion according to Definition 1. If v j,m

denotes the Faber system according to (3), then almost surely it holds

Wt = ξ−1 · t +
∞∑
j=0

2 j −1∑
m=0

2−( j+2)/2ξ j,mv j,m(t) for t ∈ [0, 1],

where {ξ−1} ∪ {ξ j,m : j ∈ N0, 0 ≤ m ≤ 2 j − 1} are independent N (0, 1) random
variables and the series converges uniformly on I .

2.2 Function Spaces and Faber Systems

As already explained in Sect. 1, the description of the regularity of the paths of the
Brownian motion will be given in different scales of function spaces of Besov, Hölder,
and Orlicz type. In the sequel, we try to give in brief the basic definitions and charac-
terizations of these spaces.

We assume, that the reader is familiar with the spaces of complex-valued continuous
functions C(R) and C(I ) as well as with the Lebesgue spaces of integrable functions
L p(R) and L p(I ). For Lebesgue spaces we simplify the notation by writing the norms

‖ f ‖p := ∥∥ f | L p
∥∥ . (10)

The domain I orR of the function f in (10) should always be clear from the context.
For any 0 < p ≤ ∞ and any f ∈ L p(R), we denote by

(�1
h f )(x) = f (x + h) − f (x), (�M+1

h f ) = �1
h(�M

h f ), (11)

the usual first-order and higher-order differences (as already briefly mentioned in the
previous section), where x ∈ R, h ∈ R and M ∈ N. We start with the definition
of Besov spaces. These spaces have a long history and many of their aspects were
studied in the last decades, cf. [45, 48, 57]. In particular, there are many alternative
definitions of Besov spaces to be found in the literature (e.g., through the Fourier
transform, Littlewood-Paley-type decompositions, wavelets or atoms), which under
certain restrictions of the parameters coincide (i.e., they result in the same space with
an equivalent (quasi-)norm). For our purposes the approach through finite differences
is the most natural one.

Definition 4 (i) Let s > 0 and 0 < p, q ≤ ∞. Then the Besov space Bs
p,q(R) is the

collection of all f ∈ L p(R) such that for M = �s�+1,

‖ f |Bs
p,q(R)‖ = ‖ f ‖p +

(∫ 1

0
t−sq sup

|h|≤t
‖�M

h f ‖q
p

dt

t

)1/q

< ∞.

Here, �s� is the greatest integer less than or equal to s.
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(ii) Besov spaces on the interval I = [0, 1] ⊂ R are defined via restriction, i.e.,

Bs
p,q(I ) :=

{
f ∈ L p(I ) : f = g

∣∣
I for some g ∈ Bs

p,q(R)
}

, (12)

normed by

‖ f |Bs
p,q(I )‖ = inf ‖g|Bs

p,q(R)‖,

where the infimum is taken over all g ∈ Bs
p,q(R) with g

∣∣
I = f .

Our approach to the regularity of the Brownian paths is based on the close con-
nection between Besov spaces (and other function spaces) and the decompositions in
the Faber system. The Faber system on the interval I = [0, 1] is the collection of
functions

{v0, v1, v j,m : j ∈ N0, m = 0, . . . , 2 j − 1},

where

v0(x) = 1 − x, v1(x) = x, x ∈ I

and v j,m is defined by (3) for j ≥ 0. Let us note that the Faber functions are (possibly
up to normalization) essentially the antiderivatives of the Haar functions, which we
encountered in their discrete version already in (9). Then Theorem 2.1 of [58] (cf.
Theorem 2) shows that the Faber system is a (conditional) basis of C(I ) and that
every f ∈ C(I ) can be written as

f (x) = f (0)v0(x) + f (1)v1(x) − 1

2

∞∑
j=0

2 j −1∑
m=0

(�2
2− j−1 f )(2− j m)v j,m(x), x ∈ I .

Furthermore, concerning the decomposition ofBesov spaces Bs
p,q (I )with the above

Faber system, we recall Theorem 3.1 in [58, p. 126].

Theorem 5 Let 0 < p, q ≤ ∞ and

1

p
< s < 1 + min

( 1

p
, 1

)

be the admissible range for s as illustrated in the figure aside. Then the sum

f = μ0v0 + μ1v1 +
∞∑
j=0

2 j −1∑
m=0

μ j,m2
− jsv j,m (13)
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s = 1
p

1

1

2

2

s

1
p

with μ0 = μ0( f ) = f (0), μ1 = μ1( f ) = f (1) and

μ j,m = μ j,m( f ) = −2 js−1(�2
2− j−1 f )(2− j m)

lies in Bs
p,q(I ) if, and only if,

‖μ|b+
p,q(I )‖ := |μ0| + |μ1| +

( ∞∑
j=0

(2 j −1∑
m=0

2− j |μ j,m |p
)q/p

)1/q

< ∞.

2.2.1 Function Spaces of Logarithmic Smoothness

As pointed out already in the Introduction, one can obtain finer descriptions of the reg-
ularity properties of the Brownian paths, if one uses different (and more sophisticated)
scales of function spaces.

Therefore, we now introduce the so-called function spaces of logarithmic smooth-
ness, cf. [13, 17, 26, 41]. Here again we rely on the exposition and results from [58].
In particular, function spaces of logarithmic smoothness are a special case of Besov
and Triebel-Lizorkin spaces of generalized smoothness, where the smoothness factor

2 js gets replaced by 2 js(1 + j)−α

with s, α ∈ R. Following [58, Proposition 1.7.4] we can define function spaces of
logarithmic smoothness by differences as follows.

Definition 6 Let 0 < p, q ≤ ∞, s, α ∈ R, and M = �s� + 1 with

s > max

(
1

p
, 1

)
− 1.
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Then the logarithmic space Bs,α
p,q(R) contains all functions f ∈ L p(R) with

∥∥∥ f | Bs,α
p,q(R)

∥∥∥ = ‖ f ‖p +
(∫ 1

0
t−sq(1 + | log t |)−αq sup

0<h<t
‖�M

h f ‖q
p

dt

t

)1/q

< ∞.

(14)

Note that in comparison with [58] we have replaced α by−α in the definition of the
logarithmic space Bs,α

p,q(R) leading to some minor adaptations in the theorem below.
If p = ∞ and/or q = ∞, then (14) has to be interpreted accordingly. Especially, if
p = q = ∞, then

∥∥ f | Bs,α∞,∞(R)
∥∥ = ‖ f ‖∞ + sup

0<t<1

ωM ( f , t)∞
t s(1 + | log t |)α ,

where ωM ( f , t)∞ = sup0<h<t ‖�M
h f ‖∞ denotes the corresponding modulus of con-

tinuity. As a consequence, the spaces Bs,α∞,∞(R) coincide with the spaces Cs,α(R) of
Hölder-Zygmund type, which are usually defined by

‖ f |Cs,α(R)‖ := ‖ f ‖∞ + sup
0<t<1/2

ωM ( f , t)∞
t s | log t |α ,

cf. [20, Rem. 9] or [42, Rem. 2.8.(ii)]. Following [58, Theorem 3.30] we have also a
characterization in terms of the Faber system of the spaces Bs,α

p,q(I ) in which we are
interested here. The restriction from R to I is done in the same way as described in
Sect. 2.2, cf. (12).

Theorem 7 Let 0 < p, q ≤ ∞ and s, α ∈ R with

1

p
< s < 1 + min

(
1

p
, 1

)
.

Then f ∈ L p(I ) belongs to Bs,α
p,q(I ) if, and only if, it can be represented as

f = μ0v0 + μ1v1 +
∞∑
j=0

2 j −1∑
m=0

μ j,m2
− jsv j,m, (15)

where μ j,m ∈ b+,α
p,q (I ), i.e.,

‖μ|b+,α
p,q (I )‖ := |μ0| + |μ1| +

( ∞∑
j=0

(1 + j)−αq
(2 j −1∑

m=0

2− j |μ j,m |p
)q/p

)1/q

< ∞.

Here the sum in (15) converges unconditionally in Bσ
p,q(I ) for σ < s and in C(I ).

Moreover, the representation is unique with
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μ0 = μ0( f ) = f (0), μ1 = μ1( f ) = f (1) and

μ j,m = μ j,m( f ) = −2 js−1(�2
2− j−1 f )(2− j m)

where j ∈ N0 and m = 0, . . . , 2 j − 1.

Remark 1 In the theory of function spaces there are two different approaches on how
to deal with the normalization factors appearing in characterizations with building
blocks such as atoms, wavelets or Faber functions (as it is our case here). The first
approach tries to take the same building blocks for any function space Bs

p,q or Bs,α
p,q

independent from the chosen smoothness parameters s, α. This results in the adaption
of the corresponding sequence spaces in bs

p,q or bs,α
p,q , where now these parameters

play a role.
The second approach changes the definition of the building blocks according to

the smoothness parameters s and α. The consequence is that then the corresponding
sequence spaces bp,q are independent on s and α. In this work, we always use the
same decomposition of the function, which corresponds to Lévy’s decomposition (8).
For that reason, we prefer to work with (13) and (15) in the above theorems. This
results in Theorem 5, where the sequence spaces b+

p,q corresponding to Bs
p,q(I ) are

independent of the chosen smoothness s. Furthermore in Theorem 7 we only include
the logarithmic smoothness parameter within the sequence space norm. To that end,
now b+,α

p,q (I ) corresponds to Bs,α
p,q(I ), which is still independent on s but depends on

α.

2.2.2 Besov-Orlicz Spaces

We replace the Lebesgue norm ‖ · ‖∞ in the interesting boundary case p = ∞ in
the definition of the Besov spaces by the Orlicz-norm ‖ · ‖�2 , which is given by the
following Young function

�2(t) = exp(t2) − 1 for t > 0. (16)

In particular, we define for dimension d ∈ N the Orlicz space L�2([0, 1]d) as the
collection of all measurable functions on [0, 1]d with

‖ f ‖�2 := inf

{
λ > 0 :

∫
[0,1]d

�2

( | f (t)|
λ

)
dt ≤ 1

}
< ∞. (17)

This Orlicz norm and its equivalent expressions play a fundamental role in the char-
acterization of sub-gaussian random variables [25, 63].

By Theorems 31 and 32, ‖ f ‖�2 is also equivalent to

sup
0<t<1

f ∗(t)√
log(1/t) + 1

and sup
p≥1

‖ f ‖p√
p

,
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where

f ∗(t) = inf
{

s ∈ [0, 1] : |{r ∈ [0, 1]d : | f (r)| > s}| ≤ t
}

is the non-increasing rearrangement of f .
Now we are going to define the Besov-Orlicz spaces B1/2

�2,∞(I ) directly via the
decompositions with the Faber system. The sequence space norm is a direct adaptation
from the sequence spaces b+

p,q(I ) from Theorem 5, where the L p(I ) is now replaced
by the Orlicz norm L�2(I ), and the characterization from Theorem 32. We also refer
to [10, Theorem III.8], where a characterization of these spaces with the help of the
Faber system is given and to [46], where one can find an alternative approach to
Besov-Orlicz spaces.

Definition 8 (i) The sequence space b+
�2,∞ is the collection of all sequences

{μ = (μ j,m) : j ∈ N0, m = 0, . . . , 2 j − 1}

such that

∥∥∥μ| b+
�2,∞(I )

∥∥∥ := sup
j∈N0

∥∥∥∥∥∥
2 j −1∑
m=0

μ j,mχ j,m

∥∥∥∥∥∥
�2

≈ sup
j∈N0

sup
p≥1

1√
p

∥∥∥∥∥∥
2 j −1∑
m=0

μ j,mχ j,m

∥∥∥∥∥∥
p

= sup
j∈N0

sup
p≥1

1√
p

(2 j −1∑
m=0

2− j |μ j,m |p
)1/p

< ∞,

where χ j,m is the characteristic function of I j,m .

(ii) The function space B1/2
�2,∞(I ) is the collection of all f ∈ C(I ) such that the

coefficients of its representation

f (x) = λ0v0(x) + λ1v1(x) +
∞∑
j=0

2 j −1∑
m=0

2− j/2λ j,mv j,m(x), x ∈ I , (18)

satisfy
∥∥∥λ| b+

�2,∞(I )
∥∥∥ < ∞.

