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Abstract
The super-Jack polynomials, introduced byKerov, Okounkov andOlshanski, are poly-
nomials in n+m variables, which reduce to the Jack polynomialswhen n = 0 orm = 0
and provide joint eigenfunctions of the quantum integrals of the deformed trigonomet-
ric Calogero–Moser–Sutherland system.We prove that the super-Jack polynomials are
orthogonal with respect to a bilinear form of the form (p, q) �→ (L pq)(0), with L p

quantum integrals of the deformed rational Calogero–Moser–Sutherland system. In
addition, we provide a new proof of the Lassalle–Nekrasov correspondence between
deformed trigonometric and rational harmonic Calogero–Moser–Sutherland systems
and infer orthogonality of super-Hermite polynomials, which provide joint eigenfunc-
tions of the latter system.
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1 Introduction

As is well-known, the (symmetric) Jack polynomials P(θ)
λ (x1, . . . , xN ), labelled by

a partition λ and depending rationally on a parameter θ , have numerous remarkable
properties. In particular, they form an orthogonal system with respect to the weight
function

�N (x; θ) =
∏

1≤i< j≤N

[(1 − xi/x j )(1 − x j/xi )]θ (1)

on the N -torus; and they are joint eigenfunctions of the trigonometric Calogero–
Moser–Sutherland operator

LN (x; θ) =
N∑

i=1

(
xi

∂

∂xi

)2

+ θ
∑

1≤i< j≤N

xi + x j
xi − x j

(
xi

∂

∂xi
− x j

∂

∂x j

)
(2)

and its quantum integrals. For historical accounts of Henry Jack, his construction of
the polynomials that now bear his name as well as many more of their properties; see
e.g. the proceedings [24] and Macdonald’s book [29]. We note that the parameter θ is
the inverse of the parameter α used, in particular, in [29].

In addition to the root systemgeneralisations introduced byOlshanetsky andPerelo-
mov [34], the operator (2) allows for non-symmetric integrable generalisations, such
as

Ln,m(x, y; θ) = Ln(x; θ) − θLm(y; 1/θ) −
n∑

i=1

m∑

j=1

xi + y j
xi − y j

(
xi

∂

∂xi
+ θ y j

∂

∂ y j

)
.

(3)

This operator was first introduced in the m = 1 case by Chalykh, Feigin and
Veselov [10], who proved integrability, expressed the operator in terms of a partic-
ular deformation of the root system An and introduced the terminology deformed
Calogero–Moser–Sutherland operator. Shortly thereafter, Sergeev [38, 39] wrote

123



Constructive Approximation (2024) 59:113–142 115

down the operator (3) for general m and showed that it has the so-called super-
Jack polynomials SP(θ)

λ ((x1, . . . , xn), (y1, . . . , ym)), introduced a few years earlier
by Kerov, Okounkov and Olshanski [26], as eigenfunctions. These results on inte-
grability and eigenfunctions were then extended to arbitrary m > 1 and all quantum
integrals, respectively, by Sergeev and Veselov [40, 41].

At an early stage, it became clear that the orthogonality of the Jack polynomials
with respect to the weight function (1) could not be directly generalised to the super-
Jack polynomials. Indeed, starting from Sergeev’s work and proceeding formally, one
is naturally led to the weight function

�n,m(x, y; θ) = �n(x; θ)�m(y; 1/θ)∏n
i=1

∏m
j=1(1 − xi/y j )(1 − y j/xi )

,

which is manifestly singular along the hyperplane xi = y j for all 1 ≤ i ≤ n and
1 ≤ j ≤ m and any value of θ .

Together with Atai and Langmann [1], we circumvented this problem by integrat-
ing x and y over tori with different radii. Even though this meant dealing with a
complex-valued weight function, we could prove that the resulting sesquilinear form
is Hermitian on the space spanned by the super-Jack polynomials. Moreover, we iden-
tified its kernel as the subspace spanned by the SP(θ)

λ with (mn) �⊂ λ, and showed
that the form descends to a positive definite inner product on the corresponding factor
space. As a consequence, we obtained a Hilbert space interpretation of the deformed
Calogero–Moser–Sutherland operator (3). These results were essentially all inferred
from orthogonality relations, including an explicit formula for (quadratic) norms, for
super-Jack polynomials.

In this paper, we prove orthogonality of the super-Jack polynomials with respect to
another rather different bilinear form. Initially, we will define it in terms of deformed
rational Calogero–Moser–Sutherland operators, but, for suitable values of θ , it also
has the integral representation

(p, q)n,m

= M−1
n,m

∫

Rn+iξ

∫

Rm+iη

(
e−Ln,m/2 p

)
(x, y)

(
e−Ln,m/2q

)
(x, y)

e−x2/2+θ−1y2/2

An,m(x, y)
dxdy,

(4)

with

An,m(x, y) =
∏

1≤i< j≤n

(xi − x j )
−2θ ·

∏

1≤i< j≤m

(yi − y j )
−2/θ ·

n∏

i=1

m∏

j=1

(xi − y j )
2,

and where Mn,m is a normalisation constant, ξ ∈ R
n and η ∈ R

m are chosen such
that all singularities are avoided, x2 = x21 + · · · + x2n , y

2 = y21 + · · · + y2m and Ln,m

denotes the rational limit of (3).
When m = 0 this form amounts to a restriction of the An−1-instance of Dunkl’s

[15] bilinear form [p, q]θ = (p(D)q)(0) to symmetric polynomials p, q. Here, p(D)

123



116 Constructive Approximation (2024) 59:113–142

denotes the operators obtained from p(x) by substituting for xi a Dunkl operator Di,n

(see Eq. (16) below). An integral representation similar to (4) was established in the
same paper by Dunkl. Corresponding orthogonality results for (non-symmetric) Jack
polynomials were later deduced by Baker and Forrester [5] as well as Rösler [36].

Restricting attention further to θ = 0, we recover the bilinear form [p, q]∂ :=
(p(∂)q)(0), where p(∂) = p(∂/∂x1, . . . , ∂/∂xn), for which Macdonald [28] proved
[p, q]∂ = (2π)−n/2

∫
Rn (e−�/2 p)(x)(e−�/2q)(x)e−x2/2dx . In this special case, Jack

polynomials are simply symmetric monomials mλ and their orthogonality on the n-
torus T n simply amounts to

∫
T n mμ(x)mλ(x−1)dx = |Sn(μ)| · δμλ, with δμλ the

Kronecker delta, Sn(μ) the orbit of μ under the standard action of Sn and dx the
normalised Haar measure on T n .

Moreover, if m = 1 and θ ∈ −N, then (·, ·)n,m amounts to a (restricted) instance
of the bilinear form on quasi-invariants introduced and studied by Feigin and Veselov
[20, 21], with an integral representation of the form (4) obtained in Ref. [18].

From (4) and our orthogonality results for the super-Jack polynomials, we infer
that the polynomials

SH (θ)
λ (x, y) := e−Ln,m/2SP(θ)

λ (x, y) (5)

form an orthogonal system on (Rn + iξ) × (Rm + iη) with respect to the weight
function e−x2/2+θ−1y2/2/An,m(x, y). These polynomials coincide with the so-called
super-Hermite polynomials introduced in Ref. [11] (see Prop. 6.7); and for m = 0
they amount to the generalised Hermite polynomials first introduced by Lassalle [27]
and studied in further detail by Baker and Forrester [4] and van Diejen [13].

In recent joint work with Feigin and Veselov [19], we showed that e−Ln,m/2

intertwines quantum integrals of deformed Calogero–Moser–Sutherland operators of
trigonometric and rational harmonic type, and so (5) can be interpreted as a corre-
spondence between joint eigenfunctions of these two integrable systems. Motivated
by Lassalle’s construction of generalised Hermite polynomials and Nekrasov’s [31]
discovery that the ordinary A type trigonometric and rational harmonic Calogero–
Moser–Sutherland systems are essentially equivalent, we proposed for such a
correspondence the terminology Lassalle–Nekrasov correspondence.

