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Abstract
To numerically approximate Borel probability measures by finite atomicmeasures, we
study the spectral decomposition of discrepancy kernels when restricted to compact
subsets of R

d . For restrictions to the Euclidean ball in odd dimensions, to the rotation
group SO(3), and to the GrassmannianmanifoldG2,4, we compute the kernels’ Fourier
coefficients and determine their asymptotics. The L2-discrepancy is then expressed in
the Fourier domain that enables efficient numerical minimization based on the noneq-
uispaced fast Fourier transform. For SO(3), the nonequispaced fast Fourier transform
is publicly available, and, for G2,4, the transform is derived here. We also provide
numerical experiments for SO(3) and G2,4.
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1 Introduction

Consider a Borel probability measure μ : B(Rd) → [0, 1] on R
d , where B(Rd)

denotes the Borel sigma algebra on R
d . For fixed n ∈ N, we aim to allocate a suitable

n-point set {x1, . . . , xn} ⊂ R
d such that the normalized atomic measure

νn := 1

n

n∑

j=1

δx j (1.1)

approximates μ. Here, δx j : B(Rd) → {0, 1} denotes the point measure localized at
x j . To quantify the L2-discrepancy between μ and νn , select a measure β on B(Rd)

with μ, δx ∈ L2(B(Rd), β), for all x ∈ R
d , and consider

Dβ(μ, νn) := ‖μ − νn‖2L2(B(Rd ),β)
=

∫

B(Rd )

|μ(B) − νn(B)|2 dβ(B), (1.2)

cf. [40, 42, 43], see Sect. 2 for explicit examples1. For fixed n ∈ N, we aim tominimize
Dβ(μ, νn) among all n-point sets {x1, . . . , xn} ⊂ R

d . The present manuscript is
concerned with discretizations of (1.2) that facilitate numerical minimization.

The associated discrepancy kernel Kβ : R
d × R

d → R is defined by

Kβ(x, y) := 〈δx , δy〉L2(B(Rd ),β) =
∫

B(Rd )

δx (B)δy(B)dβ(B), (1.3)

and we assume it is continuous. Fubini’s Theorem and μ(B) = ∫
Rd δx (B)dμ(x)

applied to

‖μ − νn‖2L2(B(Rd ),β)
= ‖μ‖2L2(B(Rd ),β)

− 2〈μ, νn〉L2(B(Rd ),β) + ‖νn‖2L2(B(Rd ),β)

yield that (1.2) is identical to

Dβ(μ, νn) =
∫∫

Rd×Rd

Kβ(x, y)dμ(x)dμ(y)

−2
n∑

j=1

∫

Rd

Kβ(x, x j )

n
dμ(x) +

n∑

i, j=1

Kβ(xi , x j )

n2
. (1.4)

If a compact set X ⊂ R
d is known in advance such that supp(μ) ⊂ X, then we

shall restrict the minimization to {x1, . . . , xn} ⊂ X, so that only the restricted kernel

1 Ifβ is a pushforwardmeasure, then the associated sigma algebra onB(Rd ) is induced by the pushforward.
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Kβ |X×X matters. By endowing X with a finite Borel measure σX having full support,
Mercer’s Theorem yields an orthonormal basis {φl}∞l=0 for L2(X, σX) and coefficients
(al)∞l=0 such that the spectral decomposition

Kβ |X×X(x, y) =
∞∑

l=0

alφl(x)φl(y), x, y ∈ X, (1.5)

holds with absolute and uniform convergence. We call (al)∞l=0 the Fourier coefficients
of the kernel Kβ |X×X. If supp(μ), supp(νn) ⊂ X, then the Fourier expansion of the
L2-discrepancy (1.4) is

Dβ(μ, νn) =
∞∑

l=0

al
∣∣μ̂l − ν̂n,l

∣∣2 ,

μ̂l :=
∫

X

φl(x)dμ(x), ν̂n,l := 1

n

n∑

j=1

φl(x j ), (1.6)

where the Fourier coefficients μ̂l and ν̂n,l of the measures μ and νn , respectively, are
well-defined if al 	= 0. Truncation of the discretization (1.6) enables the use of the
nonequispaced fast Fourier transform, thereby offering more efficient minimization
of Dβ(μ, νn), cf. [31, 33]. Thus, we aim to

A) compute (al)∞l=0 and (φl)
∞
l=0 in the Fourier expansion (1.5) of Kβ |X×X.

The L2-discrepancyDβ(μ, νn) also coincides with the worst case integration error

Dβ(μ, νn) = sup
‖ f ‖H β (X)≤1

∣∣∣∣∣∣

∫

X

f (x)dμ(x) − 1

n

n∑

j=1

f (x j )

∣∣∣∣∣∣

2

(1.7)

with respect to the reproducing kernel Hilbert space Hβ(X) generated by Kβ |X×X,
cf. [12, 13, 30, 31]. To specifyHβ(X), we aim to

B) identify Hβ(X) with a classical function space.

Fourier decay properties generally quantify Sobolev smoothness. To accomplish
(B), we aim to determine the asymptotics of Kβ |X×X’s Fourier coefficients (al)∞l=0 in
(1.5).

ForX = S
d−1 and a particular choice ofβ, the kernel Kβ |Sd−1×Sd−1 essentially coin-

cides with the Euclidean distance, see [12, 13]. The Fourier expansion is determined
in [10], and the decay of the Fourier coefficients yields that Kβ |Sd−1×Sd−1 reproduces

the Sobolev spaceHβ(Sd−1) = H
d
2 (Sd−1). For the sphere and the torus, the nonequi-

spaced fast Fourier transform is available, and both (A) and (B) are discussed in [33,
34].
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This manuscript is dedicated to derive analogous results for other compact sets
X. We focus on the unit ball, the special orthogonal group, and the Grassmannian
manifold,

B
d := {x ∈ R

d : ‖x‖ ≤ 1},
SO(d) := {x ∈ R

d×d : det(x) = 1, x−1 = x�},
Gk,d := {x ∈ R

d×d : x� = x, x2 = x, trace(x) = k}.

We achieve goal (A) for X = B
d with odd d. Both goals, (A) and (B), are achieved for

SO(3) and G2,4. We also provide numerical experiments. For SO(3), the computations
are based on the nonequispaced fast Fourier transform designed in [32, 44]. For G2,4,
we derive the nonequispaced fast Fourier transform by parametrization via the double
covering S

2 × S
2 and developing the respective transform there.

For SO(d) and Gk,d with fixed k and d, in principle, one could still be able to
compute the Fourier expansion in goal (A). However, one may be faced with rather
complicated expressions. In our present computations for SO(3) andG2,4, the structural
relations to the unit sphere enabled the use of Chebychev and Legendre polynomials,
which reduced the complexity. Nonetheless, we do accomplish (B) for the general
cases SO(d) and Gk,d .

2 Two Introductory Examples

We first present a well-known elementary example on the interval [0, s], for which
both aims A) and B) are achieved. Second, to support our perspective on discrepancy,
we prove that the so-called Askey function is a discrepancy kernel of the form (1.3).

2.1 The BrownianMotion Kernel on [0, s]

Let dr be the Lebesgue measure on [0,∞). The mapping h : [0,∞) → B(R)

defined by r �→ [r ,∞) induces the pushforward measure β := h∗(dr) that induces
the discrepancy

Dβ(μ, νn) =
∫ ∞

0
|μ([r ,∞)) − νn([r ,∞))|2dr .

The associated discrepancy kernel Kβ : R × R → R is2

Kβ(x, y) =
∫ ∞

0
δx ([r ,∞))δy([r ,∞))dr = min(x, y)+,

2 For r ∈ R, we use the notation r+ =
{
r , r ≥ 0,

0, otherwise.
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so that Dβ(δx , δy) = |x − y| for x, y ∈ [0,∞). The restriction of the kernel Kβ to
[0, s] × [0, s] has the Fourier expansion

Kβ(x, y) =
∑

m∈N
m odd

4s2

m2π2 · sin(
π
2s mx)
√

s
2

· sin(
π
2s my)
√

s
2

, x, y ∈ [0, s],

with respect to the Lebesgue measure σ[0,s] on [0, s]. The reproducing kernel Hilbert
space is

Hβ([0, s])={ f : [0, s] → C : f is absolutely continuous, f (0)=0, f ′ ∈ L2([0, s])},

where the inner product between f and g is given by 〈 f ′, g′〉L2([0,s]), cf. [3, 22] and
[43, Section 9.5.5]. Note that Kβ |[0,1]×[0,1] is often called the Brownian motion kernel
and Hβ([0, s]) is continuously embedded into the Sobolev space H

1([0, s]).

2.2 Askey’s Function and Its Restrictions

Many positive definite kernels in the literature are of the form (1.3) and, hence, are

discrepancy kernels. For odd d, Askey’s kernel function (x, y) �→ (1 − ‖x − y‖)
d+1
2+

is positive definite, cf. [29]. In the following, we shall check that it is of the form (1.3).
Denote the Euclidean ball of radius s centered at z ∈ R

d by

B
d
s (z) := {x ∈ R

d : ‖x − z‖ ≤ s},

with the conventions B
d
s := B

d
s (0) and B

d := B
d
1 . Fix r > 0 and consider the

discrepancy

Dd,r (μ, νn) := 1

vol(Bd
r
2
)

∫

Rd

∣∣∣μ(Bd
r
2
(z)) − νn(B

d
r
2
(z))

∣∣∣
2
dz, (2.1)

where vol(Bd
r
2
) = πd/2

�( d2 +1)
( r2 )

d . The associated discrepancy kernel is

Kd,r (x, y) = 1

vol(Bd
r
2
)

∫

Rd
δx (B

d
r
2
(z))δy(B

d
r
2
(z))dz.

(2.2)

In order to additionally integrate over r , recall the (generalized) hypergeometric func-
tions

k Fl

(
f1, . . . , fk
g1, . . . , gl

; z
)

:=
∞∑

n=0

( f1)n · · · ( fk)n
(g1)n · · · (gl)n

zn

n! ,
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where f1, . . . , fk, g1, . . . , gl , z ∈ R and ( f )n := f · ( f + 1) · · · ( f + n − 1) denotes
the Pochhammer symbol with ( f )0 := 1. We consider Gd : [0,∞) → R given by

Gd(r) =
⎧
⎨

⎩
2F1

(
− d+1

4 ,− d−1
4

− d
2

; r2
)

, 0 ≤ r ≤ 1,

0, 1 < r .

Since d is odd, either d+1
4 or d−1

4 is a natural number, so that the series terminates and
Gd is a polynomial in r2 on [0, 1]. By integration with respect to Gd , we obtain the
L2-discrepancy and the associated discrepancy kernel

Dd(μ, νn) :=
∫ ∞

0
Dd,r (μ, νn)dGd(r), and Kd(x, y) =

∫ ∞

0
Kd,r (x, y)dGd(r),

respectively. It turns out that Kd coincides with Askey’s function.

Theorem 2.1 Let d be odd. The discrepancy kernel Kd satisfies

Kd(x, y) = (1 − ‖x − y‖)
d+1
2+ , x, y ∈ R

d . (2.3)

The proof is presented in Appendix A. Provided that d ≥ 3, Askey’s kernel function

reproduces the Sobolev space H
d+1
2 (Rd) with an equivalent norm, see [49].

3 The Distance Kernel on S
d−1

This section is dedicated to recall results on discrepancy kernels on the sphere S
d−1 ⊂

R
d , for d ≥ 2, from [12, 13, 31, 46] that shall guide our subsequent investigations.
Denote the geodesic ball of radius r centered at z ∈ S

d−1 by

BS
d−1

r (z) := {x ∈ S
d−1 : distSd−1(x, z) ≤ r},

where distSd−1(x, z) = arccos(〈x, z〉) is the geodesic distance on S
d−1. We define

h : [0, π ] × S
d−1 → B(Rd), (r , z) �→ BS

d−1

r (z)

and endow [0, π ]with the weighted Lebesguemeasure sin(r)dr , whereas S
d−1 carries

the normalized, orthogonal invariant surface measure σSd−1 . The push-forward βd :=
h∗(sin(r)dr ⊗ σSd−1) is a measure on B(Rd), so that the associated L2-discrepancy
is

Dβd (μ, νn) =
∫ π

0

∫

Sd−1
|μ(BS

d−1

r (z)) − νn(B
S
d−1

r (z))|2dσSd−1(z) sin(r)dr .
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The associated discrepancy kernel is

Kβd (x, y) =
∫ π

0

∫

Sd−1
δx (B

S
d−1

r (z))δy(B
S
d−1

r (z))dσSd−1(z) sin(r)dr , x, y ∈ R
d .

(3.1)

According to [12, 13, 31], see also [2], Kβd satisfies

Kβd (x, y) = 1 − �( d2 )

2
√

π�( d+1
2 )

‖x − y‖, x, y ∈ S
d−1. (3.2)

If either x or y is not contained in S
d−1, then Kβd (x, y) = 0.