2.3 Results of Lévy and Ciesielski

In this section we present proofs of the results of Lévy [36] and Ciesielski [9] con-
cerning the regularity of Wiener paths in certain function spaces. Our main aim is to
show that they both follow quite directly from Lévy’s decomposition of Wiener paths
into the Faber system (8) combined with the characterization of the corresponding
function spaces via the Faber system. For that sake, we summarize Theorems 5, 7, and
Definition 8, which state the conditions on the coefficients guaranteeing that a function
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belongs to the function spaces considered by Lévy and Ciesielski. In particular, we
choose a formulation, which corresponds directly to (8).

Theorem 9 Consider a function f ∈ C(I ) with the representation

f (x) = λ0v0(x) + λ1v1(x) +
∞∑
j=0

2 j −1∑
m=0

2− j+2
2 λ j,mv j,m(x), x ∈ I ,

where {v0, v1, v j,m : j ∈ N0, m = 0, . . . , 2 j − 1} denotes the Faber system on the
interval I = [0, 1].
(i) f belongs to B1/2,1/2∞,∞ (I ) if, and only if

sup
j∈N

1√
j

sup
m=0,...,2 j −1

|λ j,m | < ∞. (19)

(ii) Let 1 ≤ p < ∞. Then f belongs to B1/2
p,∞(I ) if, and only if

sup
j∈N

(2 j −1∑
m=0

2− j |λ j,m |p
)1/p

< ∞. (20)

(iii) f belongs to B1/2
�2,∞(I ) if, and only if

sup
j∈N

sup
p≥1

1√
p

(2 j −1∑
m=0

2− j |λ j,m |p
)1/p

< ∞. (21)

1. Wiener paths belong to B1/2,1/2∞,∞ (I ) almost surely (Lévy [36]) Comparing (8)
with (19), it is enough to show that

sup
j∈N

1√
j

sup
m=0,...,2 j −1

|ξ j,m | < ∞ almost surely, (22)

where {ξ j,m : j ∈ N, m = 0, . . . , 2 j − 1} are independent standard Gaussian
variables.
To prove (22), we denote by AN

j the event when supm=0,...,2 j −1 |ξ j,m | ≥ N
√

j
and estimate

P(AN
j ) ≤ 2 j

P(|ω| ≥ N
√

j) ≤ 2 j e−N2 j/2, (23)

where we used the estimate from Lemma 27 (i). Using an estimate, which resem-
bles the approach of the Borel-Cantelli lemma and which we shall use frequently
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later on, we obtain for every positive integer N0,

P

(
sup
j∈N

1√
j

sup
m=0,...,2 j −1

|ξ j,m | = ∞
)

= P

( ∞⋂
N=1

∞⋃
j=1

AN
j

)
≤ P

( ∞⋃
j=1

AN0
j

)

≤
∞∑
j=1

P
(

AN0
j

) ≤
∞∑
j=1

2 j e−N2
0 j/2. (24)

As the last expression tends to zero if N0 → ∞, this finishes the proof of (22).
2. Wiener paths belong to B1/2

p,∞(I ) almost surely (Ciesielski [8])
We restrict ourselves to 2 < p < ∞, which allows us to use Theorem 5. The
smaller values of p are then covered by the monotonicity of Besov spaces on
domains with respect to the integrability parameter p. Again, by (8) and (20), it is
enough to prove that

sup
j∈N

(2 j −1∑
m=0

2− j |ξ j,m |p
)1/p

< ∞ almost surely for every 2 < p < ∞. (25)

Fix 2 < p < ∞ and let μp = E |ω|p be the pth absolute moment of a standard
Gaussian variable ω. This time, we denote for every t > 0 and j ∈ N by At

j the
event that

1

2 j

2 j −1∑
m=0

|ξ j,m |p − μp ≥ t .

Then, by Markov’s inequality,

t2P(At
j ) = t2P

(( 1

2 j

2 j −1∑
m=0

|ξ j,m |p − μp

)2 ≥ t2
)

≤ E

( 1

2 j

2 j −1∑
m=0

|ξ j,m |p − μp

)2

= E
1

22 j

2 j −1∑
m=0

|ξ j,m |2p + E
1

22 j

2 j −1∑
m �=n=0

|ξ j,m |p|ξ j,n |p − 2μp

2 j
E

2 j −1∑
m=0

|ξ j,m |p + μ2
p

= μ2p

2 j
+ 2 j (2 j − 1)

22 j
μ2

p − μ2
p = μ2p − μ2

p

2 j
. (26)

Similarly to (24), we conclude, that for every N0 ∈ N it holds

P

(
sup
j∈N0

1

2 j

2 j −1∑
m=0

|ξ j,m |p = ∞
)

= P

( ∞⋂
N=1

∞⋃
j=0

AN
j

)
≤ P

( ∞⋃
j=0

AN0
j

)
≤

∞∑
j=0

P
(

AN0
j

)

≤
∞∑
j=0

μ2p − μ2
p

2 j N 2
0

= 2(μ2p − μ2
p)

N 2
0

.

The last expression tends to zero if N0 → ∞, which renders (25).
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3. Wiener paths belong to B1/2
�2,∞(I ) almost surely (Ciesielski [9])

This time, we need to show that

sup
j∈N

sup
p≥1

1√
p

( 1

2 j

2 j −1∑
m=0

|ξ j,m |p
)1/p

< ∞ almost surely. (27)

By monotonicity, it is enough to restrict the supremum over p to the integer values
p ∈ N. Furthermore, we only need to refine the analysis done before. Indeed, it
follows directly from (26) that

P

(
1√
p

( 1

2 j

2 j −1∑
m=0

|ξ j,m |p
)1/p ≥ (2t)1/p

√
p

)
≤ P(At

j ) ≤ μ2p − μ2
p

2 j t2
for every t > μp.

Hence, if N > (2μp)
1/p/

√
p, and if AN ,p

j denotes the event when

1√
p

( 1

2 j

2 j −1∑
m=0

|ξ j,m |p
)1/p ≥ N ,

then

P
(

AN ,p
j

) ≤ μ2p − μ2
p

2 j−2(N
√

p)2p
≤ μ2p

2 j−2(N
√

p)2p
.

Since μ2p = 2p�
(

p + 1
2

)
√

π
≤ 2p · �(p + 1) = 2p · p! ≤ (2p)p, we obtain for

every N0 large enough

P

(
sup
j∈N

sup
p∈N

1√
p

( 1

2 j

2 j −1∑
m=0

|ξ j,m |p
)1/p = ∞

)
= P

( ∞⋂
N=1

∞⋃
j,p=1

AN ,p
j

)
≤ P

( ∞⋃
j,p=1

AN0,p
j

)

≤
∞∑

j,p=1

P
(

AN0,p
j

) ≤
∞∑

j,p=1

μ2p

2 j−2(N0
√

p)2p
�

∞∑
p=1

2p

N 2p
0

.

As the last expression tends to zero if N0 → ∞, we obtain (27).

Remark 2 Let us have a closer look at the relations of the different spaces we are
dealing with in terms of their embeddings. We rely on the characterizations (19), (20),
and (21) collected in Theorem 9. Furthermore, one can show in the same way that a
function f with (18) belongs to the Hölder-Zygmund space B1/2∞,∞(I ) if, and only if,

sup
j∈N0

sup
m=0,...,2 j −1

|λ j,m | < ∞. (28)
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One can use (28) to recover the well known fact that theWiener paths almost surely do
not belong to B1/2∞,∞(I ). Indeed, the supremum of 2 j independent standard Gaussian
variables grows asymptotically as

√
j , cf. also Lemma 27(ii), which violates (28).

Furthermore, (20), (21), and (28) show that

B1/2∞,∞(I ) ↪→ B1/2
�2,∞(I ) ↪→ B1/2

p,∞(I ).

To compare the spaces B1/2
�2,∞(I ) and B1/2,1/2∞,∞ (I ) we estimate for every j ∈ N

1√
j

· sup
m=0,...,2 j −1

|λ j,m | = 1√
j

· ‖λ j,·‖∞ ≤ 1√
j

· ‖λ j,·‖ j = 2√
j

(2 j −1∑
m=0

2− j |λ j,m | j
)1/ j

≤ 2 sup
p≥1

1√
p

(2 j −1∑
m=0

2− j |λ j,m |p
)1/p

.

Therefore, B1/2
�2,∞(I ) ↪→ B1/2,1/2∞,∞ (I ) and the result of Ciesielski is an improvement

over the result of P. Lévy, providing a strictly smaller space, which contains almost all
Wiener paths.

Finally, let us note that B1/2,1/2∞,∞ (I ) and B1/2
p,∞(I ) with 1 ≤ p < ∞ are incompara-

ble. This can again be easily seen by looking at the sequence space characterization (19)
and (20). First, the special sequenceλ

(1)
j,m = √

j for all j ∈ N and allm = 0, . . . , 2 j −1

belongs to B1/2,1/2∞,∞ (I ) and not to B1/2
p,∞(I ) for any 1 ≤ p < ∞. Second, the sequence

λ
(2)
j,m =

{
j, for j ∈ N and m = 0,

0, for j ∈ N and m ≥ 1

belongs to B1/2
p,∞(I ) for all 1 ≤ p < ∞ but not to B1/2,1/2∞,∞ (I ).

2.4 An Alternative Proof for the Besov-Orlicz Space B1/282,∞(I)

We use the characterization given in Theorem 31 to re-prove the result of Ciesielski
[9], i.e., to show that the Wiener paths almost surely lie in the Besov-Orlicz space
B1/2

�2,∞(I ). Comparing (8) with (18) we observe, that it is enough to show that

∥∥∥ξ |b+
�2,∞(I )

∥∥∥ = sup
j∈N0

∥∥∥∥∥∥
2 j −1∑
m=0

ξ j,mχ j,m(·)
∥∥∥∥∥∥

�2

< ∞

almost surely. Here, ξ = {ξ j,m, j ∈ N0, 0 ≤ m ≤ 2 j − 1} is again a sequence of
i.i.d. standard Gaussian variables and χ j,m denotes the characteristic function of the
interval I j,m .
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Therefore, we put for every integer j ≥ 0

f j (t) =
2 j −1∑
m=0

ξ j,mχ j,m(t), 0 < t < 1, (29)

and observe that its non-increasing rearrangement is given by

f ∗
j (t) =

2 j −1∑
m=0

(
ξ j

)∗
m+1 χ j,m(t), 0 < t < 1,

where
((

ξ j
)∗

m

)2 j

m=1
is the non-increasing rearrangement of the sequence ξ j =

(|ξ j,m |)2 j −1
m=0 .

This allows us to calculate for j ∈ N fixed

sup
0<t<1

f ∗
j (t)√

log(1/t) + 1
= sup

m=1,...,2 j

f ∗
j (m2− j )√

log(2 j/m) + 1

= sup
k=0,..., j−1

sup
2k≤m≤2k+1

f ∗
j (m2− j )√

log(2 j/m) + 1

≤ sup
k=0,..., j−1

f ∗
j (2k− j )√

log(2 j−k−1) + 1
≤ c sup

0≤k< j

f ∗
j (2k− j )√

j − k

= c sup
0≤k< j

(
ξ j

)∗
2k√

j − k
. (30)

Next, we denote by AK
j,k the event that

(
ξ j

)∗
2k ≥ K

√
j − k and use Lemma 27

to estimate P(AK
j,k). We conclude, that for every K0 ∈ N large enough such that

16e−K 2
0 /2 < 1 it holds

P

(
sup

0<t<1
sup
j∈N0

f ∗
j (t)√

log(1/t) + 1
= ∞

)
= P

( ∞⋂
K=1

⋃
0≤k< j<∞

AK
j,k

)
≤ P

( ⋃
0≤k< j<∞

AK0
j,k

)

≤
∑

0≤k< j<∞
P
(

AK0
j,k

) ≤
∑

0≤k< j<∞

(
2e−K 2

0 /2
)( j−k)2k

· e2
k

=
∞∑

k=0

∞∑
l=1

(
2e−K 2

0 /2
)l2k

· e2
k =

∞∑
k=0

e2
k

∞∑
l=1

((
2e−K 2

0 /2
)2k)l

≤ c
∞∑

k=0

e2
k
(
2e−K 2

0 /2
)2k

≤ c
∞∑

k=0

(
8e−K 2

0 /2
)k+1 ≤ 2c · 8e−K 2

0 /2.

