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Abstract
The spherical ensemble is a well-known ensemble of N repulsive points on the two-
dimensional sphere, which can realized in various ways (as a randommatrix ensemble,
a determinantal point process, a Coulomb gas, a Quantum Hall state...). Here we
show that the spherical ensemble enjoys remarkable convergence properties from the
point of view of numerical integration. More precisely, it is shown that the numerical
integration rule corresponding to N nodes on the two-dimensional sphere sampled in
the spherical ensemble is, with overwhelming probability, nearly a quasi-Monte-Carlo
design in the sense of Brauchart-Saff-Sloan-Womersley for any smoothness parameter
s ≤ 2. The key ingredient is a new explicit sub-Gaussian concentration of measure
inequality for the spherical ensemble.

Keywords Quasi-Monte-Carlo designs · Coulomb gas · Numerical integration ·
Concentration of measure

1 Introduction

How to optimally distribute N points on the two-dimensional sphere?This is a question
which has a long history and appears in a wide range of areas in pure as well as
applied mathematics (see the survey [32] and [8, Section 7]). The notion of optimality
depends, of course, on the problem at hand. But a recurrent theme is to distribute the
configuration of points xN := (x1, ..., xN ) ∈ XN so as to minimize

‖δN (xN ) − dσ‖
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on XN , where ‖·‖ is a given (semi-)norm on the space of all signed measure on the
two-sphere X , dσ denotes the standard uniform probabilitymeasure on X and δN (xN )

is the empirical measure corresponding to xN , i.e. the discrete probability measure
on X defined by

δN (x1, . . . , xN ) := 1

N

N∑

i=1

δxi (1.1)

More precisely, since finding exact minimizers is usually unfeasible, the aim is typ-
ically to distribute the N points (x1, ..., xN ) so that ‖δN (xN ) − dσ‖ achieves the
optimal (minimal) rate as N → ∞ (as discussed in the introduction of [26, 27, I]).
Here we will be concerned with a notion of optimality which naturally appears in
the context of numerical integration (cubature) and quasi-Monte-Carlo integration
techniques [10, 12], where the norm in question is a Sobolev norm.

1.1 Background

1.1.1 (Quasi-)Monte-Carlo integration on cubes

Monte-Carlo integration is a standard probabilistic technique for numerically comput-
ing the Lebesgue integral of a given, say continuous, function f over a domain X in
EuclideanRd (or more generally, a Riemannian manifold X). It consists in generating
N random points x1, ..., xN in X , with respect to the uniform distribution dx on X
(assuming for simplicity that X has unit-volume) and approximating

∫

X
f dx ≈ 1

N

N∑

i=1

f (xi )

In other words, the points x1, ..., xN are viewed as as independentRd−valued random
variables with identical distribution dx . By the central limit theorem the error is of the
order O(N−1/2) with high probability:

lim
N→∞P

(∣∣∣∣∣

∫

X
f dx − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣ ≥ λ

N 1/2

)
= 1 −

∫

|y|≥λ

e−y2dx/π1/2 (1.2)

if f is normalized to have unit variance.
The popularQuasi-Monte-Carlo method aims at improving the order of the con-

vergence, by taking xN := (x1, ..., xN ) to be a judiciously constructed deterministic
sequence of N−point configurations on X . In themost commonly studied casewhen X
is the unit-cube [0, 1]d inRd there are well-known explicit so called low-descrepancy
sequences (e.g. digital nets) constructed using the theory of uniform distribution in
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number theory [29], such that

sup
f ∈C(X): V ( f )≤1

∣∣∣∣∣

∫

X
f dx − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣ ≤ Cd
(log N )d

N
(1.3)

where V ( f ) is the Hardy-Krause variation of f , whose general definition is rather
complicated, but for f sufficiently regular it is, when d = 2, given by

V ( f ) :=
∫

[0,1]2

∣∣∣∣
∂2 f

∂x1∂x2

∣∣∣∣ dx +
∫

[0,1]

∣∣∣∣
∂ f

∂x1
(x1, 1)

∣∣∣∣ dx1 +
∫

[0,1]

∣∣∣∣
∂ f

∂x2
(1, x2)

∣∣∣∣ dx2(1.4)

This is a consequence of the Koksma-Hlawka inequality, which is the corner stone of
the theory of quasi-Monte-Carlo integration on a cube [21, 23, 29].

1.1.2 Numerical integration onmanifolds

Let us next recall the general setup for numerical integration on manifolds, following
[9, 10]. Let X be a compact manifold that we shall take to be two-dimensional. Given
a configuration xN ∈ XN of N points on X the worst-case error for the integration
rule on X with node set xN with respect to the smoothness parameter s ∈]1,∞[ is
defined by

wce (xN ; s) := sup
f : ‖ f ‖Hs (X)≤1

∣∣∣∣∣

∫

X
f dσ − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣ (1.5)

where dσg denotes the normalized volume form defined by g and ‖ f ‖Hs (X) denotes
the norm in the Sobolev space Hs(X) of functions with s fractional derivatives in
L2(X). In other words,

wce (xN ; s) = ∥∥δN (xN ) − dσg
∥∥
H−s
0 (X)

,

where δN (xN ) is the empirical measure 1.1 and H−s
0 (X) denotes the Sobolev space of

all mean zero distributions on X , endowed with the Hilbert norm which is dual to the
smoothness parameter s ∈]1,∞[ (see Sect. 2.1). The role of the Hardy-Krause varia-
tion norm 1.4 on a Euclidean square will in the present two-dimensional Riemannian
setting be played by the Sobolev norm with smoothness parameter 2 :

‖ f ‖H2(X) :=
(∫

X
|�g f |2dVg

)1/2

,

where �g denotes Laplace operator on C∞(X). The worst case error wce (xN ; s) is
also called thegeneralizeddiscrepancy [12] because of the similaritywith theKoksma-
Hlawka inequality on a cube. A sequence xN ∈ XN is said to be of convergence order

123



460 Constructive Approximation (2024) 59:457–483

O(N−κ) with respect to the smoothness parameter s if

wce (xN ; s) ≤ O(N−κ)

The optimal convergence order isO(N−s/2). More precisely, by [9, Thm 2.14], there
exists a positive constant c(s) such that for any sequence xN ∈ XN

wce (xN ; s) ≥ c(s)N−s/2. (1.6)

1.1.3 Quasi-Monte Carlo designs on the two-sphere

Consider now the case when X is the two-dimensional sphere endowed with the
Riemannian metric induced from the standard embedding of X as the unit-sphere
in Euclidean R

3. We will denote by dσ the probability measure on X obtained by
normalizing the area form of g. Following [10] a sequence of N−point configurations
xN ∈ XN is said to be a sequence of Quasi-Monte-Carlo designs (QMC) wrt the
smoothness parameter s ∈]1,∞[, if the corresponding worst case errors wce (xN ; s)
have optimal convergence order, i.e. if

wce (xN ; s) = O(N−s/2)

In particular, this convergence is faster than the one offered by the standard Monte-
Carlo method. Indeed, as recalled above, Monte-Carlo integration gives, with high
probability, an error of the order N−1/2 for a fixed function f , even if the function is
smooth.