Choose σX := σSd−1 for the decomposition (1.5) and let {Ym
l : l =

1, . . . , Z(d,m)} ⊂ L2(S
d−1, σSd−1) denote the set of orthonormal spherical harmon-

ics of degree m on S
d−1, where Z(d,m) = 2m+d−2

d−2

(m+d−3
m

)
. For τ > (d − 1)/2, the

Sobolev space H
τ (Sd−1) is the reproducing kernel Hilbert space associated with the

reproducing kernel

(x, y) �→
∞∑

m=0

(1 + m(m + d − 2))−τ

Z(d,m)∑

l=1

Ym
l (x)Ym

l (y), x, y ∈ S
d−1. (3.3)

The coefficients in the Fourier expansion

1 − �( d2 )

2
√

π�( d+1
2 )

‖x − y‖ =
∞∑

m=0

cm

Z(d,m)∑

l=1

Ym
l (x)Ym

l (y), x, y ∈ S
d−1,

satisfy |cm | ∼ m−d , cf. [12]. This is the same asymptotics as the coefficients in (3.3)
for τ = d/2. Therefore, Kβd |Sd−1×Sd−1 reproduces the Sobolev space Hβd (S

d−1) =
H

d
2 (Sd−1) with an equivalent norm3.
In order to determine the Fourier coefficients of kernels on the sphere that are

polynomial in ‖x − y‖, such as Kβd |Sd−1×Sd−1 , we require the Fourier coefficients of
the monomial terms ‖x − y‖p. For any p ∈ N, the Fourier expansion

2− p
2 ‖x − y‖p =

∞∑

m=0

am(p, S
d−1)

Z(d,m)∑

l=1

Ym
l (x)Ym

l (y), x, y ∈ S
d−1, (3.4)

3 The kernel Kβd |
Sd−1×Sd−1 generates an inner product 〈·, ·〉Kβd |

Sd−1×Sd−1 in H
d
2 (Sd−1), for which it

is reproducing and the induced norm is equivalent to the standard norm in H
d
2 (Sd−1), which is induced by

the standard kernel (3.3).
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holds with coefficients determined by

am(p, S
d−1) := 1

Z(d,m)

∫∫

Sd−1×Sd−1

2− p
2 ‖x − y‖p

Z(d,m)∑

l=1

Ym
l (x)Ym

l (y)dσ
Sd−1(x)dσSd−1(y).

(3.5)

Note that (3.5) is well-defined for the entire range p > −(d −1) and p is not required
to be an integer. For p > 0, the following proposition is essentially due to [10], see also
[12, 14]. Simple continuation arguments cover the full range of p, and the asymptotics

�(− p
2 +m)

�(
p
2 +d−1+m)

= m−(p+d−1)(1 + o(1)) are standard.

Proposition 3.1 ( [10]) Suppose d ≥ 2. For any p > −(d − 1), we have

am(p, S
d−1) = 2d�( d2 )

4
√

π
· 2

p/2�( d2 + p
2 − 1

2 )

�(− p
2 )

· �(− p
2 + m)

�(
p
2 + d − 1 + m)

. (3.6)

In particular, if p /∈ 2N, then

|am(p, S
d−1)| =

∣∣∣∣∣
2d�( d2 )

4
√

π
· 2

p/2�( d2 + p
2 − 1

2 )

�(− p
2 )

∣∣∣∣∣m
−(p+d−1)(1 + o(1)), (3.7)

and the series (3.4) terminates if p ∈ 2N.

For p ∈ 2N, the term �(− p
2 ) is not well-defined and (3.6) is to be understood with the

convention
�(− p

2 +m)

�(− p
2 )

= (− p
2 )m . Hence, we observe am(p, S

d−1) = 0 for allm > p/2

if p ∈ 2N.
It is noteworthy that the kernel Kd,r in (2.2) for d = 3 is a discrepancy kernel that

does not generate a Sobolev space on R
d but its restriction does. The proof of the

following proposition is presented in Appendix B.

Proposition 3.2 Let r ≥ 1. The reproducing kernel Hilbert space of K3,r , given by
(2.2) with d = 3, is continuously embedded into H

2(R3), but the reverse embedding

does not hold. In contrast, K3,r |S2×S2 reproduces H
3
2 (S2) with an equivalent norm.

To provide numerical examples for d = 3, Proposition 3.1 provides the coefficients
(am)∞m=0 in the kernel expansion of Kβ3 ,

1 − 1

4
‖x − y‖ =

∞∑

m=0

am

2m+1∑

l=1

Ym
l (x)Ym

l (y), x, y ∈ S
2.

For supp(μ), supp(νn) ⊂ S
2, the L2-discrepancy (1.6) for Kβ3 with X = S

2 becomes

Dβ3(μ, νn) =
∞∑

m=0

am

2m+1∑

l=1

∣∣∣∣∣∣
μ̂m
l − 1

n

n∑

j=1

Ym
l (x j )

∣∣∣∣∣∣

2

, (3.8)
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Fig. 1 The target measure μ is
supported on two circles on the
sphere S

2 with weight ratio 9/1.
Numerical minimization of (3.9)
splits 50 points into 45 points
equally distributed on one and 5
points on the other circle

where μ̂m
l denotes the Fourier coefficient of μ with respect to Ym

l , cf. (1.6). By trun-
cating this series, the nonequispaced fast Fourier transform on S

2, cf. [33, 39, 41],
enables efficient minimization of

M∑

m=0

am

2m+1∑

l=1

∣∣∣∣∣∣
μ̂m
l − 1

n

n∑

j=1

Ym
l (x j )

∣∣∣∣∣∣

2

(3.9)

among all n-point sets {x1, . . . , xn} ⊂ S
2 for fixed n.We aremost interested in n � M .

See Figure 1 for a numerical experiment with M = 8 and n = 50.

4 Discrepancy Kernels on Compact Sets

Here we discuss discrepancy kernels that extend the kernels of the previous section in
a natural way. For d ≥ 1, let us define the half-space


d
r (z) := {x ∈ R

d : 〈z, x〉 ≥ r} ∈ B(Rd), z ∈ S
d−1, r ∈ R.

For fixed s > 0, we consider the mapping h : [−s, s] × S
d−1 → B(Rd) defined by

(r , z) �→ 
d
r (z) and endow [−s, s] with the Lebesgue measure dr . The push-forward

measure βd,s := h∗(dr ⊗ σSd−1) leads to the associated L2-discrepancy

Dβd,s (μ, νn) =
∫ s

−s

∫

Sd−1

∣∣∣μ(
d
r (z)) − νn(


d
r (z))

∣∣∣
2
dσSd−1(z)dr .

The associated discrepancy kernel is

Kβd,s (x, y) =
∫ s

−s

∫

Sd−1
δx (


d
r (z))δy(


d
r (z))dσSd−1(z)dr , x, y ∈ R

d . (4.1)
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Since BS
d−1

r (z) = 
d
cos(r)(z) ∩ S

d−1, for r ∈ [0, π ] and z ∈ S
d−1, we deduce

Kβd |Sd−1×Sd−1 = Kβd,1 |Sd−1×Sd−1 , d ≥ 2,

with Kβd as in (3.1). In contrast to Kβd , the kernel Kβd,s is not identically zero outside
of S

d−1 × S
d−1 and makes also sense for d = 1.

Example 4.1 For d = 1, we have S
0 = {±1}, so that the half-spaces are 
1

r (1) =
[r ,∞) and 
1

r (−1) = (−∞,−r ]. Direct calculation of (4.1) yields

Kβ1,s (x, y) =

⎧
⎪⎨

⎪⎩

s − 1
2 |x − y|, |x |, |y| ≤ s,

s
2 + xy

2|y| , |x | ≤ s ≤ |y|,
sH(xy), s ≤ |x |, |y|,

where H is the Heaviside step function.

Proposition 4.2 The Fourier expansion of the kernel Kβ1,s |[−s,s]×[−s,s] with respect to
the Lebesgue measure σ[−s,s] on [−s, s] is

Kβ1,s (x, y) =
∑

m∈N
m odd

4s2

m2π2 · 1
s

· sin( π

2s
mx) sin(

π

2s
my)

+
∑

{u>0 : tan(u)= 1
u }

s2

u2
· 1

s(sin(u)2 + 1)
· cos(u

s
x) cos(

u

s
y), x, y ∈ [−s, s].

Its reproducing kernel Hilbert space is

HKβ1,s
([−s, s]) = { f : [−s, s] → C : f is absolutely continuous, f ′ ∈ L2([−s, s])},

where the inner product between f and g is given by

1

2s

(
f (−s) + f (s)

)(
g(−s) + g(s)

) + 〈 f ′, g′〉L2([−s,s]).

Note that HKβ1,s
([−s, s]) is continuously embedded into H

1([−s, s]). The proof
of Proposition 4.2 is presented in Appendix C. It uses that, up to a constant,
Kβ1,s |[−s,s]×[−s,s] is the Green’s function of the 1-dimensional harmonic equa-
tion �u = f on [−s, s] with the boundary conditions u′(s) = −u′(−s) and
u(s) + u(−s) = −2u′(s).

It turns out that Kβd,s has a simple form on B
d
s × B

d
s .

Theorem 4.3 For d ≥ 1, the discrepancy kernel Kβd,s satisfies

Kβd,s (x, y) = s − �( d2 )

2
√

π�( d+1
2 )

‖x − y‖, x, y ∈ B
d
s . (4.2)
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The identity (4.2) for x, y ∈ S
d−1 with s = 1 has been established in [13], see

also (3.2). Essentially, the same proof still works for the more general situation. Theo-
rem4.3 provides a simple formof Kβd,s |X×X withX = B

d
s , whichmay facilitate further

computations. An immediate consequence is Dβd,s (δx , δy) = �( d2 )√
π�( d+1

2 )
‖x − y‖, for

x, y ∈ B
d
s .

5 The Euclidean Ball Bd

This section is dedicated to derive the Fourier expansion of the discrepancy kernel
Kβd,1 in (4.1) on B

d . Proposition 4.2 has covered d = 1, and we now derive the
spectral decomposition of

Kd,p : B
d × B

d → R, (x, y) �→ ‖x − y‖p,

for all odd d with odd p > 1 − d with respect to the Lebesgue measure σBd on B
d .

The case d = 3 with p = −1 is discussed in [37].
Let {Cα

m : m ∈ N, α > −1/2} denote the family of Gegenbauer polynomials with
the standard normalization

Cα
m(1) =

(
m + 2α − 1

m

)
= �(m + 2α)

�(2α)�(m + 1)
, α 	= 0.

By α = d
2 − 1, the addition theorem for spherical harmonics yields

Z(d,m)∑

l=1

Ym
l (x)Ym

l (y) = 2m+d−2
d−2 C

d
2 −1
m (〈x, y〉), x, y ∈ S

d−1. (5.1)
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For m ∈ N, let us define the kernels Kd,p
m : [0, 1] × [0, 1] → R,

Kd,p
m (r , s) = (− p

2 )m

( d2 − 1)m

(
min(r ,s)
max(r ,s)

)m
max(r , s)p2F1

(
m − p

2 , 1 − d+p
2

m + d
2

;
(
min(r ,s)
max(r ,s)

)2
)

.

(5.2)

For d ≥ 3 and arbitrary real p > 1 − d, we deduce from [18] that

‖x − y‖p =
∞∑

m=0

Kd,p
m (‖x‖, ‖y‖) C

d
2 −1
m

(〈 x
‖x‖ ,

y
‖y‖

〉)
, x, y ∈ B

d , (x 	= y if p < 0).

(5.3)

For x = 0 or y = 0, the right-hand side of (5.3) is well-defined by analytic continua-
tion.

Using the addition formula (5.1) we obtain

Kd,p(x, y) =
∞∑

m=0

d−2
2m+d−2K

d,p
m (‖x‖, ‖y‖)

Z(d,m)∑

l=1

Ym
l ( x

‖x‖ )Ym
l (

y
‖y‖ ), x, y ∈ B

d .

The Fourier expansion of Kd,p
m with respect to the measure rd−1dr satisfies

Kd,p
m (r , s) =

∞∑

j=1

λ
d,p
m, jϕ

d,p
m, j (r)ϕ

d,p
m, j (s),

∫ 1

0
Kd,p

m (r , s)ϕd,p
m, j (r)r

d−1dr = λ
d,p
m, jϕ

d,p
m, j (s), (5.4)

where
∫ 1
0 |ϕd,p

m, j (r)|2rd−1dr = 1. We consider

ϕ
d,p
m′, j ′,l ′(x) := ϕ

d,p
m′, j ′(‖x‖)Ym′

l ′ ( x
‖x‖ ), x ∈ B

d ,

as well as the integral operator in Mercer’s theorem induced by Kd,p,

T d,p : L2(B
d) → C(Bd), f �→

∫

Bd
K d,p(·, y) f (y)dy, (5.5)

so that direct computations yield

T d,pϕ
d,p
m′, j ′,l ′(x) = λ

d,p
m′, j ′

(d−2)vol(Sd−1)
2m′+d−2 ϕ

d,p
m′, j ′,l ′(x) (5.6)
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with the scaling
∫

Bd

∣∣∣ϕd,p
m′, j ′,l ′(x)

∣∣∣
2
dx = vol(Sd−1). This leads to the Fourier expansion

Kd,p(x, y)=
∞∑

m=0

∞∑

j=1

λ
d,p
m, j

(d−2)vol(Sd−1)
2m+d−2

Z(d,m)∑

l=1

ϕ
d,p
m, j,l(x)√
vol(Sd−1)

ϕ
d,p
m, j,l(y)√
vol(Sd−1)

, x, y∈B
d .