The last expression tends to zero if K0 → ∞, which yields the desired result.
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2.5 New Function Spaces

The approach to regularity of Wiener paths presented in Sects. 2.3 and 2.4 follows
actually a rather straightforward pattern. If a certain function space under consideration
allows for an equivalent characterization in terms of the Faber system, then this might
be combined directly with Theorem 3. The proof that almost all Wiener paths lie in
this space then reduces to a statement about independent standard Gaussian variables.

In this section we show, that this approach can be further developed to introduce
even smaller spaces than B1/2

�2,∞(I ), where the Wiener paths almost surely lie.

2.5.1 Spaces of Besov Type: Discrete Averages of Differences

By Definition 8 and Theorem 31, a continuous function f ∈ C(I ) lies in the Besov-
Orlicz space B1/2

�2,∞(I ) if, and only if, its decomposition into the Faber system (18)
satisfies

sup
j∈N0

sup
0<t<1

f ∗
j (t)√

log(1/t) + 1
< ∞,

where

f j (t) =
2 j −1∑
m=0

λ j,mχ j,m(t), 0 < t < 1. (31)

Here χ j,m stands for the characteristic function of the dyadic interval I j,m = [m ·
2− j , (m + 1) · 2− j ]. This condition quantifies very precisely the possible size of the
components f j , but (due to the use of the rearrangements f ∗

j ) it fails to describe
the distribution of large values of f j on [0, 1]. For example, it does not exclude the
possibility that the large values of the components f j appear close to each other. But
this is actually unlikely for the Wiener process because in that case, the λ j,m’s get
replaced by independent Gaussian variables.

Therefore, we introduce new function spaces, where we measure the size of the
averages

1

t − s

∫ t

s
f j (u)du or

1

t − s

∫ t

s
| f j (u)|du

and we expect them to be much smaller (in L∞ or the L�2 -norm) than f j itself. To
describe this idea mathematically, we define for an integrable function g on I the
averaging operators

(Ak g)(x) =
2k−1∑
l=0

2k
∫ (l+1)2−k

l2−k
g(t)dt ·χk,l(x) and ( Ãk g)(x) = (Ak(|g|))(x), x ∈ I .

(32)
By what we outlined so far, we expect the kth dyadic average Ak of the j th dyadic

level of Lévy’s decomposition (8) to be much smaller in the L�2 -norm than the j th
dyadic level itself. This paves the way to the following definition.
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Definition 10 Let ε > 0. Then the space A(ε) is the collection of all f ∈ C(I ), which
satisfy the following condition. If (18) is the decomposition of f into the Faber system
and f j , j ∈ N0, is defined by (31), then

‖ f ‖A(ε) := sup
j∈N0

sup
0≤k≤ j

sup
0<t<1

2( j−k)/2

( j − k + 1)ε
· (Ak f j )

∗(t)√
log(1/t) + 1

≈ sup
j∈N0

sup
0≤k≤ j

2( j−k)/2

( j − k + 1)ε
· ‖Ak f j‖�2 < ∞.

With this definition we are now able to prove the following.

Theorem 11 Let ε > 0. Then ‖W·‖A(ε) < ∞ almost surely.

Proof To estimate the norm of the Brownian paths in A(ε), we use the decomposition
of Wt into the Faber system (8). We therefore replace (31) by

f j (t) =
2 j −1∑
m=0

ξ j,mχ j,m(t), 0 < t < 1,

where ξ j = (ξ j,m)2
j −1

m=0 is again a vector of independent standard Gaussian variables.
Let 0 ≤ k ≤ j and x ∈ I . Then

2( j−k)/2Ak f j (x) = 2( j−k)/2
2k−1∑
l=0

2k
∫ (l+1)2−k

l·2−k

(2 j −1∑
m=0

ξ j,mχ j,m(t)

)
dt · χk,l(x)

=
2k−1∑
l=0

2( j+k)/2
(2 j −1∑

m=0

ξ j,m |Ik,l ∩ I j,m |
)

χk,l(x)

=
2k−1∑
l=0

2(k− j)/2
((l+1)·2 j−k−1∑

m=l·2 j−k

ξ j,m

)
χk,l(x).

By the 2-stability of Gaussian variables, cf. Lemma 26, it follows that 2( j−k)/2Ak f j

is equidistributed with fk . Therefore,

P(‖W·‖A(ε) ≥ K0) ≤
∑

0≤k≤ j

P

(
2( j−k)/2

( j − k + 1)ε
· sup
0<t<1

(Ak f j )
∗(t)√

log(1/t) + 1
≥ K0

)

=
∑

0≤k≤ j

P

(
sup

0<t<1

( fk)
∗(t)√

log(1/t) + 1
≥ K0 · ( j − k + 1)ε

)
= I1 + I2,

where I1 collects the terms with 0 = k ≤ j and I2 includes the terms with 1 ≤ k ≤ j .
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The estimate of I1 is rather straightforward

I1 ≤
∞∑
j=0

P

(
f ∗
0 (1) ≥ K0 · ( j + 1)ε

)
≤

∞∑
j=0

exp
(
− K 2

0 ( j + 1)2ε

2

)

and this expression tends to zero if K0 grows to infinity.
Using (30) and Lemma 27, we may estimate I2 as follows

I2 ≤
∑

0≤m<k≤ j

P

(
(ξk)

∗
2m√

k − m
≥ c1K0 · ( j − k + 1)ε

)

≤
∑

0≤m<k≤ j

c e2
m
(
2 exp(−c21K 2

0 ( j − k + 1)2ε)
)(k−m)2m

=
∑

0≤m<k

c e2
m
2(k−m)2m

∞∑
l=1

(
exp(−c21K 2

0 (k − m)2m)
)l2ε

.

We assume that K0 is large enough to ensure 8 exp(−c21K 2
0 ) < 1/2 and obtain

I2 ≤ cε

∑
0≤m<k

e2
m
2(k−m)2m

exp(−c21K 2
0 (k − m)2m)

= cε

∞∑
m=0

e2
m

∞∑
ν=1

(
22

m
exp(−c21K 2

0 2
m)

)ν ≤ 2cε

∞∑
m=0

82
m
exp(−c21K 2

0 2
m)

≤ 32cε exp(−c21K 2
0 ),

which tends again to zero if K0 grows to infinity. ��
Remark 3 In general, one can take also ε = 0 in Definition 10 and obtain the space
A(0). Nevertheless, it is quite easy to see that Theorem 11 fails for A(0) and that the
Wiener paths do almost surely not belong to A(0). Indeed, observe that

‖ f ‖A(0) = sup
j∈N0

sup
0≤k≤ j

sup
0<t<1

2( j−k)/2 · (Ak f j )
∗(t)√

log(1/t) + 1
≥ sup

j∈N0

2 j/2 · (A0 f j )
∗(1).

Similarly as in the proof of Theorem 11 we therefore obtain

P(‖W·‖A(0) ≥ K0) ≥ P

(
sup
j∈N0

2 j/2
∣∣∣∣
∫ 1

0

(2 j −1∑
m=0

ξ j,mχ j,m(t)

)
dt

∣∣∣∣ ≥ K0

)

= P

(
sup
j∈N0

2− j/2
∣∣∣∣
2 j −1∑
m=0

ξ j,m

∣∣∣∣ ≥ K0

)
= P

(
sup
j∈N0

|ω j | ≥ K0
) = 1,
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where K0 ≥ 0 is arbitrarily large and (ω j )
∞
j=0 are independent standard Gaussian

variables. Note that we have again used the 2-stability of Gaussian variables from
Lemma 26.

A similar result can be obtained if we use the absolute averaging operators Ãk

instead of Ak . The decay of the averages Ãk( f j ) will now be described by the Orlicz
spaces L�2,A , which are defined in (67), also cf. Theorem 33.

Definition 12 The space Ã is the collection of all f ∈ C(I ), which satisfy the follow-
ing condition. If (18) is the decomposition of f into the Faber system and f j , j ∈ N0,
is defined by (31), then

‖ f ‖ Ã := sup
j∈N0

sup
0≤k≤ j

sup
0<t<1

( Ãk f j )
∗(t)√

2k− j log(1/t) + 1
≈ sup

j∈N0

sup
0≤k≤ j

‖ Ãk f j‖2,2k− j < ∞.

With this we can now state and prove the following statement.

Theorem 13 It holds that ‖W·‖ Ã < ∞ almost surely.

Proof By its construction,

Ãk f j (x) =
2k−1∑
m=0

νk,mχk,m(x), x ∈ [0, 1],

where νk = (νk,0, . . . , νk,2k−1) is a vector of independent variables from G2 j−k , see
Definition 28. Similarly to (30), we obtain

sup
0<t<1

( Ãk f j )
∗(t)√

2k− j log(1/t) + 1
= sup

m=1,...,2k

( Ãk f j )
∗(m2−k)√

2k− j log(2k/m) + 1

≤ c sup
z=0,...,k−1

( Ãk f j )
∗(2z−k)√

2k− j (k − z − 1) + 1
= c sup

z=0,...,k−1

(ν∗
k )2z√

2k− j (k − z − 1) + 1
.

Then, for K0 large enough using the estimate above and (58), we obtain

P(‖W·‖ Ã ≥ K0) ≤
∑

0≤k≤ j

P

(
sup

0<t<1

( Ãk f j )
∗(t)√

2k− j log(1/t) + 1
≥ K0

)

≤
∑

0≤z<k≤ j

P

(
(ν∗

k )2z√
2k− j (k − z − 1) + 1

≥ cK0

)

≤
∑

0≤z<k≤ j

[
e · 2k−z exp(−(2k− j (k − z − 1) + 1)c2K 2

0 2
j−k/4)

]2z

=
∞∑

z=0

e2
z

∞∑
k=z+1

2(k−z)2z
exp

[
−(k − z − 1)c2K 2

0/4 · 2z
]
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×
∞∑
j=k

exp
[
−2 j−kc2K 2

0/4 · 2z
]

≤ 2
∞∑

z=0

e2
z

∞∑
k=z+1

2(k−z)2z

× exp
[
−(k − z − 1)c2K 2

0/4 · 2z
]
exp

[
−c2K 2

0/4 · 2z
]

= 2
∞∑

z=0

e2
z

∞∑
k=z+1

(
22

z
exp

[
−c2K 2

0/4 · 2z
])k−z

≤ 4
∞∑

z=0

e2
z · 22z

exp
[
−c2K 2

0/4 · 2z
]

≤ 4
∞∑

z=0

(
8e−c2K 2

0 /4
)2z

≤ 8 · 8e−c2K 2
0 /4.

As the last expression tends to zero if K0 → ∞, this finishes the proof. ��

Remark 4 We discuss the relation between the Besov-Orlicz space B1/2
�2,∞(I ) and the

new function spaces A(ε) and Ã. We show in several steps that, for all ε > 0, both
A(ε) and Ã are strictly smaller than B1/2

�2,∞(I ) and that A(ε) and Ã are mutually
incomparable.

(i) Setting j = k in the definition of A(ε) or Ã and observing that A j f j = f j and

Ã j f j = | f j |, we conclude that A(ε) and Ã are both subsets of the space B1/2
�2,∞(I )

considered by Ciesielski.
On the other hand, if we put

λ j,m =
√
log

( 2 j

m + 1

)
+ 1, j ∈ N0, m = 0, . . . , 2 j − 1,

and define f j by (31), then it follows from (Ak f j )(t) = ( Ãk f j )(t) ≥ fk(t) for

0 ≤ k ≤ j and t ∈ [0, 1] that A(ε) and Ã are proper subsets of B1/2
�2,∞(I ).

(ii) To show that Ã is not a subset of A(ε) it is enough to set λ j,m = 1 for all j ∈ N0
and 0 ≤ m ≤ 2 j − 1 and define f j again by (31). Then Ak f j = Ãk f j = 1 on
[0, 1] for all 0 ≤ k ≤ j and for the corresponding f defined by (18) we obtain for
every ε > 0

‖ f ‖ Ã = sup
0≤k≤ j

( Ãk f j )
∗(1) = 1 and ‖ f ‖A(ε)

= sup
0≤k≤ j

2( j−k)/2

( j − k + 1)ε
(Ak f j )

∗(1) = +∞.
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(iii) Finally, we show that A(ε) is not a subset of Ã for any ε > 0. We put for j ≥ 1
and 0 ≤ m ≤ 2 j − 1

λ j,m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
log

( 2 j

m + 1

)
+ 1 if m is even,

(−1) ·
√
log

(2 j

m

)
+ 1 if m is odd.

