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Abstract
Splines are piecewise polynomial functions which are continuously differentiable to
some order r . For a fixed integer d the space of splines of degree at most d is a
finite dimensional vector space, and a largely open problem in numerical analysis is to
determine its dimension.While considerable attention has been given to this problem in
the bivariate setting, the literature on trivariate splines is less conclusive. In particular,
the dimension of generic trivariate splines is not known even in large degree when
r > 1. In this paper we use a bound we previously derived for splines on vertex stars
to compute a new lower bound on the dimension of trivariate splines in large enough
degree.We illustrate in several examples that our formula gives the exact dimension of
the spline space in large enough degree if vertex positions are generic. In contrast, for
splines continuously differentiable of order r > 1, every lower bound in the literature
diverges (often significantly) in large degree from the dimension of the spline space
in these examples. We derive the bound using commutative and homological algebra.
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1 Introduction

A multivariate spline is a piecewise polynomial function on a partition � of some
domain � ⊂ R

n which is continuously differentiable to order r for some integer
r ≥ 0. Multivariate splines play an important role in many areas such as finite ele-
ments, computer-aided geometric design, isogeometric analysis, and data fitting [13,
24]. Splines on both triangulations and tetrahedral partitions have been used to solve
boundary value problems by the finite element method; some early references are [14,
34, 35], see also [24] and the references therein. For quite recent applications in iso-
geometric analysis, in [18, 19], Engvall and Evans outline frameworks to parametrize
volumes for isogeometric analysis using triangular and tetrahedral Bézier elements.
While Engvall and Evans in [19] focus onC0 elements,Cr tetrahedral Bézier elements
are also used for isogeometric analysis—see Xia and Qiang [38]. In these applications
it is important to construct a basis, often with prescribed properties, for splines of
bounded total degree. Thus it is important to compute the dimension of the space of
multivariate splines of bounded degree on a fixed partition. We write Sr

d(�) for the
vector space of piecewise polynomial functions of degree at most d on the partition �

which are continuously differentiable of order r . By an abuse of notation we identify
� with its embedding in Rn .

A formula for the dimension ofC1 splines on triangulationswas proposed by Strang
[34] and proved for generic triangulations by Billera [9]. Subsequently the problem of
computing the dimension of planar splines on triangulations has received considerable
attention using a wide variety of techniques, see [3, 4, 9, 11, 22, 23, 31–33, 36, 37].
Alfeld and Schumaker show in [4] that the dimension of Sr

d(�), for (most) planar
triangulations � and d ≥ 3r + 1, is given by a quadratic polynomial in d whose
coefficients are determined from simple data of the triangulation. The computation of
dim Sr

d(�) for planar � when r + 1 ≤ d ≤ 3r remains an open problem, although
Whiteley has shown that there are only trivial splines on � in degrees at most 3r+1

2 if
� is generic with a triangular boundary [36]. (This result of Whiteley is an essential
ingredient of our lower bound for trivariate splines.)

The literature on computing the dimension of trivariate splines on tetrahedral par-
titions is much less conclusive. The dimension has been computed if r = 0 (see [6] or
[10]), and also if r = 1, d ≥ 8, and � is generic by Alfeld, Schumaker, and Whiteley
[7]. For r > 1 bounds on dim Sr

d(�) have been computed in [1, 5, 25, 28]. A major
difficulty is that computing dim Sr

d(�) exactly in large degree for arbitrary tetrahe-
dral partitions cannot be done without computing the dimension of splines on planar
triangulations exactly in all degrees (see [7, Remark 65]). More precisely, to compute
dim Sr

d(�) exactly for d � 0, we must be able to compute the space of homogeneous
splines dimHr

d(�γ ) exactly in all degrees, where γ is a vertex of � and �γ is the
star of γ (that is, �γ consists of all tetrahedra having γ as a vertex). The computation
of such spline spaces has only been made for r ≤ 1; for r = 1, the partition � is
required to be generic [7]. For this crucial computation we rely on our previous paper
[17], where we establish a lower bound on the dimension of homogeneous splines on
vertex stars.
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Fig. 1 A three-dimensional version of the Morgan–Scott triangulation, the star of the boundary vertex γ ′
(center), and the star of the interior vertex γ (right)

In our main result, Theorem 2.6, we establish a formula which is a lower bound
on the dimension of the spline space on most tetrahedral partitions of interest (any
triangulation of a compact three-manifold with boundary) in large enough degree.
While we have no proof of what degree is large enough, empirical evidence suggests
that, for generic �, our formula begins to be a lower bound in degrees close to the
initial degree of Sr (�); by the initial degree of Sr (�) we mean the smallest degree
d in which Sr

d(�) admits a spline which is not globally polynomial. If � is generic,
our formula gives the exact dimension of Sr

d(�) beginning at the initial degree of
Sr
d(�) for several tetrahedral partitions considered by Alfeld and Schumaker [5] (see

Example 1.1 and Sect. 5). It is worth noting that none of the lower bounds in the
literature [5, 25, 28] give the exact dimension of the generic spline space (even in
large degree) on these tetrahedral partitions for r ≥ 2. Below is an example, discussed
in detail later in the paper, comparing our results to work by Alfeld and Schumaker in
[5] and Mourrain and Villamizar in [28].

Example 1.1 Let � be the tetrahedral partition on the left of Figure 1. In Table 1
we record the values of the lower bounds on dim Sr

d(�) for order of smoothness
2 ≤ r ≤ 4. In column 3 we give the dimension of the space of polynomials of degree
at most d (this is

(d+3
3

)
), in columns 4–6 the bounds are obtained by applying the

formulas proved in [28, Theorem 5.1], [5, Example 8.2], and our new lower bound
LB(d) (proved in Theorem 2.6 below), respectively. The last column records the value
for the exact dimension for the given order of continuity r , degree d, and generic vertex
positions. The bolded entry in the d column indicates the initial degree of Sr

d(�).

The paper is organized as follows. In Sect. 2 we explicitly state our lower bound
in purely numerical terms allowing a straightforward application of the formula and
illustrate in an example. In Sect. 3 we set up notation and give relevant homological
background, and in Sect. 4 we prove the bound of Theorem 2.6. Section 5 is devoted to
illustrating our bounds in a number of examples and comparing them to the bounds in
[5, 28]. Finally, we give some concluding remarks in Sect. 6.We draw special attention
to Remark 6.2, as we think it likely that work of Alfeld, Schumaker, and Sirvent [6]
implies that our formula is a lower bound in degrees at least 8r + 1. Our methods are
sufficiently different from [6] that we do not attempt to prove this here.
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Table 1 Lower bounds on
dim Sr

d (�), where � is the three
dimensional Morgan–Scott
partition in Fig. 1; see
Example 5.1. The initial degree
is bolded

r d
(d+3

3
)

LB[28] LB[5] LB(d) gendim

2 5 56 56 56 48 56

2 6 84 84 84 72 84

2 7 120 120 120 132 132

2 8 165 165 207 243 243

2 9 220 320 384 420 420

3 8 165 165 165 137 165

3 9 220 220 220 208 220

3 10 286 286 286 332 332

3 11 364 364 364 524 524

3 12 455 591 593 799 799

3 13 560 964 948 1172 1172

4 11 364 364 364 308 364

4 12 455 455 455 439 455

4 13 560 560 560 640 640

4 14 680 680 680 926 926

4 15 680 896 832 1312 1312

2 The lower bound

Throughout we let � be a tetrahedral partition. We are more precise in Sect. 3; for
now it is sufficient for the reader to think of a tetrahedral partition as a triangulation
of a three-dimensional polytope. We use �i and �◦

i to denote the i-faces and interior
i-faces (respectively) of �. We put fi (�) = |�i | and f ◦

i (�) = |�◦
i | (if � is clear we

simply write fi and f ◦
i ). We define the following data for each edge (Notation 2.1)

and for each vertex of � (Notation 2.3).

Notation 2.1 [Data attached to edges] For a given r ≥ 0 and τ ∈ �1,

• we define tτ = min{nτ , r + 2}, where nτ = #{σ ∈ �2 : τ ⊂ σ } is the number of
two-dimensional faces having τ as an edge;

• and the constants

qτ =
⌊
tτ (r + 1)

tτ − 1

⌋
, aτ = tτ (r + 1) − (tτ − 1)qτ , and bτ = tτ − 1 − aτ .