(5.7)

Thus, the original problem is reduced to the spectral decomposition of the sequence
of kernels Kd,p

m , for m ∈ N. The kernel Kd,p
m induces the integral operator

T d,p
m : L2([0, 1], rd−1dr) → C([0, 1]), f �→

∫ 1

0
Kd,p

m (·, r) f (r)rd−1dr , (5.8)

with eigenvalues λ
d,p
m, j and eigenfunctions ϕ

d,p
m, j . We now specify these eigenvalues and

eigenfunctions. In the following theorem, Jν denotes the Bessel function of the first
kind of order ν and ζk := e2π i/k is the k-th root of unity.

Theorem 5.1 Suppose that both d ≥ 3 and p > 1 − d are odd and let m ∈ N. Then
the following holds:

a) Any eigenvalue λ 	= 0 of T d,p
m is in a one-to-one correspondence with

ω = ∣∣λ−12d+p−2(d + 2m − 2)(− p
2 ) d+p

2 −1(
d+p
2 − 1)!∣∣ 1

d+p (5.9)

with ω satisfying det(A(ω)) = 0, where

A(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ζ−i�
d+p Jm+ d

2 −i−1(ζ
�
d+pω)

) d+p
2 ,

d+p
2 −1

i=1, �=0
, (− p

2 ) d+p
2 −1λ > 0,

(
ζ

−i(2�+1)
2(d+p) Jm+ d

2 −i−1(ζ
2�+1
2(d+p)ω)

) d+p
2 ,

d+p
2 −1

i=1, �=0
, (− p

2 ) d+p
2 −1λ < 0.

(5.10)

b) The eigenfunctions are exactly

r �→

⎧
⎪⎨

⎪⎩

∑ d+p
2

�=1 c� r1−
d
2 Jm+ d

2 −1(ζ
�−1
d+pωr), (− p

2 ) d+p
2 −1λ > 0,

∑ d+p
2

�=1 c� r1−
d
2 Jm+ d

2 −1(ζ
2�−1
2(d+p)ωr), (− p

2 ) d+p
2 −1λ < 0,

where c ∈ R
d+p
2 is in the nullspace of A(ω).

Remark 5.2 Computer experiments seem to indicate that the nullspace of A(ω) is
one-dimensional if det(A(ω)) = 0. In that case, the function

r �→

⎧
⎪⎨

⎪⎩

∑ d+p
2

�=1 (−1)�A[1,�](ω) r1− d
2 Jm+ d

2 −1(ζ
�−1
d+pωr), (− p

2 ) d+p
2 −1λ > 0,

∑ d+p
2

�=1 (−1)�A[1,�](ω) r1− d
2 Jm+ d

2 −1(ζ
2�−1
2(d+p)ωr), (− p

2 ) d+p
2 −1λ < 0,

(5.11)
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where A[1,�](ω) denotes the (1, �) minor of A(ω), spans the eigenspace associated
with λ.

Appendix D is dedicated to the proof of Theorem 5.1. The proof reveals strong ties
with polyharmonic operators on the unit ball and higher order differential operators on
the interval [0, 1]. We refer to [1] for structurally related spectral decompositions of
polyharmonic operators on [0, 1] with homogeneous Neumann boundary conditions.

Corollary 5.3 (d = 3, p = 1) The nonzero eigenvalues of T 3,1
m , for m ∈ N \ {0}, are

exactly λ = −ω−4(4m + 2), where ω is a positive solution of the equation

Jm− 1
2
(ω)Jm− 3

2
(iω) − iJm− 1

2
(iω)Jm− 3

2
(ω) = 0.

The corresponding eigenspaces are 1-dimensional with the representative

fλ(r) = r− 1
2

(
Jm+ 1

2
(ωr)iJm− 1

2
(iω) + Jm+ 1

2
(iωr)Jm− 1

2
(ω)

)
. (5.12)

The formulas in Corollary 5.3 are derived fromTheorem 5.1. Since Jm− 1
2
(iω) 	= 0, for

all ω ∈ R \ {0}, the eigenspaces are 1-dimensional and (5.12) is not the zero-function.
In view of (4.2) in Theorem 4.3 we are particularly interested in kernels of the form

c − ‖x − y‖. In this case, the expansion holds with −Kd,1
m for m ≥ 1 and c − Kd,1

0
for m = 0.

6 The Rotation Group SO(3)

In this section we derive the Fourier expansion of the discrepancy kernel on the special
orthogonal group SO(3). The eigenfunctions turn out to be classical functions but the
coefficients and their decay rates need to be determined. We also provide numerical
experiments by using the nonequispaced fast Fourier transform on SO(3).

6.1 Fourier Expansion on SO(3)

By identifying R
d×d with R

d2 , Theorem 4.3 applies to subsets of R
d×d endowed with

the trace inner product

〈x, y〉F := trace(x�y), x, y ∈ R
d×d ,

and the induced Frobenius norm ‖ · ‖F on R
d×d . In this way, SO(3) is contained in

B
9√
3
, and it is natural to consider s = √

3. We endow SO(3) with the normalized

Haar measure σSO(3). Let {Dm
k,l : k, l = −m, . . . ,m} denote the orthonormal Wigner

D-functions on SO(3), which are closely related to the irreducible representations
of SO(3) and provide an orthonormal basis for L2(SO(3)), cf. [48]. For p > 0, the
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Fourier expansion

2− p
2 ‖x − y‖p

F =
∞∑

m=0

am(p,SO(3))
m∑

k,l=−m

Dm
k,l(x)Dm

k,l(y), x, y ∈ SO(3),

(6.1)

holds and, analogous to (3.5), the coefficients are

am(p,SO(3)) := 1

(2m + 1)2

∫∫

SO(3)×SO(3)

2− p
2 ‖x − y‖p

F

m∑

k,l=−m

Dm
k,l(x)Dm

k,l(y)dσSO(3)(x)dσSO(3)(y).

(6.2)

We now compute these coefficients for the entire range p > −3.

Proposition 6.1 For p > −3, the coefficients (6.2) are

am(p,SO(3)) = 2p�(
p
2 + 3

2 )√
π�(− p

2 )
· �(− p

2 + m)

�(
p
2 + 2 + m)

· 1

(m + 1
2 )

. (6.3)

In particular, if p /∈ 2N, then

|am(p,SO(3))| =
∣∣∣∣∣
2p�(

p
2 + 3

2 )√
π�(− p

2 )

∣∣∣∣∣m
−(p+3)(1 + o(1)), m ∈ N,

and the series (6.1) terminates if p ∈ 2N.

The proof is given in Appendix E. For p ∈ 2N, we again apply the convention
�(− p

2 +m)

�(− p
2 )

= (− p
2 )m in (6.3), so that am(p,SO(3)) = 0 for all m >

p
2 if p ∈ 2N.

Provided that τ > 3/2, the Sobolev spaceH
τ (SO(3)) is the reproducing kernel Hilbert

space associated with the reproducing kernel

(x, y) �→
∞∑

m=0

(1 + m(m + 1))−τ
m∑

k,l=−m

Dm
k,l(x)Dm

k,l(y), x, y ∈ SO(3).

The choice p = 1 in Proposition 6.1 implies that the kernel Kβ9,s |SO(3)×SO(3) repro-
duces the Sobolev space HKβ9,s

(SO(3)) = H
2(SO(3)) with an equivalent norm

provided that s ≥ √
3.

For d ≥ 2, we shall observe that Kβd2,
√
d
|SO(d)×SO(d) reproduces the Sobolev

space H
τ (SO(d)), for τ = d(d−1)+2

4 , with an equivalent norm. Indeed, Theorem 4.3

and Sect. 3 yield that Kβd2,
√
d
|
Sd

2−1×Sd
2−1 reproduces H

d2
2 (Sd2−1) with equivalent

norms. Rescaling implies that Kβd2,
√
d
|√

d Sd
2−1×√

d Sd
2−1 reproduces H

d2
2 (

√
d S

d2−1).
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Fig. 2 We use the standard parametrization of SO(3) by S
3 via unit quaternions, which is then mapped

into R
3 by stereographic projection and R

3 is parametrized by B
3 via x �→ x

‖x‖ tan( π
2 ‖x‖). The target

measure μ is supported on two disjoint parts with weight ratio 9/1 colored in darker blue by the cylindrical
surface and the great circle. Numerical minimization of (6.5) splits 30 points in SO(3) into 27 points on the
inner surface and 3 points on the great circle. We plotted 6 points on the great circle but antipodal points
correspond to the same point in SO(3)

Since SO(d) ⊂ √
d S

d2−1, results on restricting kernels in [27] lead to τ = d2
2 −

1
2

(
(d2 − 1) − dim(SO(d))

)
, where dim(SO(d)) = d(d−1)

2 .

6.2 Numerical Examples on SO(3)

Proposition 6.1 yields the coefficients of the kernel expansion

Kβ9,
√
3
(x, y) =

∞∑

m=0

am

m∑

k,l=−m

Dm
k,l(x)Dm

k,l(y), x, y ∈ SO(3).

For supp(μ), supp(νn) ⊂ SO(3), the L2-discrepancy (1.6) for Kβ9,
√
3
becomes

Dβ9,
√
3
(μ, νn) =

∞∑

m=0

am

m∑

k,l=−m

∣∣∣∣∣∣
μ̂m
k,l − 1

n

n∑

j=1

Dm
k,l(x j )

∣∣∣∣∣∣

2

, (6.4)

where μ̂m
k,l denotes the Fourier coefficient of μ with respect to Dm

k,l , cf. (1.6). We
truncate the series (6.4) at M = 8 and minimize

M∑

m=0

am

m∑

k,l=−m

∣∣∣∣∣∣
μ̂m
k,l − 1

n

n∑

j=1

Dm
k,l(x j )

∣∣∣∣∣∣

2

(6.5)

among all n-point sets {x1, . . . , xn} ⊂ SO(3) for fixed n = 30. We efficiently solve
the least squares minimization by using the nonequispaced fast Fourier transform on
SO(3), cf. [32, 44]. Figure 2 shows the minimizing points mapped onto B

3.
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7 The GrassmannianG2,4

First, the Fourier expansion of the discrepancy kernel on G2,4 is computed. To prepare
for developing the nonequispaced fast Fourier transform on G2,4, we then explicitly
parametrize the Grassmannian G2,4 by its double covering S

2×S
2. Next, we derive the

nonequispaced fast Fourier transform on S
2 ×S

2 and provide numerical minimization
experiments on G2,4.

7.1 Fourier Expansion onG2,4

Theorem 4.3 also applies to the Grassmannian

G2,4 := {x ∈ R
4×4 : x� = x, x2 = x, rank(x) = 2}

with s = √
2 when R

4×4 is identified with R
16. To derive the Fourier expansion on

G2,4, we require some preparations. We shall use integer partitions λ = (λ1, λ2) ∈ N
2

with λ1 ≥ λ2 ≥ 0. We also denote |λ| := λ1 + λ2. The orthogonal group O(4) acts
transitively on G2,4 by conjugation and induces the irreducible decomposition

L2(G2,4, σG2,4) =
⊕

λ1≥λ2≥0

Hλ(G2,4), Hλ(G2,4) ⊥ Hλ′(G2,4), λ 	= λ′, (7.1)

where σG2,4 is the normalized orthogonally invariant measure on G2,4 and Hλ(G2,4)
is equivalent to the irreducible representation H4

2λ of O(4) with type 2λ, cf. [7, 35].
The normalized eigenfunctions of the Laplace–Beltrami operator on G2,4 form an
orthonormal basis for L2(G2,4), and each Hλ(G2,4) is contained in the eigenspace Eαλ

associated with the eigenvalue αλ = 4(λ21 + λ22 + λ1), cf. [6–8, 23, 35, 45].

Let Qλ be the reproducing kernel of Hλ(G2,4). Any orthonormal basis {ϕλ,l}dim(H4
2λ)

l=1
for Hλ(G2,4) yields the spectral decomposition

Qλ(x, y) =
dim(H4

2λ)∑

l=1

ϕλ,l(x)ϕλ,l(y), x, y ∈ G2,4, λ1 ≥ λ2 ≥ 0. (7.2)

The orthogonal decomposition (7.1) leads to the Fourier expansion

2− p
2 ‖x − y‖p

F =
∑

λ1≥λ2≥0

aλ(p,G2,4)Qλ(x, y), x, y ∈ G2,4, p > 0. (7.3)

The coefficients aλ(p,G2,4) in (7.3) are

aλ(p,G2,4) := 1

dim(H4
2λ)

∫∫

G2,4×G2,4

2− p
2 ‖x − y‖p

FQλ(x, y)dσG2,4(x)dσG2,4(y).