Again, we define f j by (31) and f by (18).We observe, that due to the cancellation
property Ak f j = 0 for all 0 ≤ k < j and, therefore, f lies in A(ε). On the other
hand, ( Ãk f j )(m · 2−k) ≥ f ∗

j (m · 2−k) for 0 ≤ k < j and 0 ≤ m < 2k by
monotonicity and we obtain

‖ f ‖ Ã ≥ sup
k∈N

sup
0<t<1

( Ãk f2k)
∗(t)√

2−k log(1/t) + 1
≥ sup

k∈N
f ∗
2k(2

−k)√
2−k log(2k) + 1

= +∞.

2.5.2 Spaces of Besov Type: Continuous Averages of Differences

The function space Ã introduced in Definition 12 is somehow difficult to handle. In
order to decidewhether a continuous function f belongs to Ã, we first have to construct
its Faber decomposition (18) and the sequence { f j }∞j=0, cf. (31). Afterwards, we need

to apply the averaging operators Ãk of (32) and, finally, we have to measure the size
of Ãk f j in the corresponding Orlicz space L�2(I ).

Therefore,we investigate if Ã could be possibly replaced by a spacewhich is defined
more directly, without the detour through the Faber system decomposition. For this,
we first note that by Theorem 33

‖ f ‖ Ã≈ sup
j∈N0

sup
0≤k≤ j

‖ Ãk f j‖2,2k− j ,

where ‖ · ‖2,2k− j is the Orlicz norm introduced in (68). To avoid the use of f j and Ãk ,
we observe that

f j (t) =
2 j −1∑
m=0

λ j,mχ j,m(t) and λ j,m = −2 j/2(�2
2− j−1 f )(m · 2− j )

gives for 0 ≤ k ≤ j

Ãk f j (x) =
2k−1∑
l=0

2k
∫

Ik,l

| f j (t)|dt · χk,l(x)

=
2k−1∑
l=0

χk,l(x)

2 j −1∑
m=0

2k · |λ j,m | · |Ik,l ∩ I j,m |
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= 2 j/2
2k−1∑
l=0

χk,l(x) · 1

2 j−k

×
(l+1)2 j−k−1∑

m=l·2 j−k

|(�2
2− j−1 f )(m · 2− j )|.

We now replace the discrete averages of second order differences by the continuous
averages. Before we come to that, we need to complement (11) by the differences
restricted to I and set

�2
h f (x) =

{
f (x + 2h) − 2 f (x + h) + f (x) if {x, x + h, x + 2h} ⊂ I ,

0 otherwise.
(33)

This paves the way for the following defintion.

Definition 14 Let f ∈ C(I ).

1. Then we define for every 0 ≤ k ≤ j and every x ∈ I

D2
j,k f (x) :=

2k−1∑
l=0

χk,l(x)
1

2−k

∫ (l+1)2−k

l·2−k
|�2

2− j−1 f (t)|dt,

and

D2
j,k f (x) := 1

2−k

∫ x+2−k−1

x−2−k−1
|�2

2− j−1 f (t)|dt .

2. We define
‖ f ‖D = sup

j∈N0

sup
0≤k≤ j

∥∥∥2 j/2D2
j,k f

∥∥∥
2,2k− j

(34)

and
‖ f ‖D = sup

j∈N0

sup
0≤k≤ j

∥∥∥2 j/2D2
j,k f

∥∥∥
2,2k− j

. (35)

Now we are in a position to state and prove the following.

Theorem 15 (i) Let f ∈ C(I ). Then ‖ f ‖D ≈ ‖ f ‖D.
(ii) ‖W·‖D < ∞ almost surely.

(iii) ‖W·‖D < ∞ almost surely.

Proof Step 1. Let x ∈ Ik,l for some l ∈ {0, . . . , 2k −1}. Then Ik,l ⊂ (x−2−k, x+2−k),
which gives D2

j,k f (x) ≤ 2D2
j,k−1 f (x). This allows to estimate the terms with 0 <

k ≤ j in (34) from above by ‖ f ‖D.
To estimate also the terms with 0 = k ≤ j , we put g(t) = |�2

2− j−1 f (t)| and
calculate
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∥∥∥D2
j,0 f

∥∥∥
2,2− j

=
∥∥∥∥
∫ 1

0
g(t)dt · χ[0,1]

∥∥∥∥
2,2− j

=
∥∥∥∥
∫ 1/2

0
g(t)dt · χ[0,1]

∥∥∥∥
2,2− j

+
∥∥∥∥
∫ 1

1/2
g(t)dt · χ[0,1]

∥∥∥∥
2,2− j

≤ C

{∥∥∥∥
∫ 1/2

0
g(t)dt · χ[0,1/2]

∥∥∥∥
2,2− j

+
∥∥∥∥
∫ 1

1/2
g(t)dt · χ[1/2,1]

∥∥∥∥
2,2− j

}

≤ C

{∥∥∥D2
j,0 f (x) · χ[0,1/2](x)

∥∥∥
2,2− j

+
∥∥∥D2

j,0 f (x) · χ[1/2,1](x)

∥∥∥
2,2− j

}

≤ 2C
∥∥∥D2

j,0 f
∥∥∥
2,2− j

,

which gives that ‖ f ‖D � ‖ f ‖D.
Step 2. Fix 0 ≤ k ≤ j and set again g(t) = |�2

2− j−1 f (t)|. If x ∈ Ik,l , then

(x − 2−k−1, x + 2−k−1) ⊂ Ik,l−1 ∪ Ik,l ∪ Ik,l+1. Therefore,

D2
j,k f (x) =

2k−1∑
l=0

D2
j,k f (x)χk,l(x) ≤

2k−1∑
l=0

1

2−k

{∫
Ik,l−1

|g(t)|dt

+
∫

Ik,l

|g(t)|dt +
∫

Ik,l+1

|g(t)|dt

}
χk,l(x)

Wenow apply the shift-invariance of the space L2,2k− j and obtain that ‖ f ‖D � ‖ f ‖D .
Step 3. It is clear that (iii) follows from (i) and (ii). Hence, it is enough to prove

(ii), i.e., we show ‖W·‖D < ∞ almost surely. Although the proof resembles the proof
of Theorem 13, we will omit the use of the Faber system in this case. Moreover, in
order to avoid technicalities, we first make the following observation. When we use
the values of (Wt )t≥0 also for t > 1, we can assume that

�2
h W (x) = W (x + 2h) − 2W (x + h) + W (x)

for every x, h > 0. This means that we do not make use of the restriction to I as it
appeared in (33), which can make ‖W·‖D only larger.

Furthermore, we distinguish again between k = 0 and k ≥ 1. If k = 0, then

D2
j,0W (x) = χI (x) ·

∫ 1

0
|(�2

2− j−1W )(t)|dt

and, using Theorem 33, we see that

sup
j≥0

2 j/2‖D2
j,0W‖2,2− j = sup

j≥0
2 j/2

∫ 1

0
|(�2

2− j−1W )(t)|dt · ‖χI (x)‖2,2− j

≈ sup
j≥0

2 j/2
∫ 1

0
|(�2

2− j−1W )(t)|dt (36)
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= sup
j≥0

2 j/2
2 j+1−1∑

m=0

∫ (m+1)2− j−1

m·2− j−1
|(�2

2− j−1W )(t)|dt .

If m · 2− j−1 ≤ t ≤ (m + 1)2− j−1, then we estimate

|(�2
2− j−1 W )(t)| = |W (t + 2− j ) − 2W (t + 2− j−1) + W (t)|

≤ |W (t + 2− j ) − W ((m + 2)2− j−1)| + |W ((m + 2)2− j−1) − W (t + 2− j−1)|
+ |W ((m + 1)2− j−1) − W (t + 2− j−1)| + |W (t) − W ((m + 1)2− j−1)|. (37)

If we plug this estimate into (36), we obtain four (very similar) terms.We only estimate
the first term, since the others can be handled in the same manner. If we set

α
j
m = 1

2− j−1

∫ (m+1)2− j−1

m·2− j−1
|W (t) − W (m · 2− j−1)|dt,

we can see that

sup
j≥0

2 j/2
2 j+1−1∑

m=0

∫ (m+1)2− j−1

m·2− j−1
|W (t + 2− j ) − W ((m + 2)2− j−1)|dt

= sup
j≥0

2− j/2−1
2 j+1−1∑

m=0

α
j
m+2.

By their definition, {α j
m}m≥0 are independent random variables, all equidistributed

with

1

2− j−1

∫ 2− j−1

0
|W (s)|ds

and therefore have the same distribution as 2−( j+1)/2W , where W = ∫ 1
0 |W (s)|ds is

the integrated absolute Wiener process. For the convenience of the reader we recall
a few of its basic properties in Sect. 4.3. In particular, Lemma 30 (ii) allows us to
conclude for every K ≥ 1 that

P

⎛
⎝sup

j≥0
2− j/2−1

2 j+1−1∑
m=0

α
j
m+2 = ∞

⎞
⎠ ≤

∞∑
j=0

P

⎛
⎝ 1

2 j+1

2 j+1−1∑
m=0

2
j+1
2 α

j
m > K

⎞
⎠

≤
∞∑
j=0

exp(1 − c2 j+1K 2),

which goes to zero if K → ∞.
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Step 4. Next, we estimate the terms with 0 < k ≤ j . The argument is quite similar
to the previous step, which allows us to leave out some technical details. First for every
k ≥ 1 we rewrite

D2
j,k W (x) =

2k−1∑
l=0

χk,l(x) · 1

2−k

∫ (l+1)2−k

l·2−k
|�2

2− j−1W (t)|dt

=
2k−1∑
l=0

χk,l(x) · 1

2−k

2 j−k+1−1∑
m=0

∫ l·2−k+(m+1)2− j−1

l·2−k+m·2− j−1
|�2

2− j−1W (t)|dt . (38)

If 0 ≤ t − l · 2−k − m · 2− j−1 ≤ 2− j−1, then we obtain (37) with m · 2− j−1 replaced
by τ := l · 2−k + m · 2− j−1. We insert this into (38) and derive again an estimate
of D2

j,k W (x) invoking a sum of four terms, which we denote by D2,i
j,k W (x) with

i ∈ {1, 2, 3, 4}. Again, we estimate only one of these terms (say, the one with i = 4),
since the others are very similar to deal with. We put

α
j,k
l,m = 1

2− j−1

∫ l·2−k+(m+1)2− j−1

l·2−k+m·2− j−1
|W (t) − W (l · 2−k + m · 2− j−1 + 2− j−1)|dt

and obtain

D2,4
j,k W (x) =

2k−1∑
l=0

χk,l(x) · 1

2 j−k+1

2 j−k+1−1∑
m=0

α
j,k
l,m .

As Vt = W1 − W1−t with 0 ≤ t ≤ 1 is equidistributed with Wt , we observe that

{αl,m
j,k : l = 0, . . . , 2k − 1, m = 0, . . . , 2 j−k+1 − 1}

are independent random variables distributed like 2−( j+1)/2W . Hence, if we set

B j,k
l = 1

2 j−k+1

2 j−k+1−1∑
m=0

2( j+1)/2α
j,k
l,m,

then {B j,k
l }2k−1

l=0 are independent and each of them is distributed as the average of

2 j−k+1 variables from W. Finally, we observe that ‖2 j/2D2,4
j,k W‖2,2k− j has the same

distribution as

1√
2

∥∥∥∥∥∥
2k−1∑
l=0

χk,l(x)B j,k
l

∥∥∥∥∥∥
2,2k− j

.

The proof is then finished in the same manner as the proof of Theorem 13 by using
(63) instead of (58). ��
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We close this section with the following remark and three open problems.