The notion of a QMC design is modeled on the influential notion of a spherical
t-design xN ∈ XN , introduced in [13]. In fact, as shown in [10, Thm 6], it follows
from the solution of theKorevaar-Meyers conjecture in [7], that there exists a sequence
of spherical t−designs XN with t of the order N 1/2, which is a QMC design for any
s ∈]1,∞[. Moreover, for a fixed s ∈]1, 2[ reproducing kernel techniques reveal that
any sequence of maximizers xN (s) ∈ XN of the generalized sum

∑

i, j≤N

∣∣xi − x j
∣∣2s−2

is a QMC design wrt the smoothness parameter s (see [10]).
However, all the sequences of QMC designs discussed above are non-explicit for

N large. Moreover, approximating them numerically is very challening for large N ,

due, in particular, to an abundance of local minima of the corresponding functionals
to be minimized on XN [19, 36]. One is thus lead to wonder if probabilistic methods
can be used to improve the convergence order of the standard Monte-Carlo method by
taking the points x1, ..., xN on the sphere to be appropriately correlated, as in repul-
sive particle systems? A natural class of such point processes is offered by the class of
determinantal point processes, whose utility for Monte-Carlo type numerical integra-
tion was advocated in [2]. The main aim of the present work is to show that a particular
determinantal point process on the two-sphere known as the spherical ensemble enjoys
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quite remarkable converge properties from the point of view of numerical integration,
for any smoothness parameter s ∈]1, 2].

1.2 Main results for the spherical ensemble

The spherical ensemble first appeared as a Coulomb gas, also known as a one-
component plasma, in the physics literature (see the monograph [16] and references
therein). We recall that the Coulomb gas on the two-sphere X with N particles, at
inverse temperature β, is defined by the following symmetric probability measure on
XN :

dPN ,β := 1

ZN ,β

e−βE (N )

dσ⊗N , E (N ) := −
∑

i 
= j≤N

1

2
log

∣∣xi − x j
∣∣ (1.7)

where X has been embedded as the unit-sphere in Euclidean R
3. It represents the

microscopic state of N unit charge particles in thermal equilibriumon X , interacting by
theCoulomb energy E (N ), subject to a neutralizing uniformback-ground charge.More
precisely, the spherical ensemble (X ,PN ) coincides with Coulomb gas on the sphere
at the particular inverse temperature β = 2, for which the Coulomb gas becomes a
determinantal point process [16, 22]. The following elegant randommatrix realization
of the spherical ensemblewas exhibited in [24].Consider two rank N complexmatrices
A and B and take their entries to be standard normal variables. Then the spherical
ensemble coincides with the random point process defined by the eigenvalues of AB−1

in the complex plane, when mapped to the two-sphere, using stereographic projection.
In the present work it is shown that a random N−point configuration xN in the

spherical ensemble is, with overwhelming probability, nearly a Quasi-Monte Carlo
design for any s ∈]1, 2] :
Theorem 1.1 Consider the spherical ensemble with N particles. There exists a
constant C such that for any given R in [(log N )−1/2, N (log N )−1/2]

PN

(
wce (xN ; 2) ≤ CR

(log N )1/2

N

)
≥ 1 − 1

N R2/C−C

As a consequence, for any s ∈]1, 2], there exists a constant C(s) such that for any
given R in [(log N )−1/2, N (log N )−1/2]

PN

(
wce(xN ; s) ≤ C(s)Rs/2 (log N )s/4

Ns/2

)
≥ 1 − 1

N R2/C−C
.

Note that for N large the restrictions on the parameter R are essentially negligable.
That the estimate in the case s = 2 implies the one for s < 2 follows from [10, Lemma
26]. Interestingly, the worst case error in the case s = 2 is similar to the worst case
error of low-discrepancy sequences on the cube (formula 1.3). It should, however, be
stressed that on the two-sphere there are no explicitly constructed sequences (xN )
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saturating the optimal rate wce (xN ; 2) = O(N−1), even if logarithmic factors are
included (see the discussion in Sect. 1.5.1).

An interesting feature of the proof of the previous theorem is that it yields attractive
values on the constants in question. Indeed, for any η > 2/ log N the following explicit
bound is obtained:

PN

(
wce (xN ; 2) ≤ e

(
1 + η

4π

)1/2
(log N )1/2

N

)
≥ 1 − ( 12eη log N )2

Nη
, (1.8)

where log N denotes the natural logarithm, assuming that N ≥ 1000 (otherwise,
Euler’s number e appearing in the left hand side has to be replaced by a slightly
larger constant). For example, when N = 1000 this yields the worst-case-error bound
wce (xN ; 2) < 0.003 with 99.9% confidence (by taking η = 2). Moreover, N =
10000 yields wce (xN ; 2) < 0.0004 with 99.999% confidence.

The previous theorem should be compared with the conjecture in [10], supported
by numerical simulations, saying that minimizers xN of the logarithmic energy E (N )

(formula 1.7) are QMC designs for s ∈]1, 3]. However, a practical advantage of the
spherical ensemble is that it can be simply generated by employingO(N 3) elementary
operations (using its random matrix representation), while no polynomial time algo-
rithm for constructing near-minimizers of E (N ) is known [34, Problem 7]. Concerning
the sharpness of the inequalities in the previous theorem we note that the restriction
to s ≤ 2 is necessary, as follows from formula 1.10 below. Moreover, the power 1/2
of log N appearing in the inequalities for s = 2 can be expected to be optimal.

Theorem 1.1 will be deduced from a new concentration of measure inequality in
Sobolev spaces (Theorem 1.3 below), which, in turn, will follow from the follow-
ing bound on the moment generating function of the square of the random variable
wce (xN ; s).
Theorem 1.2 For any ε > 0 and α ∈]0, 4π2ε[

EN

(
eαN2(wce (xN ;2+ε))2

)
≤

(
det

(
I − α

2π
�−(1+ε)

g

))−1/2
< ∞

where �g denotes the Laplace operator on X and det(I −λ�
−(1+ε)
g ) is the Fredholm

(spectral) determinant of its fractional power �
−(1+ε)
g (see Sect.2.1).