(7.4)
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In order to determine aλ(p,G2,4), we shallmake use of the hypergeometric coefficients
( f )(λ1,λ2) := ( f )λ1( f − 1

2 )λ2 . Also recall the notation |λ| = λ1 + λ2 and ‖λ‖ =√
λ21 + λ22.

Theorem 7.1 For p > −4, we have

aλ(p,G2,4) = 4−|λ||λ|!
( 32 )|λ|( 32 )λ

(− p
2 )|λ| 4F3

( |λ|+1
2 ,

|λ|+2
2 ,

|λ|
2 − p

4 ,
|λ|+1
2 − p

4

|λ| + 3
2 , λ1 + 3

2 , λ2 + 1
; 1

)
.

(7.5)

In particular, if p /∈ 2N, then

|aλ(p,G2,4)| =
∣∣∣∣∣
�(

p
2 + 2)

2�(− p
2 )

∣∣∣∣∣ ‖λ‖−(p+4)(1 + o(1)), λ1 ≥ λ2 ≥ 0, (7.6)

and the series (7.3) terminates if p ∈ 2N.

The proof of this theorem is contained in Section F.1 of Appendix F. If p ∈ 2N,
then aλ(p,G2,4) = 0 for all |λ| >

p
2 . For τ > 2, the Sobolev space H

τ (G2,4) is the
reproducing kernel Hilbert space with associated reproducing kernel

(x, y) �→
∑

λ1≥λ2≥0

(1 + 4λ21 + 4λ22 + 4λ1)
−τ Qλ(x, y), x, y ∈ G2,4, (7.7)

cf. [11, 16]. Since the coefficients in (7.7) behave asymptotically as ‖λ‖−2τ , the choice
p = 1 in Theorem 7.1 implies that the kernel Kβ16,s |G2,4×G2,4 reproduces the Sobolev

space HKβ16,s
(G2,4) = H

5
2 (G2,4) with an equivalent norm provided that s ≥ √

2.
Analogous to SO(d) at the end of Sect. 6.1, we deduce with [27] that, for d ≥ 2,

Kβd2,
√
k
|Gk,d×Gk,d reproduces the Sobolev space H

k(d−k)+1
2 (Gk,d) with an equivalent

norm.

7.2 Parametrization ofG2,4 by (S
2 × S

2)
�±1

To derive the nonequispaced fast Fourier transform on G2,4, we shall first explicitly
construct the parametrization of G2,4 by its double covering S

2 × S
2. We denote the

d × d-identity matrix by Id , and the cross-product between two vectors x, y ∈ S
2 is

denoted by x × y ∈ R
3. The mapping P : S

2 × S
2 → G2,4 given by

(x, y) �→1

2

(
1 + x�y −(x × y)�
−x × y xy� + yx� + (1 − x�y)I3

)
(7.8)

is surjective and, for all x, y, u, v ∈ S
2,

P(u, v) = P(x, y) if and only if (u, v) ∈ {±(x, y)}, (7.9)
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see Section F.2 and Theorem F.4 of Appendix F. In order to specify the inverse map,

note that S
2 × S

2
�±1 can be identified withM(3) := {xy� ∈ R

3×3 : x, y ∈ S
2}. We

now define L : G2,4 → M(3),

L(P) :=
⎛

⎜⎝

1
2 (P11 + P22 − P33 − P44) P23 − P14 P24 + P13

P23 + P14
1
2 (P11 − P22 + P33 − P44) P34 − P12

P24 − P13 P34 + P12
1
2 (P11 − P22 − P33 + P44)

⎞

⎟⎠ ,

(7.10)

and direct computations lead to

L(P(x, y)) = xy�, x, y ∈ S
2. (7.11)

The right-hand side determines x and y up to the ambiguity (7.9). Under the Frobenius
norm, P is distance preserving in the sense

‖P(x, y) − P(u, v)‖F = ‖xy� − uv�‖F, x, y, u, v ∈ S
2. (7.12)

The latter follows from (F.20) in Lemma F.6 in Section F.2 of Appendix F.
We shall now check how the spherical harmonics Ym

l on S
2 relate to the eigen-

functions ϕλ,l ∈ Hλ(G2,4) of the Laplace–Beltrami operator on G2,4, cf. (7.2). The
functions Ym,n

k,l : G2,4 → C given by

Ym,n
k,l (P(x, y)) := Ym

k (x) · Yn
l (y) (7.13)

are well-defined for m + n ∈ 2N, the latter taking into account the ambiguity (7.9).

Theorem 7.2 For mλ := (λ1 + λ2) and nλ := (λ1 − λ2), we have

Hλ(G2,4) = span{Ymλ,nλ

k,l ,Ynλ,mλ

l,k : k = −mλ, . . . ,mλ, l = −nλ, . . . , nλ}.
(7.14)

The proof is presented at the end of SectionF.2 ofAppendixF.Note that the geodesic

distance on G2,4 is distG2,4(P, Q) = √
2
√

θ21 + θ22 , where θ1, θ2 ∈ [0, π/2] are the

principal angles determined by the two largest eigenvalues cos2(θ1) and cos2(θ2) of
the matrix PQ. Aside from (7.12), P is also distance-preserving with respect to the
respective geodesic distances, i.e.,4

distG2,4(P(x, y),P(u, v)) = dist
S
2×S

2
�±1

( ( x
y

)
,

(
u
v

) )
, x, y, u, v ∈ S

2.

4 The geodesic distance on S
2 induces the geodesic distance on S

2 × S
2
�±1 by

dist2
S
2×S

2
�±1

( ( x
y

)
,

(
u
v

) ) = min
{
dist2

S2
(x, u) + dist2

S2
(y, v), dist2

S2
(−x, u) + dist2

S2
(−y, v)

}
.
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This equality follows from (F.23) in Lemma F.6 in the appendix via further direct
calculations.

The identity (7.14) provides explicit expressions for the orthonormal basis

{ϕλ,l}dim(H4
2λ)

l=1 of Hλ(G2,4) that is used to construct the reproducing kernel Qλ in
(7.2). It also provides a fast Fourier transform on G2,4 from the respective transform
on S

2 × S
2 that is developed in the subsequent section.

7.3 Nonequispaced Fast Fourier Transform onG2,4

The nonequispaced fast (spherical) Fourier transform on S
2 has been developed in

[39, 41] under the acronym nfsft. Here, we shall derive the analogous transform
on S

2 × S
2, which induces the nonequispaced fast Fourier transform on G2,4 via the

mapping P and (7.14) with (7.13).
For a given finite set of coefficients f m1,m2

k,l ∈ C, m1,m2 = 0, . . . , M , k =
−m1, . . . ,m1, l = −m2, . . . ,m2, we aim to evaluate

F(x, y) :=
M∑

m1,m2=0

m1∑

k=−m1

m2∑

l=−m2

f m1,m2
k,l Ym1

k (x)Ym2
l (y) (7.15)

at n scattered locations (x j , y j )nj=1 ⊂ S
2 × S

2. Direct evaluation of (7.15) leads to

O(nM4) operations. We shall now derive an approximative algorithm that is more
efficient for n � M .

By following the ideas in [39, 41], switching to spherical coordinates reveals that
(7.15) is a 4-dimensional trigonometric polynomial. This enables the use of the 4-
dimensional nonequispaced fast Fourier transform nfft to significantly reduce the
complexity. In spherical coordinates the spherical harmonics are trigonometric poly-
nomials such that

Ym
k (z(θ, ϕ)) = eikϕ

m∑

k′=−m

cmk,k′eik
′θ , z(θ, ϕ) =

⎛

⎝
sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

⎞

⎠ ∈ S
2,

(7.16)

where 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π , and cmk,k′ ∈ C are suitable coefficients that we assume
to be given or precomputed. Thus, for x = z(θ1, ϕ1) and y = z(θ2, ϕ2), there are
coefficients bk,lk′,l ′ ∈ C such that

F(x, y) =
M∑

k,l,k′,l ′=−M

bk,lk′,l ′e
ikϕ1eilϕ2eik

′θ1eil
′θ2 . (7.17)

We check in Sect. 1 of Appendix F that the set of coefficients bk,lk′,l ′ can be com-

puted by O(M5) operations provided that the numbers cmk,k′ in (7.16) are given.
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The expression (7.17) can be evaluated at n scattered locations by the nonequis-
paced discrete Fourier transform ndft with O(nM4) operations, cf. [39, 41]. An
efficient approximative algorithm is the nonequispaced fast Fourier transform nfft
that requires only O(M4 log(M) + n| log(ε)|4) operations with accuracy ε, see [39,
41] for details on accuracy. Thus, our algorithm for evaluating (7.15) at n scattered
locations requires O(M5 + n| log(ε)|4) operations. For n � M , this is a signifi-
cant reduction in complexity compared to the original O(nM4) operations. We shall
choose n ∼ M4 in the subsequent section, so that the complexity is reduced from
O(M8) to O(M5+M4| log(ε)|4) operations. For potential further reduction, we refer
to Remark F.7 in the appendix.

7.4 Numerical example onG2,4

By Theorem 7.1, we can calculate the coefficients of the kernel expansion

Kβ16,
√
2
(x, y) =

∑

λ1≥λ2≥0

aλ

dim(Hd
2λ)∑

l=1

ϕλ,l(x)ϕλ,l(y), x, y ∈ G2,4.

The eigenfunctions ϕλ,l are given by the tensor products of spherical harmonics in
(7.13), cf. Theorem 7.2. For supp(μ), supp(νn) ⊂ G2,4, the L2-discrepancy (1.6) of
the kernel Kβ16,

√
2
|G2,4×G2,4 is

Dβ16,
√
2
(μ, νn) =

∑

λ1≥λ2≥0

aλ

dim(Hd
2λ)∑

l=1

∣∣∣∣∣∣
μ̂λ,l − 1

n

n∑

j=1

ϕλ,l(x j )

∣∣∣∣∣∣

2

, (7.18)

where μ̂λ,l is the Fourier coefficient of μ with respect to ϕλ,l , cf. (1.6).
Let us consider μ = σG2,4 . According to [11] (see also [15, 16]), the lower bound

n−5/4 � Dβ16,
√
2
(μ, νn)

holds for all n-point sets {x1, . . . , xn} ⊂ G2,4. We truncate the series (7.18) and let
νM
n = 1

n

∑n
j=1 δxMj

denote a minimizer of

∑

λ+λ2≤M

aλ

dim(Hd
2λ)∑

l=1

∣∣∣∣∣∣
μ̂λ,l − 1

n

n∑

j=1

ϕλ,l(x j )

∣∣∣∣∣∣

2

(7.19)

among all n-point sets {x1, . . . , xn} ⊂ G2,4. A suitable choice n ∼ M4 leads to the
optimal rate

Dβ16,
√
2
(μ, νM

n ) ∼ n−5/4, (7.20)
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Fig. 3 Logarithmic plot of the
number of points n versus the
L2-discrepancy
D

β16,
√
2(μ, νMn ) on G2,4, where

νMn is derived from numerical
minimization

10−4

10−3

10−2

10−1

L
2-
di
sc
re
pa

nc
y

101 2 103 10410
number of points

cf. [11, 25]. Note that we can efficiently solve the least squares minimization (7.19) by
using thenonequispaced fast Fourier transformonG2,4 derived from thenonequispaced
fast Fourier transform on S

2 × S
2 of Sect. 7.3 and applying Theorem 7.2. Figure 3

shows logarithmic plots of the number of points versus the L2-discrepancy.Weobserve
a line with slope −5/4 as predicted by (7.20).
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Appendix A: Proofs for Section 2

Proof of Theorem 2.1 Let hd : [0,∞) → R denote Euclid’s hat function given by

hd(‖x‖) = 1

vol(Bd
1/2)

(1
B
d
1/2

∗ 1
B
d
1/2

)(x), x ∈ R
d ,

where 1
B
d
1/2

is the indicator function of B
d
1/2. For x, y ∈ R

d and t = ‖x − y‖ ≤ 1, we

derive

Kd (x, y) =
∫ ∞

0

1

vol(Bd
r/2)

∫

Rd
1

B
d
r/2(z)

(x)1
B
d
r/2(z)

(y)dz dGd(r) =
∫ ∞

t
hd (t/r)dGd (r)
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=
∫ 1

t
hd (t/r)G

′
d(r)dr − hd (t)Gd(1) = t

∫ 1

t
r−2h′

d (t/r)Gd(r)dr ,

where the last equality is due to partial integration. An explicit expression for h′
d is

stated in [29, Equation (11)], so that we obtain

Kd(x, y) = d �( d2 )√
π�( d+1

2 )
t
∫ 1

t

1
(1 − r2t2)

d−1
2 2F1

(− d+1
4 ,− d−1

4

− d
2

; r−2

)
dr

= d �( d2 )√
π�( d+1

2 )
t

d−1
2∑

j=0

(−1) j
( d−1

2
j

)
t2 j

d+1
4∑

l=0

(− d+1
4 )l(− d−1

4 )l

(− d
2 )l l!