Remark 5 A natural question at this place is, if the method and the results presented so
far could also be applied to other processes. The first natural candidate is the fractional
Brownian motion, which is a Gaussian process BH = (BH (t))t≥0 with BH (0) = 0,
EBH (t) = 0 for all t ≥ 0 and

E[BH (t)BH (s)] = 1

2
(|t |2H + |s|2H − |t − s|2H ) for all s, t ≥ 0.

Here, H ∈ (0, 1) is the so-called Hurst index. For H = 1/2, one recovers the stan-
dard Brownian motion with independent increments, but the increments are no longer
independent if H �= 1/2.

One can again recover the decomposition of the paths of BH into the Faber system,
but (due to loss of independence of the increments) the random coefficients are no
longer independent, see [10, Lemma IV.2]. Although this obstacle can be overcome,
the proofs are technically much more involved. That is why we decided to concentrate
on the standard Brownian motion in this paper.

Open Problem 1 All the regularity results obtained so far used Besov spaces and their
numerous variants. The other well-known scale of Fourier-analytic function spaces,
the so-called Triebel-Lizorkin spaces, did not play any important role up to now. For
these spaces a characterization by the Faber system is also available and actually
quite similar to Theorem 5. The main difference to Besov spaces is that one first
applies some sequence space norm to ( f j (t)) j≥0, cf. (29), and only afterwards some
function space norm. The analysis of the regularity of Brownian paths in the frame of
Triebel-Lizorkin spaces could be based on the observation, that the functions f j (t)
are extremely unlikely to be large for the same value of t .

Open Problem 2 It is very well known, that Besov (and Triebel-Lizorkin) spaces can be
characterized by differences in several different ways, including also the so-called ball
means of differences, cf. [57]. Note however, that the usual ball means of differences
differ essentially from D2

j,k f (x) and D2
j,k f (x) introduced in Definition 14. It would

be of some interest to know, if one could build new scales of function spaces in the
spirit of (34) and (35) and investigate their relation with the already known function
spaces.

Open Problem 3 Theorem 15 shows that the norms of a continuous function f in D
and D are equivalent. It would be also interesting to compare the norm of f in D with
its norm in Ã or A(ε). As their definitions differ substantially, we leave it as an open
problem for future research.

3 Path Regularity of Brownian Sheets

The aimof this section is to show that themethods presented in Sect. 2 for the univariate
Wiener process can be quite easily generalized to the multivariate setting. First, let
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us introduce the multivariate analogue of the Wiener process, the so-called Brownian
sheet.

Definition 16 A continuous Gaussian process B = (B(t))t∈Rd+ is called a Brownian

sheet, if EB(t) = 0 for every t = (t1, . . . , td) ∈ R
d+ and

Cov(B(s), B(t)) =
d∏

i=1

min(si , ti ) for all s, t ∈ R
d+. (39)

The study of the Brownian sheet goes back to the 1950s. Since then, many of its
properties (including the properties of sample paths) were studied in great detail. For
an overview we refer to [30] and [65] and the references given therein. The relation
of the Brownian sheet with approximation theory also attracted a lot of attention in
connection with the probability estimates of small balls, cf. [4, 5, 14, 32–34, 38, 54].
However, this problem in its full generality remains unsolved up to now.

3.1 Lévy’s Decomposition of the Brownian Sheet

We now present the decomposition of the paths of the Brownian sheet into the corre-
sponding Faber system. For this sake, we need to develop the multivariate analogues
of the tools of Sect. 2.1, i.e., multivariate Faber systems and second order differences
of functions of several variables. We restrict ourselves to the two-dimensional setting,
i.e., to the case d = 2. This simplifies to some extent the notation used, nevertheless,
the general case d ≥ 2 can be treated in the same way. Hence, we now focus on the
Brownian sheet B = (B(x))x∈Q on Q = [0, 1]2.

Similar to (8), we show that the paths of the Brownian sheet can be decomposed into
the multivariate Faber system and that the coefficients of this decomposition are again
independent Gaussian variables. In order to do this, we follow [58, Section 3.2] and
first describe the decomposition of (continuous) functions into the two-dimensional
Faber system.

3.1.1 Multivariate Faber System and Second Order Differences

The multivariate Faber system is obtained by considering the tensor products of the
functions from the univariate Faber system on [0, 1], which was introduced in Sect. 2.2
as

{v0(t) = 1 − t, v1(t) = t, v j,m(t) : j ∈ N0, m = 0, . . . , 2 j − 1}, t ∈ [0, 1]. (40)

In the sequel we use the notation N−1 := N0 ∪ {−1} = {−1, 0, 1, . . . } and put
v−1,0(t) = v0(t) and v−1,1(t) = v1(t). We consider the tensor products of the func-
tions in (40)

vk,m(t1, t2) = vk1,m1(t1) · vk2,m2(t2), (t1, t2) ∈ [0, 1]2,
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where k = (k1, k2) with ki ∈ N−1 and m = (m1, m2) with mi ∈ {0, 1} if ki = −1
and mi ∈ {0, 1, . . . , 2ki − 1} if ki ∈ N0 for i = 1, 2. Moreover, by PF

k we denote the
admissible set of m’s for given k. Finally, the system

{vk,m : k ∈ N
2−1, m ∈ PF

k }

is the Faber system on [0, 1]2.
Similarly to (6), the coefficients of the decomposition of a continuous f ∈ C(Q)

will be the second order differences of f . These are defined in a rather straightforward
manner.

Definition 17 1. If f is a continuous function on R
2, we define second order differ-

ences

�2
h,1 f (t1, t2) := f (t1 + 2h, t2) − 2 f (t1 + h, t2) + f (t1, t2)

= �1
h,1(�

1
h,1 f )(t1, t2) =

2∑
i=0

(−1)i
(
2

i

)
f (t1 + ih, t2)

and similarly for �2
h,2 f . The second order mixed differences are defined as

�
2,2
h1,h2

f (t1, t2) := �2
h2,2(�

2
h1,1 f )(t1, t2)

=
2∑

i, j=1

(−1)i+ j
(
2

i

)(
2

j

)
f (t1 + ih1, t2 + ih2).

2. For m ∈ PF
k , we put

d2
k,m( f ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (m1, m2), if k = (−1,−1),

− 1
2�

2
2−k2−1,2

f (m1, 2−k2m2), if k = (−1, k2), k2 ∈ N0,

− 1
2�

2
2−k1−1,1

f (2−k1m1, m2), if k = (k1,−1), k1 ∈ N0,

1
4�

2,2
2−k1−1,2−k2−1 f (2−k1m1, 2−k2m2), if k = (k1, k2), k1, k2 ∈ N0.

(41)

The two-dimensional analogue of Theorem 2 then reads as follows.

Theorem 18 ([58, Thm. 3.10]) For f ∈ C([0, 1]2) it holds

f (t) =
∑

k∈N2−1

∑
m∈PF

k

d2
k,m( f )vk,m(t)

= lim
K→∞

∑
k∈{−1,0,...,K }2

∑
m∈PF

k

d2
k,m( f )vk,m(t), t ∈ [0, 1]2, (42)

where the limit is taken in the uniform norm.
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3.1.2 Decomposition of Paths of the Brownian Sheet

Similarly to (8) we can apply (42) to paths of the Brownian sheet B = (B(x))x∈Q if
we replace the scalars d2

k,m( f ) by random variables d2
k,m(B). First, observe that (39)

ensures that B(0, t) = B(s, 0) = 0 almost surely for every s, t ≥ 0, which implies
that almost surely we also have

d2
k,m(B) = 0 if

⎧⎪⎨
⎪⎩

k = (−1,−1) and m = (m1, m2) ∈ {(0, 0), (0, 1), (1, 0)},
k = (−1, k2) if k2 ∈ N0 and m1 = 0,

k = (k1,−1) if k1 ∈ N0 and m2 = 0.
(43)

Furthermore, all the random variables d2
k,m(B) are Gaussian with mean zero. If k1 =

−1 or k2 = −1, then their variance can be computed directly as

var d2
(−1,−1),(1,1)(B) = var B(1, 1) = 1,

var d2
(−1,k2),(1,m2)

(B) = var
(
−1

2
�2

2−k2−1,2
B(1, 2−k2m2)

)
= 1

4
var

(
B(1, 2−k2(m2 + 1)) − 2B(1, 2−k2(m2 + 1/2))

+ B(1, 2−k2m2)
)

= 2−k2−2,

and similarly, we obtain var d2
(k1,−1),(m1,1)(B) = 2−k1−2.

In order to calculate the variance of d2
k,m(B) for k1, k2 ∈ N0, we introduce some

further notation. For a cube Q̃ = [s1, s2] × [t1, t2], where 0 ≤ s1 ≤ s2 ≤ 1 and
0 ≤ t1 ≤ t2 ≤ 1, we put

B(Q̃) := B(s2, t2) − B(s1, t2) − B(s2, t1) + B(s1, t1)

= �1
s2−s1,1(�

1
t2−t1,2B)(s1, t1) =

2∑
i=1

2∑
j=1

(−1)i+ j B(si , t j ). (44)

Then B(Q̃) is a centered Gaussian variable with variance

varB(Q̃) = EB(Q̃)2 =
2∑

i, j,k,l=1

(−1)i+ j+k+l
E

[
B(si , t j )B(sk, tl)

]

=
2∑

i, j,k,l=1

(−1)i+ j+k+l min(si , sk)min(t j , tl)

=
2∑

i,k=1

(−1)i+k min(si , sk)

2∑
j,l=1

(−1) j+l min(t j , tl) = (s2 − s1)(t2 − t1),
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where in the third step we used (39). Furthermore, if Q̃1 = [s1, s2] × [t1, t2] and
Q̃2 = [σ1, σ2] × [τ1, τ2] are disjoint, then we obtain in the same way

EB(Q̃1)B(Q̃2) =
2∑

i,k=1

(−1)i+k min(si , σk)

2∑
j,l=1

(−1) j+l min(t j , τl) = 0.

Actually, B(Q̃1) and B(Q̃2) are not only uncorrelated but also independent, cf. [12,
Sect. 2.4, Prop. 1]. For k ∈ N

2
0 and m ∈ PF

k , we define

Qk,m = Ik1,m1 × Ik2,m2 = [2−k1m1, 2
−k1(m1 + 1)] × [2−k2m2, 2

−k2(m2 + 1)]

and using this notation, we compute for k1, k2 ≥ 0,

4d2
k,m(B) = �

2,2
2−k1−1,2−k2−1 B(2−k1m1, 2

−k2m2)

= B(Q(k1+1,k2+1),(2m1+1,2m2+1)) − B(Q(k1+1,k2+1),(2m1+1,2m2))

− B(Q(k1+1,k2+1),(2m1,2m2+1)) + B(Q(k1+1,k2+1),(2m1,2m2)). (45)

Since the four summands on the right hand side are independent Gaussian variables
with variance 2−(k1+k2)−2, we obtain that d2

k,m(B) is a Gaussian variable with variance

2−(k1+k2+4).
Merging all what we said about d2

k,m(B) so far, we arrive at the decomposition of
the paths of the Brownian sheet into the multivariate Faber system. The discussion of
independence is postponed to Sect. 3.1.3.

Theorem 19 For the Brownian sheet on [0, 1]2 it holds almost surely that

B(t1, t2) = ξ(−1,−1),(1,1)t1t2 +
∞∑

k1=0

2k1−1∑
m1=0

2−(k1+2)/2ξ(k1,−1)(m1,1)vk1,m1(t1)t2

+
∞∑

k2=0

2k2−1∑
m2=0

2−(k2+2)/2ξ(−1,k2)(1,m2)t1vk2,m2(t2)

+
∑
k∈N2

0

2k1−1∑
m1=0

2k2−1∑
m2=0

2−(k1+k2+4)/2ξk,mvk,m(t1, t2), (46)

where
{
ξk,m : k ∈ N

2−1, m ∈ PF
k

}
are independent standard Gaussian variables and

the series converges uniformly on [0, 1]2.
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Remark 6 If k ∈ N
2−1 and m ∈ PF

k , then we denote γk,m = γ(k1,k2),(m1,m2) = γk1,m1 ·
γk2,m2 , where

γ j,l =

⎧⎪⎨
⎪⎩
0 if j = −1 and l = 0,

1 if j = −1 and l = 1,

2−( j+2)/2 if j ≥ 0.