Notice that tτ (r + 1) = qτ (tτ − 1) + aτ ; i.e., qτ and aτ are, respectively, the
quotient and remainder obtained when dividing tτ (r + 1) by tτ − 1 .

Given a vertex γ ∈ �, we call the set of tetrahedra of � which contain γ the star of
γ and we denote this tetrahedral partition by �γ . If γ is an interior vertex of �, so γ

is completely surrounded by tetrahedra, then we call �γ a closed vertex star. If γ is a
boundary vertex of �, so γ is not completely surrounded by tetrahedra, then we call
�γ an open vertex star.

The following convention for binomial coefficients is crucial in all our formulas.
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Convention 2.2 For binomial coefficients we always put
(n
k

) = 0 when n < k.

We make the following definitions following Notation 2.1 and Convention 2.2.

Notation 2.3 [Data attached to vertices] For given integers d ≥ r ≥ 0 and γ ∈ �0,

• if �γ is a closed star i.e., γ ∈ �◦
0, we define

Dγ :=
⎧
⎨

⎩

2r if f ◦
1 (�γ ) = 4

	(5r + 2)/3
 if f ◦
1 (�γ ) = 5

	(3r + 1)/2
 if f ◦
1 (�γ ) ≥ 6,

(1)

and

LB�(�γ , d, r) := 2

(
d + 2

2

)
+
⎛

⎝ f ◦
2 (�γ ) −

∑

τ∈(�γ )◦1

tτ

⎞

⎠
(
d + 1 − r

2

)

+
∑

τ∈(�γ )◦1

(
aτ

(
d + 1 − qτ

2

)
+ bτ

(
d + 2 − qτ

2

))
. (2)

We write LB�(d) instead of LB�(�, d, r) if � and r are understood.
• If �γ is an open vertex star i.e., if γ ∈ �0 \ �◦

0 , we define

LB�(�γ , d, r) :=
(
d + 2

2

)
+
⎛

⎝ f ◦
2 (�γ ) −

∑

τ∈(�γ )◦1

tτ

⎞

⎠
(
d + 1 − r

2

)

+
∑

τ∈(�γ )◦1

(
aτ

(
d + 1 − qτ

2

)
+ bτ

(
d + 2 − qτ

2

))
. (3)

Again we write LB�(d) if � and r are understood.
• For each vertex γ ∈ �0 we define the constant Nγ as follows

Nγ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dγ∑

d=r+1

[(d+2
2
) − LB�(d)

]
+

3r+1∑

d=Dγ +1

[(d+2
2
) − LB�(d)

]

+ if γ ∈ �◦
0

3r+1∑

d=r+1

[(d+2
2
) − LB�(d)

]

+ if γ ∈ �0 \ �◦
0

(4)

where for a real numberm, we put [m]+ = max{m, 0}. The constants Dγ , LB�(d),

and LB�(d) are those defined in Equations (1), (2), and (3), respectively.

Remark 2.4 In [17] we show LB�(�, d, r) is a lower bound for homogeneous splines
on a generic closed vertex star for d > Dγ and [2] shows there is equality for d ≥
3r +2. In [2] it is shown that LB�(�, d, r) is a lower bound for homogeneous splines
on a generic open vertex star, with equality if d ≥ 3r + 2.
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Remark 2.5 When γ ∈ �◦
0 and r+1 ≤ d ≤ Dγ , notice that the contribution to Nγ can

be negative, while if d > Dγ , only positive contributions are counted. This is a crucial
difference between the contributions from interior vertices and the contributions from
boundary vertices.

Theorem 2.6 [Lower bound in large degree for tetrahedral partitions] Suppose � is
a tetrahedral partition. If d � 0 then dim Sr

d(�) ≥ LB(�, d, r), where

LB(�, d, r) :=(
f3 − f ◦

2 + f ◦
1

)
(
d + 3

3

)
+
⎛

⎝ f ◦
2 −

∑

τ∈�◦
1

tτ

⎞

⎠
(
d + 2 − r

3

)

+
∑

τ∈�◦
1

(
aτ

(
d + 2 − qτ

3

)
+ bτ

(
d + 3 − qτ

3

))

− f ◦
0

(
r + 3

3

)
+

∑

γ∈�0

Nγ . (5)

If � and r are understood then we abbreviate LB(�, d, r) to LB(d).

2.1 Example

We illustrate Theorem 2.6 forC2 splines on the tetrahedral partition in Fig. 1, which is
a three-dimensional analog of the Morgan–Scott triangulation [27]. If γ is an interior
vertex then�γ is the triangulated octahedron on the right in Fig. 1.We have f ◦

0 (�γ ) =
1, f ◦

1 (�γ ) = 6, and f ◦
2 (�γ ) = 12. For every τ ∈ (�γ )◦1, we have nτ = 4 and hence

tτ = min
{
nτ , r + 2

} = 4. We compute qτ = 4, aτ = 0, and bτ = 3, hence by
Equation (2),

LB�
(
�γ , d, 2

) = 2

(
d + 2

2

)
− 12

(
d − 1

2

)
+ 18

(
d − 2

2

)
.

Ifγ ′ is a boundary vertex, then�γ ′ is the cone over theMorgan–Scott triangulation (see
the star of vertex γ ′ in Fig. 1).We have f ◦

0 (�γ ′) = 0, f ◦
1 (�γ ′) = 3, and f ◦

2 (�γ ′) = 9.
For every τ ∈ (�γ ′)◦1, we have nτ = 4 and hence tτ = min

{
nτ , r + 2

} = 4. Again
we have qτ = 4, aτ = 0, and bτ = 3. Thus, following Equation (3),

LB�
(
�γ ′ , d, 2

) =
(
d + 2

2

)
− 3

(
d − 1

2

)
+ 9

(
d − 2

2

)
.

In Table 2 we record the values of LB�
(
�γ , d, 2

)
, LB�

(
�γ ′ , d, 2

)
, and

(d+2
2

)
where

γ is an interior vertex of � and γ ′ is a boundary vertex of �.
Now we turn to computing the bound LB

(
�, d, 2

)
in Theorem 2.6 for dim S2

d (�),
where� is the full simplicial complex depicted in Fig. 1. If γ is a boundary vertex then
Nγ = 3 (corresponding to the one difference in degree 3 in Table 2). If γ is an interior
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Table 2 Lower bounds for the
star of an interior (γ ) and
boundary (γ ′) vertex of the
simplicial complex in Fig. 1

d 3 4 5 6 7 8 9 10

(d+2
2
)

10 15 21 28 36 45 55 66

LB�(�γ , d, 2) 8 12 24 44 72 108 152 204

LB�(�γ ′ , d, 2) 7 15 30 52 81 117 160 210

Table 3 Illustrating Theorem 2.6 for the tetrahedral partition in Fig. 1

d 0 1 2 3 4 5 6 7 8 9 10

(d+3
3
)

1 4 10 20 35 56 84 120 165 220 286

LB(�, d, 2) − 57 12 42 48 45 48 72 132 243 420 678

dim S2
d (�) 1 4 10 20 35 56 84 132 243 420 678

vertex then Dγ = 3. Reading down each column in the first two rows of Table 2 we
get Nγ = (10 − 8) + (15 − 12) = 5. Thus

∑
γ∈�0

Nγ = 4 · 3 + 4 · (5) = 32.
For the remaining statistics we have f ◦

0 = 4, f ◦
1 = 18, f ◦

2 = 28, and f3 = 15.
For each interior 1-face τ we have nτ = tτ = 4, dτ = 4, aτ = 0, bτ = 3. Thus, by
Theorem 2.6,

LB(�, d, 2)=5

(
d + 3

3

)
− 44

(
d

3

)
+ 54

(
d − 1

3

)
− 8=5

2
d3 − 27d2 + 187

2
d − 57,

where the second equality holds as long as d ≥ 1. Table 3 compares the values of
LB(�, d, 2) and dim S2

d (�) for generic positions of the vertices of �. Notice that
while LB(�, d, 2) is neither an upper or lower bound for d ≤ 6, it predicts the
correct dimension of the generic spline space for d ≥ 7. Incidentally, d = 7 is the
initial degree of S2(�); that is, the first non-trivial splines appear in degree 7. We
computed the exact dimension of the spline space for generic vertex positions using
theAlgebraic Splines package inMacaulay2 [20]. Furthermore, a computation
in Macaulay2 shows that dim Sr

d(�) = 5
2d

3 − 27d2 + 187
2 d − 57 for d � 0, so our

lower bound gives the exact dimension of the spline space for r = 2 when d ≥ 7.
Code to compute all examples in this paper can be found on the first author’s website
under the Research tab: https://midipasq.github.io/.