∫ 1
t

1
r2( j−l)dr

= d �( d2 )√
π�( d+1

2 )

d+1
4∑

l=0

t2l
(− d+1

4 )l(− d−1
4 )l

(− d
2 )l l!

d−1
2∑

j=0

(−1) j
( d−1

2
j

)

2 j − 2l + 1

− d �( d2 )√
π�( d+1

2 )

d−1
2∑

j=0

(−1) j
( d−1

2
j

)
t2 j+1

d+1
4∑

l=0

(− d+1
4 )l(− d−1

4 )l

(− d
2 )l l!(2 j − 2l + 1)

.

We now compare coefficients of powers of t with those of the polynomial (1− t)
d+1
2 .

In order to check the coefficient of t2l , we first observe

d−1
2∑

j=0

(−1) j
( d−1

2
j

)

2 j − 2l + 1
= 2F1

(− d−1
2 , 1

2 − l
3
2 − l

; 1
)

1

1 − 2l
= �( d+1

2 )�( 12 − l)

2�( d2 − l + 1)
,

where the last equality makes use of Gauss’ Theorem for the hypergeometric series
evaluated at 1 (cf. [47, Equation (1.7.6); Appendix (III.3)]). Direct computation yields

(− d+1
4 )l(− d−1

4 )l

(− d
2 )l

=
( d+1

2
2l

)
(2l)!
(−4)l

�( d2 − l + 1)

�( d2 + 1)
,

so that the coefficient of t2l in Kd(x, y) is

( d+1
2
2l

)
(2l)!

(−4)l l!
�( 12 − l)

�( d2 + 1)2

d �( d2 )√
π

=
( d+1

2
2l

)
(2l)!

(−4)l l!
�( 12 − l)√

π
=

( d+1
2
2l

)
.

Hence, the coefficients for even powers of t match. To check the coefficient of t2 j+1,
we first assume d−1

4 ∈ N. The Pfaff–Saalschütz Theorem (cf. [47, Equation (2.3.1.3);
Appendix (III.2)]) yields

d+1
4∑

l=0

(− d+1
4 )l(− d−1

4 )l

(− d
2 )l l!(2 j − 2l + 1)

= 3F2

(− d+1
4 ,− d−1

4 ,− 1
2 − j

− d
2 , 1

2 − j
; 1

)
1

1 + 2 j
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=
(− d−1

4 ) d−1
4

( j − d−1
2 ) d−1

4

(− d
2 ) d−1

4
( j − d−3

4 ) d−1
4

1

1 + 2 j
.

Thus, the coefficient of t2 j+1 in Kd(x, y) is nonzero if and only if j ≤ d−1
4 . Moreover,

it is given by

−d �( d2 )(−1) j
( d−1

2
j

)
(− d−1

4 ) d−1
4

( j − d−1
2 ) d−1

4√
π�( d+1

2 )(1 + 2 j)(− d
2 ) d−1

4
( j − d−3

4 ) d−1
4

=
− d√

π
�( d2 )(−1) j ( d−1

4 )!( d+3
4 − j) d−1

4

( d−1
2 − j)! j !(1 + 2 j)( d+1

4 + 1) d−1
4

( 12 − j) d−1
4

.

Further computations using the duplication formula eventually lead to −( d+1
2

2l+1

)
. The

case d+1
4 ∈ N is checked analogously. The observation Kd(x, y) = 0 for ‖x − y‖ > 1

concludes the proof. ��

Appendix B: Proofs for Section 3

Proof of Proposition 3.2 By expressing the R
d -Fourier transform 1̂Bd

r
(ξ) in terms of

the Bessel function of the first kind of order d/2 and using its asymptotics, we deduce

∣∣∣1̂Bd
r
(ξ)

∣∣∣ �
(
1 + ‖ξ‖2

)−(d+1)/4
, ξ ∈ R

d .

Due to the zeros of the Bessel function, the respective lower bound cannot hold. This

implies the embedding claims for H
d+1
2 (Rd), in particular, for d = 3.

To address the restricted kernel, we observe that the value vol(Bd
r/2)Kd,r (x, y)

coincides with the R
d -volume of the two intersecting balls B

d
r/2(x) ∩ B

d
r/2(y). This

volume has been explicitly computed in [31, Section 2.4.3]. For d = 3, we obtain

K3,r (x, y) = 1 − 3

2r
‖x − y‖ + 1

2r3
‖x − y‖3, x, y ∈ S

2,

so that K3,r |S2×S2 is a polynomial of degree 3 in ‖x − y‖. Its Fourier coefficients
(am)m∈N are linear combinations of the Fourier coefficients of the monomial terms,
so that (3.7) implies am � m−3.

We have checked that there are no cancelations in these linear combinations. There-
fore, the asymptotics (3.7) also imply the associated bound from below, which leads

to am ∼ m−3. Thus, K3,r |S2×S2 reproduces the Sobolev spaceH
3
2 (S2)with equivalent

norms. ��
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Appendix C: Proofs for Section 4

Proof of Proposition 4.2 Let us consider s = 1. The general case follows from rescal-
ing. In order to determine the Fourier expansion of Kβ1,1 |[−1,1]×[−1,1], we need to
determine the eigenfunctions with respect to the positive eigenvalues of the integral
operator

T : L2([−1, 1]) → C ([−1, 1]), f �→
∫ 1

−1
f (t)

(
1 − 1

2 | · −t |) dt .

For λ > 0, the equation Tφ = λφ is equivalent to the associated Sturm–Liouville
eigenvalue problem. Indeed, differentiating twice on both sides and carrying out a
short calculation, we arrive at the second order homogeneous differential equation

φ′′(x) + 1

λ
φ(x) = 0, x ∈ (−1, 1), (C.1)

with boundary conditions φ′(1) = −φ′(−1) and φ(1) + φ(−1) = −2φ′(1). The
general solution of (C.1) is φ(x) = c1 cos( x√

λ
) + c2 sin( x√

λ
). Direct calculations

using the boundary conditions determine c1, c2 and λ, so that Mercer’s Theorem and
normalization of the eigenfunctions provide the claimed Fourier expansion of the
kernel.

Computations analogous to [43, Section 9.5.5] and [22] verify the claimed form of
the reproducing kernel Hilbert space. ��

Appendix D: Proofs for Section 5

The two linearly independent eigenfunctions of the differential operator

Dm := ∂2r + d−1
r ∂r − m(m+d−2)

r2
(D.1)

on [0, 1] with respect to a possibly complex eigenvalue −ω2 are

J d,ω
m (r) :=

Jm+ d
2 −1(ωr)

r
d
2 −1

, and Yd,ω
m (r) :=

Ym+ d
2 −1(ωr)

r
d
2 −1

,

where Jν and Yν are the Bessel functions of first and second type, respectively.

Lemma D.1 For odd d ≥ 3, odd p > 1 − d, and m ∈ N, any eigenfunction of T d,p
m

with eigenvalue λ 	= 0 is a linear combination of
{
J d,ω�
m : � = 1, . . . , d+p

2

}
, where

ω� = |v| 1
d+p

{
eπ i 2�

d+p , (−1)
d+p
2 v > 0,

eπ i 2�+1
d+p , (−1)

d+p
2 v < 0,

(D.2)
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and

v = −λ−12d+p−2(d + 2m − 2)
(
2 − d

2

)
d+p
2 −1

(
d+p
2 − 1

)
!.

Proof of LemmaD.1 Up to a constant depending on d and p, Kd,p is the Green’s

function of the polyharmonic equation �
d+p
2 u = f on B

d with certain nonlocal
boundary conditions, cf. [38]. In particular and by specifying the constant, one deduces
that any eigenfunction of T d,p in (5.5) with eigenvalue λ̃ 	= 0 is an eigenfunction of

�
d+p
2 with eigenvalue

−λ̃−12d+p−2 (2 − d
2

)
d+p
2 −1

(
d+p
2 − 1

)
!(d − 2)vol(Sd−1).

The Laplacian in polar coordinates is � = ∂2r + d−1
r ∂r + 1

r2
�Sd−1 . The decompo-

sition (5.7) (see also (5.4)) yields �
d+p
2 ϕ

d,p
m, j,l = (

D
d+p
2

m ϕ
d,p
m, j

)
Ym
l on B̊

d , where Dm

is as in (D.1). Since λ̃ = (d−2)vol(Sd−1)
2m+d−2 λ, any eigenfunction of T d,p

m with eigenvalue

λ 	= 0 is an eigenfunction of D
d+p
2

m with eigenvalue

v = −λ−12d+p−2(d + 2m − 2)
(
2 − d

2

)
d+p
2 −1

(
d+p
2 − 1

)
!.

The linearly independent eigenfunctions of D
d+p
2

m with respect to any eigenvalue v 	= 0
are

J d,ω�
m , and Yd,ω�

m , � = 1, . . . , d+p
2 , (D.3)

where

(−ω2
�)

d+p
2 = (−1)

d+p
2 ω

d+p
� = v, � = 1, . . . , d+p

2 ,

and we take

ω� := |v| 1
d+p

{
e2π i

�
d+p , (−1)

d+p
2 v > 0

eπ i 2�+1
d+p , (−1)

d+p
2 v < 0,

� = 1, . . . ,
d + p

2
.

As an eigenfunction of a positive integer power of the Laplacian, φd,p
m, j,l is real analytic

on B
d , cf. [5, 36]. Hence, the radial part ϕd,p

m, j,l must be an analytic function on [0, 1]
with even or odd parity for m even or odd, respectively, cf. [9]. The functions Yd,ω�

m
do not have matching parity, which concludes the proof. ��

In order to identify the eigenvalues and the linear combination in Lemma D.1, we
check how T d,p

m in (5.8) acts on J d,ω
m .

Lemma D.2 For d and p > 1 − d odd, we have
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(T d,p
m J d,ω

m )(r)

= ω−(d+p) 2d+p−2(d + 2m − 2)
(− p

2

)
d+p
2 −1

(
d+p
2 − 1

)
!J d,ω

m (r)

−
(− p

2

)
m( d

2 − 1
)
m

d+p
2∑

i=1

2i−1
(
d+p
2 − i + 1

)

i−1
ω−iJ d,ω

m−i (1)r
m
2F1

(
i − d+p

2 ,m − p
2

d
2 + m

; r2
)

.

(D.4)

Proof of LemmaD.2 The idea of the proof is to use the series expansion of the Bessel
functions, apply the integral operator to each term, and eventually recover the right-
hand side of (D.4). We shall provide the skeleton of the proof and omit some lengthy
computations.

Let d ≥ 1, p ≥ 1 − d and r ≥ s. If d + p is even, direct computations yield

Kd,p
m (r , s) = (− p

2 )m

( d2 − 1)m

d+p
2 −1∑

k=0

(−1)k
( d+p

2 − 1

k

)
(− p

2 + m)k

( d2 + m)k
sm+2kr p−m−2k .

We obtain that (T d,2l−d
m J d,ω

m )(r) equals

( d2 − l)m

( d2 − 1)m

l−1∑

k=0

(l−1
k

)
( d2 − l + m)k

(−1)k( d2 + m)k

[∫ r
0 Jm+ d

2 −1(ωs)s
d
2 +m+2kds

r2l−d−m−2k +
∫ 1
r Jm+ d

2 −1(ωs)s
2l− d

2 −m−2kds

rm+2k

]
.

For α > 0, k ∈ N0, ω ∈ C and r > 0, integration of each term of the power series of
the Bessel function eventually yields

∫ r

0
Jα(ωs)sα+2k+1ds =

k∑

i=0

2i (−k)i
ωi+1

Jα+i+1(ωr)

r i−α−2k−1 , (D.5)

∫ 1

r
Jα(ωs)s−α+2k+1ds =

k∑

i=0

(−2)i (−k)i
ωi+1

( Jα−i−1(ωr)

r i+α−2k−1 − Jα−i−1(ω)
)
, (D.6)

which follows from direct computations and

∞∑

j=0

(−k)n+ j−1

(α + n) j+1
= (−k)n−1

α + n
2F1

(
n − k − 1, 1

α + n + 1
; 1

)
= (−k)n−1

α + k + 1
,

for α ∈ R, k ∈ N0, and n ∈ N with α /∈ {−(k + 1),−k, . . . ,−n}. By applying (D.5)
and (D.6), we can express (T d,2l−d

m J d,ω
m )(r) as a sum of Bessel functions of various
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different orders. Straightforward but lengthy computations combinedwith the identity

Jα(x)=
l∑

i,k=0

( x2 )2l+1−i (−1)k(−k)i
(α − l)l+1(l − k)!k!