Our results entail that this particular example of a Lassalle–Nekrasov correspon-
dence between deformed Calogero–Moser–Sutherland systems is isometric in the
sense that the operator e−Ln,m/2 becomes an isometry when its domain is equipped
with the bilinear form (·, ·)n,m and its codomain with the form given by the right-hand
side of (4) with e−Ln,m/2 removed. In the undeformed case m = 0 this can be seen
already in Ref. [15]; see also [36].

We conclude this introduction with an outline of the remainder of the paper. In
Sect. 2, we review definitions and results pertaining to (super-)Jack polynomials and
(deformed) rational Calogero–Moser–Sutherland operators thatwemake use of. Read-
ers familiar with these matters may wish to skip ahead to Sect. 3, where particular
instances of generalised hypergeometric series associated with Jack polynomials,
Jack symmetric functions or super-Jack polynomials are recalled and shown to be joint
eigenfunctions of (deformed) rationalCalogero–Moser–Sutherlandquantum integrals.
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In Sect. 4, we introduce the relevant bilinear form and establish a number of its basic
properties, identify its reproducing kernel as a generalised hypergeometric series and
make the integral representation (4) precise.We infer orthogonality relations for super-
Jack polynomials in Sect. 5 and our results on the Lassalle–Nekrasov correspondence
between deformed trigonometric and rational harmonic Calogero–Moser–Sutherland
systems are contained in Sect. 6. In the final Sect. 7, we provide a brief outlook on
possible directions for future research; and in Appendix A, we study convergence
properties of the pertinent generalised hypergeometric series associated with super-
Jack polynomials.

Notation

We use the convention N = {1, 2, . . .} and write Z≥0 for N ∪ {0}. To a large extent,
we follow Macdonald’s book [29] for notation and terminology from the theory of
symmetric functions. One notable exception is our use of the parameter θ , which is
the inverse of the parameter α.

2 Preliminaries

In this section, we specify our basic notations and review terminology and results relat-
ing to (super-)Jack polynomials and (deformed) rational Calogero–Moser–Sutherland
operators that we rely on in our construction of a bilinear form in Sect. 4.

2.1 Symmetric Functions

Throughout the paper, we shall work over the complex numbersC. Therefore, wewrite
simply�N for the algebra of symmetric polynomials in N independent variables with
complex coefficients and �k

N for the subspace consisting of homogeneous symmetric
polynomials of degree k.

Given an infinite sequence x = (x1, x2, . . .) of independent variables, we recall
that a homogeneous symmetric function of degree k with complex coefficients can be
viewed as a formal power series

f (x) =
∑

α

cαx
α,

where the sum extends over all sequences α = (α1, α2, . . .) of non-negative integers
such that α1 +α2 +· · · = k, each cα ∈ C, xα = xα1

1 xα2
2 · · · and f (xσ(1), xσ(2), . . .) =

f (x1, x2, . . .) for any permutation σ of N; see e.g. Chapter 7 in Stanley’s book [45].
We let �k denote the space of all (complex) homogenous symmetric functions of

degree k. If f ∈ �k and g ∈ �l , it is clear that f g ∈ �k+l , which implies that

� := �0 ⊕ �1 ⊕ · · ·
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118 Constructive Approximation (2024) 59:113–142

has a natural structure of a graded C-algebra, called the (C-)algebra of symmetric
functions.

Partitions λ = (λ1, λ2, . . .) of k, i.e. sequences of non-negative integers λ1, λ2, . . .

such that λ1+λ2+· · · = k, naturally label bases in�k . There are numerous important
examples and we use, in particular, the following:

(1) Monomial symmetric functions:

mλ =
∑

α

xα,

with the sum extending over all distinct permutations α = (α1, α2, . . .) of the
parts of λ = (λ1, λ2, . . .).

(2) Power sum symmetric functions:

pλ = pλ1 pλ2 · · ·

with p0 ≡ 1 and

pr = xr1 + xr2 + · · · (r ∈ N).

2.2 Jack Symmetric Functions

We recall that, as λ runs through all partitions λ of weight k ∈ Z≥0, the (monic) Jack
symmetric functions P(θ)

λ form an orthogonal basis in�k with respect to the the scalar
product given by

〈pλ, pμ〉 = θ−l(λ)zλδλμ, (6)

where l(λ) denotes the length of λ and zλ = ∏
i≥1 i

mi · mi ! with mi = mi (λ) the
multiplicity of i in λ.

More specifically, they are characterized by the following two properties:

(1) P(θ)
λ (x) = mλ(x) + ∑

μ<λ u
(θ)
λμmμ(x),

(2)
〈
P(θ)

λ , P(θ)
μ

〉 = 0 whenever λ �= μ,

where< refers to the dominance order. (Note that, since the dominance order is only a
partial order, it is far from obvious that such symmetric functions actually exist.) The
coefficients u(θ)

λμ are known to be rational functions of θ , with poles occurring only at
negative rational values of θ . To ensure that such poles are not encountered and also
that we avoid the singularity at θ = 0 in (6), we consider throughout the paper only
values of θ not of the form

θ = i/ j, i = −Z≥0, j ∈ N. (7)

The Jack symmetric functions were first introduced by Jack [23], while the above
characterisation is due to Macdonald [29].
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When setting xi = 0 for i > N ∈ N, the Jack symmetric function P(θ)
λ (x)

specialises to the Jack polynomial P(θ)
λ (x1, . . . , xN ) in the remaining N variables

x1, . . . , xN .
For later reference,we recordStanley’s [44] (see also [29]) quadratic norms formula

〈
P(θ)

λ , P(θ)
λ

〉 = 1

b(θ)
λ

, b(θ)
λ =

∏

s∈λ

a(s) + θl(s) + θ

a(s) + 1 + θl(s)
, (8)

and specialisation formula

εX

(
P(θ)

λ

)
=

∏

s∈λ

θX + a′(s) − θl ′(s)
a(s) + θl(s) + θ

, (9)

where εX : � → C[X ] denotes the homomorphism given by

εX : pr �→ X (r ∈ N). (10)

In particular, the value at x = 1N is obtained by setting X = N .

2.3 Super-Jack Polynomials

For n,m ∈ Z≥0, we let

Pn,m = C[x1, . . . , xn, y1, . . . , ym].

From [40, 41], we recall its subalgebra �n,m , consisting of all polynomials p(x, y)
that are symmetric in x = (x1, . . . , xn), symmetric in y = (y1, . . . , ym) and satisfy
the quasi-invariance condition

(
∂

∂xi
+ θ

∂

∂ y j

)
p(x, y) = 0 (11)

on each hyperplane xi = y j with i = 1, . . . , n and j = 1, . . . ,m; the (for generic
values of θ ) surjective homomorphism

ϕn,m : � → �n,m, pr �→ pr ,θ (x, y) (r ∈ N), (12)

given in terms of the deformed power (or Newton) sums

pr ,θ (x, y) =
n∑

i=1

xri − 1

θ

m∑

j=1

yrj ;
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and the fact that the kernel of ϕn,m is spanned by the Jack symmetric functions P(θ)
λ

labelled by the partitions λ /∈ Hn,m , where

Hn,m = {λ ∈ P | λn+1 ≤ m},

(withP denoting the set of all partitions).
For λ ∈ Hn,m , the super-Jack polynomial SP(θ)

λ (x, y) ∈ �n,m is given by

SP(θ)
λ (x, y) = ϕn,m

(
P(θ)

λ

)
. (13)

We note that they were originally introduced by Kerov, Okounkov Olshanski [26] in
the setting of infinitely many variables and further studied by Sergeev and Veselov
[40, 41] in the present context of n + m variables.