3 Background and homological methods

In this section we introduce the homological methods of Billera [9] and Schenck and
Stillman [32]. A simplex in R

n is the convex hull of i ≤ n + 1 vertices which are
in linearly general position (no three on a line, no four on a plane, etc.). A face of a
simplex is the convex hull of any subset of the vertices which define it (thus a face of
a simplex is a simplex). An i-simplex (or i-face) is the convex hull of i + 1 vertices
in linearly general position; i is the dimension of the i-simplex or i-face.
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Definition 3.1 A simplicial complex � is a collection of simplices in R
n satisfying:

• If β ∈ � then so are all of its faces.
• If β1, β2 ∈ � then β1 ∩ β2 is either empty or a proper face of both β1 and β2.

We also refer to the simplices of� as faces of�. The dimension of� is the dimension
of a maximal simplex of � under inclusion. If all maximal simplices have equal
dimension we say that � is pure.

In this paper we only consider finite simplicial complexes. If β is a face of � of
dimension i we call β an i-face. Denote by�i and�◦

i the set i-faces of� and interior
i-faces of �, respectively. We write fi (�) and f ◦

i (�) for the number of i-faces and
interior i-faces, respectively (we write fi and f ◦

i if � is understood). By an abuse of
notation, we will identify � with its underlying space

⋃
β∈� β ⊂ R

n .

Definition 3.2 If � is a simplicial complex and β is a face of �, then the link of β is
the set of all simplices γ in � so that β ∩ γ = ∅ and β ∪ γ is a face of �. The star of
β is the union of the link of β with the set of all simplices which contain β (including
β). We denote the star of β by �β .

If γ is a vertex of a simplicial complex � so that all maximal simplices of � contain
γ (so �γ = �), then we call � the star of γ and we say � is a vertex star. If γ is an
interior vertex we call � a closed vertex star and if γ is a boundary vertex then we
call � an open vertex star.

We refer to the set of points in R
n+1 of unit norm as the n-sphere, and the set of

points in R
n with norm at most one as the n-disk. A homeomorphism f : X → Y

between two sets is a continuous bijection; if such an f exists we say X and Y are
homeomorphic.

Definition 3.3 (Simplicial n-manifold with boundary) If � is a finite simplicial com-
plex in R

n , we say it is a simplicial n-manifold with boundary if it satisfies the
conditions:

• � is pure n-dimensional,
• the link of every vertex of � is homeomorphic to an (n − 1)-sphere (if the vertex
is interior) or an (n − 1)-disk (if the vertex is on the boundary),

• and every (n − 1)-simplex of � is either the intersection of two n-simplices of �

or it is on the boundary of � and so contained in only one n-simplex of �.

Example 3.4 Consider the simplicial complex in Fig. 1, which is a simplicial 3-mani-
fold with boundary homeomorphic to the 3-disk. The star of the interior vertex γ is
shown in the center of Fig. 1; the link of the vertex γ is obtained from the star of γ by
removing γ and all simplices which contain it. The link of γ is homeomorphic to a
2-sphere. Likewise, the star of the boundary vertex γ ′ is shown on the right in Fig. 1;
the link of the vertex γ ′ is obtained from it by removing the vertex γ ′ and all simplices
which contain it. The link of γ ′ is the usual planar Morgan–Scott configuration [27],
and is homeomorphic to a 2-disk.

Throughout this paper we abuse notation by referring to a simplicial n-manifold
with boundary simply as a simplicial complex. We refer to a simplicial 2-manifold
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with boundary as a triangulation and a simplicial 3-manifold with boundary as a
tetrahedral partition.

Write S = R[x1, . . . , xn] for the polynomial ring in n variables and S≤d for the
R-vector space of polynomials of total degree most d, and Sd for the R-vector space
of polynomials which are homogeneous of degree exactly d. For a fixed integer r ,
we denote by Cr (�) the set of all functions F : � → R which are continuously
differentiable of order r .

Definition 3.5 Let � ⊂ R
n be an n-dimensional simplicial complex. We denote by

Sr (�) := {
F ∈ Cr (�) : F |ι ∈ S for all ι ∈ �n

}

the vector space of splines which are continuously differentiable of order r , by

Sr
d(�) := {

F ∈ Cr (�) : F |ι ∈ S≤d for all ι ∈ �n
}

the subspace of Sr (�) consisting of splines of degree at most d, and by

Hr
d(�) := {

F ∈ Cr (�) : F |ι ∈ Sd for all ι ∈ �n
}

the subspace of Sr (�) consisting of splines whose restriction to each n-dimensional
simplex is a homogeneous polynomial of degree d. We call splines in Hr

d(�) homo-
geneous splines.

Suppose � is the star of a vertex. By changing coordinates, we will assume that
this vertex is the origin in Rn . Then one can show that

Sr (�) ∼=
⊕

i≥0

Hr
i (�), and Sr

d(�) ∼=
d⊕

i=0

Hr
i (�), (6)

where the isomorphism is as R-vector spaces. We refer to the first isomorphism in (6)
as the graded structure of Sr (�). If� is not the star of a vertex, then (6) does not hold
for Sr (�); we summarize a coning construction of Billera and Rose under which (6)
will still be valid.

Construction 3.6 Let R
n have coordinates x1, . . . , xn , R

n+1 have coordinates
x0, . . . , xn , and define φ : R

n → R
n+1 by φ(x1, . . . , xn) = (1, x1, . . . , xn). If σ

is a simplex in R
n , the cone over σ , denoted σ̂ , is the simplex in R

n+1 which is the
convex hull of the origin in R

n+1 and φ(σ). If � ⊂ R
n is a simplicial complex,

the cone over �, denoted �̂, is the simplicial complex consisting of the simplices{
β̂ : β ∈ �

}
along with the origin inRn+1, which is called the cone vertex. We denote

the polynomial ring R[x0, x1, . . . , xn] associated to �̂ by Ŝ.

For any simplicial complex � ⊂ R
n , the simplicial complex �̂ ⊂ R

n+1 is an (open)
vertex star of the cone vertex. Thus (6) yields Sr (�̂) ∼= ⊕

i≥0
Hr

i (�̂) and Sr
d(�̂) ∼=

d⊕

i=0
Hr

i (�̂). Moreover, Billera and Rose show that
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Theorem 3.7 [11, Theorem 2.6] Sr
d(�) ∼= Hr

d(�̂).

Thus the study of spline spaces reduces to the study of homogeneous spline spaces.

Definition 3.8 A subset I ⊂ S is called an ideal if, for every f , g ∈ I and h ∈ S,
f +g ∈ I and h f ∈ I. If f1, . . . , fk ∈ S are polynomials, we write 〈 fi 〉 for the vector
space of all polynomial multiples of fi (i = 1, . . . , k) and 〈 f1, . . . , fk〉 := ∑k

i=1〈 fi 〉.
This is called the ideal generated by f1, . . . , fk . We typically only use its vector space
structure.

Definition 3.9 Suppose � ⊂ R
n is an n-dimensional simplicial complex. If β ∈ �n

we define J(β) = 0. If σ ∈ �n−1, let 
σ be a choice of linear form vanishing on σ .
We define J(σ ) = 〈
r+1

σ 〉. For any face β ∈ �i where i < n we define

J(β) :=
∑

σ⊇β

J(σ ) = 〈
r+1
σ : β ⊆ σ 〉.

Billera and Rose show that if � is hereditary (a hypothesis which is implied by
ours) then

Proposition 3.10 [11, Proposition 1.2] F ∈ Sr (�) if and only if

F |ι − F |ι′ ∈ J(σ ) for every ι, ι′ ∈ �n satisfying ι ∩ ι′ = σ ∈ �n−1.

3.1 Chain complexes

If C0, . . . ,Ck are vector spaces and ∂i : Ci → Ci−1 (i = 1, . . . , k) are linear maps
satisfying ∂i−1 ◦ ∂i = 0 (for i = 2, . . . , k), then the collection of this data is called a
chain complex; this is typically recorded as

C : 0 → Ck
∂k−→ Ck−1

∂k−1−−→ · · · ∂1−→ C0 → 0.