In fact, this is an asymptotic equality, as N → ∞ (as will be shown elsewhere
[3]). Combining Theorem 1.2 with some spectral theory the following concentration
of measure inequality for the spherical ensemble is obtained:

Theorem 1.3 There exist explicit constants A1, A2 and A3 such that for any positive
integer N and ε > 0

PN

(
‖δN − dσ‖

H−(2+ε)
0 (X)

> δ
)

≤ e−A1N2δ2+ A2
ε

+A3 .
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1.3 Outlook on the the case of general compact surfaces

The results for the two-sphere can be generalized to any compact two-dimensional
Riemannian manifold X .Here we will just highlight the main points, deferring details
to [3]. Given a Riemannian surface (X , g) of strictly positive genus denote by gc
the unique Riemannian metric on X with constant curvature which is conformally
equivalent to g. To (X , gc) one can attach a canonical N−particle determinantal point
process (XN , dPN ), which can be viewed as a higher genus generalization of the
spherical ensemble [4]. In this general setting the bound in Theorem 1.2 holds up to
multiplying the right hand side with a factor of the form (1 + e−δ/N ), for an explicit
positive constant δ, depending on the injectivity radius of (X , gc). This is shown in
essentially the sameway as in the spherical setting, using the generalMoser-Trudinger
type inequalities in [4] as a replacement for the inequalities 1.11 recalled below. The
analogs of Theorems 1.1, 1.3 then follow as before. In particular,

∥∥∥∥∥
1

N

N∑

i=1

δxi − dVgc

∥∥∥∥∥
H−2
0 (X)

= O
(

(log N )1/2

N

)

holds with probability 1 − O(1/N∞) (in the sense of Theorem 1.1). Expressed in
terms of the original Riemannian metric g this means that introducing the “weight
function”

w := dVg/dVgc

and sampling a configuration (x1, ..., xN ) in the canonical N−particle ensemble
(XN , dPN )

PN

⎛

⎝ sup
f : ‖ f ‖

H2
0 (X)

≤1

∣∣∣∣∣

∫

X
f dVg − 1

N

N∑

i=1

f (xi )w(xi )

∣∣∣∣∣ ≤ O
(

(log N )1/2

N

)⎞

⎠

≥ 1 − O(1/N∞) (1.9)

(in the sense of Theorem 1.1). In fact, the original Riemannian metric g also induces
a determinantal N−particle point process on X . In physical terms, the corresponding
probability measure dPN

g on XN represents the probability density for an integer
Quantum Hall state, i.e. an N−particle state of electrons confined to (X , g) subject to
a constant magnetic field, whose strength is proportional to N . However, as explained
in [3], the error in the corresponding estimate 1.9 will be of the larger orderO(1/N 1/2)

(unless g has constant curvature). Accordingly, replacing the original metric g with
the constant curvature one gc is analogous to the use of importance sampling in the
standard Monte-Carlo method. Recall that the latter method amounts to calculating
integrals

∫
X f dVg by taking the points xi to be independent realizations of a “target

measure” ν (taken to be different than dVg with the aim of reducing the variance;
compare the discussion in [2, Section 1.2])
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It should be stressed, however, that one advantage of the spherical setting is that all
the constants can be explicitly estimated, while, in the general setting, the constants
depend on spectral invariants of (X , gc). Moreover, from a practical point of view
the random matrix realization of the spherical ensemble offers a convenient imple-
mentation algorithm, while the general algorithm for simulating determinantal point
processes [22] has to be employed for a general surface X (which, loosely speaking,
replaces the task of finding the N eigenvalues with Gram-Schmidt orthogonalization).

1.4 Outline of the proof of Theorem 1.1

As shown in [30], for a fixed function f on X the following Central Limit Theorem
(CLT) holds for the spherical ensemble: for any f ∈ H1(X), normalized so that∫ |∇g f |2dVg = 4π,

lim
N→∞PN

(∣∣∣∣∣
1

N

N∑

i=1

f (xi ) −
∫

X
f dσ

∣∣∣∣∣ ≥ λ

N

)
= 1 −

∫

|y|≥λ

e−y2dx/π1/2 (1.10)

A key ingredient in the proof of Theorem 1.1, given in Sect. 2, is the following
quantitative refinement of the previous CLT, obtained in [4]:

PN

(
1

N

N∑

i=1

f (xi ) −
∫

X
f dσ ≤ λ

N

)
≤ e−λ2/2

More precisely, the following slightly stronger dual bound on the moment generating
function was established in [4] (using complex differential geometry):

EN

(
exp N (N + 1)λ

(
1

N

N∑

i=1

f (xi ) −
∫

X
f dσ

))
≤ eN (N+1)λ2/2 (1.11)

(coinciding when N = 1 with the well-known sharp Moser-Trudinger inequality on
the two-sphere). Note, however, that these inequalities only hold for a fixed normalized
function f ∈ H1(X) and fail drastically for the random variable wce (xN ; 1) obtained
by taking the sup over all normalized f ∈ H1(X). Indeed, wce (xN ; 1) = ∞ on all
of XN since H1(X) contains unbounded functions (recall that s = 1 is the borderline
case for the Sobolev embedding of Hs(X) into C(X)).

Here we will interpret the inequality 1.11 as the statement that the random variable

YN :=
N∑

i=1

δxi − Ndσ

taking values in the dual Sobolev space H−(2+ε)(X) is sub-Gaussian wrt a canonical
Gaussian random variable G on H−(2+ε)(X) (see Remark 3.2). Using some basic
Gaussian measure theory and spectral theory for the Laplacian we then deduce the
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moment bound in Theorem 1.2, which, in turn, implies the concentration of measure
inequality Theorem 1.3. Finally, we show that the latter inequality, implies Theorem
1.1, when combined with the results in [9, 10] relating wce (xN ; s) corresponding to
different values of s.

1.5 Further comparison with previous results

As shown in [20, Thm1], building on [1], the spherical ensemble satisfies the following
asymptotics: for any s ∈]1, 2[ there exists a positive constant C(s) such that

√
E

(
wce (xN ; s)2) = C(s)Ns/2 + o(Ns/s) (1.12)

This result should be compared with [10, Thm 24], which says that if X is partitioned
into N equal area regions whose diameters are bounded by CN−1/2 and a sequence
xN of N point is randomly chosen from N different regions, then the corresponding√
E

(
wce (xN ; s)2) is also of the orderO(Ns/2),when s ∈]1, 2[.However, in contrast

to Theorem 1.1, the results in [10, 20], referred to above, do not give any information
about the probability that the worst-case-error wce (xN ; s) for a random sequence
xN in the corresponding ensembles is close to the average worst-case-error. The only
previous result in this direction appears to be [1, Thm 1.1], saying that for any M > 0
there exists CM > 0 such that

P

(
DC

L∞(xN ) ≤ CM
(log N )1/2

N 3/4

)
≥ 1 − 1

NM
. (1.13)

where DC
L∞(xN ) is the L∞−spherical cap discrepancy defined by

DC
L∞(xN ) := sup

f=1C

∣∣∣∣∣

∫

X
f dσ − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣

where the sup if taken over all characteristic f functions of the form f = 1C, where
C is a spherical cap in the two-sphere X , i.e. the intersection of X with a half-space
in R3 (the proof of the inequality 1.13 is based on a variance estimate in [1]). Since

wce

(
xN ; 3

2

)
≤ aDC

L∞(xN ) (1.14)

for an explicit constant a [10, Page 16]), the inequality 1.13 implies that

P

(
wce

(
xN ; 3

2

)
≤ CM

(log N )1/2

N 3/4

)
≥ 1 − 1

NM
. (1.15)

This is a bit weaker than the case s = 3/2 of Theorem 1.1 (where the power of log N
is 3/8(< 1/2) and moreover the dependence of CM on M is made explicit). We recall
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that the inequality 1.14 follows from the fact that wce (xN ; 3
2 ) is comparable to the

L2−spherical cap discrepancy

DC
L2(xN ) :=

∫ ∣∣∣∣∣

∫

X
f dσ − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣

2

Df , f = 1C

where Df is a certain probability measure measure on the space of all spherical caps
C [10, Page 16].