2.4 Rational Calogero–Moser–Sutherland Operators

It is readily seen that when substituting xi → ei2πxi /μ, rescaling by −(2π/μ)2 and
taking the periodμ → ∞ the trigonometric Calogero–Moser–Sutherland operator (2)
degenerates to its rational counterpart

LN :=
N∑

i=1

∂2

∂x2i
+ 2θ

∑

1≤i< j≤N

1

xi − x j

(
∂

∂xi
− ∂

∂x j

)
. (14)

We rely on the observation that the algebra of symmetric quantum integrals of this
operator is given by the differential operators

L p,N := Res
(
p
(
D1,N , . . . , DN ,N

))
(p ∈ �N ), (15)

whereRes stands for restriction to�N and Di,N (i = 1, . . . , N ) areDunkl differential-
difference operators [14], given by

Di,N = ∂

∂xi
+ θ

∑

j �=i

1

xi − x j
(1 − σi j ) (16)

with the transpositionσi j acting on a function f (x) in x = (x1, . . . , xN ) by exchanging
variables xi and x j . Letting

L(r)
N = L pr (x1,...,xN ) (r ∈ N),

where L(2)
N = Lx21+···+x2N

= LN , we note that the algebra of symmetric quantum

integrals is (freely) generated by L(1)
N , . . . , L(N )

N .
The above important observation is due to Heckman [22], who worked in the more

general setting of an arbitrary root system, whereas (14)–(16) are associated with
AN−1.
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For further details on (rational) Calogero–Moser–Sutherland systems and their inte-
grability, see e.g. [16, 34, 37].

2.5 Dunkl Operator at Infinity

Weproceed to recall Sergeev andVeselov’s [43] notion of aDunkl operator in infinitely
many variables as well as corresponding expressions for rational Calogero–Moser–
Sutherland operators at infinity.

Introducing a generator p0, replacing the dimension N , the algebra �̄ := �[p0]
and homomorphisms

ϕN : �̄ → �N , pr �→ xr1 + · · · + xrN (r ∈ Z≥0, N ∈ N)

are considered. Using a further generator x , the infinite-dimensional Dunkl operator
D∞ : �̄[x] → �̄[x] is given by

D∞ = ∂ + θ�,

with the derivation ∂ in �̄[x] characterised by Leibniz rule and

∂(x) = 1, ∂(pr ) = r xr−1 (r ∈ Z≥0),

and the operator � : �̄[x] → �̄[x] defined by

�(xr f ) = �(xr ) f , �(1) = 0, �(xr ) =
r−1∑

s=0

xr−1−s ps − r xr−1 ( f ∈ �̄, r ∈ Z≥0).

The above definition is motivated by the fact that the homomorphism �̄[x] → �N [xi ]
that maps pr �→ xr1 + · · · + xrN (r ∈ Z≥0) and x �→ xi (i = 1, . . . , N ) intertwines
D∞ and Di,N .

Introducing also the linear ‘symmetrisation’ operator E : �̄[x] → �̄ by

E(xr f ) = E(xr ) f , E(1) = 1, E(xr ) = pr , ( f ∈ �̄, r ∈ Z≥0),

rational Calogero–Moser–Sutherland integrals at infinity L(r) : �̄ → �̄ (r ∈ Z≥0)
are given by

L(r) = Res E ◦ Dr∞, (17)
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122 Constructive Approximation (2024) 59:113–142

with Res denoting restriction to �̄. Combining the intertwining relation between D∞
and Di,N with (15), it is readily seen that the diagram

�̄
L(r)−−−−→ �̄

⏐⏐�ϕN

⏐⏐�ϕN

�N
L(r)
N−−−−→ �N

(18)

is commutative for all r ∈ Z≥0; and, as a straightforward consequence, it follows that
[L(r), L(s)] = 0 (r , s ∈ Z≥0).

2.6 Deformed Rational Calogero–Moser–Sutherland Operators

By setting

xn+i = yi (i = 1, . . . ,m) (19)

and using the ‘parity’ function

p(i) :=
{
0, i = 1, . . . , n
1, i = n + 1, . . . , n + m

(20)

the rational limit of (3) takes the simple and convenient form

Ln,m :=
n+m∑

i=1

(−θ)p(i)
∂2

∂x2i

−2
∑

1≤i< j≤n+m

(−θ)1−p(i)−p( j)

xi − x j

(
(−θ)p(i)

∂

∂xi
− (−θ)p( j)

∂

∂x j

)
. (21)

We shall make use of a recursive formula for its quantum integrals and a connec-
tion with Calogero–Moser–Sutherland operators at infinity, both due to Sergeev and
Veselov [40, 43].

Specifically, taking ∂
(1)
i = (−θ)p(i) ∂

∂xi
, differential operators of order r > 1 are

defined recursively by

∂
(r)
i = ∂

(1)
i ∂

(r−1)
i −

∑

j �=i

(−θ)1−p( j)

xi − x j

(
∂

(r−1)
i − ∂

(r−1)
j

)
(22)

and the quantum integrals are given by

L(r)
n,m =

n+m∑

i=1

(−θ)−p(i)∂
(r)
i (r ∈ N), (23)

with L(2)
n,m = Ln,m .
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Moreover, substituting Z≥0 for N in (12) produces a homomorphism ϕn,m : �̄ →
�n,m mapping p0 �→ ϕn,m(p0) := n − m/θ . From Thm. 3.3 in Ref. [43], we recall
that the diagram

�̄
L(r)−−−−→ �̄

⏐⏐�ϕn,m

⏐⏐�ϕn,m

�n,m
L(r)
n,m−−−−→ �n,m

(24)

is commutative for all r ∈ N and commutativity of the deformed Calogero–Moser–
Sutherland operators (23), i.e.

[
L(r)
n,m, L(s)

n,m

] = 0 (r , s ∈ N),

follows from that of the operators (17).
We proceed to describe a Harish-Chandra type isomorphism mapping the algebra

of quantum integrals

Qn,m := C
[
L(1)
n,m, L(2)

n,m, . . .
]

(25)

of the deformed rational Calogero–Moser–Sutherland system onto �n,m . That such
an identification of Qn,m with �n,m is possible was first observed by Sergeev and
Veselov [40].

We write Vn,m for Cn+m equipped with the bilinear form

Bn,m(u, v) :=
n∑

i=1

uivi − θ

m∑

i=1

un+ivn+i

andDn,m for the algebra of differential operators with constant (complex) coefficients
generated by ∂

∂xi
(i = 1, . . . , n) and ∂

∂ yi
(i = 1, . . . ,m). Given p ∈ Pn,m , we let

∂(p) = p

(
∂

∂x1
, . . . ,

∂

∂xn
,−θ

∂

∂ y1
, . . . ,−θ

∂

∂ ym

)
.

Identifying Pn,m with S(Vn,m) and Dn,m with S(V ∗
n,m), the map p �→ ∂(p) amounts

to the isomorphism S(Vn,m) → S(V ∗
n,m) induced by Bn,m . (Here, we have used the

notation S(V ) for the symmetric algebra of V .)
Letting Rn,m be the algebra of rational functions generated by (xi − x j )−1 (1 ≤

i < j ≤ n), (xi − y j )−1 (1 ≤ i ≤ n, 1 ≤ j ≤ m) and (yi − y j )−1 (1 ≤ i < j ≤
m), we introduce the algebra of differential operators Dn,m[Rn,m], generated by the
derivatives ∂

∂xi
and ∂

∂ yi
with coefficients inRn,m , and note that Qn,m ⊂ Dn,m[Rn,m].