Wecall the subscript i ofCi the homological index and refer toCi as the vector space of
C in homological index i . The homologies of the chain complex are the quotient vector
spaces Hi (C) = ker(∂i )/im (∂i−1) for i = 0, . . . , k. (We put H0(C) = C0/im (∂1) and
Hk(C) = ker(∂k).) Often H∗(C) is used to denote the entire set of homology groups
H0(C), . . . , Hk(C). We are primarily concerned with a topological construction of
chain complexes; see [21, Chapter 2] for a standard reference.

We now define the chain complex introduced by Billera [9] and refined by Schenck
and Stillman [32]. Let S�i (i = 0, . . . , n) denote the direct sum

⊕
β∈�i

S[β], where
[β] is a formal basis symbol corresponding to the i-face β. Fix an ordering γ1, . . . , γ f0
of the vertices of �. Each i-face β ∈ �i can be represented as an ordered list β =
(γ j0 , . . . , γ ji ) of i + 1 vertices. We define the simplicial boundary map ∂i (for i =
1, 2, 3) on the formal symbol [β] = [γ j0 , . . . , γ ji ] by ∂i

([β]) = ∂i
([γ j0 , . . . , γ ji ]

) =
∑i

k=0(−1)i
[
γ j0 , . . . , γ̂ jk , . . . , γ ji

]
, where γ̂ jk means that the vertex γ jk is omitted

from the list. We extend this map linearly to
⊕

β∈�i
S[β].
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It is straightforward to verify that ∂i−1 ◦ ∂i = 0 for i = 2, . . . , n (this only needs
to be checked on the basis symbols [β]). Clearly the simplicial boundary map ∂i can
be restricted to a map ∂i : S�◦

i → S�◦
i−1 where all formal symbols corresponding to

faces on the boundary of � are dropped. We denote by R[�] the chain complex

R[�] : 0 −→ S�n
∂n−→ S�◦

n−1
∂n−1−−→ · · · ∂2−→ S�◦

1
∂1−→ S�◦

0 −→ 0 .

(This is the simplicial chain complex of� relative to its boundary ∂�with coefficients
in S—see [21, Chapter 2.1]).

We now put the vector spaces J(β) together to make a sub-chain complex ofR[�]

J [�] : 0 −→
⊕

ι∈�n

J(ι) = 0 →
⊕

σ∈�◦
n−1

J(σ )
∂n−1−−→ · · · ∂2−→

⊕

τ∈�◦
1

J(τ )
∂1−→

⊕

γ∈�◦
0

J(γ ) −→ 0.

TheBillera-Schenck-Stillman chain complex is the quotient ofR[�] byJ [�], namely

R/J [�] : 0 −→
⊕

ι∈�n

S
∂n−→

⊕

σ∈�◦
n−1

S

J(σ )

∂n−1−−→ · · · ∂2−→

⊕

τ∈�◦
1

S

J(τ )

∂1−→
⊕

γ∈�◦
0

S

J(γ )
−→ 0.

Remark 3.11 If the simplicial complex � is fixed, we simply write J ,R, and R/J
for the chain complexes J [�],R[�], and R/J [�], respectively.
Notation 3.12 We introduce a natural abuse of notation regarding the coning con-
struction 3.6. If � is a simplicial complex and �̂ is the cone over �, then �̂ is an
open vertex star. Hence there is no interior vertex of �̂ and thus the vector space of
homological index 0 in J [�̂],R[�̂], andR/J [�̂] is just zero. We thus decrease the
homological index by one of each of the vector spaces in J [�̂],R[�̂], andR/J [�̂].
Hence if � ⊂ R

n and thus �̂ ⊂ R
n+1, Hn(R/J [�̂]) is the top homology of the

chain complex R/J [�̂], not Hn+1(R/J [�̂]) (and likewise for lower indices). Thus
the vector space in homological index i (0 ≤ i ≤ n) in R/J [�̂] corresponds to the
homological index i inR/J [�], so its summands are indexed by �◦

i .

The crucial observation of Billera is that Hn(R/J [�]) ∼= Sr (�); this follows from
the criterion of Proposition 3.10.

3.2 Graded structure

The vector space J(β) is infinite-dimensional for each face β ∈ � which is not a
tetrahedron. Thus the constituents of the chain complexes J [�],R[�], andR/J [�]
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are also infinite-dimensional. In order to get a chain complex of finite dimensional
vector spaces to relate to the fundamental spaces of interest (Sr

d(�) and Hr
d(�)), we

make use of a graded structure.

Definition 3.13 Let V be a real vector space and suppose Vi is a finite-dimensional
vector subspace of V for every integer i ≥ 0. If V ∼= ⊕

i≥0 Vi , then we refer to this
isomorphism as a graded structure of V and we call V a graded vector space. In
particular, if J ⊂ S is an ideal (c.f. Definition 3.8), then we write Jd for the vector
space of homogeneous polynomials of degree d in J. If J ∼= ⊕

d≥0 Jd then we call J
a graded ideal of S.

Definition 3.14 If C : 0 → Cn
∂n−→ · · · ∂1−→ C0 → 0 is a chain complex of vector

spaces so that

(1) The vector space C j has a graded structure C j ∼= ⊕
i≥0(C j )i for j = 0, . . . , n

and
(2) The map ∂ j : C j → C j−1 satisfies ∂ j ((C j )i ) ⊂ (C j−1)i for j = 1, . . . , n ,

then Cd := 0 → (Cn)d
∂n−→ (Cn−1)d

∂n−1−−→ · · · ∂1−→ (C0)d → 0 is a chain complex
which we call the degree d strand of C. In this case we say C is graded with graded
structure C ∼= ⊕

d≥0 Cd .
If a chain complex C has a graded structure C ∼= ⊕

d≥0 Cd , it is straightforward to
see that the homologies of C also have the graded structure Hi (C) ∼= ⊕

d≥0 Hi (C)d ,
where Hi (C)d := Hi (Cd) is the i th homology of the degree d strand.

Remark 3.15 The isomorphisms (6) show that Sr (�) has a graded structure if� is the
star of a vertex where the vertex is at the origin in R

n .

If � is a vertex star of γ (which we can assume to be located at the origin, if
necessary, by changing coordinates) and γ ∈ β, then the linear forms whose powers
generate J(β) have no constant term and J(β) is a graded ideal. It is straightforward
to see that the simplicial boundary map respects this graded structure (i.e. property
(2) of Definition 3.14 is satisfied), so if � is a vertex star then the chain complexes
J [�],R[�], andR/J [�] also have a graded structure, along with their homologies.
In particular, Hr

d(�) ∼= Hn
(R/J [�])d if � ⊂ R

n is a vertex star. If � is not neces-
sarily a vertex star, we use the coning construction � → �̂. Then �̂ is a vertex star
(whose vertex is at the origin) and so Sr (�̂), along with J [�̂],R[�̂], andR/J [�̂],
all have a graded structure. Keeping in mind Theorem 3.7 and Notation 3.12, we have
Sr
d(�) ∼= Hr

d(�̂) ∼= ker(∂n)d ∼= Hn
(R/J [�̂])d .

3.3 Euler characteristic and dimension formulas

If C : 0 → Cn → Cn−1 → · · · → C0 → 0 is a chain complex with a graded
structure, we write χ(C, d) = ∑n

i=0(−1)n−i dim(Ci )d . This is the Euler-Poincaré
characteristic of Cd . The rank-nullity theorem yields:

χ(C, d) =
n∑

i=0

(−1)n−i dim Hi (C)d . (7)
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The three chain complexes J ,R, andR/J fit into the short exact sequence of chain
complexes 0 → J → R → R/J → 0. Correspondingly there is the long exact
sequence:

0 → Hn(J ) → Hn(R) → · · · → H1(R/J )→H0(J )→H0(R) → H0(R/J )→0.

The short exact sequence 0 → J → R → R/J → 0 also yields

χ(R/J , d) = χ(R, d) + χ(J , d) . (8)

There is a sum instead of a difference on the right hand side of Equation (8) because
the first non-zero term in the chain complex J has homological degree n − 1 instead
of n.

Proposition 3.16 Forann-dimensional simplicial complex� inRn, Hn(R/J [�̂])d ∼=
Sr
d(�) and H0(R/J [�]) = 0. If � is a vertex star, Hn(R/J [�])d ∼= Hr

d(�). If � is
connected, then H0(R/J [�]) = 0. If � is a vertex star whose link is homeomorphic
to an (n − 1)-sphere or an (n − 1)-disk, then Sr (�) ∼= Hn(R/J ) ∼= S ⊕ Hn−1(J )

and Hi (R/J ) ∼= Hi−1(J ) for i = 1, . . . , n − 1.