1.5.1 Explicit sequences for numerical integration on the sphere

As recalled above, wce (xN ; 3
2 ) is comparable to the L2−spherical cap discrepancy

DC
L2(xN ). In [26, 27] the representation theory of Hecke operators and modular

forms was used to obtain an explicit sequence satisfying the bound DC
L2(xN ) ≤

CN−1/2 log N (see [26, 27, I, Thm2.2]). Theproof of the boundusesDeligne’s proof of
the Weil conjectures and also yields, as explained in [9, Remark 3.10], wce (xN ; s) ≤
CN−1/2 log N for any s > 1. However, these rates are only close to optimal as s
approaches 1. A different sequence satisfying DC

L2(xN ) ≤ CN−1/2(log N )1/2 was
then constructed in [14], by mapping a digital net on the square to X . Numerical
evidence was provided in [14] indicating that the latter sequence has the optimal rate
O(N−3/4). See also [10, Section 8] for numerical experiments for a range of different
classes of point sets on the two-sphere.

1.5.2 Concentration of measure

It may be illuminating to compare Theorem 1.1 for s = 2 with the concentration of
measure inequalities for independent random variables established in [6], which can
be viewed as a quantitative refinement of the classical CLT 1.2. In the particular case
of standard Monte-Carlo integration on a cube the inequalities in [6] imply that there
exists a constant C such that for any R > C

PN

(
sup

‖∇ f ‖L∞≤1

∣∣∣∣∣

∫

X
f dx − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣ ≤ R
(log N )1/2

N 1/2

)
≥ 1 − 1

N R2/C
(1.16)

(see also [5] for a simplified proof). This inequality thus exhibits the slower rate
(log N )1/2/N 1/2, since the points xi are independent random variables. Moreover,
the role of the Sobolev norm W 1,2 appearing for s = 2 is in the inequality 1.16
played by the W 1,∞−norm ‖∇ f ‖L∞ . The proof uses the dual representation of
the W 1,∞−norm between probability measures as the L1−Wasserstein metric (aka
Monge-Kantorovich distance) which fits into the general setting of optimal transport
theory. We also recall that in the particular case of one dimension the sharp form of
the Dvorestky-Kiefer-Wolfowitz inequality for N independent real random variables
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with the same distribution μ, assumed to have a continuos density, says that

PN

(
dK (μ,

1

N

N∑

i=1

δxi ≥ λ)

)
≤ 2e−2Nλ2 , dK (μ, ν) := sup

x∈R

∣∣∣∣
∫ x

−∞
(μ − ν)

∣∣∣∣ ,

where dK denotes the Kolomgorov distance. As a consequence, if μ and the points
xi are supported in an interval X of unit-length, then it follows from the fact that the
L1−Wasserstein metric on X is bounded from above by dK that

PN

(
sup

‖∇ f ‖L∞≤1

∣∣∣∣∣

∫

X
f μ − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣ ≥ λ

N 1/2

)
≤ 2e−2λ2

(see the discussion in [5, page 2304-2305]).
For generalized Wigner random matrices of rank N , whose eigenvalues define a

random point with N points on R (which for standard Wigner matrices is a deter-
minental point process, as well as a Coulomb gas) a concentration of measure type
inequality was obtained in [15, Thm 2.2], expressed in terms of the Kolmogorov
distance dK on an interval. Denoting by μ the semi-circle law it yields, by bound-
ing the W 1,∞−norm by dK , the following concentration inequality on an interval X
containing a neighborhood of the support of μ,

PN

(
sup

‖∇ f ‖L∞≤1

∣∣∣∣∣

∫

X
f μ − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣ ≤ (log N )L

N

)
≤ Ce−c(log N )εL ,

for some positive constants C, c and ε and an appropriate positive number L (depend-
ing on N ), assuming that N is taken sufficiently large. Thus, in this case the distance

in question is of the order (log N )L

N with overwhelming probability.
Generalizations of the concentration ofmeasure inequality 1.16 to general Coulomb

(and Riesz) gas ensembles (dPN ,β ,RN ) in Euclidean R
N have been obtained in [11,

31] and on compact Riemannian manifolds in [17]. In particular, in the case of the
spherical ensemble the inequalities in [17] say that

PN

(
sup

‖∇ f ‖L∞≤1

∣∣∣∣∣

∫

X
f dx − 1

N

N∑

i=1

f (xi )

∣∣∣∣∣ ≤ δ

)
≥ 1 − e− N2

4π
δ2
2 + N

4π log N+CN(1.17)

To see the relation to the present L2−setting note that the Sobolev inequality shows
that, in dimension d = 2,

‖∇ f ‖L∞ (X) ≤ Cε ‖∇ f ‖H2+ε (X)

for any ε > 0. Hence, the inequality 1.17 implies a concentration inequality for
Sobolev H−(2+ε)(X)−normswhich is similar to the inequality in Theorem 1.3). How-
ever, the main virtue of the Gaussian estimate in Theorem 1.3 is that there are, apart
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from the term proportional to −N 2δ2, no N−dependent additional terms, for a fixed
ε > 0. This allows one to apply Theorem 1.3 to δ of the order N−1 (modulo logarith-
mic factors, by taking ε to be of the order 1/ log N ), as in the proof of Theorem 1.1.
In contrast, in the inequality 1.17 one can at best take δ of the order N−1/2 due to the
presence of the terms of order N .

2 Spectral preparations

Wewill denote by PN and EN the probabilities and expectations, respectively, defined
wrt the spherical ensemble with N−particles (XN , dPN ) (whose definition was
recalled in Sect. 1.2). We start with some preliminaries.

2.1 Sobolev spaces and spectral theory

Let us first consider a general setup of Sobolev spaces on a compact Riemannian
manifold (X , g). Denote by 〈·, ·〉L2 the corresponding scalar product on C∞(X) :

〈u, v〉L2 :=
∫

X
uvdVg,

where dVg denotes the Riemannian volume form (we will denote by dσg the prob-
ability measure obtained by normalizing dVg). We will denote by �g the Laplace
operator on C∞(X), with the sign convention which makes �g a densely defined
positive symmetric operator on L2(X , dVg) :

〈
�gu, v

〉
L2 :=

∫

X
g(∇gu,∇gv)dVg,

where ∇gu denotes the gradient of u wrt g. By the spectral theorem, for any p ∈ R

the pth power �
p
g is a densely defined operator on L2(X , dVg).