For N ∈ N, we write N(N ,Z≥0) for the set of strictly upper triangular N × N
matrices with non-negative integer entries. Using again the convention xn+i = yi
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(i = 1, . . . ,m), we observe that any L ∈ Dn,m[Rn,m] has a representation of the
form

L =
∑

M∈N(n+m,Z≥0)

∏

1≤i< j≤n+m

(xi − x j )
−Mi j · ∂(�M )

for some �M ∈ Pn,m . Hence, we can define a homomorphism ψn,m : Dn,m[Rn,m] →
Pn,m by setting ψn,m(L) = �0. From (22) to (23), it is readily inferred that

ψn,m
(
L(r)
n,m

) =
n+m∑

i=1

(−θ)−p(i)xri = pr ,θ (x, y). (26)

Since the deformed power sums pr ,θ generate �n,m , it follows that ψn,m maps Qn,m

onto�n,m . In Sect. 3.3, we shall provide a rather different description of this map and,
as a consequence, infer injectivity.

3 Generalised Hypergeometric Series

Our main results rely on generalised hypergeometric series in two sequences of vari-
ables associated with either Jack polynomials, Jack symmetric functions or super-Jack
polynomials.

3.1 Associated with Jack Polynomials

In the case of Jack polynomials in N variables x = (x1, . . . , xN ), such series appeared,
in particular, inMacdonald’s widely circulated informalworking paper [30]. They take
a particularly simple form when expressed in terms of Kaneko’s normalisation [25]

C (θ)
λ (x) = |λ|!∏

s∈λ(a(s) + 1 + θl(s))
P(θ)

λ (x), (27)

also characterised by

∑

|λ|=k

C (θ)
λ (x) = p1(x)

k (k ∈ Z≥0).

Indeed, the simplest such series, with no additional parameters beyond θ and the only
one we require, is given by

F (θ)
N (x, y) =

∞∑

d=0

F (θ)
N ,d(x, y), F (θ)

N ,d(x, y) =
∑

|λ|=d

1

|λ|!
C (θ)

λ (x)C (θ)
λ (y)

C (θ)
λ (1N )

, (28)

where F (θ)
N ,d(x, y) is the homogeneous part of degree d in both the xi and the y j . (In

Ref. [30], this series is denoted 0F0(x, y; 1/θ)). From (9) and (27), it is clear that the
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individual terms in these series are well-defined whenever θ is not a negative rational
number or zero. Moreover, for θ > 0, the infinite series is known to converge locally
uniformly onCN ×C

N and therefore define an entire function; see e.g. Props. 3.10–11
in Ref. [5] or Thm. 6.5 in Ref. [8].

As indicated in Ref. [33] (see also [8] for a more detailed explanation), the gen-
eralised hypergeometric series F (θ)

N (x, y) is equal to the AN−1 instance of Opdam’s
[35] multivariable Bessel functions associated with root systems. In particular, this
equality manifests itself in the following joint eigenfunction property.

Proposition 3.1 Assume that θ is not a negative rational number or zero. For each
p ∈ �N , we have

L p,N (x)F (θ)
N (x, y) = p(y)F (θ)

N (x, y).

When p = pr with r = 1, 2, this result can be found in Ref. [4], whereas an
eigenfunction property equivalent to the general case is sketched in [33]. For arbitrary
p ∈ �N , a proof of the proposition is readily inferred from results by Baker and
Forrester [5] on a non-symmetric generalised hypergeometric seriesKA(x, y), defined
in Eq. (3.17) in Ref. [5]. More specifically, from its joint eigenfunction property

Di,N (x)KA(x, y) = yiKA(x, y) (i = 1, . . . , N )

and symmetrisation property

∑

σ∈SN
KA(x, σ y) = N !F (θ)

N (x, y),

obtained in Thm. 3.8(c) and Prop. 3.11 in Ref. [5], respectively, it follows that

L p(x)F
(θ)
N (x, y) = p

(
D1,N (x), . . . , DN ,N (x)

)
F (θ)
N (x, y)

= 1

N !
∑

σ∈SN
p
(
D1,N (x), . . . , DN ,N (x)

)
KA(x, σ y)

= 1

N !
∑

σ∈SN
p(yσ−1(1), . . . , yσ−1(N ))KA(x, σ y)

= p(y1, . . . , yN )F (θ)
N (x, y).

In terms of homogeneous components, the result reads as follows.

Corollary 3.2 For all d, k ∈ Z≥0 and p ∈ �k
N , we have

L p(x)F
(θ)
N ,d(x, y) = p(y)F (θ)

N ,d−k(x, y),

with F (θ)
N ,d−k ≡ 0 when d < k and the above assumptions on θ in place.
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3.2 Associated with Jack Symmetric Functions

In the context of symmetric functions, generalised hypergeometric series were intro-
duced in Ref. [11]. For our purposes, it suffices to consider the simplest instance,
involving only the parameters θ and p0, and recall its homogeneous components:

F (θ,p0)
d (x, y) =

∑

|λ|=d

1

|λ|!
C (θ)

λ (x)C (θ)
λ (y)

εp0
(
C (θ)

λ

) (d ∈ Z≥0), (29)

where, as before, εp0 denotes the homomorphism � → C[p0] given by pr �→ p0
(r ∈ N). Just as in the previous section, θ not being a negative rational number or zero
ensures that this series is well-defined.

The following infinite-dimensional generalisation of Cor. 3.2 is now readily iden-
tified and proved.

Proposition 3.3 Take θ ∈ C not of the form (7). For all r , d ∈ Z≥0, we have

L(r)(x)F (θ,p0)
d (x, y) = pr (y)F

(θ,p0)
d−r (x, y), (30)

with F (θ,p0)
d−r ≡ 0 when d < r .

Proof Since L(r) preserves �̄ and lowers the degree by r , it is clear that the left-hand
side of (30) is identically zero whenever r > d. Hence, fixing r , d ∈ Z≥0 such that
r ≤ d, we consider the symmetric function

f (x, y) := L(r)(x)F (θ,p0)
d (x, y) − pr (y)F

(θ,p0)
d−r (x, y),

which amounts to a polynomial in pr (x), pr (y), 1 ≤ r ≤ d, with coefficients depend-
ing rationally on p0.

At this point, we choose N ≥ d. We note that (9) and l ′(s) = i − 1 < �(λ) ≤ |λ|,
where s = (i, j) ∈ λ, ensures that f (x, y) has no pole at p0 = N . From (18) and
Cor. 3.2, we can thus infer that ϕ(x)

N ϕ
(y)
N f (x, y) = 0. (Of course F (θ,p0)

d (x, y) /∈ �̄, but
this minor technical snag is easily resolved by clearing denominators or, as discussed
in Sect. 2.4 in Ref. [11], extending the definition of ϕN to all elements in C(p0) ⊗ �

that lack a pole at p0 = N .) By algebraic independence of the ϕN (pr ), 1 ≤ r ≤ d, it
follows that each coefficient of f (x, y) must vanish at p0 = N . Since this is the case
for all N ≥ d, the coefficients vanish identically and f (x, y) ≡ 0. ��

3.3 Associated with Super-Jack Polynomials

In this section, we work with sequences of n + m variables x = (x1, . . . , xn) and
y = (y1, . . . , ym) as well as z = (z1, . . . , zn) and w = (w1, . . . , wm). Introducing
the renormalised super-Jack polynomials

SC (θ)
λ (x, y) := |λ|!∏

s∈λ(a(s) + 1 + θl(s))
SP(θ)

λ (x, y), (31)
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we perform the substitutions p0 �→ n−m/θ ,C (θ)
λ (x) �→ SC (θ)

λ (x, y) andC (θ)
λ (y) �→

SC (θ)
λ (z, w) in (29) to obtain

SF (θ)
n,m;d(x, y; z, w) :=

∑

λ∈Hn,m|λ|=d

1

|λ|!
SC (θ)

λ (x, y)SC (θ)
λ (z, w)

SC (θ)
λ (1n+m)