[
(α − l)k Jα+i+1(x)

(α + 1)k
+ (α − l)l−k Jα−i−1(x)

(−1)l+i (α + 1)l−k

]

(D.7)

eventually lead to the claimed equality (D.4).
In order to verify (D.7), according to the definition of the Bessel function Jα(x), we

have to show that the coefficient of (x/2)α+2m on the right-hand side of (D.7) equals
(−1)m/(m!�(m + α + 1)), for m = 0, 1, . . . . Let first m ≥ l. Then this coefficient
R(α,m) equals

R(α,m) :=
l∑

i,k=0

(−1)k+m−l−1(−k)i
(α + k − l)l+1(l − k)!k!(m − l − 1)!�(m − l + α + i + 1)

+
l∑

i,k=0

(−1)k+m(−k)i
(α − k)l+1(l − k)!k!(m − l + i)!�(m − l + α)

=
l∑

k=0

(−1)k+m−l−1
2F1

(
1,−k

m−l+α+1 ; 1
)

(α + k − l)l+1(l − k)!k!(m − l − 1)!�(m − l + α + 1)

+
l∑

k=0

(−1)k+m
2F1

(
1,−k

m−l+1 ; 1
)

(α − k)l+1(l − k)!k!(m − l)!�(m − l + α)
. (D.8)

Both hypergeometric series can be evaluated by means of Gauss’ Theorem. Thus, we
obtain

R(α,m) =
l∑

k=0

(−1)k+m+l+1

(α + k − l)l+1(l − k)!k!(m − l − 1)!�(m − l + α)(m − l + k + α)

+
l∑

k=0

(−1)k+m

(α − k)l+1(l − k)!k!(m − l − 1)!�(m − l + α)(m − l + k)
.

Now we reverse the order of summation in the second sum, i.e., we replace k by l − k
there. Then both sums can be conveniently put together to yield

R(α,m) =
l∑

k=0

(−1)k+l+m(α − l + 2k)

(α − l + k)l+1(l − k)!k!(m − l − 1)!�(m − l + α)(m − l + k + α)(m − k)

=
(−1)l+m

5F4

(
α−l, α

2 − l
2+1,α−l+m,−m,−l

α
2 − l

2 ,1−m,α−l+m+1,α+1
; 1

)
.

(α − l + 1)l l!(m − l − 1)!�(m − l + α)(m − l + α)(m)
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The hypergeometric function can be evaluated by means of the classical terminating
very-well-poised 5F4-summation (cf. [47, Equation (2.3.4.6); Appendix (III.13)]).
After some simplification one arrives at the desired expression (−1)m/(m!�(m+α +
1)).

If m < l, then the first sum in (D.8) does not contribute anything because of the
term (m− l−1)! in the denominator. In the second sum, the summation over i may be
started at i = l − m, which can be evaluated by means of the binomial theorem. The
result is zero except if k = l. Again, in the end one obtains (−1)m/(m!�(m+α +1)).

��

Proof of Theorem 5.1 We now combine Lemmas D.2 and D.1. Let the linear combina-

tion f = ∑ d+p
2

�=1 c�J d,ω�
m be an eigenfunction of T d,p

m with eigenvalue λ and let ω� be

as in (D.2). We obtain for any � = 1, . . . , d+p
2 that

ω
d+p
� = (−1)

d+p
2 v

= λ−12d+p−2(d + 2m − 2)(−1)
d+p
2 −1(2 − d

2 ) d+p
2 −1(

d+p
2 − 1)!

= λ−12d+p−2(d + 2m − 2)(− p
2 ) d+p

2 −1(
d+p
2 − 1)!,

and thus

T d,p
m f − λ f = (− p

2 )m

( d2 − 1)m
F(r)�A(ω) c, (D.9)

where A(ω) is as in (5.10), c = (c�)�=1,..., d+p
2
, and

F(r) :=
(
2i−1(

d+p
2 − i + 1)i−1|ω|−i rm2F1

(
i − d+p

2 ,m − p
2

d
2 + m

; r2
)) d+p

2

i=1

.

For i = 1, . . . , d+p
2 , the hypergeometric functions in F are polynomials of exact

degree d + p − 2i and thus linearly independent. Hence, for c 	= 0, the right-hand
side of (D.9) vanishes if and only if A(ω) is singular and c is in its nullspace. ��

Appendix E: Proofs for Section 6

Proof of Proposition 6.1 We shall derive the coefficients am(p,SO(3)) from the family

of spherical coefficients am(p, S
1). The half-angle identity sin( t2 ) =

√
1−cos(t)

2 , for
t ∈ [0, π ], implies

2− p
2 ‖x − y‖p = √

1 − 〈x, y〉p = 2
p
2 sin( s2 )

p, x, y ∈ S
d−1, (E.1)
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where s = arccos(〈x, y〉). For d = 2, the addition theorem yields

Ym
1 (x)Ym

1 (y) + Ym
2 (x)Ym

2 (y) = 2Tm(〈x, y〉), x, y ∈ S
1, m = 1, 2, . . . ,

(E.2)

whereTm are theChebyshev polynomials of the first kind, i.e.,Tm
(
cos(s)

) = cos(ms),
for s ∈ [0, π ]. The relation (3.4) for d = 2 with (E.1) and (E.2) leads to

2
p
2 sin( s2 )

p = a0(p, S
1) + 2

∞∑

m=1

am(p, S
1)Tm

(
cos(s)

)
, s ∈ [0, π ], p > 0.

(E.3)

We now switch to SO(3). For x, y ∈ SO(3), the relation

‖x − y‖F = 2
1
2

√
3 − trace(x�y),

the choice s = arccos( trace(x
�y)−1
2 ), and (E.3) imply

2−p‖x − y‖p
F = 2− p

2

√
3 − trace(x�y)

p
= 2

p
2 sin( s2 )

p

= a0(p, S
1) + 2

∞∑

m=1

am(p, S
1)Tm

(
cos(s)

)

= a0(p, S
1) + 2

∞∑

m=1

am(p, S
1)T2m

(
cos( s2 )

)
.

The Legendre polynomials satisfy Tm = 1
2 (C1m − C1m−2) with T0 = C10 and C0−1 = 0,

for m ∈ N, so that we obtain

2−p‖x − y‖p
F =

∞∑

m=0

(am(p, S
1) − am+1(p, S

1))C12m
(
cos( s2 )

)
. (E.4)

We derive (6.3) by calculating the differences 2
p
2 (am(p, S

1) − am+1(p, S
1)) in (E.4)

and applying the addition theorem of the orthonormal Wigner D-functions,

m∑

k,l=−m

Dm
k,l(x)Dm

k,l(y) = (2m + 1)C12m
(
cos( s2 )

)
, (E.5)

see [48] for (E.5). Analytic continuation and well-known relations for the gamma
function cover the remaining values of p > −3.

Standard calculations yield
�(m− p

2 )

�(m+ p
2 +2)

= m−2−p(1 + o(1)), which concludes the

proof. ��
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Appendix F: Proofs for Section 7

F.1. Proofs for Section 7.1

Proof of Theorem 7.1 Proof of (7.5): According to [20], Qλ is explicitly given in terms
of Legendre polynomials by

Qλ(x, y) = cλ

2

(
C

1
2
λ1+λ2

(ξ+)C
1
2
λ1−λ2

(ξ−) + C
1
2
λ1+λ2

(ξ−)C
1
2
λ1−λ2

(ξ+)

)
, (F.1)

where cλ := dim(H4
2λ) = (

2 − δ0,λ2
) (

(2λ1 + 1)2 − 4λ22
)
and θ1, θ2 denote the prin-

cipal angles between x and y and

ξ+ = cos(θ1 + θ2), ξ− = cos(θ1 − θ2). (F.2)

In order to write the integral (7.4) in terms of the variables ξ±, we first observe

2− p
2 ‖x − y‖p

F = (2 − trace(xy))
p
2 =

(
2 − cos(θ1)

2 − cos(θ2)
2
) p

2

= (
1 − 1

2 cos(2θ1) − 1
2 cos(2θ2)

) p
2

= (1 − ξ+ξ−)
p
2 .

We set −q := p/2 as well as m := λ1 + λ2 and n := λ1 − λ2. According to [20], the
measureμG2,4⊗μG2,4 in (7.4) turns into dξ+dξ− for the variables ξ± on |ξ+| ≤ ξ− ≤ 1,
so that we obtain

aλ(p,G2,4) =
∫ 1

0

∫ ξ−

−ξ−
(1 − ξ+ξ−)−q 1

2

(
C

1
2
n (ξ+)C

1
2
m (ξ−) + C

1
2
n (ξ−)C

1
2
m (ξ+)

)
dξ+dξ−.

Symmetry arguments yield

aλ(p,G2,4) = 1

4

∫ 1

−1

∫ 1

−1
(1 − xy)−q 1

2

(
C

1
2
n (x)C

1
2
m(y) + C

1
2
n (y)C

1
2
m(x)

)
dxdy

= 1

4

∫ 1

−1

∫ 1

−1
(1 − xy)−qC

1
2
n (x)C

1
2
m(y)dxdy.

The series expansion of (1− xy)−q converges absolutely for q < 2, and the Legendre

polynomials C
1
2
m are orthogonal to the monomials xk for k < m or m 	≡ kmod 2.

Therefore, the orthogonality relations yield
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aλ(p,G2,4) = 1

4

∞∑

k=0

(q)k

k!
∫ 1

−1
C

1
2
m(x)xkdx

∫ 1

−1
C

1
2
n (y)ykdy

= 1

4

∞∑

k=0

(q)m+2k

(m + 2k)!
∫ 1

−1
C

1
2
m(x)x2k+mdx

∫ 1

−1
C

1
2
n (y)y2k+mdy

= 1

4

∞∑

k=0

(q)m+2k

(m + 2k)!c
m
k c

n
m−n
2 +k

, where cmk :=
∫ 1

−1
xm+2kC

1
2
m(x)dx .

The use of the generating function and further calculations lead to

cmk = m! (m + 1)2k
2m−1( 32 )m 4k k! (m + 3

2 )k
. (F.3)

Application of (F.3) and (q)m+2k = (q)m(m + q)2k yields

aλ(p,G2,4) = 1

4
(q)m

∞∑

k=0

(m + q)2k

(m + 2k)! · m! (m + 1)2k
2m−1 ( 32 )m 4k k! (m + 3

2 )k

· n! (n + 1)m−n+2k

2n−1( 32 )n 4
m−n
2 +k (m−n

2 + k)! (n + 3
2 )m−n

2 +k

.

By reordering and making use of n! (n + 1)m−n+2k = (m + 2k)!, which cancels the
identical term in the denominator, we are led to

aλ(p,G2,4) = (q)m m!
4m ( 32 )m

∞∑

k=0

1

(m + 3
2 )k

· (m + 1)2k
4k

· (m + q)2k

4k

· 1

(m−n
2 + k)! · 1

( 32 )n (n + 3
2 )m−n

2 +k

· 1

k!

= (q)m m!
4m ( 32 )m (m−n

2 )! ( 32 )n (n + 3
2 )m−n

2
∞∑

k=0

(m+1
2 )k (m+2

2 )k (
m+q
2 )k (

m+q+1
2 )k

(m + 3
2 )k (m−n+2

2 )k (m+n+3
2 )k

· 1

k! ,

where the equality in the last line is due to the identities

(m + 1)2k
4k

= (m+1
2 )k (m+2

2 )k,
(m + q)2k

4k
= (

m+q
2 )k (

m+q+1
2 )k,

(m−n
2 + k)! = (m−n

2 )! (m−n+2
2 )k, (n + 3

2 )m−n
2 +k

= (m+n+3
2 )k (n + 3

2 )m−n
2

.

123



Constructive Approximation (2023) 57:983–1026 1015

The relation ( 32 )n(n+ 3
2 )m−n

2
= ( 32 )m+n

2
and our choices m = |λ|, n = λ1 −λ2 yield

(m−n
2 )!( 32 )n(n + 3

2 )m−n
2

= ( 32 )λ1λ2! = ( 32 )λ, so that q = −p/2 and the definition of

the 4F3 hypergeometric series conclude the proof of (7.5).
Proof of (7.6): The proof of the decay property for aλ(p,G2,4) requires some prepa-

ration and auxiliary results. For p /∈ 2N, direct calculations yield

aλ(p,G2,4) = 2− p
2 −3

�
( − p

2

)

∞∑

k=0

�
( |λ|
2 + 1

2 + k
)
�
( |λ|
2 + 1 + k

)
�
( |λ|
2 + 1

2 − p
4 + k

)
�
( |λ|
2 − p

4 + k
)

�
(|λ| + 3

2 + k
)
�
(
λ1 + 3

2 + k
)
�
(
λ2 + 1 + k

)
�
(
k + 1

) .