Fix a “smoothness parameter” s, assumed to be strictly positive:

• Hs(X)/R is defined as the completion of C∞(X)/R with respect to the scalar
product defined by

〈u, u〉s :=
∫

X
�

s/2
g u�

s/2
g udVg =

∫

X
u�sudVg (2.1)

• H−s
0 (X) is defined as the sub-space of all distributions ν on X such that 〈ν, 1〉 = 0

satisfying

〈ν, ν〉−s := sup
u∈C∞(X)

〈ν, u〉
〈u, u〉s < ∞

Here we view a distribution ν on X as an element in the linear dual of the vector
space C∞(X). We endow Hs(X)/R and H−s

0 (X) with the Hilbert space structures
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defined by the scalar products 〈·, ·〉s and 〈·, ·〉−s , respectively. Note that the norm
on Hs(X)/R is increasing wrt s, while the norm on H−s

0 (X) is decreasing wrt s.
Moreover, by definition, we have that

∥∥δN (xN ) − dσg
∥∥
H−s
0 (X)

= wce (xN ; s) (2.2)

where wce (xN ; s) is the worst-case error for the integration rule on X with node set
xN with respect to the smoothness parameter s ∈]1,∞[ (defined by formula 1.5). By
the Sobolev embedding theorem wce (xN ; s) is finite precisely when s > dim X/2,

By duality the operator �g is also defined on the space of all distributions ν :
〈
�gν, u

〉 := 〈
ν,�g, u

〉

The following lemma follows directly from the definition of the Hilbert spaces in
question:

Lemma 2.1 The operator �g induces an isometry when restricted to C∞(X)/R

Hs(X)/R → Hs−2(X)/R, H−s
0 (X) → H−s−2

0 (X)

Next, recall that, by the spectral theorem, the set of eigenfunctions fi of �g in
C∞(X) form and orthonormal bases for L2(X , dVg). The following lemma then
follows directly by duality:

Lemma 2.2 There exists an orthonormal basis ν1, ν2, ... in the Hilbert space〈
H−s
0 (X), 〈·, ·〉−s

〉
such that

νi = fi dVg

(acting on C∞(X) by integration) where fi runs over all eigenfunctions of the Lapla-
cian on C∞(X) with strictly positive eigenvalues λi . As a consequence, if fi is
normalized so that ‖ fi‖L2 = 1 and

ν =
∞∑

i=1

ci fi

in H−s
0 (X) then

〈ν, ν〉−s :=
∞∑

i=1

λ−s
i c2i

Remark 2.3 In the literature different Sobolev space norms on Hs(X)/R are often
used, for example, obtained by replacing �s in the last equality in formula 2.1 with
(I+�)s (as in [9, 10]) or,more generally, any other elliptic pseudodifferential operator
Ps of order s. [12] Anyway, the norms on Hs(X)/R defined by any two such operators

123



470 Constructive Approximation (2024) 59:457–483

are quasi-isometric, by elliptic regularity theory (see the discussions in [10, 12]).
Hence, when the norm is changed Theorem 1.3 still applies if δ is replaced by C(ε)δ

for a positive constant C(ε) (and similarly for Theorems 1.2, 1.1).

2.1.1 Spectral theory

Recall that the spectral zeta function of the Laplacian �g is defined by

Tr(�−p
g ) :=

∞∑

i=1

λ
−p
i

which is convergent for p > dim X/2. More precisely,

Tr(�−(d/2+ε)
g ) = 1

�(d/2)

Vol(X , g)

(4π)d/2

1

ε
+ O(1), ε → 0+

as follows, for example, from the expansion of the heat kernel, i.e. the Schwartz kernel
of Tr(e−t�g ). We will prove explicit estimates in the case of the two-sphere below.

The Fredholm (spectral) determinant of �
−p
g is the function

D(λ, p) := det(I − λ�
−p
g ) :=

∞∏

i=1

(1 − λλ
−p
i )

which is convergent for p > dim X/2 and λ ∈]0, λp
1 [. Indeed, since the Taylor

expansion of − log(1 − λt) equals
∑∞

m=1
λm

m ,

− log det(I − λ�
−p
g ) :=

∞∑

m=1

Tr(�−mp)

m
λm (2.3)

2.1.2 The case of the two-sphere

Consider now the case when (X , g) is the two-sphere, i.e. the unit-sphere in R
3

endowed with the metric g induced by the Euclidean metric on R
3. Note that under

stereographic projection, whereby X minus the “north pole” is identified with R2, we
have

�gudVg = −
(

∂2u

∂x2
+ ∂2u

∂ y2

)
dx ∧ dy, dVg = 4dx ∧ dy

(1 + x2 + y2)2

Moreover, the set of non-zero eigenvalues of �g are given by all numbers of the form
l(l + 1), where l ranges over the positive integers. The eigenvalue corresponding to a
given l has multiplicity 2l + 1.
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Remark 2.4 Another convenient norm on Hs(X)/Rmay be obtained by replacing �g

with �g + 1/4 in formula 2.1 (compare the discussion in Remark 2.3). The point
is that the eigenvalues of �g + 1/4 are given by (l + 1/2)2. This implies that the
corresponding spectral functionmay be explicitly expressed as Tr

(
(�g + 4−1)−p

) :=
22p−2ζ(2p − 1), where ζ is Riemann’s zeta function (see [35, page 453]).

We will use the following refinement of [10, Lemma 26].

Lemma 2.5 Let (X , g) be a d−dimensional Riemannian manifold of non-negative
Ricci curvature. Assume that d/2 < s′ < s. Then

wce (xN ; s′) ≤ c(s′, s)(wce (xN ; s)s′/s,

where the constant c(s′, s) is given by

c(s′, s) =
√

�(s)

�(s′)
+ 2sse−s

�(s′)(s′ − d/2)
.

In particular, when d = 2, c(2, 2 + ε) < 1.51 < e1/2 for ε ≤ 0.15.

Proof The main difference compared to the case of the d−dimensional unit-sphere
in [10, Lemma 26] is that the constant c(s, s′) in [10, Lemma 26] depends on a non-
explicit constant c such that for t ∈]0, ε/2[ the heat kernel Kt satisfies t Kt ≤ cεKε

on X × X . Here we observe, in particular, that one can take c = 1 and allow t ∈]0, ε[,
i.e.

t ∈]0, ε] �⇒ t Kt ≤ εKε (2.4)

as follows from the Li-Yau parabolic Harnack-inequality on any Riemannianmanifold
with non-negative Ricci curvature (apply [25, Thm2.3] to u(x) := Kt (x, y) for y fixed
and α = 1). Setting

μ := N−1
N∑

i=1

δxi − dVg

formula 2.2 may be expressed as

W (s)2 := wce (xN ; s)2 = ‖μ‖2(Hs (X)/R)∗ =
∑

λi>0

λ−s
i |〈μ, fi 〉|2 , (2.5)

where, as before, λi and fi denote the eigenvalues and eigenfunctions of the Laplacian
for (X , g).Using the identity λ−s = ∫ ∞

0 t s−1e−tλdt/�(s) and that
∫

μ = 0 it follows
that

wce (xN ; s)2 = 1

�(s)

∫ ∞

0
t s−1g(t)dt, (2.6)
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where

g(t) :=
∫ ∫

Kt (x, y)μ ⊗ μ =
∫ ∫

Kt (x, y)μ ⊗ μ, Kt (·, y)
=

∑

λi>0

e−tλi fi (x) fi (y)

with Kt denoting the heat-kernel Kt for (X , g) with the constant term removed (note
that the formula in [10] corresponding to 2.6 contains a factor e−t due to the different
definition of the Sobolev norms in [10]). Now, setting

ε := wce (xN ; s)2/s, (2.7)

we split the integral over t in formula 2.6, with s replaced by s′, over the two disjoint
regions ]ε,∞[ and ]0, ε] (in [10, Lemma 26] there are three regions and the role of ε

is played by ε/2, but here we can take ε since we will use the sharper estimate 2.4).
First note that, since s′ ≤ s,

∫ ∞

ε

t s
′−1g(t)dt = εs

′
∫ ∞

ε

(t/ε)s
′
t−1g(t)dt ≤ εs

′
∫ ∞

ε

(t/ε)s t−1g(t)dt

= εs
′−s

∫ ∞

ε

t s−1g(t)dt .