(d ∈ Z≥0). (32)

Before proceeding further, a few remarks are in order: First, the above substitu-
tions are essentially given by the homomorphism ϕn,m (cf. the remark in the proof of
Prop. 3.3); second, summation over d ∈ Z≥0 yields

SF (θ)
n,m(x, y; z, w) :=

∞∑

d=0

SF (θ)
n,m;d(x, y; z, w)

=
∑

λ∈Hn,m

1

|λ|!
SC (θ)

λ (x, y)SC (θ)
λ (z, w)

SC (θ)
λ (1n+m)

,

(33)

which is identical with 0SF 0(x, y; z, w) in Section 6.3 of [11]; and, third, to ensure
that each SF (θ)

n,m;d(x, y; z, w) is well-defined, we need to avoid the parameter values

θ = i

j
, i ∈ −Z≥0, j ∈ N or 1 ≤ i ≤ m, 1 ≤ j ≤ n, (34)

since we might encounter a pole of a coefficient in SC (θ)
λ when θ is a negative rational

number and SC (θ)
λ (1n+m) could vanish when θ takes one of the finitely many positive

rational values specified above.
The methods used in Ref. [5, 8] to study convergence properties of F (θ)

N do not

directly apply to SF (θ)
n,m . However, using an approach from Desrosiers and Liu [12],

it is possible to establish convergence for generic θ > 0. A precise statement and
proof can be found in Appendix A. For the remaining parameter values, we offer
two interpretations: Either view SF (θ)

n,m as a formal power series or consider each
homogeneous component separately, so that convergence is not an issue.

By combining Prop. 3.3 with (24), we establish

L(r)
n,m(x, y)SF (θ)

n,m;d(x, y; z, w) = pr ,θ (z, w)SF (θ)
n,m;d−r (x, y; z, w) (r , d ∈ Z≥0),

where SF (θ)
d−r ≡ 0 if d < r . As a direct consequence of (25), (26) and (33), we thus

obtain the following lemma.

Lemma 3.4 For θ ∈ C not of the form (34) and L ∈ Qn,m, we have

L(x, y)SF (θ)
n,m(x, y; z, w) = ψn,m(L)(z, w)SF (θ)

n,m(x, y; z, w).
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Using this joint eigenfunction property, it is straightforward to verify that theHarish-
Chandra homomorphism ψn,m maps Qn,m one-to-one onto �n,m . To this end, let
L ∈ Qn,m be such that ψn,m(L) = 0. Since the SP(θ)

λ (λ ∈ Hn,m) span �n,m , it
follows that L vanishes on �n,m . As long as the Vandermonde polynomial

Vn+m(x, y) :=
∏

1≤i< j≤n

(xi − x j ) ·
∏

1≤i< j≤m

(yi − y j ) ·
n∏

i=1

m∏

i=1

(xi − y j ) �= 0,

we can use fr := pr ,θ − pr ,θ (x, y) with r = 1, . . . , n + m as coordinate functions
(centered) at (x, y) ∈ C

n × C
m . (This is easily seen by computing the Jacobian

determinant ∂(p1,θ , . . . , pn+m,θ )/∂(x1, . . . , xn, y1, . . . , ym).) Then, we can write

L =
∑

cα∂
α1
f1

· · · ∂αn+m
fn+m

, (35)

where the coefficient functions cα �= 0 only for a finite subset of multi-indices α =
(α1, . . . , αn+m) ∈ Z

n+m
≥0 . Now, assume that L is a non-trivial differential operator.

Then, there exists α ∈ Z
n+m
≥0 of minimal weight |α| = α1 + · · · + αn+m such that

cα �= 0. However, since L amounts to the zero operator on �n,m , we have

0 = L f α1
1 · · · f αn+m

n+m = cαα!,

which contradicts the above assumption.
We can thus conclude that ψn,m : Qn,m → �n,m is an isomorphism, write

L p = ψ−1
n,m(p) (p ∈ �n,m) (36)

and reformulate Lemma 3.4 as the following ’deformed’ analogue of Prop. 3.1.

Proposition 3.5 For each p ∈ �n,m, we have

L p(x, y)SF
(θ)
n,m(x, y; z, w) = p(z, w)SF (θ)

n,m(x, y; z, w),

as long as the θ -values (34) are avoided.

Just as in the Jack polynomial case (cf. Cor. 3.2), the corresponding result for the
homogenous components SF (θ)

n,m;d immediately follows.

Corollary 3.6 For all d, k ∈ Z≥0 and p ∈ �k
n,m, we have

L p(x, y)SF
(θ)
n,m;d(x, y; z, w) = p(z, w)F (θ)

n,m;d−k(x, y; z, w),

with SF (θ)
n,m;d−k ≡ 0 when d < k and θ not of the form (34).
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4 The Bilinear Form

We are now ready to introduce the relevant bilinear form on �n,m .

Definition 4.1 Assuming that θ ∈ C is not a negative rational number or zero, we
define a (complex) bilinear form on �n,m by

(p, q)n,m = (L pq)(0) (p, q ∈ �n,m).

Writing L∗ for the adjoint of L ∈ Qn,m , we proceed to formulate and prove some
basic properties of (·, ·)n,m .

Proposition 4.2 Excluding the values of θ given in (34), we have

(1) (p, q)n,m = L p(x, y)Lq(z, w)SF (θ)
n,m(x, y; z, w)|x=y=z=w=0,

(2) (p, q)n,m = 0 whenever p, q ∈ �n,m are homogenous of different degrees,
(3) (·, ·)n,m is symmetric,
(4) L∗

p = p.

Proof (1) By degree considerations, it is readily seen that the polynomial L p(x, y)

Lq(z, w)SF (θ)
n,m;d(x, y; z, w) vanishes at x = y = z = w = 0 unless deg p =

deg q = d, in which case Cor. 3.6 entails

L p(x, y)Lq(z, w)SF (θ)
n,m;d(x, y; z, w) = L p(x, y)q(x, y)SF (θ)

n,m;0
= (L pq)(0)SF (θ)

n,m;0

and, since SF (θ)
n,m;0 = 1, the claim follows.

(2) Follows immediately from the definition of (·, ·)n,m and the fact that L p is homoge-
nous of degree − deg p.

(3) Clear from (33) and Property (1).
(4) By definition, we have

(s, L pq)n,m = (Ls L pq)(0) = (Lspq)(0) = (ps, q)n,m

for all p, q, s ∈ �n,m .
��

As is clear from (1) in Prop. 4.2, there is close connection between the generalised
hypergeometric series SF (θ)

n,m and the bilinear form (·, ·)n,m . This connection if further
clarified in the following proposition, which identifies SF (θ)

n,m as the reproducing kernel
of (·, ·)n,m .

Proposition 4.3 For each p ∈ �n,m, we have

(
p(x, y), SF (θ)

n,m(x, y; z, w)
)
n,m = p(z, w), (37)

where we assume that θ is not of the form (34).
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Proof The result is an immediate consequence of Def. 4.1, Prop. 3.5 and the observa-
tion that

SF (θ)
n,m(0n, 0m; z, w) = SF (θ)

n,m(x, y; 0n, 0m) = SF (θ)
n,m(0n, 0m; 0n, 0m) = 1,

which, in turn, is clear from (33). ��
Corollary 4.4 Assuming that θ is not of the form (34), the bilinear form (·, ·)n,m is
nondegenerate.

We continue to make precise the integral representation (4) for the bilinear form
(·, ·)n,m . First of all, we note that the operator e−Ln,m/2 has a well defined action on
�n,m . Indeed, since Ln,m is homogeneous of degree−2 on�n,m , it is locally nilpotent,
and so if p ∈ �n,m has degree d ∈ Z≥0, then

e−Ln,m/2 p :=
�d/2�∑

k=0

(−1)k

2kk! Lk
n,m p.