This allows us to reformulate (46) as

B(t1, t2) =
∑

k∈N2−1

∑
m∈PF

k

γk,mξk,mvk,m(t1, t2). (47)

3.1.3 Independence

Next, we show that the random variables {d2
k,m(B) : k ∈ N

2−1, m ∈ PF
k }, which

appear in Theorem 19, are indeed independent. The argument is a tensor product
variant of the proof given for the univariate Wiener process, cf. Theorem 3. For that
sake, let us consider mutually different (k1, m1), . . . , (k N , m N ) with ki = (ki

1, ki
2)

and mi = (mi
1, mi

2). Let

K = (K1, K2), where K j = max{k1j , . . . , k N
j } for j ∈ {1, 2},

and let us consider the array of Gaussian variables

B̃K = (B(QK+1,m) : m = (m1, m2) and 0 ≤ m j ≤ 2K j − 1 for j ∈ {1, 2}),

where B(Q̃) was defined in (44) for a closed cube Q̃ ⊂ [0, 1]2 with sides parallel to
the coordinate axes.

Moreover, let I , J ⊂ [0, 1] be two (closed) intervals, where I = I1 ∪ I2 and
J = J1 ∪ J2 are decompositions of I and J into two intervals I1, I2 and J1, J2,
respectively, which intersect only at one point. Then a straightforward calculation
shows that

B(I × J ) = B((I1 ∪ I2) × J ) = B(I1 × J ) + B(I2 × J ) (48)

B(I × J ) = B(I × (J1 ∪ J2)) = B(I × J1) + B(I × J2). (49)

Furthermore, we denote

(
h(K1,K2)

(k1,k2),(m1,m2)

)
(l1,l2)

= (
hK1

k1,m1

)
l1

· (hK2
k2,m2

)
l2
, (50)

where the vectors on the right-hand side were defined in (9) for k1, k2 ≥ 0 and we

complement this definition by putting h
K j
−1,1 = (1, . . . , 1)T for j = 1, 2.
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If k = (k1, k2) = (−1,−1), we observe that by (43) it is enough to consider
m = (1, 1). Then we apply (41), (48) and (49) together with (50) and obtain

d2
(−1,−1),(1,1)(B) = B(Q) =

2K1+1−1∑
l1=0

2K2+1−1∑
l2=0

B(QK+1,l) = 〈hK
k,m, B̃K 〉.

If k = (k1, k2) = (−1, k2)with 0 ≤ k2 ≤ K2, we assume by (43) thatm = (1, m2),
where 0 ≤ m2 ≤ 2k2 − 1. Then we combine (41), (48), (49), and (50) and obtain

−2d2
(−1,k2),(1,m2)

(B) = B([0, 1] × Ik2+1,2m2+1) − B([0, 1] × Ik2+1,2m2) = 〈hK
k,m, B̃K 〉.

The case of k = (k1,−1) is treated similarly. And finally, if k = (k1, k2) ∈ N
2
0 with

0 ≤ k1 ≤ K1 and 0 ≤ k2 ≤ K2, we employ (45) and observe that

4d2
k,m = 〈hK

k,m, B̃K 〉.

The independence of
(
d2

ki ,mi (B)
)N

i=1 now follows again by the orthogonality of(
hK

ki ,mi

)N
i=1, which in turn is a consequence of (50).

3.2 Function Spaces

As already mentioned before, the appropriate function spaces, which best capture the
regularity of the paths of the Brownian sheet, are the function spaces of dominating
mixed smoothness. They appeared for the first time in the work of Babenko [1], but
they are also known to play an important role in approximation theory and numerics
of PDE’s [6, 15, 52, 55]. In this context we also refer to [19, 49, 59, 60, 64] (and the
references given therein) for a comprehensive treatment.

Similarly to the univariate case, we shall need several different variants of function
spaces of dominating mixed smoothness. As before, we start with the spaces of Besov
type.

Definition 20 Let 0 < r < l ∈ N and 1 ≤ p, q ≤ ∞. Then Sr
pq B(R2) is the collection

of all f ∈ L p(R
2) such that

‖ f |L p(R
2)‖ +

(∫ 1

0
t−rq sup

|h1|≤t
‖�l

h1,1 f |L p(R
2)‖2 dt

t

)1/q

+
(∫ 1

0
t−rq sup

|h2|≤t
‖�l

h2,2 f |L p(R
2)‖2 dt

t

)1/q

+
(∫ 1

0

∫ 1

0
(t1t2)

−rq sup
|h1|≤t1,|h2|≤t2

‖�l,l
h1,h2

f |L p(R
2)‖q dt1dt2

t1t2

)1/q
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is finite. Here we use the usual mixed version of differences resulting from Defini-
tion 17, i.e.,

�
l,l
h1,h2

f (t1, t2) = �l
h2,2

(
�l

h1,1 f
)

(t1, t2) and �l+1
hi ,i

f (x) = �1
hi ,i

(
�l

hi ,i f
)

(x).

The restriction of the spaces from R
2 to Q = [0, 1]2 is done in the same way as

described in Sect. 2.2, cf. (12).
We now provide a decomposition of functions f from Sr

pq B(Q) via the higher
dimensional Faber system introduced in Sect. 3.1. This follows from Theorem 3.16
of [58] and its extension [7, Thm. 4.25], which ensure the following two-dimensional
counterpart of Theorem 5, cf. also [27, Theorem A].

Theorem 21 Let 0 < p, q ≤ ∞, p > 1
2 , and

1

p
< r < 1 + 1

p

be the admissible range for r . Then f ∈ L1(Q) lies in Sr
p,q B(Q) if, and only if, it can

be represented (with convergence in L1(Q)) as

f =
∑

k∈N2−1

∑
m∈PF

k

λk,m2
−(k1+k2)rvk,m, (51)

with

‖λ|s F
p,qb(Q)‖ =

( ∑
k∈N2−1

( ∑
m∈PF

k

2−(k1+k2)|λk,m |p
)q/p

)1/q

< ∞. (52)

Furthermore, the representation (51) is unique with

λk,m = λk,m( f ) = 2(k1+k2)r d2
k,m( f ), k ∈ N

2−1, m ∈ PF
k .

The dominating mixed smoothness counterpart of the one dimensional spaces
Bs,α

p,q(I ) with logarithmic smoothness has been studied in [58]. Unfortunately, we
can not rely exclusively on the results of [58] for two reasons. First, the characteri-
zation with the Faber system presented in Theorem 3.35 in [58] does not include the
case q = ∞, which is important for our considerations. Furthermore, it will turn out
later, that the way we introduce the logarithmic smoothness differs from [58]. Indeed,
the factor (k1 · k2)−α used in this reference, gets replaced by (k1 + k2)−α , which is
strictly larger for k = (k1, k2) ∈ N

2 and α > 0.
However, the function spaces of dominating logarithmic smoothness, which we

introduce in Definition 22, coincide with the ones used in [28]. There these spaces
were defined by differences and moduli of smoothness. Moreover, in [28, Lemma 3.1]
(based [27]) the author further obtained isomorphisms between these function spaces
and corresponding sequence spaces. An equivalent Fourier-analytic characterization
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of these spaces still seems to be missing. In order to avoid the technicalities we define
the function spaces by posing a condition on the coefficients appearing in the Faber
system expansion (51).

Essentially the same comment applies to Besov-Orlicz spaces of dominating mixed
smoothness. Except [28], we are not aware of any existing work, which introduces
and systematically studies these function spaces. Nevertheless, comparing the one
dimensional case with Theorems 21 and 3.35 in [58], the following definition seems
to be well-motivated and a natural generalization. Again we restrict ourselves to the
case of parameters which we need later on, i.e. q = ∞ and r = 1/2.

Let us recall, that χ j,l was defined as the characteristic function of I j,l for j ≥ 0.
We complement this notation by I−1,0 = I−1,1 = [0, 1] and put

χk,m(t1, t2) = χk1,m1(t1) · χk2,m2(t2), k = (k1, k2) ∈ N
2−1, t = (t1, t2) ∈ Q.

Definition 22 1. Let 0 < p ≤ ∞ and α ∈ R. The function space S1/2,α
p,∞ B(Q) is the

collection of all f ∈ C(Q) which can be represented by (51) with r = 1/2 and

‖λ|s F,α
p,∞b(Q)‖ = sup

k∈N2−1

max(1, k1 + k2)
−α

( ∑
m∈PF

k

2−(k1+k2)|λk,m |p
)1/p

< ∞.

(53)

2. The function space S1/2
�2,∞ B(Q) is the collection of all f ∈ C(Q) which can be

represented by (51) with r = 1/2 and

‖λ|s F
�2,∞b(Q)‖ = sup

k∈N2−1

∥∥∥∥∥∥∥
∑

m∈PF
k

λk,mχk,m(·)

∥∥∥∥∥∥∥
�2

< ∞. (54)

Remark 7 If in (53) we had used the usual logarithmic Hölder spaces from [58, The-
orem 3.35] the sequence space norm would be

sup
k∈N2−1

(2 + k1)
−α(2 + k2)

−α
( ∑

m∈PF
k

2−(k1+k2)|λk,m |p
)1/p

< ∞.

Compared to this the advantage of our approach in (53) is, that the sequence spaces
are strictly smaller for α > 0 and we therefore obtain better regularity results. The
disadvantage on the other hand is, that the smoothness weights in (53) do not have
any tensor product structure.

Open Problem 4 For decades the role of function spaces of dominating mixed smooth-
ness Sr

p,q B(Q) in approximation theory has been studied intensively. We refer to [15]
for a recent overview on various results and a list of open problems in this field. Com-
pared to that, much less seems to be known regarding function spaces with logarithmic
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smoothness and Besov-Orlicz spaces as introduced before. In our opinion, it would be
worth investigating these spaces together with their embeddings, which in turn might
shed new light on (some of) the open problems in [15].

3.3 Results of Kamont

We now recover the results of Kamont [28] (cf. also [22]) on the regularity of the
sample paths of Brownian sheets.We combine the representation in (47) (or (46)) with
Theorem 21 and Definition 22 in order to show that the sample paths almost surely
lie in S1/2,1/2∞,∞ B(Q), S1/2

p,∞ B(Q) for all 1 ≤ p < ∞, and S1/2
�2,∞B(Q). Similar to the

method used in Sect. 2.3, we just need to verify that the condition on the coefficients
in the Faber system decomposition is fulfiled almost surely, if we replace λ in (52),
(53), and (54) by a sequence of independent normal variables ξ .

For the terms with k1 = −1 or k2 = −1, the conditions (52), (53), and (54) reduce
to their one-dimensional counterparts, which were already discussed in Sect. 2.3, cf.
also (43). Furthermore, the same is true for the termswith k1 = 0 or k2 = 0. Therefore,
it will be enough to handle the terms with k = (k1, k2) ∈ N

2.

1. Paths of the Brownian sheet almost surely lie in S1/2,1/2∞,∞ B(Q)

In view of Definition 22, we need to show that

sup
k∈N2

1√
k1 + k2

sup
m1=0,...,2k1−1

sup
m2=0,...,2k2−1

|ξk,m | < ∞ almost surely,

where {ξk,m : k ∈ N
2, 0 ≤ m1 ≤ 2k1 −1, 0 ≤ m2 ≤ 2k2 −1} are independent standard

Gaussian variables. For this sake, we define the event AN
k as

sup
m1=0,...,2k1−1

sup
m2=0,...,2k2−1

|ξk,m | > N
√

k1 + k2.

Similar to (23), we obtain that

P(AN
k ) ≤ 2k1+k2e−N2(k1+k2)/2, k ∈ N

2,

and following (24), for every N0 ≥ 1 we get

P

(
sup
k∈N2

1√
k1 + k2

sup
m1=0,...,2k1−1

sup
m2=0,...,2k2−1

|ξk,m | = ∞
)

= P

( ∞⋂
N=1

⋃
k∈N2

AN
k

)

≤ P

( ⋃
k∈N2

AN0
k

)
≤

∑
k∈N2

P
(

AN0
k

) ≤
∑
k∈N2

2k1+k2e−N2
0 (k1+k2)/2.

As the last sum again tends to zero if N0 → ∞, the proof is finished.
2. Paths of the Brownian sheet almost surely lie in S1/2

p,∞ B(Q) for every 1 ≤ p < ∞
In order to be able to apply Theorem 21 for r = 1/2, we assume that 2 < p < ∞.