Hence, bounding the latter integral with the integral over all of [0,∞[ yields
1

�(s′)

∫ ∞

ε

t s
′−1g(t)dt ≤ �(s)

�(s′)

(
εs

′−s 1

�(s)

∫ ∞

0
t s−1g(t)dt

)
=: �(s)

�(s′)
εs

′−sεs

= �(s)

�(s′)
εs

′

Turning to the region where t ∈ [0, ε], the estimate 2.4 for the heat-kernel Kt yields

g(t) ≤ t−d/2εd/2g(ε).

Hence,

∫ ε

0
t s

′−1g(t)dt ≤
(∫ ε

0
t s

′−1−d/2dt

)
εd/2g(ε) = 1

s′ − d/2
εs

′
g(ε).

Finally, wewill show that g(ε) is uniformly bounded (there is a typo in the proof of [10,
Lemma 26] saying that g(t) is uniformly bounded for t ∈ [0, 1[, which contradicts
the blow-up of the heat-kernel as t → 0). First, by the very definition of the worst
case error W (s),

∫
Ht (·, y)μ(y) ≤ W (s)

∥∥∥∥
∫

Ht (·, y)μ(y)

∥∥∥∥
Hs (X)

.
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The square of the latter Sobelev norm may be expressed as

∥∥∥∥∥∥

∑

λi>0

e−tλi 〈μ, fi 〉 fi (x)

∥∥∥∥∥∥

2

Hs (X)

=
∑

λi>0

λsi e
−2tλi |〈μ, fi 〉|2 .

Hence, rewriting λs = λ−sλ2s,

∥∥∥∥
∫

Ht (·, y)μ(y)

∥∥∥∥
s

≤
⎛

⎝
∑

λi>0

λ−s
i |〈μ, fi 〉|2

⎞

⎠
1/2

sup
λ>0

λse−tλ

By formula 2.5 the first factor equals W (s) and the second factor is given by

sup
λ>0

λse−tλ = t−sC(s), C(s) := sse−s

Since, by the definition 2.7,W (s)2 := εs, setting t = ε thus yields the desired uniform
bound:

g(ε) ≤ 2
∫

Ht (·, y)μ(y) ≤ 2εsε−sC(s) = 2C(s).

Finally, adding up the two contributions to the ingral in formula 2.6 concludes the
proof of the inequality in the lemma. Setting s′ = 2 gives c(2, s)2 = �(s) +
2sse−s and hence, if ε ≤ 0.15, then a numerical calcuation yields c(2, 2 + ε) ≤√
1.073 + 2(2.15/e)2.15 < 1.52 < e1/2. ��

Lemma 2.6 On the two-sphere (X , g) the following inequality holds for any ε > 0

Tr(�−(1+ε)
g ) ≤ 1

ε
+ 2, Tr(�−2

g ) = 1

and hence

− log det(I − λ�−(1+ε)
g ) ≤ λ

1

ε
− 4 log

(
1 − λ

2

)
.

Proof Setting Z(p) := Tr(�−p
g ), for p ≥ 1, we have

Z(p) =
∞∑

l=1

2l + 1

l p(l + 1)p
= 2

∞∑

l=1

1

l p−1(l + 1)p
+

∞∑

l=1

1

l p(l + 1)p

≤ 2
∞∑

l=1

1

l p−1(l + 1)p
+ 1,
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where the second sum was estimated by replacing p with 1 to get a a telescoping sum.
Next,

∞∑

l=1

1

l p−1(l + 1)p
≤ 1

2
+

∞∑

l=2

1

l p−1(l + 1)p
≤ 1

2
+

∞∑

l=2

1

l2p−1 = 1

2
+ ζ(2p − 1) − 1

(using the trivial bound l + 1 ≥ l), where ζ(s) is the Riemann zeta function. Set
s = 1 + δ. As is well-known, when s > 1, a resummation argument gives (cf. [18,
formula 3])

ζ(s) ≤ s

s − 1
= 1 + 1

δ
,

Hence, setting p = 1+ ε, gives ζ(2p − 1) = ζ(1+ 2ε) ≤ 1+ 1/(2ε). All in all, this
means that

Z(p) ≤ 2

(
1

2
+

(
1 + 1

2ε

)
− 1

)
+ 1 = 2 + 1

ε
,

proving the first inequality in the lemma. Next, note that Z(2) can be computed as a
telescoping sum:

Z(2) =
∞∑

l=1

2l + 1

l2(l + 1)2
=

∞∑

l=1

(l + 1)2 − l2

l2(l + 1)2
=

∞∑

l=1

1

l2
− 1

(l + 1)2
= 1 + 0.

Now, Taylor expanding − log det(I − λ�
−(1+ε)
g ) (as in formula 2.3) gives

− log det(I − λ�−(1+ε)
g ) =

∞∑

m=1

λm

m
Tr

(
�−m(1+ε)

)

≤ λ

(
1

ε
+ 2

)
+

∞∑

m=2

λm

m
Tr

(
�−m(1+ε)

)
.

Since the smallest strictly positive eigenvalue of �g is equal to 2 rewriting λi =
2(λi/2) and using that that λi/2 ≥ 1 now yields, for m ≥ 2,

Tr
(
�−m(1+ε)

g

)
≤ 222−mTr

(
�−2

g

)
= 222−m · 1.

As a consequence,

∞∑

m=2

λm

m
Tr

(
�−m(1+ε)

g

)
≤ 22

∞∑

m=2

(
λ

2

)m 1

m
= 22

(
− log

(
1 − λ

2

)
− λ

2

)
,

123



Constructive Approximation (2024) 59:457–483 475

using again that the Taylor expansion of − log(1− t) equals
∑∞

m=1
tm
m . All in all, this

means that − log det(I − λ�
−(1+ε)
g ) is bounded from above by

λ

(
1

ε
+ 2

)
− 2λ − 22 log

(
1 − λ

2

)
= λ

1

ε
− 4 log

(
1 − λ

2

)
,

��
Remark 2.7 By [28, Prop 5] Tr(�−(1+ε)

g ) = 1/ε+2γ −1+o(1) as as ε → 0+,where
γ = 0.577... is Euler’s constant. But the point of the previous lemma is to bound the
error term explicitly for ε fixed.