Requiring that ξ ∈ R
n and η ∈ R

m satisfy

ξn > · · · > ξ1, ηm > · · · > η1, ξi �= η j (1 ≤ i ≤ n, 1 ≤ j ≤ m), (38)

so that we are working with Im(xi − x j ) < 0 (1 ≤ i < j ≤ n) and Im(yi − y j ) < 0
(1 ≤ i < j ≤ m), we fix the branch of An,m(x, y) by taking the principal value of zρ

for z ∈ C
∗ and ρ ∈ C. From Def. 4.1, it is clear that (1, 1)n,m = 1, which requires

Mn,m =
∫

Rn+iξ

∫

Rm+iη

e−x2/2+θ−1y2/2

An,m(x, y)
dxdy.

This generalisedMacdonald–Mehta integralwas computed in [18]. Specifically, taking
ti → ti/

√−ρ and setting ρ = θ in Eq. (33), we infer from Prop. 6.1 that

Mn,m = Cn,m

n∏

i=1

m∏

j=1

1

j − iθ
·

n∏

i=1

�(1 − θ)

�(1 − iθ)
·

m∏

j=1

�(1 − 1/θ)

�(1 − j/θ)
, (39)

where

Cn,m = (2π)
n+m
2 (−θ)n/2+n(n−1)/(2θ) exp

(
−iπ

(
n(n − 1)θ

2
+ m(m − 1)

2θ

))
.(40)

For suitable values of θ , we can now establish the validity of (4).

Proposition 4.5 Assuming that Re θ < 0 and θ is not a negative rational number,
the integral representation (4), with Mn,m given by (39)–(40), for the bilinear form
(·, ·)n,m holds true as long as ξ ∈ R

n and η ∈ R
m satisfy the restrictions in (38).
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Proof Under our assumptions on θ and ξ, η, it is clear that the integral in the right-hand
side of (4) is convergent

We note that the bilinear form (·, ·)n,m is uniquely determined by the following
properties:

(1) (1, 1)n,m = 1,
(2) (p, q)n,m = (q, p)n,m ,
(3) (ps, q)n,m = (s, L pq)n,m ,

for arbitrary p, q, s ∈ �n,m . Indeed, by linearity andProperty (2), it suffices to consider
homogenous p, q ∈ �n,m such that deg p ≥ deg q, and, from Property (3), we get

(p, q)n,m = (1, L pq)n,m .

If deg p > deg q, the right-hand side is clearly zero, and in the remaining case deg p =
deg q, it follows from Property (1) that

(1, L pq)n,m = (L pq)(0)(1, 1)n,m = (L pq)(0),

(where the first equality is due to deg(L pq) = 0). Hence, writing (p, q)′n,m for the
right-hand side of (4), it suffices to establish Properties (1)-(3) for the resulting bilinear
form (·, ·)′n,m on �n,m .

Properties (1) and (2) are obvious.
To prove Property (3), we rewrite the weight function in terms of the convenient

notation (19)–(20):

e− 1
2

∑n+m
i=1 (−θ)−p(i)x2i ·

∏

1≤i< j≤n+m

(xi − x j )
−2(−θ)1−p(i)−p( j)

.

Then,we use (22)–(23) to verify, by direct computations, that the corresponding formal
adjoint of L(r)

n,m is given by

L̂(r)
n,m =

n+m∑

i=1

(−θ)−p(i )̂∂
(r)
i ,

with ∂̂
(1)
i = xi − ∂

(1)
i and

∂
(r)
i = ∂̂

(1)
i ∂̂

(r−1)
i +

∑

j �=i

(−θ)1−p( j)

xi − x j

(̂
∂

(r−1)
i − ∂̂

(r−1)
j

)
(41)

for r > 1.
Since L pr ,θ = L(r)

n,m and the deformed power sums pr ,θ (x, y) generate �n,m , the
desired Property (3) will follow once we prove that

eLn,m/2 L̂(r)
n,me

−Ln,m/2 = pr ,θ (x, y). (42)
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Following the approach in Sect. 3, we first establish such a conjugation formula for
the operators

L̂ p,N = Res
(
p
(
x1 − D1,N , . . . , xN − DN ,N

))
(p ∈ �N )

in �N , then lift it to � and finally restrict the result to �n,m .
Using the commutation relations

[Di,N , x j ] =
{
1 + θ

∑
k �=i σik, j = i

−θσi j , j �= i

a straightforward computation yields

[
N∑

i=1

D2
i,N , x j

]
= 2Dj,N ,

which entails

e
1
2

∑N
i=1 D

2
i,N x j e

− 1
2

∑N
i=1 D

2
i,N = e

1
2 ad

(∑N
i=1 D

2
i,N

)

x j = x j + Dj,N ,

where we have used the standard formula AdeX = eadX . It follows that

eLN /2 L̂ p,Ne
−LN /2

= Res
(
e
1
2

∑N
i=1 D

2
i,N p

(
x1 − D1,N , . . . , xN − DN ,N

)
e− 1

2

∑N
i=1 D

2
i,N

)

= p(x1, . . . , xN ). (43)

Consulting the proof of Thm. 2.2 in [43], it is readily seen how to lift the operators
L̂(r)
N := L̂ pr ,N (r ∈ Z≥0) to �̄. Specifically, introducing the operators

L̂(r) := Res E ◦ (x − D∞)r : �̄ → �̄ (r ∈ N),

we have the commutative diagram

�̄
L̂(r)−−−−→ �̄

ϕN

⏐⏐�
⏐⏐�ϕN

�N
L̂(r)
N−−−−→ �N

(44)

for each r ∈ N. Since f ∈ �̄ satisfies ϕN ( f ) = 0 for all N ∈ N if and only if f ≡ 0
(cf. Lemma 2.3 in [43]), we infer from (18) and (43)–(44) that

eL
(2)/2 L̂(r)e−L(2)/2 = pr (r ∈ Z≥0).
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Finally, by easily identifiable modifications of the discussion in Sect. 3 of [43], we find
that the diagram

�̄
L̂(r)−−−−→ �̄

ϕn,m

⏐⏐�
⏐⏐�ϕn,m

�n,m
L̂(r)
n,m−−−−→ �n,m

(45)

is commutative for all r ∈ N, and consequently that (42) holds true. ��
Remark 4.1 Note that the integral representation (4) is independent of the specific
choice of parameter values. When altering ξ, η such that a hyperplane ξi = η j is
crossed, it would seem that we pick up a residue term and thus alter the representation.
However, the quasi-invariance conditions (11) ensure that any such residue vanishes.

5 Orthogonality Relations

Having proved in Prop. 4.3 that SF (θ)
n,m is the reproducing kernel of (·, ·)n,m , the desired

orthogonality relations for the super-Jack polynomials are easily inferred from the
definition in (33) of SF (θ)

n,m .
More specifically, setting p(x, y) = SC (θ)

μ (x, y) in (37), substituting the latter
series expansion in (33) and comparing coefficients, we obtain

(
SC (θ)

μ , SC (θ)
λ

)
n,m = δμλ|λ|!SC (θ)

λ (1n+m) (μ, λ ∈ Hn,m), (46)

where δλμ denotes the Kronecker delta. Keeping the definitions of the two homomor-
phisms εX (10) and ϕn,m (12) in mind, it becomes clear from (13) that

SP(θ)
λ (1n+m) = εn−m/θ

(
P(θ)

λ

)
,

where by εn−m/θ we mean the homomorphism � → C given by εX followed by
evaluation at X = n−m/θ . Substituting (31) in (46), we can now use (8)–(9) to rewrite
the right-hand side of the resulting equation in terms of the generalised Pochhammer
symbol

(a)
(θ)
λ =

�(λ)∏

i=1

(a − θ(i − 1))λi , (47)

with (a)m the ordinary Pochhammer symbol, and the inverse b(θ)
λ of the quadratic

norm of P(θ)
λ , thus arriving at the following result.
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Theorem 5.1 As long as θ is not a negative rational number or zero, we have

(
SP(θ)

μ , SP(θ)
λ

)
n,m = δμλ

(θn − m)
(θ)
λ

b(θ)
λ

(μ, λ ∈ Hn,m).