Proof By Theorem 3.7 and Proposition 3.10, Sr
d(�) ∼= Hr

d(�̂) ∼= Hn(R/J [�])d .
Since every vertex can be connected to the boundary of � by a path consisting
of interior edges, ∂1 : S f ◦

1 → S f ◦
0 is surjective and thus H0(R[�]) = 0, hence

H0(R/J [�]) = 0 by the long exact sequence associated to 0 → J → R →
R/J → 0 .

The hypothesis that � is a vertex star whose link is homeomorphic to an (n − 1)-
sphere or an (n−1)-disk implies that Hi (R[�]) = 0 for 0 ≤ i < n and Hn(R[�]) ∼=
S (by excision [21, Proposition 2.22], the homology of � relative to its boundary
coincides with the homology of the n-sphere, which gives the claimed homologies).
Then the last result follows from the long exact sequence associated to 0 → J →
R → R/J → 0. ��

Remark 3.17 If � is homeomorphic to an n-disk, then the copy of S in Sr (�) ∼=
S ⊕ Hn−1(J ) corresponds to the globally polynomial splines, while the so-called
smoothing cofactors are encoded by the map

⊕

σ∈�◦
n−1

J(σ )
∂n−1−−→

⊕

τ∈�◦
n−2

J(β) .

Proposition 3.18 If � is a tetrahedral partition then

dim Sr
d(�) = (

f3 − f ◦
2 + f ◦

1 − f ◦
0

)
dim Ŝd + χ

(J [�̂], d)

+ dim H2
(R/J [�̂])d − dim H1

(R/J [�̂])d . (9)
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If � is a tetrahedral vertex star whose link is homeomorphic to a 2-sphere or a 2-disk
then

dimHr
d(�) = dim Sd + χ(J [�], d) + dim H1(J [�])d . (10)

Proof First wemake use of the identificationsSr
d(�) ∼= Hr

d(�̂) and H3(R/J [�̂])d ∼=
Hr

d(�̂) of Theorems 3.7 and Proposition 3.16 (using Notation 3.12 for the second iso-
morphism). The identity (7) applied to the Euler-Poincaré characteristic ofR/J [�̂],
coupled with Proposition 3.16, gives

dim Sr
d(�) = χ(R/J [�̂], d) + dim H2(R/J [�̂])d − dim H1(R/J [�̂])d .

To get Equation (9), note thatR has the form 0 → S f3 → S f ◦
2 → S f ◦

1 → S f ◦
0 → 0;

taking the Euler characteristic in degree d and using Equation (8) yields Equa-
tion (9). For Equation (10), Proposition 3.16 implies that dimHr

d(�) = dim Sd +
dim H2(J [�])d . Taking the Euler-Poincaré characteristic of J [�] gives

dim H2(J [�])d = χ(J [�], d) + dim H1(J [�])d − dim H0(J [�])d .

It is straightforward to show that H0(J [�]) = 0; putting together the above two
equations yields Equation (10). ��

3.4 Generic simplicial complexes

It is well-known that, for a fixed r and d, there is an open set in (Rn) f0 of vertex
coordinates of � for which dim Sr

d(�) is constant.

Definition 3.19 Suppose � has vertex coordinates so that dim Sr
d(�) ≤ dim Sr

d(�
′)

for all simplicial complexes �′ obtained from � by a small perturbation of the vertex
coordinates. Then we say � is generic with respect to r and d, or simply generic if r
and d are understood.

Hence, for the purposes of obtaining a lower bound on dim Sr
d(�), it suffices to

obtain a lower bound on dim Sr
d(�) when � is generic.

4 Proof of Theorem 2.6: a lower bound in large degree

To prove Theorem 2.6 we use Equation (9) from Proposition 3.18, so we first describe
how to compute the terms which appear in χ(J [�̂], d). From the discussion in
Sect. 3.4, it suffices to consider generic tetrahedral partitions. First, the Euler charac-
teristic of J [�̂] has the form

χ(J [�̂], d) =
∑

σ∈�◦
2

dim J(̂σ )d −
∑

τ∈�◦
1

dim J(̂τ )d +
∑

γ∈�◦
0

dim J(γ̂ )d .
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If � is a vertex star with γ placed at the origin, we describe the effect which coning
has on the vector spaces J(β), where β is an i-face of �. The vector spaces J(β) ⊂ S
and J(β̂) ⊂ Ŝ are related by tensor product. Explicitly, J(β̂) ∼= J(β) ⊗R R[x0] and

dim J(β̂)d =
∑

i≤d

dim J(β)d . (11)

Hence to compute dim J(β̂)d it is necessary and sufficient to compute dim J(β)i for
every 0 ≤ i ≤ d. Since these dimensions are invariant under a translation of R3, we
assume β contains the origin and thus J(β) is graded.

Proposition 4.1 Suppose � ⊂ R
3 is a tetrahedral partition, r ≥ 0 is an integer, and

τ ∈ �1. With tτ , aτ , and bτ as in Notation 2.1, we have

dim J(τ )d ≤ tτ

(
d + 1 − r

2

)
− aτ

(
d + 1 − qτ

2

)
− bτ

(
d + 2 − qτ

2

)
,

with equality if every triangle σ containing τ has a distinct linear span (in particular,
there is equality if � is generic).

Proof This is one of the fundamental computations for planar splines, originally due
to Schumaker. In its stated form, this formula was presented by Schenck [16, Theo-
rem 3.1]. ��

The following proposition is one of ourmain results from [17], which gives a degree
bound after which the vertex contributions stabilize.

Proposition 4.2 [17, Corollary 3.18] Suppose � ⊂ R
3 is a generic closed vertex star

with interior vertex γ , r ≥ 0 is an integer, and Dγ is the integer defined in (1). Then
dim J(γ )d ≤ (d+2

2

)
, with equality for d > Dγ .

Remark 4.3 The ideal J(γ ) in Proposition 4.2 is related, via inverse systems, to an
ideal of so-called fat points in the projective plane which are dual to the linear forms
generating J(γ ). Such ideals are the subject of much interest in algebraic geome-
try; in particular the celebrated Segre-Harbourne-Gimigliano-Hirschowitz conjecture
concerns the dimension of the graded pieces of fat point ideals for general points in
the projective plane (see [30] for a survey on this connection).

The smallest degree d for which dim J(γ )d = (d+2
2

)
is called the (Castelnuovo-

Mumford) regularity of J(γ ), written reg(J(γ )). Our main observation in [17] is that
reg(J(γ )) can be bounded by theWaldschmidt constant of the ideal of the dual set of
points. When � is a generic vertex star, we take advantage of the fact that the dual set
of points is covered by relatively few lines corresponding to the interior edges of �.
For such point sets, we use work of Cooper, Harbourne, and Teitler [12] to bound the
Waldschmidt constant, obtaining Proposition 4.2.

For a tetrahedral partition � and vertex γ ∈ �0, we now relate the formulas
LB�(�γ , d, r) and LB�(�γ , d, r) from Equations (2) and (3) (respectively) to the
Euler characteristic of J [�γ ].
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Proposition 4.4 Let � be a generic tetrahedral partition. If γ ∈ �◦
0 then

LB�(�γ , d, r) = 2

(
d + 2

2

)
+ χ

(J [�γ ], d) − dim J(γ )d

=
(
d + 2

2

)
+ χ

(J [�γ ], d) if d > Dγ ,

where LB�(�γ , d, r) is defined in Equation (2). If γ is a boundary vertex of � then

LB�(�γ , d) =
(
d + 2

2

)
+ χ(J [�γ ], d) for all d ≥ 0 ,

where LB�(�γ , d, r) is defined in Equation (3).