Then the smaller values of p follow easily bymonotonicity of the function spaces with
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dominating mixed smoothness on domains with respect to the integrability parameter
p. In this case (52) for k ∈ N

2 reduces to

sup
k∈N2

1

2k1+k2

2k1−1∑
m1=0

2k2−1∑
m2=0

|ξk,m |p < ∞ almost surely.

We denote again by μp the p absolute moment of a standard Gaussian variable.
Furthermore, for t > 0 and k ∈ N

2, we denote by At
k the event

1

2k1+k2

2k1−1∑
m1=0

2k2−1∑
m2=0

|ξk,m |p − μp ≥ t .

By (26) applied to j = k1 + k2, we observe that

P(At
k) ≤ 1

t2
· μ2p − μ2

p

2k1+k2
.

Finally, we conclude, that for every N0 ∈ N it holds

P

(
sup

k∈N2

1

2k1+k2

2k1−1∑
m1=0

2k2−1∑
m2=0

|ξk,m |p = ∞
)

= P

( ∞⋂
N=1

⋃
k∈N2

AN
k

)
≤ P

( ⋃
k∈N2

AN0
k

)
≤

∑
k∈N2

P
(

AN0
k

)

≤ μ2p − μ2
p

N2
0

∞∑
k1=1

∞∑
k2=1

1

2k1+k2
= 4(μ2p − μ2

p)

N2
0

.

The last expression tends to zero if N0 → ∞, which renders the result.
3. Paths of the Brownian sheet almost surely lie in S1/2

�2,∞B(Q)

Again, it is enough to show that (54) is finite almost surely if we restrict ourselves
to k ∈ N

2 and replace λk,m by independent normal variables ξk,m . Therefore, we put

fk(t) =
2k1−1∑
m1=0

2k2−1∑
m2=0

ξk,mχk,m(t), k = (k1, k2) ∈ N
2 and t ∈ Q (55)

and show that

sup
k∈N2

‖ fk‖�2 < ∞ almost surely.
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Again we use the characterization of L�2(Q) with the non-increasing rearrangement
from Theorem 31. As in Sect. 2.4 we have

f ∗
k (s) =

2k1+k2−1∑
m=0

(ξk)
∗
m+1χk1+k2,m(s) for 0 < s < 1 (56)

and using (30) we can estimate

‖ fk‖�2 ≤ c sup
0≤u<k1+k2

f ∗
k (2u−(k1+k2))√

k1 + k2 − u
= c sup

0≤u<k1+k2

(ξk)
∗
2u√

k1 + k2 − u
,

where ξk = (ξk,m : 0 ≤ m1 ≤ 2k1 − 1, 0 ≤ m2 ≤ 2k2 − 1) and
(
(ξk)

∗
m

)2k1+k2

m=1 is its
non-increasing rearrangement. Then, by Lemma 27 we get for every K0 large enough

P

(
sup

k∈N2
‖ fk‖�2 = ∞

)
≤

∑
0≤u<k1+k2<∞

(
2e−K 2

0 /2
)(k1+k2−u)2u

· e2
u

≤ c
∞∑

u=0

e2
u

∞∑
l=u+1

l ·
(
2e−K 2

0 /2
)(l−u)·2u

≤ c
∞∑

u=0

(u + 1)e2
u ·

(
2e−K 2

0 /2
)2u

,

which again goes to zero if K0 → ∞.

Remark 8 At this point, we can observe how versatile the method with the non-
increasing rearrangement is performing. As input we have given a two dimensional
function in (55) and using the rearrangement we obtain in (56) a one-dimensional
function similar to the one from Sect. 2.4. Now the remaining estimates done above
are an analogue of the estimates of the case d = 1 with the only difference that k is
replaced by k1 + k2.

Clearly, a generalization to d > 2 follows directly from the considerations above -
as long as a characterization in terms of a Faber basis as in Theorem 19 is given.

3.4 New Function Spaces

We also can carry over the one-dimensional approach of averaging operators to the
two-dimensional setting. To that end, we add to (32) the extra case

(A−1g)(x) = g(x) for all x ∈ I .

Now, for an integrable function g on Q we can introduce the averaging operators Ak g
for all k = (k1, k2) ∈ N

2−1 by

(Ak g)(x) := A1
k1

(
A2

k2g(·, x2)
)

(x1) and ( Ãk g)(x) = (Ak(|g|))(x), x ∈ Q,
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where the upper index stands for the dimension in which the one-dimensional averag-
ing operator is applied. In the non-borderline case when k ∈ N

2
0, the operator is given

by

(Ak g)(x) =
2k1−1∑
l1=0

2k2−1∑
l2=0

2k1+k2

∫
Qk,l

g(t)dt · χk,l(x),

where k ∈ N
2
0, Qk,l = Ik1,l1 × Ik2,l2 , and χk,l(t1, t2) = χk1,l1(t1)χk2,l2(t2).

With these preparations we can define the spaces Aε(Q) and Ã(Q) as follows.

Definition 23 Let f ∈ C(Q) be represented in the Faber system by

f =
∑

k∈N2−1

∑
m∈PF

k

λk,m2
−(k1+k2)

1
2 vk,m,

and define f j by

f j (t) =
∑

m∈PF
j

λ j,mχ j,m(t), j = ( j1, j2) ∈ N
2−1 and t ∈ Q.

1. For ε > 0 the space Aε(Q) is the collection of all f ∈ C(Q) with

‖ f ‖Aε
:= sup

j∈N2−1

sup
−1≤k1≤ j1

sup
−1≤k2≤ j2

sup
0<t<1

2( j1+ j2−(k1+k2))/2

( j1 + j2 − (k1 + k2) + 1)ε
· (Ak f j )

∗(t)√
log(1/t) + 1

≈ sup
j∈N2−1

sup
−1≤ki ≤ ji

2( j1+ j2−(k1+k2))/2

( j1 + j2 − (k1 + k2) + 1)ε
· ‖Ak f j ‖�2 < ∞.

2. The space Ã(Q) is the collection of all f ∈ C(Q) with

‖ f ‖ Ã := sup
j∈N2−1

sup
−1≤k1≤ j1

sup
−1≤k2≤ j2

sup
0<t<1

( Ãk f j )
∗(t)√

2k1+k2−( j1+ j2) log(1/t) + 1

≈ sup
j∈N2−1

sup
−1≤ki ≤ ji

‖ Ãk f j‖2,2k1+k2−( j1+ j2) < ∞.

Using this definition we are now able to prove the following result.

Theorem 24 Let B be the Brownian sheet according to Definition 16 and ε > 0.

(i) It holds that ‖B(·)‖Aε < ∞ almost surely.
(ii) It holds that ‖B(·)‖ Ã < ∞ almost surely.

Proof For both assertionswe use that according to Theorem 19we have the representa-
tion needed for the Brownian sheet. Furthermore, we only have to treat the cases where
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j = ( j1, j2) ∈ N
2
0 since the other cases follow directly from the one-dimensional case.

For j = ( j1, j2) ∈ N
2
0 and t = (t1, t2) ∈ Q we set

f j (t) =
2 j1−1∑
m1=0

2 j2−1∑
m2=0

ξ j,mχ j,m(t),

with independent normal variables ξ j,m .

In order to establish the first assertion it is enough to observe that 2[ j1+ j2−(k1+k2)] 12
Ak f j (t) is equidistributed as fk(t), which follows again by the 2-stability, cf.
Lemma 26. Now the proof of this assertion follows directly from (56) and repeat-
ing the same arguments as in the proof of Theorem 11 with k1 + k2 and j1 + j2
replacing k and j there.

For the second assertion of the theorem we use

( Ãk f j )(t) =
2k1−1∑
l1=0

2k2−1∑
l2=0

νk,lχk,l(t),

where νk = (νk,l : li ∈ {0, . . . , 2ki − 1}) is a vector of independent variables from
G2 j1+ j2−(k1+k2) , see Definition 28.

Similar to the proof of Theorem 13, using (56) we estimate with the rearrangement

sup
0<t<1

( Ãk f j )
∗(t)√

2k1+k2−( j1+ j2) log(1/t) + 1
≤ c sup

z=0,...,k1+k2−1

(ν∗
k )2z√

2k1+k2−( j1+ j2)(k1 + k2 − z − 1) + 1
,

where
(
(ν∗

k )m
)2k1+k2

m=1 is the rearrangement of νk above. Now, we have reformulated
again the two dimensional problem into a one dimensional onewith the help of the non-
increasing rearrangement and we can use the arguments of the proof of Theorem 13.

��
Remark 9 The proposed analogy with the one-dimensional setting could be investi-
gated even further by defining the analogues of the function spaces D and D from
Definition 14. Although the general direction seems to be quite obvious, we do not
pursue it in this paper in order to avoid further technicalities.

4 A Few Facts About RandomVariables and Function Spaces

4.1 Gaussian Variables

For the sake of completeness, we present the definition of Gaussian random variables
and recall some of their basic properties.

Definition 25 We say that the random variable ξ has standard normal distribution (or
standard Gaussian distribution) and write ξ ∼ N (0, 1), if its density function is given
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by

p(x) = 1√
2π

e−x2/2, x ∈ R.

We will need the following two properties of Gaussian variables (and refer to [56,
Section 3.2] for details).

Lemma 26 Let k ∈ N and let ξ = (ξ1, . . . , ξk) be a vector of independent standard
normal random variables.

(i) (2-stability of normal distribution) Let λ = (λ1, . . . , λk) ∈ R
k . Then the random

variable 〈λ, ξ 〉 = λ1ξ1 + · · · + λkξk is a normal variable with mean zero and
variance

∑k
i=1 λ2i .

(ii) Let 1 ≤ j ≤ k be positive integers and let u1, . . . , u j ∈ R
k be orthogonal. Then

the random variables 〈u1, ξ 〉, . . . , 〈u j , ξ 〉 are independent.

We shall also make use of the following tail bounds.

Lemma 27 (Concentration inequalities for standard Gaussian variables)

(i) Let ω be a standard Gaussian variable. Then

P(|ω| ≥ x) ≤ 2 exp(−x2/2)√
2πx

, x > 0. (57)

(ii) Let 0 ≤ k < j be integers and let ξ = (ξ0, . . . , ξ2 j −1) be a vector of independent
standard normal random variables. Then, for every K ≥ 1,

P

(
ξ∗
2k ≥ K

√
j − k

)
≤

(
2e−K 2/2

)( j−k)2k

· e2
k
.

Here, ξ∗ = (ξ∗
1 , . . . , ξ∗

2 j ) is the non-increasing rearrangement of ξ.

Proof (i) The proof follows from the elementary bound

∫ ∞

x
e−u2/2du ≤ 1

x

∫ ∞

x
ue−u2/2du = e−x2/2

x
.

(ii) Since ξm ∼ N (0, 1) are independent, (57) together with the estimate

(
n

k

)
<(en

k

)k
for the binomial coefficients yields

P

(
ξ∗
2k ≥ K

√
j − k

)
≤

(
2 j

2k

)
P

(
|ω| ≥ K

√
j − k

)2k

≤
(

e2 j

2k

)2k (
2e−K 2( j−k)/2√
2π K 2( j − k)

)2k

≤ e2
k
(
2e−K 2/2

)( j−k)2k

.

��
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4.2 Absolute Values of Gaussian Variables

In this section we consider averages of absolute values of Gaussian variables.

Definition 28 Let N ≥ 1 be a positive integer and let ξ1, . . . , ξN be independent
standard normal variables. Let ν be a random variable. We write ν ∼ GN if ν has the
same distribution as

1

N

N∑
m=1

|ξm |.

In terms of concentration inequalities we have the following result.

Lemma 29 (Concentration inequalities for ν)

(i) Let N ≥ 1, ν ∼ GN , and ω ∼ N (0, 1). Then

P(ν ≥ t) ≤ 2N
P(ω ≥ √

Nt), t > 0.

Moreover, if t ≥ 2
√
ln 2, then

P(ν ≥ t) ≤ exp(−Nt2/4).