We conclude this section by sketching an alternative approach to this orthogonality
result, starting from the bilinear form on � given by

(p, q)p0 = ε0(L pq),

with the homomorphisms p �→ L p and ε0 : � → C characterised by pr �→ L(r) and
ε(pr ) = 0, respectively, for r ∈ N, and where we think of p0 as a complex parameter.
Proceeding as above, it is readily seen that F (θ,p0)(x, y) := ∑∞

d=0 F
(θ,p0)
d (x, y) is the

reproducing kernel of (·, ·)p0 , which, in turn, implies

(Pμ, Pλ)p0 = δμλ

(θ p0)
(θ)
λ

b(θ)
λ

.

Setting p0 = n − m/θ , we note that (θ p0)
(θ)
λ = (θn − m)

(θ)
λ = 0 if and only if

(n + 1,m + 1) ∈ λ or equivalently λ /∈ Hn,m . (To be precise, the ‘only if’ part of this
claim holds true as long as we avoid the θ -values (34).) In other words, the kernel of
(·, ·)n−m/θ equals

Kn,m := span
{
P(θ)

λ | λ /∈ Hn,m

}
.

From [41] (see Thm. 2), we recall that Kn,m is also the kernel of ϕn,m : � → �n,m ,
so that (·, ·)n−m/θ descends to a non-degenerate bilinear form on the factor space
�/Kn,m ∼= �n,m that amounts to (·, ·)n,m .

6 Lassalle–Nekrasov Correspondence

In this section, we provide a new proof of the Lassalle–Nekrasov correspon-
dence between the deformed trigonometric and rational harmonic Calogero–Moser–
Sutherland systems; and, in addition, we show that the correspondence is isometric in
a natural sense.

Using the notation (19)–(20), we recall from [40, 41] that if (22) is modified such
that ∂(1)

i = (−θ)p(i)xi∂/∂xi and

∂
(r)
i = ∂

(1)
i ∂

(r−1)
i − 1

2

∑

j �=i

(−θ)1−p( j) xi + x j
xi − x j

(
∂

(r−1)
i − ∂

(r−1)
j

)
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for r > 1, the differential operators

L(r)
n,m =

n+m∑

i=1

(−θ)−p(i)∂
(r)
i (r ∈ N) (48)

where L(2)
n,m = Ln,m , pairwise commute and are simultaneously diagonalised by the

super-Jackpolynomials.Aswe shall see below, theLassalle–Nekrasov correspondence
implies that corresponding quantum integrals for the rational harmonic system are
given by

L (r)
n,m = L(r)

n,m + 1

2

[L(r)
n,m, Ln,m

] + 1

222!
[[L(r)

n,m, Ln,m
]
, Ln,m

]

+ · · · + 1

2r r !
[ · · · [L(r)

n,m, Ln,m
]
, . . . , Ln,m

]
(r ∈ N), (49)

where

L (1)
n,m =

n+m∑

i=1

xi
∂

∂xi
− Ln,m .

First, we deduce an alternative description of the map e−Ln,m/2 : �n,m → �n,m .
From Prop. 3.5, it is clear that

G(θ)
n,m(x, y; z, w) := SF (θ)

n,m(x, y; z, w)e−p2,θ (z,w)/2

= e−Ln,m (x,y)/2SF (θ)
n,m(x, y; z, w),

and so (5) and (33) entail the generating function expansion

G(θ)
n,m(x, y; z, w) =

∑

λ∈Hn,m

bλ(θ)

(θn − m)
(θ)
λ

SH (θ)
λ (x, y)SP(θ)

λ (z, w),

cf. (8)–(9), (31) and (47). Hence, invoking Thm. 5.1, we obtain the following propo-
sition.

Proposition 6.1 Assuming θ is not of the form (34), we have

e−Ln,m (x,y)/2 p(x, y) = (
G(θ)

n,m(x, y; z, w), p(z, w)
)
n,m

for each p ∈ �n,m.

For suitable θ -values, we proceed to introduce an additional bilinear form on�n,m ,
which can be viewed as a natural generalisation to the deformed case of the L2 inner
product over RN with weight function e−x2/2 · ∏

1≤i< j≤N |xi − x j |2θ .
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Definition 6.2 Assuming that θ ∈ C is not a negative rational number, that it satisfies
Re θ < 0 and ξ ∈ R

n , η ∈ R
m satisfy (38), we define a bilinear form on �n,m by

{p, q}n,m = M−1
n,m

∫

Rn+iξ

∫

Rm+iη
p(x, y)q(x, y)

e−x2/2+θ−1y2/2

An,m(x, y)
dxdy (p, q ∈ �n,m),

where the value of Mn,m is given by (39)–(40).

We are now ready to state and prove the main result of this section.

Theorem 6.3 For θ not of the form (34), the map e−Ln,m/2 : �n,m → �n,m intertwines
the deformed trigonometric and rational harmonicCalogero–Moser–Sutherland oper-
ators given by (48) and (49), respectively. More precisely, the diagram

�n,m
e−Ln,m /2−−−−−→ �n,m

L(r)
n,m

⏐⏐�
⏐⏐�L (r)

n,m

�n,m
e−Ln,m /2−−−−−→ �n,m

is commutative for all r ∈ N.
If, in addition, Re θ < 0, we have

{
e−Ln,m/2 p, e−Ln,m/2q

}
n,m = (p, q)n,m (p, q ∈ �n,m).

Proof Using the formula AdeX = eadX , with X the operator of multiplication by
p2,θ /2, as well as the fact that adX lowers the order of a differential operator by at
least one, we deduce

ep2,θ /2L(r)
n,me

−p2,θ /2 = L(r)
n,m + 1

2

[
p2,θ ,L(r)

n,m

] + 1

222!
[
p2,θ ,

[
p2,θ ,L(r)

n,m

]]

+ · · · + 1

2r r !
[
p2,θ , . . . ,

[
p2,θ ,L(r)

n,m

] · · · ].

As a direct consequence of the definition in (33) of SF (θ)
n,m and the fact that the super-

Jack polynomials are joint eigenfunctions of the operators L(r)
n,m , we get

L(r)
n,m(x, y)SF (θ)

n,m(x, y; z, w) = L(r)
n,m(z, w)SF (θ)

n,m(x, y; z, w).

Combining the previous two formulae with Prop. 3.5, we infer

L(r)
n,m(z, w)G(θ)

n,m(x, y; z, w)

= e−p2,θ (z,w)/2
(
ep2,θ /2L(r)

n,me
−p2,θ /2

)
(z, w)SF (θ)

n,m(x, y; z, w)

= L (r)
n,m(x, y)G(θ)

n,m(x, y; z, w).
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Since Thm. 5.1 and the pertinent joint eigenfunction property imply

(L(r)
n,m p, q

)
n,m = (

p,L(r)
n,mq

)
n,m (p, q ∈ �n,m),

it follows from Prop. 6.1 and our reasoning thus far that

(
L (r)

n,me
−Ln,m/2)(p) = (

L (r)
n,m(x, y)G(θ)

n,m(x, y; z, w), p(z, w)
)
n,m

= (
G(θ)

n,m(x, y; z, w),L(r)
n,m(z, w)p(z, w)

)
n,m

= (e−Ln,m/2L(r)
n,m)(p)

for all r ∈ N and p ∈ �n,m .
Finally, if Re θ < 0, it is clear from Prop. 4.5 and Def. 6.2 that the map e−Ln,m/2 :

�n,m → �n,m becomes an isometry when the domain is equipped with the bilinear
form (·, ·)n,m and the codomain with {·, ·}n,m . ��
Remark 6.1 This is precisely the Lassalle–Nekrasov correspondence we had in mind,
and, while the first part of the result should be compared with Thm. 6 in [19], the
above proof runs in parallel with that of Thm. 4 in [19], which pertains to the ordinary
undeformed case.