Proof If γ is an interior vertex then�γ is a closed vertex starJ [�γ ] has the form 0 →⊕
σ∈�◦

2
J(σ ) → ⊕

τ∈�◦
1
J(τ ) → J(γ ) → 0. Taking the graded Euler characteristic,

the first equation now follows from the fact that dim J(σ )d = (d+1−r
2

)
, Proposition 4.1,

and Proposition 4.2. If γ is a boundary vertex then�γ is an open vertex star andJ [�γ ]
has the form 0 → ⊕

σ∈�◦
2
J(σ ) → ⊕

τ∈�◦
1
J(τ ) → 0. Taking the graded Euler

characteristic, the first equation now follows from the fact that dim J(σ )d = (d+1−r
2

)

and Proposition 4.1. ��

Proposition 4.5 Suppose � ⊂ R
3 is a tetrahedral partition, r ≥ 0 is an integer,

σ ∈ �2, τ ∈ �1, and γ ∈ �◦
0. Then

dim Ŝd =
(
d + 3

3

)
, dim J(̂σ )d =

(
d + 2 − r

3

)
, (12)

dim J(̂τ )d ≤ tτ

(
d + 2 − r

3

)
− aτ

(
d + 2 − qτ

3

)

−bτ

(
d + 3 − qτ

3

)
, (13)

dim J(γ̂ )d =
(
d + 3

3

)
+

Dγ∑

i=0

(
dim J(γ )i −

(
d + 2

2

))
, (14)

dim H2(R/J [�̂])d = C for some positive integer C and d � 0, and
dim H1(R/J [�̂])d = 0 for d � 0. If � is generic then (13) is an equality.

Proof Equations (12) are straightforward to derive. Equations (13) and (14) follow
from Propositions 4.1 and 4.2, respectively, using Equation (11). It follows from [29,
Lemma 3.1] that H1(R/J [�̂]) vanishes in large degree and dim H2(R/J [�̂])d = C
for a positive integer C . ��
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Wenow provide a lower bound on the integerC satisfying dim H2(R/J [�̂])d = C
for d � 0 (see Proposition 4.5). The key is to describe the effect of the coning
construction � → �̂ on the homology module H2(R/J [�]) in large degree.
Proposition 4.6 Let � ⊂ R

3 be a tetrahedral partition. Then, for d � 0,

dim H2(R/J [�̂])d =
∑

γ∈�0

∑

i≥0

(
dimHr

i (�γ ) − χ
(R/J [�γ ], i))

=
∑

γ∈�0

3r+1∑

i=0

(
dimHr

i (�γ ) −
(
i + 2

2

)
− χ

(J [�γ ], i)
)

≥
∑

γ∈�0

3r+1∑

i=0

[−χ(J [�γ ], i)]+

Proof The first equality is [15, Corollary 9.2]. For the second equality,

dim H1(J [�γ ])i = dimHr
i (�) −

(
i + 2

2

)
− χ(J [�γ ], i)

is an immediate consequence of Equation (10). It follows from the main result of [2]
(see also [16]) that dimHr

i (�γ ) = (i+2
2

) + χ(J [�γ ], i) for i ≥ 3r + 2 . In other
words, H1(J [�γ ])i = 0 for i ≥ 3r +2. The final inequality follows from the fact that
Hr

i (�γ ) always contains the space of global homogeneous polynomials of degree i ,

which has dimension
(i+2

2

)
. ��

We prove in [17] the following slight modification of a result of Whiteley [36].

Theorem 4.7 [17, Theorem 1.3] If � is a generic closed star with interior vertex γ ,
then dimHr

d(�) = (d+2
2

)
for d ≤ Dγ .

Corollary 4.8 If� is a generic closed starwith interior vertexγ , thendim H1(J [�])d =
−χ(J [�], d) for d ≤ Dγ .

Proof Immediate from Equation (10) and Theorem 4.7. ��
Proof of Theorem 2.6 Since H0(J [�̂])d = 0 for d � 0 by Proposition 4.5, then (9)
implies that for d � 0,

dim Sr
d(�)=( f3− f ◦

2 + f ◦
1 − f ◦

0 )

(
d + 3

3

)
+χ(J [�̂], d)+ dim H2(R/J [�̂])d .

(15)

By Proposition 4.5, there is a constantC so that dim H2(R/J [�̂])d = C when d � 0.

Hence it suffices to prove that LB(�, d, r) ≤ (
f3 − f ◦

2 + f ◦
1 − f ◦

0

)(d + 3

3

)
+
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χ
(J [�̂], d) + C . Put

χ ′(d):=
⎛

⎝ f ◦
2 −

∑

τ∈�◦
1

tτ

⎞

⎠
(
d + 2 − r

3

)
+

∑

τ∈�◦
1

(
aτ

(
d + 2 − qτ

3

)
+bτ

(
d + 3 − qτ

3

))
,

so χ(J [�̂], d) = χ ′(d) + ∑
γ∈�◦

0
dim J(γ̂ )d by Equation (4) and Proposition 4.5.

Another application of Proposition 4.5 gives

χ(J [�̂], d) = χ ′(d) + f ◦
0

(
d + 3

3

)
+

∑

γ∈�◦
0

Dγ∑

i=0

(
dim J(γ )i −

(
i + 2

2

))
. (16)

Now, by Proposition 4.6, dim H1(J [�̂])d ≥ ∑

γ∈�0

3r+1∑

i=0
[−χ(J [�γ ], i)]+ for d � 0.

Corollary 4.8 allows us to remove the + from the summation for interior vertices in
the range 0 ≤ i ≤ Dγ :

dim H1(J [�̂])d ≥
∑

γ∈�◦
0

⎛

⎝
Dγ∑

i=0

[−χ(J [�γ ], i)] +
3r+1∑

i=Dγ +1

[ − χ(J [�γ ], i)]+
⎞

⎠

+
∑

γ∈�0\�◦
0

3r+1∑

i=0

[ − χ(J [�γ ], i)]+ , (17)

for d � 0. Combining (16) and (17) with (15) yields

dim Sr
d(�) ≥ (

f3 − f ◦
2 + f ◦

1

)(d + 3

3

)
+ χ ′(d)

+
∑

γ∈�◦
0

⎛

⎝
Dγ∑

i=0

[
dim J(γ )i −

(
i + 2

2

)
− χ(J [�γ ], i)

]

+
3r+1∑

i=Dγ +1

[−χ(J [�γ ], i)]+

⎞

⎠

+
∑

γ∈�0\�◦
0

3r+1∑

i=0

[−χ(J [�γ ], i)]+

for d � 0. By Proposition 4.4, if γ ∈ �◦
0,
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(
i + 2

2

)
− LB�(�γ , i, r) = dim J(γ )i −

(
i + 2

2

)
− χ(J [�γ ], i) , and

(
i + 2

2

)
− LB�(�γ , i, r) = − χ(J [�γ ], i) for i > Dγ .

Also by Proposition 4.4, if γ ∈ �0 \ �◦
0 then

(i+2
2

) − LB�(�γ , i, r) =
−χ

(J [�γ ], i) . Thus,

dim Sr
d(�) ≥ (

f3 − f ◦
2 + f ◦

1

)(d + 3

3

)
+ χ ′(d)

+
∑

γ∈�◦
0

⎛

⎝
Dγ∑

i=0

[(
i + 2

2

)
− LB�(�γ , i, r)

]

+
3r+1∑

i=Dγ +1

[(
i + 2

2

)
− LB�(�γ , i, r)

]

+

⎞

⎠

+
∑

γ∈�0\�◦
0

3r+1∑

i=0

[(
i + 2

2

)
− LB�(�γ , i, r)

]

+

= ( f3 − f ◦
2 + f ◦

1 )

(
d + 3

3

)
+ χ ′(d) − f ◦

0

(
r + 3

3

)

+
∑

γ∈�◦
0

⎛

⎝
Dγ∑

i=r+1

[(
i + 2

2

)
− LB�(�γ , i, r)

]

+
3r+1∑

i=Dγ +1

[(
i + 2

2

)
− LB�(�γ , i, r)

]

+

⎞

⎠

+
∑

γ∈�0\�◦
0

3r+1∑

i=r+1

[(
i + 2

2

)
− LB�(�γ , i, r)

]

+

= ( f3 − f ◦
2 + f ◦

1 )

(
d + 3

3

)
+ χ ′(d) − f ◦

0

(
r + 3

3

)

+
∑

γ∈�0

Nγ = LB(�, d, r) ,

where Nγ is defined in (4) and LB(�, d, r) is defined in (5). ��

5 Examples

In this section we compare our lower bounds with those by Alfeld and Schumaker
in [5] and Mourrain and Villamizar [28]. Except for the non-simplicial partition in
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Table 4 Lower bounds for the
Morgan-Scott with cavity
partition in Example 5.2. The
initial degree is bolded

r d
(d+3

3
)