3 Proofs of themain results

Fix s > 2 and a positive integer N . Consider the following H−s
0 (X)−valued random

variable on (XN , dPN ) :

YN := N (δN − dσ) : (XN , dPN ) → H−s
0 (X),

where δN denotes the empirical measure 1.1 (the space H−s
0 (X) contains the image

of YN for any s > 1, but the restriction to s > 2 will turn out to be important
in the following). To keep things as elementary as possible it will be convenient to
consider truncated random variable taking values in finite dimensional approximations
of H−s

0 (X) (but a more direct approach could also be used; see Remark 3.2). To this
end fix an orthonormal basis νi in the Hilbert space

〈
H−s
0 (X), 〈·, ·〉−s

〉
. It will be

convenient to take νi as in Lemma 2.2 ordered so that 0 < λ1 ≤ ... ≤ λM . Let
H−s

≤M (X) be the M−dimensional subspace of H−s
0 (X) defined by

H−s
≤M (X) := Rν1 ⊕ · · · ⊕ RνM � H−s(X)

Denote by πM the orthogonal projection from the Hilbert space H−s
0 (X) onto the

M−dimensional subspace H−s
≤M (X).

Step 1:�M(YN) is a sub-Gaussian random variable

We can view πM (YN ) as a random variable on (XN , dPN ) taking values in H−s
≤M (X) :

πM (YN ) : (XN , dPN ) → H−s
≤M (X).

The first step of the proof is to compare πM (YN ) with a Gaussian random variable
GM taking values in H−s

≤M (X). To this end we first endow H−s
≤M (X) with the Hilbert

structure define by the scalar product 〈·, ·〉−1 and denote by γM the Gaussian mea-

sure on
〈
H−s

≤M (X), 〈·, ·〉−1

〉
. Concretely, this means that under any linear isometry
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of
〈
H−s

≤M (X), 〈·, ·〉−1

〉
with RN the measure γM corresponds to the standard centered

Gaussian measure on RN . Now define GM as a random element in H−s
≤M (X). In other

words, GM is the random variable defined by the identity map

GM := I (H−s
≤M (X), γM ) → H−s

≤M (X)

The following proposition says that the moment generating function of the random
variable πM (YN ), viewed as a function on the linear dual (H−s

≤M (X))∗ of H−s
≤M (X)

is bounded from above by the moment generating function of the scaled Gaussian
random variable GM/(4π)1/2.

Proposition 3.1 The following inequality holds:

E(e〈πM (YN ),·〉) ≤ E

(
e

〈
1√
4π

GM ,·
〉)

(3.1)

Equivalently, denoting by p(M)
N the law of πM (YN ), i.e. the probability measure on

H−s
≤M (X) defined by the push-forward of dPN under the map πM (YN ), we have

L[p(M)
N ] ≤ L[F∗γM ], F(v) := v√

4π

where L[�] denote the Laplace transform of a measure � on the finite dimensional
vector space V := H−s

≤M (X), i.e. L[�] is the function on V ∗ defined by

L[�](w) =
∫

V
e−w�

Proof Applying the Moser-Trudinger type inequality 1.11 for the spherical ensemble
proved in [4] to f = w/(N + 1) for w ∈ H1(X) gives

E(e〈YN ,w〉) ≤ e
N (N+1)

(N+1)(N+1)
1
2

1
4π ‖w‖2

H1(X) ≤ e
1
2

1
4π ‖w‖2

H1(X)

In particular, taking w ∈ (H−s
≤M (X))∗, identified with a subspace of H1(X)/R, gives

〈YN , w〉 = 〈πM (YN ), w〉 and hence it will be enough to verify that

e
1
2 ‖w‖2

H1(X) = E

(
e〈GM ,w〉) (= L[γN ](−w) (3.2)

To this end first note that under the identifications above ‖w‖2
H1(X)

coincides with

the dual norm on the Hilbert space dual of
〈
H−s

≤M (X), 〈·, ·〉−1

〉
. But then formula

3.2 follows from the well-known fact that if γ is the Gaussian measure on a finite
dimensional Hilbert space H , then

L[γ ](w) = exp

(
1

2
‖w‖2H∗

)
. (3.3)
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Indeed, fixing an orthonormal basis in H this reduces to the basic fact that the Laplace
transform of the measure e−|x |2/2dx on Euclidean R

N is equal to e|y|2/2, which, in
turn, follows from “completing the square”. ��
Remark 3.2 In the terminology introduced byKahane, the previous inequality says that
the random variable πM (YN ) is sub-Gaussian with respect to the Gaussian random
variable 1√

4π
GM . In fact, by lettingM → ∞ this implies that YN is sub-Gaussianwith

respect to the Laplacian of the Gaussian free field [33], viewed as random variables
taking values in H2+ε

0 (X). This point of view will be elaborated on in [3].

Step 2: BoundingE(e‖�M(YN)‖2−s)

We start with the following general

Lemma 3.3 Let H be a finite dimensional Hilbert space and denote by γ the corre-
spondingGaussian probability measure. If� is ameasure on H such that the following
inequality of Laplace transforms hold

L[�] ≤ L[γ ]

as functions on the dual vector space H∗, then
∫

eq� ≤
∫

eqγ (3.4)

for the squared semi-norm q(v) defined by any given semi-positive symmetric bilinear
form on H .

Proof First observe that the inequality 3.4 holds for any function q on H which has
the following positivity property: eq is the Laplace transform of a positive measure
μq on H∗, i.e.

eq(v) =
∫

w∈H∗
e−〈v,w〉dμq(w)

Indeed, changing the order of integration (using Fubini) the integral of eq against �

may be expressed as

∫

v∈H

(∫

w∈H∗
e−〈v,w〉dμq(w)

)
d�(v) =

∫

w∈H∗

(∫

v∈H
e−〈v,w〉d�(v)

)
dμq(w).

Hence, by assumption,

∫

v∈H
eq(v)d�(v) ≤

∫

w∈H∗

(∫

v∈H
e−〈v,w〉dγ (v)

)
dμq(w),
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which is equal to
∫
eqγ (as seen by changing the order of integration again). All that

remains is thus to verify the positivity property in question when q is a squared semi-
norm. Identifying H with Euclidean RM and diagonalizing q we may as well assume
that q = ∑ |ai xi |2/2 for ai ≥ 0.Moreover, by approximation we may as well assume
that ai > 0. But then it follows from formula 3.3 and scaling the variables that the

measure dμq = C exp
(
−∑ |a−1

i yi |2/2
)
dy1...dyM has the required property for a

appropriate positive constant C . ��

In the present situation we get the following

Proposition 3.4 For any α > 0 the following inequality holds:

E

(
eα‖πM (YN )‖2−s

)
≤ E

(
e

α
4π ‖GM‖2−s

)
=

∏

i≤M

(
1 − α

2π
λ

−(s−1)
i

)−1/2
(3.5)

Proof The first inequality follows directly from combining Prop 3.1 and Lemma 3.3
with γ = F∗γM q(v) := α ‖v‖2−s . To prove the last equality denote by vi an orthonor-

mal base in theHilbert space
(
H−s

≤M (X), 〈·, ·〉−1

)
.Given v ∈ H−s

≤M (X)wedecompose

v = ∑M
i=1 vi xi and note that

‖v‖2−s =
M∑

i=1

x2i λ
(1−s)
i

as follows from writing

‖vi‖2−s := 〈
�−svi , vi

〉
L2 =

〈
�−1

(
�1−svi

)
, vi

〉

L2
= λ

(1−s)
i

〈
�−1vi , vi

〉

L2
= λ

(1−s)
i .