Remark 6.2 As detailed in Thm. 8 in [19], it is readily inferred that the deformed
rational harmonic Calogero–Moser–System is integrable. This was first proved inde-
pendently by Desrosiers and the author [11] and Feigin [17]; see also Berest and
Chalykh [6].

Corollary 6.4 For θ ∈ C satisfying Re θ < 0 while not being equal to a negative
rational number, we have

{
SH (θ)

μ , SH (θ)
λ

}
n,m = δμλ

(θn − m)
(θ)
λ

b(θ)
λ

(μ, λ ∈ Hn,m).

Proof Taking p = SH (θ)
μ and q = SH (θ)

λ in Thm. 6.3 and invoking Thm. 5.1, we
immediately obtain the claim. ��

7 Outlook

In this paper, we have worked with deformed Calogero–Moser–Sutherland operators
and corresponding eigenfunctions associated with deformations of root systems of
type A. It seems plausible that our results can be generalised to the BC case, with the
super-Jack polynomials being replaced by the super-Jacobi polynomials introduced
in [42]. Indeed, the constructions and results from [5, 11, 43] that we have relied on
are available also in the BC case.

We also note that Feigin’s [17] approach to integrability of deformed Calogero–
Moser–Sutherland operators, using special representations of rational Cherednik
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algebras, might provide a different way to establish the present results and point
the way towards further generalisations; and the recent orthogonality results in [2] on
super-Macdonald polynomials hint at generalisations to the difference case.

Due, in particular, to parameter-independent singularities of eigenfunctions,
deformed Calogero–Moser–Sutherland systems were for a long time seen as prob-
lematic to interpret within (quantum) physics. However, in recent years, the deformed
trigonometric and even elliptic systems have naturally appeared in a quantum field
theory formulation of the ordinary systems [3, 7] as well as in the context of
super-symmetric gauge theories [9, 32]. It would be interesting to explore possible
connections to the results presented in this paper, not least the Lassalle–Nekrasov
correspondence between deformed trigonometric and rational harmonic systems.

It is also interesting to note that, in contrast to the situation in [1], the bilinear
forms introduced in Defs. 4.1 and 6.2 are nondegenerate for generic θ -values and it is
not obvious whether a natural positive definite inner product can be extracted, e.g. by
restricting attention to particular parameter values and a subspace of �n,m . Insights
into this problem might provides clues on potential (physical) interpretations of the
results obtained in this paper and vice versa.
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Appendix A. On Convergence of Generalised Hypergeometric Series

In this appendix, we study convergence properties of the generalised hypergeometric
series SF (θ)

n,m(x, y; z, w) (33), restricting, for simplicity, attention to θ > 0. Specif-
ically, we prove the proposition below by following the approach of Desrosiers
and Liu [12] (see Appendix B), who considered generalised hypergeometric series

pSF
(α)
q (a1, . . . , ap; b1, . . . , bq ; x, y), depending on p + q parameters in addition

to α = 1/θ , where the special case p = q = 0 corresponds to the specialisation
(z, w) = (1n, 1m) of SF (θ)

n,m(x, y; z, w).

Proposition A.1 Assume that θ > 0 is such that θ �= i/ j for any 1 ≤ i ≤ m,
1 ≤ j ≤ n. Then SF (θ)

n,m(x, y; z, w) is analytic for all (x, y), (z, w) ∈ C
n × C

m.

123

http://creativecommons.org/licenses/by/4.0/


Constructive Approximation (2024) 59:113–142 139

Proof Letting χλ
μ(θ) denote the coefficient of pμ in the power sum expansion of the

Jack symmetric function P(θ)
λ , we get from (12) and (13) that

SP(θ)
λ (x, y) =

∑

μ

χλ
μ(θ)pμ,θ (x, y),

where the sum extends over partitions μ such that |μ| = |λ|. Just as in Lemma B.1 in
[12], we use the Cauchy-Schwartz inequality to deduce the bound

∣∣SP(θ)
λ (x, y)

∣∣2 ≤
(

∑

μ

χλ
μ(θ)2θ−�(μ)zμ

)
·
(

∑

μ

|pμ,θ (x, y)|2θ�(μ)z−1
μ

)

and, since the former sum amounts to the norm of Pλ with respect to the scalar product
〈·, ·〉 (cf. (6)), Stanley’s formula (8) amounts to

∑

μ

χλ
μ(θ)2θ−�(μ)zμ = 1

b(θ)
λ

.

Moreover, we have

|pμ,θ (x, y)|2θ�(μ) ≤ pμ,−θ ((|x1|, . . . , |xn|), (|y1|, . . . , |ym |))2θ�(μ)

≤ ||(x, y)||2|μ|∞ · (√
θn + m/

√
θ
)2�(μ)

.

Using �(μ) ≤ |μ| = |λ| and ∑
|μ|=|λ| z−1

μ = 1, we thus arrive at the bound

|SP(θ)
λ (x, y)| ≤ 1√

b(θ)
λ

(||(x, y)||∞ · (√
θn + m/

√
θ
))|λ|

,

which, when combined with (9) with X = n − m/θ and (31) yields

S(θ)(x, y; z, w) :=
∑

λ∈Hn,m

∣∣∣∣∣
1

|λ|!
SC (θ)

λ (x, y)SC (θ)
λ (z, w)

SC (θ)
λ (1n+m)

∣∣∣∣∣

≤
∑

λ∈Hn,m

(
||(x, y)||∞ · ||(z, w)||∞ · (√

θn + m/
√

θ
)2)|λ|

∏
s∈λ |θ(n − l ′(s)) − (m − a′(s))| .

For a partition λ ∈ Hn,m , we let

e(λ) = (〈λ1 − m〉, · · · , 〈λn − m〉), s(λ) = (〈λ′
1 − n〉, · · · , 〈λ′

m − n〉),

with 〈a〉 = max(0, a), so that e(λ) and s(λ) correspond to the set of boxes located to
the ‘east’ and ‘south’, respectively, of the m × n rectangle (mn) in the diagram of λ,
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cf. Fig. 1 in [1]. Then, we have

∏

s∈λ

|θ(n − l ′(s)) − (m − a′(s))|

= (θn)
(θ)
e(λ) · (θ)|s(λ)|(m/θ)

(1/θ)

s(λ) ·
∏

s∈λ∩(mn)

|θ(n − l ′(s)) − (m − a′(s))|.

As long as the restrictions (34) are in place, each factor in the product over boxes
in λ ∩ (mn) in the right-hand side is non-zero and independent of λ, which implies
that the product is uniformly bounded below by some positive constant. Furthermore,
under our assumption θ > 0, it is clear from (47) that

(θn)
(θ)
e(λ) ≥ min{1, θ}|e(λ)| · e(λ)!, (θ)|s(λ)|(m/θ)

(1/θ)

s(λ) ≥ min{1, θ}|s(λ)| · s(λ)!.

Hence, we can find constants C, r > 0 such that

S(θ)(x, y; z, w) ≤ C
(
1 + (||(x, y)||∞ · ||(z, w)||∞

)mn)

·
∑

(μ,ν)∈Zn≥0×Z
m≥0

(
r · ||(x, y)||∞ · ||(z, w)||∞

)|μ|+|ν|

μ!ν! .

Since the sum converges locally uniformly to exp((n+m)r · ||(x, y)||∞ · ||(z, w)||∞),
the assertion follows. ��
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