LB [5] LB(d) gendim

1 2 10 10 8 10

1 3 20 20 16 20

1 4 35 46 46 46

1 5 56 112 112 112

2 4 35 35 34 35

2 5 56 56 40 56

2 6 84 84 72 84

2 7 120 120 144 144

2 8 165 242 270 270

2 9 220 436 464 464

3 6 84 84 84 84

3 7 120 120 96 120

3 8 165 165 138 165

3 9 220 220 224 224

3 10 286 286 368 368

3 11 364 428 584 584

4 8 165 165 162 165

4 9 220 220 176 220

4 10 286 286 224 286

4 11 364 364 320 364

4 12 455 455 478 478

4 13 560 560 712 712

Example 5.4, the other examples appear in [5]. It is well-known that for d � 0,
dim Sr

d(�) is a polynomial function. That is, there is a polynomial in d with rational
coefficients, which we denote by Pr

d (�), so that dim Sr
d(�) = Pr

d (�) for d � 0. (In
commutative algebra this is called theHilbert polynomial ofSr (�̂)—seeRemark 6.1.)
We can compute both the exact dimension dim Sr

d(�) and the polynomial Pr
d (�) in

Macaulay2 [20] using the Algebraic Splines package. We give the compu-
tations of Pr

d (�) in Sects. 5.1, 5.2, 5.3, and 5.4 for generic vertex positions of the
examples. The exact generic dimension dim Sr

d(�) for our examples is shown in the
column labeled ‘gendim’ in Tables 1, 4, 5 and 6. The lower bound from Theorem 2.6 is
in the column labeled LB(d), and lower bounds from the literature appear in columns
labeled LB with an appropriate citation.

5.1 Three dimensional Morgan–Scott

Let � be the simplicial complex in Fig. 1 from Examples 1.1 and 2.1. For order of
smoothness r = 3 and r = 4, the lower bounds obtained by applying Theorem 2.6
are recorded in column 6 in Table 1. For d � 0, the lower bounds can be computed
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Table 5 Lower bounds for the
Square–shaped torus partition in
Example 5.3. The initial degree
is bolded

r d
(d+3

3
)

LB[5] LB(d) gendim

1 2 10 10 8 10

1 3 20 48 48 48

1 4 35 144 144 144

1 5 56 320 320 320

2 4 35 35 24 35

2 5 56 93 96 96

2 6 84 237 240 240

2 7 120 477 480 480

2 8 165 837 840 840

2 9 220 1341 1344 1344

3 6 84 84 60 84

3 7 120 151 176 176

3 8 165 351 380 380

3 9 220 663 696 696

3 10 286 1111 1148 1148

3 11 364 1719 1760 1760

4 8 165 165 120 165

4 9 220 220 288 288

4 10 286 483 560 560

4 11 364 875 960 960

4 12 455 1419 1512 1512

4 13 560 2139 2240 2240

as in Example 2.1 and are given by

LB(�, d, 3) = 5

3
d3 − 41d2 + 451

2
d − 323 and LB(�, d, 4)

= 5

2
d3 − 55d2 + 807

2
d − 803 .

These coincide with the polynomials P3
d (�) and P4

d (�), respectively.

5.2 Morgan–Scott with a cavity

Weconsider� as the partition obtained by removing the central tetrahedron inFig. 1. In
Table 4a we list the values of the lower bound in Theorem 2.6 applied for r = 1, . . . , 4
along with those presented in [5, Example 8.4]. For this partition we have f3 = 14
tetrahedra, f ◦

2 = 24, f ◦
2 = 12, and f ◦

0 = 0. Applying (5) in Theorem 2.6 we get

LB(�, d, 1) = 7

3
d3 − 10d2 + 41

3
d + 2 , LB(�, d, 2)=7

3
d3 − 22d2 + 185

3
d − 10 ,
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Table 6 Bounds for the
non-simplicial partition � in
Example 5.4, Fig. 2 (right); The
bolded entry in the d column
indicates the initial degree of
Sr
d (�)

r d
(d+3

3
)

LB[28] LB(d) gendim

1 3 20 20 -8 20

1 4 35 35 1 35

1 555 56 56 60 60

1 6 84 160 196 196

2 8 165 165 79 165

2 999 220 220 268 268

2 10 286 352 586 586

2 11 364 826 1060 1060

2 12 455 1483 1717 1717

2 13 560 2350 2584 2584

2 14 680 3454 3688 3688

3 11 364 364 148 364

3 12 455 455 425 455

3 131313 560 560 856 856

3 14 680 988 1468 1468

3 15 816 1808 2288 2288

3 16 969 2863 3343 3343

LB(�, d, 3) = 7

3
d3 − 34d2 + 473

3
d − 142 , and LB(�, d, 4)

= 7

3
d3 − 46d2 + 869

3
d − 406 .

As shown in Table 4a, for r = 1, . . . , 4, the bound LB(�, d, r) gives the exact
dimension of Sr

d(�) beginning at the initial degree of Sr (�). Hence the polynomials
LB(�, d, r) coincide with the polynomials Pr

d (�) for r = 1, 2, 3, 4.

5.3 Square–shaped torus

We consider the tetrahedral decomposition of the square-shaped torus depicted on the
left in Fig. 2. This is composed of four three-dimensional ‘trapezoids,’ each of which
is split into six tetrahedra along an interior diagonal. We have f3 = 24, f ◦

2 = 32,
f ◦
1 = 8, and f ◦

0 = 0. An explicit set of faces and coordinates is provided in [5,
Example 8.3]. In Table 4, 5 and 6 we list the values of the lower bound of Theorem 2.6
applied for r = 1, . . . , 4 along with those presented in [5, Example 8.3]. We have,

LB(�, d, 1) = 4d3 − 8d2 + 4d , LB(�, d, 2) = 4d3 − 24d2 + 44d − 24 ,

LB(�, d, 3) = 4d3 − 40d2 + 128d − 132 , and LB(�, d, 4) = 7

3
d3

−46d2 + 869

3
d − 406 = 4d3 − 56d2 + 25d − 360 .

Again, the polynomials LB(�, d, r) coincide with Pr
d (�) for r = 1, 2, 3, 4.
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Fig. 2 Square–shaped torus in Example 5.3 (left), and the non-simplicial polyhedral partition in Example
5.4 (right)

5.4 Non-simplicial partition

Upon examining the setup for Theorem 2.6 in Sect. 2, it appears that there is only one
quantity that depends on the simplicial nature of the subdivision. That is the upper
limit in the definition of Nγ , which is 3r +1. This upper limit depends on the fact that

dimHr
d(�γ ) = LB�(�γ , d, r) for d ≥ 3r + 2, proven in [2]. It is likely that some

modification of our lower bound applies for polytopal partitions. The most immediate
modification is that one should not stop the sum in the definition of Nγ at degree
3r + 1, but should continue until all positive contributions are accounted for. In [16]
a bound is given that could be used as the upper limit of this sum, but in practice one
should stop as soon as the contributions switch from positive to negative.

For reasons which we elaborate on in Remark 6.6, we will not attempt to prove that
some appropriate modification of our lower bound works for polytopal subdivisions
in this paper. Instead, we illustrate an application of the bound of Theorem 2.6 to a
polytopal analog of the three-dimensional Morgan–Scott partition shown in Fig. 2.
The subdivision consists of a cube inside of which we place its dual polytope (the
octahedron). Then the partition consists of the interior octahedron along with the
convex hull of pairs of dual faces. For example, each vertex of the inner octahedron is
paired with a dual square face of the cube and their convex hull is a square pyramid.
The number of interior vertices is f ◦

0 = 6, the number of interior edges is f ◦
1 = 36,

and the number of interior two-faces if f ◦
2 = 56. Each interior vertex γ is connected

by an edge to eight vertices i.e., f ◦
1 (�γ ) = 8 and f ◦

2 (�γ ) = 16 in the star �γ . Thus,
Dγ = ⌊ 3r+1

2

⌋
for all γ ∈ �◦

0. There are eight vertices γ ′ on the boundary, for each
of them we have f ◦

2 (�γ ′) = 9, and f ◦
1 (�γ ′) = 3 in the open stars �γ ′ . Applying (2)

and (3) yields

LB�(�γ , d, r) = 2

(
d + 2

2

)
+ (

16 − 8tτ
)(d + 1 − r

2

)

+ 8aτ

(
d + 1 − qτ

2

)
+ 8bτ

(
d + 2 − qτ

2

)
,
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and

LB�(�γ ′ , d, r) =
(
d + 2

2

)
+ (

9 − 3tτ
)(d + 1 − r

2

)

+ 3aτ

(
d + 1 − qτ

2

)
+ 3bτ

(
d + 2 − qτ

2

)
.