(F.4)

In the following, we treat the case λ1 = an and λ2 = (1−a)n for n ∈ N and n → ∞,
with an arbitrary a ∈ [ 12 , 1], so that |λ| = n. Summarizing the proof of (7.6), we shall
first verify that the summand in (F.4),

S(n, k) := �
( n
2 + 1

2 + k
)
�
( n
2 + 1 + k

)
�
( n
2 + 1

2 − p
4 + k

)
�
( n
2 − p

4 + k
)

�
(
n + 3

2 + k
)
�
(
an + 3

2 + k
)
�
(
(1 − a)n + 1 + k

)
�
(
k + 1

) ,

(F.5)

as a sequence in k, is unimodal, i.e., it first increases until it has reached its maximum
and then decreases, see Lemma F.2. Second, approximation of S(n, k) for k ≥ εn2

with the help of Stirling’s formula, where ε > 0 but fixed, leads to an asymptotic
formula for

∑
k≥εn2 S(n, k); see Lemma F.3. Third, we let ε → 0 to obtain the

asymptotic behavior of the full sum
∑

k≥0 S(n, k) for n → ∞; see (F.8). If the result
is substituted in (F.4), the claimed decay in (7.6) follows immediately upon observing
‖λ‖2 = (2a2 − 2a + 1)n2.

To start with, we may consider S(n, k) as a function of real k.

Lemma F.1 Given n ∈ N, let k0 = k0(n) ∈ (0,∞) be such that ∂
∂k S(n, k0) = 0. Then

k0 = k0(n) = 2a2 − 2a + 1

p + 6
n2 + O(n), for n → ∞. (F.6)

Lemma F.2 If n is large enough, S(n, k) has a unique— local and global —maximum
for k ∈ [0,∞).

Lemma F.3 Let ε > 0 be fixed and let A := 2a2−2a+1
p+6 . Then

∑

k≥εn2

S(n, k) = A− p+4
2 n−(p+4)(1 + O( 1n )

)

∫ ∞

−1+ ε
A

(1 + x)−
p+6
2 exp

( − p+6
2(1+x)

)
dx, for n → ∞.
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Wepostpone the proofs of Lemmas F.1, F.2, and F.3, and discuss their consequences
first. If we let ε → 0 and substitute t = p+6

2(1+x) in the above integral, then the integral
definition of the gamma function yields

∫ ∞

−1
(1 + x)−

p+6
2 exp

(
− p + 6

2 (1 + x)

)
dx =

( p + 6

2

)− p+6
2

�
( p + 4

2

)
. (F.7)

Lemma F.3 and (F.7) provide the asymptotic lower bound on
∑

k≥0 S(n, k) of the
following two-sided claim:

∑

k≥0

S(n, k) =
( 2

2a2 − 2a + 1

) p+4
2

�
( p + 4

2

)
n−p−4 (1 + o(1)) , for n → ∞.

(F.8)

To verify the asymptotic upper bound on
∑

k≥0 S(n, k) in (F.8), we observe

∑

k≥0

S(n, k) ≤
∑

k≥εn2

S(n, k) + εn2S(n, εn2), ε < A,

which is due to Lemma F.2, saying that S(n, k) grows until its maximum at k =
k0 ∼ An2. By Lemma F.3 and letting ε → 0, we obtain the upper bound in (F.8).
By taking into account the additional factor 2− p

2 −3/�
(− p

2

)
in (F.4) and the relation

‖λ‖2 = (2a2 − 2a + 1)n2, we observe that (F.8) provides our claim (7.6).
To complete the proof of (7.6) in Theorem 7.1, it remains to prove Lemmas F.1, F.2,

and F.3.

Proof of Lemma F.1 The condition 0 = ∂
∂k S(n, k0) implies 0 = ∂

∂k

(
log S(n, k0)

)
. By

using the digamma function ψ(z), the logarithmic derivative of (F.5) can be written
as

∂

∂k

(
log S(n, k)

) = ψ
(n
2

+ 1

2
+ k

)
+ ψ

(n
2

+ 1 + k
)

+ ψ
(n
2

+ 1

2
− p

4
+ k

)

+ψ
(n
2

− p

4
+ k

)
− ψ

(
n + 3

2
+ k

)

−ψ
(
an + 3

2
+ k

)
− ψ

(
(1 − a)n + 1 + k

) − ψ(k + 1).

For k = o(n), the above expression is certainly positive for large n, hence nonzero. If
the order of magnitude of k is at least the one of n (in symbols, n = O(k)), then we
may estimate the logarithmic derivative by

∂

∂k

(
log S(n, k)

) = log
(n
2

+ 1

2
+ k

) + log
(n
2

+ 1 + k
) + log

(n
2

+ 1

2
− p

4
+ k

)

+ log
(n
2

− p

4
+ k

)
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− log
(
n + 3

2
+ k

) − log
(
an + 3

2
+ k

)

− log
(
(1 − a)n + 1 + k

) − log
(
k + 1

) + O
(
n−1), (F.9)

where the asymptotics ψ(x) = log x − 1
2x + O

(
x−2

)
, for x → ∞, cf. [24, Equa-

tion 1.18(7)]), were used. By applying the exponential function on both sides of
∂
∂k

(
log S(n, k0)

) = 0, together with the above estimation for ∂
∂k

(
log S(n, k)

)
we

obtain

Q(n, k0) = 1 + O(n−1), (F.10)

where

Q(n, k) :=
( n
2 + 1

2 + k
)( n

2 + 1 + k
)( n

2 + 1
2 − p

4 + k
)( n

2 − p
4 + k

)
(
n + 3

2 + k
)(
an + 3

2 + k
)(

(1 − a)n + 1 + k
)
(k + 1)

.

For k ∼ cn, we observe

lim
n→∞ Q(n, k) =

(
c + 1

2

)4

(c + 1)(c + a)(c + 1 − a)c
> 1,

so that we may assume that k0 is of larger asymptotic order of magnitude than n.
Define P(n, k) by

Q(n, k) = 1 − P(n, k)
(
n + 3

2 + k
)(
an + 3

2 + k
)(

(1 − a)n + 1 + k
)
(k + 1)

. (F.11)

For k of larger asymptotic order of magnitude than n, the asymptotics of the digamma
function implies that the error term O(n−1) in (F.9) and (F.10) may be replaced by
O(k−2) and hence by o(k−1). The relations (F.10) and (F.11) lead to P(n, k0) = o(k30).
Since direct computations yield

P(n, k) =
( p + 6

2

)
k3 −

(
a2 − a + 1

2

)
(k2n2 + kn3) − 1

16
n4 + lower order terms,

(F.12)

asymptotically leading terms in P(n, k) must cancel each other. We have already
excluded k0 ∼ cn, so that we now consider k0 ∼ cn2 for an appropriate constant c.
The terms k3 and k2n2 in P(n, k) must cancel each other, so that

1

2
(p + 6)c3 − 1

2
(2a2 − 2a + 1)c2 = 0.

The solution c = 1
p+6 (2a

2−2a+1) yields the leading term in (F.6). In order to derive

theO(n) term in (F.6),we have to perform“bootstrap”, i.e., we substitute k0 = cn2+k1
in (F.12) and apply analogous arguments to eventually conclude k1 = O(n). ��

123



1018 Constructive Approximation (2023) 57:983–1026

Proof of Lemma F.2 We already saw in the previous proof that ∂
∂k log S(n, 0) > 0, for

sufficiently large n. Hence, ∂
∂k S(n, 0) > 0 holds, so that S(n, k) does not have a local

maximum in k = 0. Convergence of the series (F.4) implies S(n, k) → 0 for integers
k → ∞. Thus, for sufficiently large n, S(n, k) attains a local maximum at some
k0 ∈ (0,∞). Lemma F.1 implies k0 ∼ 1

p+6 (2a
2 − 2a + 1)n2. In order to investigate

S(n, k) in a neighborhood of k0, we compute ∂2

∂s2
log S(n, k0 + s), which is

ψ(1)(n
2

+ 1

2
+ k

) + ψ(1)(n
2

+ 1 + k
) + ψ(1)(n

2
+ 1

2
− p

4
+ k

) + ψ(1)(n
2

− p

4
+ k

)

−ψ(1)(n + 3

2
+ k

) − ψ(1)(an + 3

2
+ k

) − ψ(1)((1 − a)n + 1 + k
) − ψ(1)(k + 1

)
,

(F.13)

where k = k0 + s and ψ(1)(x) denotes the derivative of ψ(x). We claim that, for
|s| = o(n2) and sufficiently large n, we have ∂2

∂s2
log S(n, k0 + s) < 0. In order to

establish this claim, we make use of ψ(1)(x) = 1
x + 1

2x2
+ O(x−3), for x → ∞, cf.

[24, Equations 1.16(9) and 1.18(9)]), to estimate the individual expressions in (F.13).
Using k = k0 + s = k0 + o(n2) = k0 + o(k0), we obtain

ψ(1)
(n
2

+ 1

2
+ k

)
= 1

n
2 + 1

2 + k
+ 1

2
( n
2 + 1

2 + k
)2 + O

(
k−3
0

)

= 1

k
(
1 + n

2+ 1
2

k

) + 1

2k20
+ o

(
k−2
0

)

= 1

k

(
1 −

n
2 + 1

2

k
+ n2

4k2

)
+ 1

2k20
+ o

(
k−2
0

)
,

where we have used 1
1+x = 1− x + x2 + O(x3), for x → 0. We treat the other terms

in (F.13) analogously. Note that k = k0 + o(n2) also implies k = 1
p+6 (2a

2 − 2a +
1)n2 + o(n2), so that, by putting the individual estimates together, we arrive at

∂2

∂s2
log S(n, k0 + s) =

p
2 + 3

k2
+ n2

k3

(
−a2 − (1 − a)2

)
+ o

(
k−2
0

)

= −
p
2 + 3

k2
+ o

(
k−2
0

) = −
p
2 + 3

k20
+ o

(
k−2
0

)
.

For sufficiently large n (and hence large k0), this is evidently negative, as claimed.
Thus, S(n, k) has a strict local maximum in k0.

Moreover, say there are k0, k′
0 ∈ (0,∞), where S(n, k) has a local maximum, then

Lemma F.1 implies that the magnitude of |k0 − k′
0| is of smaller order than n2. The

above considerations imply k0 = k′
0, which completes the proof. ��
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To prove Lemma F.3, we shall approximate the summand S(n, k), given in (F.5),
with the help of Stirling’s formula (F.14). It turns out that, under this approximation,
the sum

∑
k≥0 S(n, k) can then be interpreted as a Riemann integral.

Proof of Lemma F.3 Let k0 be the unique location of the maximum of S(n, k). We
recall that Lemma F.1 yields k0 = An2 +O(n). We consider log S(n, k), for k ≥ εn2,
and write k = k0 + s, so that s ≥ −k0 + εn2. Stirling’s formula

log
(
�(z)

) =
(
z − 1

2

)
log(z) − z + 1

2
log(2π) + O

(
z−1) (F.14)

leads to the estimates

log
(
�
(n
2

+ 1

2
+ k

))
=
(n
2

+ k0 + s
)
log

(n
2

+ 1

2
+ k0 + s

)

−
(n
2

+ 1

2
+ k0 + s

)
+ 1

2
log(2π) + O

(
n−2)

=
(n
2

+ k0 + s
)[

log(k0 + s) + log
(
1 +

n
2 + 1

2

k0 + s

)]

−
(n
2

+ 1

2
+ k0 + s

)
+ 1

2
log(2π) + O

(
n−2),

where we have factored out k0 + s. By applying log(1 + x) = x − x2
2 + O(x3), we

obtain

log
(
�
(n
2

+ 1

2
+ k

))
=

(n
2

+ k0 + s
)

[
log(k0) + log

(
1 + s

k0

)
+

n
2 + 1

2

k0 + s
− 1

2

( n
2 + 1

2

k0 + s

)2
]

−
(n
2

+ 1

2
+ k0 + s

)
+ 1

2
log(2π) + O

(
n−1).

Here, terms such as n3

(k0+s)2
or n

k0+s are of the order O(n−1) and can therefore be
subsumed in the error term. Thus, we obtain

log
(
�
(n
2

+ 1

2
+ k

))
=
(n
2

+ k0 + s
) [

log(k0) + log
(
1 + s

k0

)]
+ 1

2

( n2 )2

(k0 + s)

− (k0 + s) + 1

2
log(2π) + O

(
n−1).

The reasoning for the O( . )-terms are based on our restriction to k0 + s ≥ εn2.
However, the constants in these error terms do contain ε.
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For the other gamma functions in (F.5), we proceed similarly. If everything is put
together, then we obtain

log
(
S(n, k)

) = − p + 6

2

[
log(k0) + log

(
1 + s

k0

)]
− 1

2

n2(2a2 − 2a + 1)

(k0 + s)
+ O

(
n−1)

= − p + 6

2

[
log(k0) + log

(
1 + s

k0

)]
− p + 6

2
(
1 + s

k0

) + O
(
n−1).

For the sum of the S(n, k), we have

∑

k≥εn2

S(n, k) =
∑

s≥−k0+εn2

k
− p+6

2
0

(
1 + s

k0

)− p+6
2

exp
(−(p + 6)

2
(
1 + s

k0

)
)(

1 + O
(
n−1)).