(ii) Let 0 ≤ k < j be integers and let ν = (ν0, . . . , ν2 j −1) be a vector of independent
GN variables. Then

P(ν∗
2k ≥ t) ≤

[
e · 2 j−k exp(−Nt2/4)

]2k

, t ≥ 2
√
ln 2. (58)

Proof (i) We use the 2-stability of normal variables from Lemma 26 and estimate

P(ν ≥ t) = P

( N∑
m=1

|ξm | ≥ Nt
)

= P

(
∃ε ∈ {−1,+1}N :

N∑
m=1

εmξm ≥ Nt
)

≤ 2N
P

( N∑
m=1

ξm ≥ Nt
)

= 2N
P(ω ≥ √

Nt).

The second statement follows by (57).
(ii) The proof resembles very much the proof of Lemma 27 (ii). We estimate

P(ν∗
2k ≥ t) ≤

(
2 j

2k

)
P(ν1 ≥ t)2

k ≤
( e 2 j

2k

)2k

exp(−Nt2/4 · 2k ) =
[
e · 2 j−k exp(−Nt2/4)

]2k

.

��
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4.3 Integrated AbsoluteWiener Process

Let

W =
∫ 1

0
|Ws | ds (59)

be the integral of the absolute value of the Wiener process. The distribution of the
random variable W is rather complicated, cf. [24, 53]. For our purposes, it will be
sufficient to obtain concentration inequalities forW similar to those for Gaussian and
absolute values of Gaussian variables as given in Lemmas 27 and 29. We use as a tool
the integral of the square of the Wiener process

S =
(∫ 1

0
|Ws |2 ds

)1/2

(60)

in order to get the tail bounds for (59).

Lemma 30 (Concentration inequalities for W)

(i) Let t ≥ 1. Then

P

(
W ≥ 1

2
+ t

)
≤ exp(−t2). (61)

(ii) There is a constant c > 0 such that for every positive integer N ≥ 1 and (W j )
N
j=1

i.i.d. as in (59) it holds

P

( 1

N

N∑
j=1

W j > t
)

≤ exp(1 − c Nt2), t > 1. (62)

(iii) Let 0 ≤ k < j be two integers and let ν = (ν0, . . . , ν2 j −1) be a vector of

independent random variables, each equidistributed with 1
N

∑N
j=1W j . Then

P(ν∗
2k ≥ t) ≤

[
e2 · 2 j−k exp(−cNt2)

]2k

, t > 1. (63)

Proof Step 1. We use the Karhunen–Loève expansion of the Wiener process (see [29]
or [39, Chapter XI]), i.e.,

Wt = √
2

∞∑
k=1

Zk
sin((k − 1/2)π t)

(k − 1/2)π
, t ∈ [0, 1], (64)

where (Zk)
∞
k=1 is a sequence of independent standardGaussian variables and the series

converges in L2 uniformly over t ∈ [0, 1]. We insert (64) into (60) and obtain

W2 ≤ S2 =
∫ 1

0
|Ws |2ds =

∞∑
k=1

Z2
k

(k − 1/2)2π2 =
∞∑

k=1

αk Z2
k ,
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where αk = 1

(k − 1/2)2π2 . By [35, Lemma 1],

P

( ∞∑
k=1

αk(Z2
k − 1) ≥ 2‖α‖2√x + 2‖α‖∞x

)
≤ exp(−x)

for every x > 0. Using that

‖α‖1 = 1

2
, ‖α‖2 = 1√

6
, and ‖α‖∞ = 4

π2 ,

we obtain

P

(
W ≥ 1

2
+ t

)
≤ P

(
S ≥ 1

2
+ t

)
≤ exp

(−t2
)
, t ≥ 1,

which gives (61).
Step 2. Using the properties of the Brownian motion, cf. Definition 1, we obtain

EW =
∫ 1

0
E|Ws |ds =

∫ 1

0
E|Ws − W0|ds =

√
2

π

∫ 1

0

√
sds =

√
2

π
· 2
3

∈
(
1

2
, 1

)
.

Put X = W − EW . Then P(|X | > t) ≤ 1 for t ≤ √
2 and

P(|X | > t) = P(W > t + EW) ≤ P

(
W > t + 1

2

)
≤ exp(−t2)

for t >
√
2. We conclude that P(|X | > t) ≤ exp(1 − t2/2) for all t > 0, i.e., X is a

centered subgaussian variable, cf. [63, Definition 5.7]. Therefore, by the Hoeffding-
type inequality, cf. [63, Proposition 5.10], there is a constant c1 > 0, such that

P

( 1

N

N∑
j=1

W j > t + EW
)

≤ exp(1 − c1 Nt2), t > 0,

which, in turn, implies (62) for t > 1 and c > 0 small enough.
Step 3. Finally, we conclude that if ν = (ν0, . . . , ν2 j −1) is a vector of independent

random variables, each equidistributed with 1
N

∑N
j=1W j , then

P(ν∗
2k ≥ t) ≤

[
e2 · 2 j−k exp(−c2Nt2)

]2k

by an argument quite similar to the proof of Lemma 29 (ii). ��
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4.4 Orlicz Spaces

Let us recall, that the Orlicz function �2 was defined in (16) and the corresponding
Orlicz space L�2 was introduced in (17). The following characterization is a special
case of [2, Theorem 10.3] adapted to the domain [0, 1]d . We include its short proof to
make our presentation self-contained.

Theorem 31 A measurable function f on [0, 1]d belongs to L�2([0, 1]d) if, and only
if, there exists c > 0 such that

f ∗(t) ≤ c
√
log(1/t) + 1, 0 < t < 1. (65)

Moreover, the expression

‖ f ‖�∗
2

:= sup
0<t<1

f ∗(t)√
log(1/t) + 1

is equivalent to ‖ f ‖�2 .

Proof If f satisfies (65) for some c, then we obtain for λ = 2c

∫
[0,1]d

[
exp( f (x)2/λ2) − 1

]
dx =

∫ 1

0

[
exp( f ∗(t)2/λ2) − 1

]
dt

≤
∫ 1

0

[
exp

(c2(log(1/t) + 1)

λ2

)
− 1

]
dt

=
∫ 1

0

[
exp

( log(1/t) + 1

4

)
− 1

]
dt < 1.

Hence, f ∈ L�2([0, 1]d) and ‖ f ‖�2 ≤ 2‖ f ‖�∗
2
.

If, on the other hand, f ∈ L�2([0, 1]d) with ‖ f ‖�2 ≤ 1, then

1 ≥
∫

[0,1]d
�2(| f (x)|)dx =

∫ 1

0
�2( f ∗(s))ds ≥

∫ t

0

[
exp( f ∗(s)2) − 1

]
ds

≥ t
[
exp( f ∗(t)2) − 1

]
,

i.e., f ∗(t)2 ≤ log(1 + 1/t) ≤ log(e/t) = 1 + log(1/t) for every 0 < t < 1 and (65)
follows. ��

We need also another characterization of the norm of L�2([0, 1]d). Its proof can
be found in [9, Theorem 3.4] but again we include it for the reader’s convenience.

Theorem 32 A measurable function f on [0, 1]d belongs to L�2([0, 1]d) if, and only
if, there exists c > 0 such that

‖ f ‖p ≤ c
√

p holds for all p ≥ 1.
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Moreover,

‖ f ‖(�2) := sup
p≥1

‖ f ‖p√
p

(66)

is an equivalent norm on L�2([0, 1]d).

Proof First of all we show ‖ f ‖(�2) ≤ ‖ f ‖�2 . To that end, let f ∈ L�2([0, 1]d)

be given with ‖ f ‖�2 ≤ 1. Then by the power series of the exponential function we
estimate for any n ∈ N

1 ≥
∫

[0,1]d
�2(| f (x)|)dx =

∫
[0,1]d

∞∑
k=1

| f (x)|2k

k! dx ≥ 1

n! ‖ f ‖2n
2n .

Now using n! ≤ nn we obtain

‖ f ‖2n
2n

nn
≤ 1 which is equivalent to

‖ f ‖2n√
2n

≤ 1√
2
.

If 1 ≤ p < 2, we obtain

‖ f ‖p√
p

≤ ‖ f ‖2 ≤ 1.

If 2 < p < ∞, we choose the unique n ∈ N with n ≥ 2 such that 2(n − 1) < p ≤ 2n
and obtain

‖ f ‖p√
p

≤ ‖ f ‖2n√
2(n − 1)

≤
√

n√
2(n − 1)

≤ 1,

which finishes the first step.
In the second step, we are going to show ‖ f ‖�2 ≤ C‖ f ‖(�2). To that end, we

choose f such that (66) is finite. Using Stirling’s formula we can fix an λ0 > 1 such
that λ0n! ≥ (n/e)n holds for all n ∈ N. We estimate with the help of the power series
of the exponential function

∫
[0,1]d

�2

( | f (x)|
λ

)
dx =

∫
[0,1]d

∞∑
n=1

| f (x)|2n

λ2nn! dx ≤ λ0

∞∑
n=1

(2e)n

λ2n

‖ f ‖2n
2n

(2n)n

and now choosing λ = √
2e(1 + λ0)‖ f ‖(�2) gives

∫
[0,1]d

�2

( | f (x)|
λ

)
dx ≤ λ0

∞∑
n=1

(1 + λ0)
−n = 1.

This shows ‖ f ‖�2 ≤ λ = √
2e(1 + λ0)‖ f ‖(�2) and finishes the proof. ��
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In the refined analysis concerning the regularity of Brownian paths, we need also a
generalization of Theorem 31. First, we define a scale of Orlicz functions�2,A, where
0 < A ≤ 1 is a real parameter, via

�2,A(u) =
⎧⎨
⎩

u2, 0 < u ≤ 1,

exp
(u2 − 1

A

)
, 1 < u < ∞.

(67)

It is easy to see that this scale of Orlicz functions fulfills the following estimates for
all u > 0 and all 0 < A ≤ 1

�2

(
u√
2

)
≤ �2,1(u) ≤ �2,A(u) ≤ �2

(
u√
A

)
.

Therefore the Orlicz space associated to �2,A coincides with L�2 for every 0 <

A ≤ 1. Nevertheless, the equivalence constants in the respective norms will depend on
A. It is quite interesting (and of a crucial importance for us) that the following simple
expression

‖ f ‖(1)
2,A := sup

0<t<1

f ∗(t)√
A log(1/t) + 1

(68)

is equivalent to the Orlicz norm associated with �2,A (which we denote by ‖ f ‖2,A)
and that the equivalence constants are independent on the parameter A ∈ (0, 1].
Theorem 33 Let 0 < A ≤ 1 and let f be a measurable function on [0, 1]d . Then

‖ f ‖(1)
2,A ≤ ‖ f ‖2,A ≤ 4 ‖ f ‖(1)

2,A.

Proof Let ‖ f ‖2,A ≤ 1 and let 0 < t < 1. If f ∗(t) ≤ 1, then also f ∗(t) ≤√
A log(1/t) + 1 and there is nothing to prove. If f ∗(t) > 1, then we estimate

1 ≥
∫

[0,1]d
�2,A(| f (s)|)ds ≥

∫ t

0
�2,A( f ∗(s))ds ≥ t �2,A( f ∗(t))

= t exp
( f ∗(t)2 − 1

A

)
.

By simple algebraic manipulations, it follows that

f ∗(t) ≤ √
A log(1/t) + 1, 0 < t < 1.

Let, on the other hand, ‖ f ‖(1)
2,A = c. Then, putting λ = 4c we obtain f ∗(t)2

λ2
≤

A log(1/t)+1
16 and estimate
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∫
[0,1]d

�2,A

( | f (x)|
λ

)
dx =

∫ 1

0
�2,A

(
f ∗(t)

λ

)
dt ≤

∫ 1

0
exp

( f ∗(t)2/λ2 − 1

A

)
dt +

∫ 1

0

f ∗(t)2

λ2
dt

≤
∫ 1

0
exp

( log(1/t)

16
− 15

16A

)
dt +

∫ 1

0

A log(1/t) + 1

16
dt

≤ exp
(
− 15

16

) ∫ 1

0
exp

( log(1/t)

16

)
dt + 1

16

∫ 1

0

(
log(1/t) + 1

)
dt

= exp
(
− 15

16

)
· 16
15

+ 1

8
≤ 1,

which implies that ‖ f ‖2,A ≤ λ = 4c. ��
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