Hence,

E

(
e

α
4π ‖GM‖2−s

)
=

∏

i≤M

∫
e

α
4π x2i λ

(1−s)
i e−x2i /2dxi/ZM ,

where ZM is the total integral of
∏

i≤M e−x2i /2dxi . Finally, changing variables xi →
(
1 − α

2π λ
(1−s)
i

)1/2
in the corresponding Gaussian integrals then concludes the proof

of the proposition. ��

Letting M → ∞ and using the monotone convergence theorem now concludes the
proof of Theorem 1.2.
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3.1 Proof of Theorem 1.2 and Theorem 1.3

Set s = 2 + ε and λ = α/2π. By Lemma 2.6

∏

i≤M

(
1 − λλ

−(s−1)
i

)−1 ≤ det(I − λ�−(1+ε)
g )−1 ≤ exp ( f (λ)) , (3.6)

where

f (λ) := λ
1

ε
− 4 log

(
1 − λ

2

)
.

Hence, for any fixed positive integer M Prop 3.4 gives

EN

(
eα‖πM (YN )‖2−(2+ε)

)
≤ det

(
I − λ�−(1+ε)

g

)−1/2 ≤ exp

(
1

2
f
( α

2π

))
.

Letting M → ∞ and using the monotone convergence theorem we deduce that

EN

(
eα‖(YN )‖2−(2+ε)

)
≤ det

(
I − λ�−(1+ε)

g

)−1/2 ≤ exp

(
1

2
f
( α

2π

))
,

proving Theorem 1.2. Finally, by Chebyshev’s inequality, we can write
PN (‖δN − σ‖H−s > δ) as

PN

(
α ‖YN‖2H−(2+ε)(X)

> αδ2N 2
)

≤ e−αδ2N2
EN

(
eα‖(YN )‖2−(2+ε)

)

≤ exp

(
−αδ2N 2 + 1

2
f
( α

2π

))

Finally, since λ1 = 2 on the two-sphere the determinant in the theorem is finite for
λ < 21+ε, i.e. when α < 4π2ε .

3.2 The optimal choice of˛

Setting λ := α/2π we have

PN
(‖δN − σ‖H(X)−(2+ε) > δ

) ≤ exp

(
1

2

(
−4πδ2N 2λ + f (λ)

))
,

f (λ) := λ
1

ε
− 4 log

(
1 − λ

2

)
. (3.7)

First observe that f (λ) is strictly convex on [0, 2[, f (0) = 0 and f (2−) = ∞.Hence,
the optimal choice of λ satisfies

4πδ2N 2 = f ′(λ) = ε−1 + 2

1 − λ/2
, λ ∈]0, 2[ (3.8)
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if such a λ exists. Introducing the parameters R ∈]0,∞[ and η ∈]−1,∞[ determined
by

R2 := δ2N 2ε, η := 4πR2 − 1

the equation 3.8 for λ becomes

η = 2ε

1 − λ/2
⇐⇒ λ = 2

(
1 − 2ε

η

)

assuming that R is sufficiently large to ensure that λ ∈]0, 2[, i.e. that

η > 2ε.

As a consequence, for this optimal λ, the bracket appearing in the exponent in the
estimate 3.7 becomes

−(4πδ2N 2ε)ε−1λ + f (λ) = −(η + 1)ε−1λ + f (λ)

= (−(η + 1) + 1) ε−1λ + 4 log

((
1 − λ

2

)−1
)

= 2 (−η)

(
ε−1 − 2

η

)
+ 4 log

η

2ε

= 2 (−η) ε−1 + 4
(
1 + log

η

2ε

)

In particular, taking ε := 1/ log N gives, for any η > 2/ log N , gives

PN

(
‖δN − σ‖H(X)−(2+1/ log N ) > R

(log N )1/2

N

)

≤ exp

(
1

2

(
−4πδ2N 2λ + f (λ)

))
= 1

Nη

(
1

2
log N

)2

exp (2 (1 + log η)) .(3.9)

3.3 Proof of Theorem 1.1

By Lemma 2.5 it will be enough to prove the inequality for s = 2. Consider the real-
valued random variableW (s) := wce (xN ; s) on (XN , dPN ). Applying Theorem 1.3
to δ = Rε−1/2/N it will be enough to show the following claim when ε := 1/ log N
under the assumption that ε1/2 ≤ R ≤ Nε1/2 :

claim:W (2 + ε) ≤ R
ε−1/2

N
�⇒ W (2) ≤ CR

ε−1/2

N
, C := e1/2c(2, 2 + ε),
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where c(2, 2 + ε) is defined in Lemma 2.5. To this end recall that, by assumption,
W (2 + ε) ≤ 1 and hence by Lemma 2.5 we have, since ε ≤ 1

W (s) ≤ cW (2 + ε)
s

2+ε , c = c(2, 2 + ε)

In particular,

W (2) ≤ cW (2 + ε)
2

2+ε ≤ cW (2 + ε)(1−ε/2)

using that 1/(1 + t) ≥ 1 − t if t ≥ 0 and that WN (2 + ε) ≤ 1. Hence, WN (2 + ε) ≤
R ε−1/2

N implies that

W (2) ≤ c

(
R

ε−1/2

N

)(1−ε/2)

= cR
ε−1/2

N

(
R

ε−1/2

N

)−ε/2

.

But, by assumption, Rε−1/2 ≥ 1 and hence

(
R

ε−1/2

N

)−ε/2

=
(
Rε−1/2

)−ε/2
N ε/2 ≤ N ε/2 :=

(
N 1/(log N )

)1/2 = e1/2,

since ε := 1/ log N .

Remark 3.5 In particular, if 1/ log N ≤ 0.15 (for, example, N = 1000) then Lemma

2.5 gives C ≤ e and hence W (2) ≤ eR (log N )1/2

N .

3.4 Explicit formulation of Theorem 1.1

Combining the previous remark with the explicit bound in formula 3.9 gives the
following explicit formulation of the first inequality in Theorem 1.1

PN

(
wce (xN ; 2) ≤ e

√
1 + η

4π

(log N )1/2

N

)
≥ 1 −

( 1
2eη log N

)2

Nη
,

under the assumption that η > 2/ log N and N ≥ 1000.
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