(F.15)

By understanding, the sum over s is taken over those s, for which k0 + s is an integer.
The error of the Riemann sum approximation

1

k0

∑

s≥−k0+εn2

(
1 + s

k0

)− p+6
2 exp

( −(p + 6)

2
(
1 + s

k0

)
)

≈
∫ ∞
−1+ ε

A

(1 + x)−
p+6
2 exp

(−(p + 6)

2(1 + x)

)
dx

(F.16)

is of the order ofmagnitude O(k−1
0 ). This follows from the fact that the summand in the

sum attains a unique local and global maximum— namely at s = 0 — and therefore
the error is bounded above by k−1

0 times the absolute variation of the summand —
which equals twice themaximum. Substitution of all this in (F.15) concludes the proof.

��

Our proof of (7.6) in Theorem 7.1 is now complete. ��

F.2. Proofs for Section 7.2

Recall that the action of SO(3)×SO(3) on S
2 ×S

2 by left multiplication is transitive,
and SO(4) acts transitively on G2,4 by conjugation. For each O ∈ SO(4), there are
a, b ∈ S

3 such that O = La Rb, where the left and right isoclinic rotations are

La :=

⎛

⎜⎜⎝

a1 −a2 −a3 −a4
a2 a1 −a4 a3
a3 a4 a1 −a2
a4 −a3 a2 a1

⎞

⎟⎟⎠

�

, Rb :=

⎛

⎜⎜⎝

b1 −b2 −b3 −b4
b2 b1 b4 −b3
b3 −b4 b1 b2
b4 b3 −b2 b1

⎞

⎟⎟⎠ .
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For a ∈ S
3, the Euler–Rodrigues formula yields

Sa :=
⎛

⎝
a21 + a22 − a23 − a24 2(a2a3 − a1a4) 2(a2a4 + a1a3)
2(a2a3 + a1a4) a21 − a22 + a23 − a24 2(a3a4 − a1a2)
2(a2a4 − a1a3) 2(a3a4 + a1a2) a21 − a22 − a23 + a24

⎞

⎠
�

∈ SO(3).

We are looking for P : S
2 × S

2 → G2,4 satisfying

(La Rb) · P(x, y) · (La Rb)
� = P(Sax, Sby), a, b ∈ S

3, x, y ∈ S
2. (F.17)

Theorem F.4 There are exactly two mappings S
2 × S

2 → G2,4 satisfying (F.17). One
is P as in (7.8), and the other is I4 − P . In particular, P is surjective and, for all
x, y, u, v ∈ S

2,

P(u, v) = P(x, y) if and only if (u, v) ∈ {±(x, y)}. (F.18)

Proof of Theorem F.4 The identity (F.17) for the specific choice of P is verified by
expanding both sides of the equality and comparing the polynomial expressions. We
omit the straightforward but lengthy computation.

Since the conjugate action of SO(4) on G2,4 is transitive, the identity (F.17) also
implies surjectivity. Since left and right eigenspaces ofL(P(x, y)) in (7.10) and (7.11)
are uniquely determined, we deduce that (F.18) holds.

Let us now address the uniqueness statement. For a := (α, 0, 0), b := (β, 0, 0)
with α, β ∈ S

1, we obtain the isoclinic rotations

La =
(
Aα 0
0 Aα

)
, Rb =

(
Bβ 0
0 B�

β

)
,

where Aα =
(

α1 −α2
α2 α1

)
, Bβ =

(
β1 −β2
β2 β1

)
∈ SO(2). Since Sae1 = Sbe1 = e1,

any mapping P̃ : S
2 × S

2 → G2,4 satisfying (F.17) must obey

La RbP̃(e1, e2)(La Rb)
� = P̃(e1, e2), α, β ∈ S

1. (F.19)

Let V denote the range of P̃(e1, e2), which is a two-dimensional subspace of R
4.

The relation (F.19) means that La Rb maps V into itself, i.e., La RbV = V . For all
U1,U2 ∈ SO(2), there are α, β ∈ S

1 such that

La Rb =
(
AαBβ 0
0 AαB�

β

)
=

(
U1 0
0 U2

)
,

so that V must either coincide with span{e1, e2} or with span{e3, e4}. Hence, P̃(e1, e2)
must coincide with either diag(1, 1, 0, 0) or diag(0, 0, 1, 1). It follows from (F.17) and
SO(3) acting transitively onS

2 that in the first case P̃ = P and in the latter P̃ = I4−P .
��
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Remark F.5 The Grassmannian G2,4 has been parametrized in [20] by means of angles
but the explicit identity (F.17) that steers our present approach has not been considered
there. Our parametrization is compatible with the one used in [19].

The following properties of P are useful.

Lemma F.6 The probability measure σG2,4 , induced by the Haar measure on O(4), is
the push-forward measure of σS2 ⊗ σS2 under P , and we have, for all x, y, u, v ∈ S

2,

〈P(x, y),P(u, v)〉F = 1 + 〈xy�, uv�〉F = 1 + 〈x, u〉〈y, v〉, (F.20)

I− · P(x, y) · I�− = P(y, x), (F.21)

I4 − P(x, y) = P(−x, y) = P(x,−y), (F.22)

{〈x, u〉, 〈y, v〉} = ±{cos(θ1 + θ2), cos(θ1 − θ2)}, (F.23)

whereI− := diag(−1, 1, 1, 1), and θ1, θ2 denote the principal angles betweenP(x, y)
and P(u, v).

Note that the right-hand side of (F.23) is ±{ξ+, ξ−} for ξ+, ξ− as in (F.2).

Proof of Lemma F.6 The product measure σS2 ⊗ σS2 is SO(3) × SO(3) invariant.
According to (F.17), the pushforward measure of σS2 ⊗ σS2 on S

2 × S
2 under P

is SO(4) invariant, so that the uniqueness of the Haar measure implies the first claim
of the lemma.

Each of the remaining claims is first proved for P as defined in Proposition F.4 and
then argued that it also holds for I4 − P . The identity (F.20) is easily observed for
u, v = e1 first and then (F.17) yields the general case. According to

〈I4 − P(x, y), I4 − P(u, v)〉F = 〈P(x, y),P(u, v)〉F,

the identity (F.20) also holds for I4 −P . The statement (F.21) follows from expanding
both sides of the equality and comparing polynomial expressions in x and y. If it holds
for P , then it must also hold for I4 − P . One directly calculates (F.22).

In order to check (F.23), we first recognize that principal angles between I−P(x, y)
and I − P(u, v) coincide with the ones between P(x, y) and P(u, v). By ξ±
as in (F.2) and as at the beginning of the proof of Theorem 7.1, we observe
trace(P(x, y)P(u, v)) = 1 + ξ+ξ−. Hence, (F.20) leads to ξ+ξ− = 〈x, u〉〈y, v〉.
Theorem 7.2 implies that Qλ in (7.2) satisfies

Qλ (P(x, y),P(u, v)) = cλ

2

(
C

1
2
λ1+λ2

(〈x, u〉)C
1
2
λ1−λ2

(〈y, v〉)

+C
1
2
λ1+λ2

(〈y, v〉)C
1
2
λ1−λ2

(〈x, u〉)
)

.

Comparison of this identity with (F.1) and few further calculations eventually lead to
(F.23). ��
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Proof of Theorem 7.2 The action of SO(3) × SO(3) leads to the irreducible decompo-
sition

L2

(
S
2 × S

2
�±1

)
=

⊕

m+n∈2N

span{Ym
k ⊗ Yn

l : k = −m, . . . ,m, l = −n, . . . , n}.

The unit quaternions provide a group structure on S
3, so that the mapping a �→ Sa

between S
3
�±1 and SO(3) as well as (a, b) �→ La Rb between (S3 × S

3)
�±1 and

SO(4) become group isomorphisms. Their combination induces a group isomorphism
between SO(3) × SO(3) and SO(4)

�±1. Condition (F.17) requires that the respective
actions on S

2 × S
2 and G2,4 commute with P . Hence, the induced pullback

P∗ : L2(G2,4) → L2
(
S
2 × S

2
�±1

)
, f �→ f (P(·, ·))

is an intertwining isomorphism. In particular, P∗ maps one irreducible subspace into
the other. Thus, the irreducible decomposition of L2(G2,4) under the action of SO(4)
is

L2(G2,4) =
⊕

m+n∈2N

span{Ym,n
k,l : k = −m, . . . ,m, l = −n, . . . , n}. (F.24)

In comparison to the irreducible decomposition of L2(G2,4) for the action of SO(4) in
(F.24), the irreducible components Hλ(G2,4) with respect to O(4) in (7.1) are usually
larger.

Let us denote Hm,n := span{Ym,n
k,l : k = −m, . . . ,m, l = −n, . . . , n}. Property

(F.21) yields that the irreducible subspaces of L2(G2,4) under the action of O(4) are

Vm,n :=
{
Hm,n, m = n,

Hm,n ⊕ Hn,m, m 	= n,

where m + n ∈ 2N and m ≥ n, i.e.,

L2(G2,4) =
⊕

m+n∈2N
m≥n

Vm,n =
⊕

λ1≥λ2≥0

Vmλ,nλ ,

where mλ = λ1 + λ2 and nλ = λ1 − λ2.
By consideringL(P) = xy�,L(P)·L(P)� = xx�, andL(P)�·L(P) = yy�, we

observe that the homogeneous polynomials xi y j and xi x j , yi y j , for i, j = 1, . . . , 3,
can be written as homogeneous polynomials in the matrix entries of P ∈ G2,4 of
degree 1 and 2, respectively. The monomial xα yβ with |α| = mλ and |β| = nλ is
composed of nλ factors of the form xi y j and (mλ − nλ)/2 factors of the form xi x j .
Thus, xα yβ is a homogeneous polynomial of degree nλ + 2((mλ − nλ)/2) = mλ in
the matrix entries of P . We deduce
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⊕

λ1+λ2≤t

V mλ,nλ ⊂
⊕

λ1+λ2≤t

Hλ(Gk,d) (F.25)

since the right-hand side of (F.25) are the polynomials of degree at most t in the matrix
entries of P ∈ G2,4, cf. [8]. By applying [26, Formulas (24.29) and (24.41)], we see
that the dimension of Hλ(G2,4) is

dim(Hλ(G2,4)) = (2 − δmλ,nλ)(2mλ + 1)(2nλ + 1), (F.26)

which matches dim(Vmλ,nλ). Hence, there holds equality in (F.25). For fixed t , the
dimensions in (F.26) are pairwise different, for all λ1 + λ2 = t . An induction over t
leads to Hλ(G2,4) = Vmλ,nλ . ��

F.3. Proofs for Section 7.3

The relation (7.16) yields

F(x, y) =
M∑

k,l=−M

eikϕ1eilϕ2Bk,l(θ1, θ2),

where Bk,l(θ1, θ2) are given by

Bk,l(θ1, θ2) :=
M∑

m1=|k|

M∑

m2=|l|
f m1,m2
k,l

m1∑

k′=−m1

m2∑

l ′=−m2

cm1
k,k′c

m2
l,l ′e

ik′θ1eil
′θ2

=
M∑

k′,l ′=−M

eik
′θ1eil

′θ2
M∑

m1=max(|k|,N−k′)

M∑

m2=max(|l|,M−l ′)
f m1,m2
k,l cm1

k,k′c
m2
l,l ′ .

Hence, the coefficients from (7.17) satisfy

bk,lk′,l ′ =
M∑

m1=max(|k|,M−k′)
cm1
k,k′

M∑

m2=max(|l|,M−l ′)
f m1,m2
k,l cm2

l,l ′ . (F.27)

First evaluating the inner sum for k, l, l ′ = −M, . . . , M and m1 = max(|k|, M −
k′), . . . , M , and afterwards the outer sum enables the computation of the coefficients
bk,lk′,l ′ , for k, l, k

′, l ′ = −M, . . . , M , in O(M5) operations provided that the numbers
cmk,k′ in (7.16) are given.

Remark F.7 The complexity for evaluating the two sums in (F.27) can be further
reduced to O(M4 log2(M)) by using a fast polynomial transform, cf. [39, 41]. In
this way, the nonequispaced fast Fourier transform on S

2×S
2 takes O(M4 log2(M)+

n| log(ε)|4) elementary operations. For n ∼ M4, this implies the reduction of com-
plexity from O(M8) to O(M4 log2(M) + M4| log(ε)|4) operations.
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The adjoint nonequispaced fast Fourier transform is about computing

M∑

i=1

biYm
k (xi )Yn

l (yi ),

m, n = 0, . . . , N , k = −m, . . . ,m, l = −n, . . . , n, (F.28)

for given coefficients (bi )Mi=1 ⊂ C and locations (xi , yi )Mi=1 ⊂ S
2 × S

2. Similar
arguments as above and in Sect. 7.3 provide a fast evaluation of (F.28) by using the
adjoint nonequispaced fast Fourier transform adjoint nfft, cf. [39, 41].
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