By Theorem 2.6 the dimension of the spline space then dim Sr
d(�) ≥ LB(d) for

d � 0, where

LB(�, d, r) = 7

(
d + 3

3

)
+ (56 − 36 · 2)

(
d + 2 − r

3

)

+36

(
d + 1

3

)
− 6

(
r + 3

3

)
+ 6Nγ + 8Nγ ′ . (18)

Every edge τ ∈ �◦
1 is in four two-dimensional faces i.e., nτ = 4. This leads to three

values of tτ : if r = 0 then tτ = 2; if r = 1 then tτ = 2; if r ≥ 2 then tτ = 4 .

Case 1. Let r = 0, then tτ = 2, qτ = 2, aτ = 0, and bτ = 1 for all τ ∈ �◦
1, and

Dγ = 0 for all γ ∈ �◦
0. It follows,

LB�(�γ , d, 0) = 2

(
d + 2

2

)
+ 8

(
d

2

)
, and

LB�(�γ ′, d, 0) =
(
d + 2

2

)
+ (9 − 3 · 2)

(
d + 1

2

)
+ 3

(
d

2

)
.

From (4), we have Nγ = Nγ ′ = 0. Therefore,

LB(�, d, 0) = 7

(
d + 3

3

)
+ (56 − 36 · 2)

(
d + 2

3

)
+ 36

(
d + 1

3

)
− 6

= 9

2
d3 − d2 + 3

2
d + 1 . (19)

Case 2. If r = 1, then tτ = 3, qτ = 3, aτ = 0, and bτ = 2 for all τ ∈ �◦
1, and Dγ = 2

for all γ ∈ �◦
0. It follows,

LB�(�γ , d, 1) = 2

(
d + 2

2

)
+ (16 − 8 · 3)

(
d

2

)
+ 8 · 2

(
d − 1

2

)
, and

LB�(�γ ′ , d, 1) =
(
d + 2

2

)
+ 3 · 2

(
d − 1

2

)
.
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From (4) we have Nγ = 2 and Nγ ′ = 0. Therefore,

LB(�, d, 1) = 7

(
d + 3

3

)
+ (56 − 36 · 3)

(
d + 1

3

)
+ 36 · 2

(
d

3

)
− 6 · 4 + 6 · 2

= 9

2
d3 − 29d2 + 91

2
d − 5 . (20)

Case 3. For every r ≥ 2, we have tτ = 4. We write the explicit formula for r = 2, the
other cases follow similarly. We have qτ = 4, aτ = 0 and bτ = 3 for all τ ∈ �◦

1, and
Dγ = 3. Then,

LB�(�γ , d, 2) = 2

(
d + 2

2

)
+ (16 − 8 · 4)

(
d − 1

2

)
+ 8 · 3

(
d − 2

2

)
, and

LB�(�γ ′, d, 2) =
(
d + 2

2

)
+ (9 − 3 · 4)

(
d − 1

2

)
+ 3 · 3

(
d − 2

2

)
.

From (4) we have Nγ = 18 and Nγ ′ = 3. Therefore,

LB(�, d, 2) = 7

(
d + 3

3

)
+ (56 − 36 · 4)

(
d

3

)

+ 36 · 3
(
d − 1

3

)
− 6 · 10 + 6 · 18 + 8 · 3

= 9

2
d3 − 57d2 + 363

2
d − 29 . (21)

The bounds (19), (20), and (21) are the polynomials P1
d (�), P2

d (�), and P3
d (�),

respectively. In Table 6 we record the values fo LB(�, d, r) along with the lower
bound obtained in [28].

The final column in Table 6 bears closer examination. What do we mean by the
‘generic’ dimension in this example? In a simplicial complex, it is clear that small
changes in vertex coordinates do not change the overall structure of the simplicial
subdivision. However, if we modify the coordinates of a vertex in a non-simplicial
face of a polytope, it is most likely that we have taken it out of the plane determined by
the other vertices of the face, and so we no longer have the same polytope. So we must
be careful about what we mean. In making the final column in Table 6 we have in fact
cheated somewhat, as follows. Notice that in Example 5.4, the polytopal subdivision
has only seven 3-polytopes which are not tetrahedra (the central octahedron and the
six pyramids with square bases, each of which share one vertex with the central
octahedron). Furthermore, every single 2-poltyope is a triangle except for the squares
which form the boundary of the outer cube. This allows a great deal of freedom
for moving the vertices without destroying the polytopes in the subdivision. In fact,
we can perturb the vertices of the central octahedron without destroying it, since all
its 2-faces are triangles. We cannot perturb the eight boundary vertices as we wish
without destroying the square faces of the cube. However, notice that if we perturb
the coordinates of the five vertices of one of the square pyramids and take the convex
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hull of the resulting five points, we obtain a bipyramid over a triangle and the original
square base of the pyramid splits into two triangles which are no longer coplanar.
Since this only changes the boundary of the domain, an arbitrary perturbation of the
vertices of the outer cube will result in a viable polytopal complex, with twice as many
two-dimensional boundary faces as the original polytopal complex. In the column
labeled gendim in Table 6, we have recorded the dimension of splines on this modified
polytopal complex obtained via a random perturbation of the vertex coordinates from
the symmetric polytopal complex pictured on the right in Figure 2.

6 Concluding remarks

Remark 6.1 The dimension dim Sr
d(�) of splines on � is a polynomial in d when

d � 0; this polynomial is known as the Hilbert polynomial of Sr (�̂) in algebraic
geometry. Theorem 2.6 gives a lower bound on the Hilbert polynomial of Sr (�̂).
For some value of d, dim Sr

d(�) will begin to agree with the Hilbert polynomial.
In algebraic geometry there is an integer which bounds when dim Sr

d(�) becomes
polynomial, known as the Castelnuovo-Mumford regularity of Sr (�̂). It would be
interesting to bound the regularity of Sr (�̂) for tetrahedral partitions, perhaps by
extending methods from [16].

Remark 6.2 Wesuspect that our formula inTheorem2.6 is a lower boundondim Sr
d(�)

for d ≥ 8r + 1 by the following reasoning. In [6, Theorem 24], Alfeld, Schumaker,
and Sirvent prove that dim Sr

d(�) = ∑
β∈� |D(β)| for d ≥ 8r + 1, where the sum

runs across all simplices β ∈ � and D(β) is a minimal determining set for the
simplexβ. Counting the size of the sets |D(β)| gives rise to expressions using binomial
coefficients using the same Convention 2.2. For r = 1 these are counted explicitly in
[7], while counts for more general r (with supersmoothness) may be found in [8]. We
expect that for a fixed r and d ≥ 8r + 1, |D(β)| is a polynomial of degree dim β for
all β ∈ �. If so, then

∑
β∈� |D(β)| is a polynomial for d ≥ 8r + 1, and this is the

Hilbert polynomial of Sr (�̂). Since the formula in Theorem 2.6 is a lower bound on
the Hilbert polynomial of Sr (�̂) (see Remark 6.1), it would follow that it is a lower
bound on dim Sr

d(�) for d ≥ 8r + 1. It would also be interesting to know if [6] has
implications for the regularity of Sr (�̂) (discussed in Remark 6.1).

Remark 6.3 Building on Remarks 6.1 and 6.2, we have observed in all the examples
of Sects. 2.1 and 5 that LB(�, d, r) = dim Sr

d(�) (when � is generic) for d at least
the initial degree of Sr

d(�); that is, the bound begins to give the exact dimension of the
spline space as soon as there are non-trivial splines. To prove this one would have to
know (1) that LB(�, d, r) agrees with dim Sr

d(�) for d � 0 and (2) that the regularity
of Sr (�̂) (see Remark 6.1) is very close to the initial degree of Sr (�). We discuss
(1) in Remark 6.4. We expect (2) to be quite difficult; a similar statement is not even
known for generic triangulations, although we expect it to be true as we indicate in
Remark 6.4.

Remark 6.4 In all of the examples in Sects. 2.1 and 5, if d � 0 and � is generic we
have LB(�, d, r) = dim Sr

d(�); in other words LB(�, d, r) is the Hilbert polynomial
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of Sr (�̂) when � is generic. This is not always the case, although it is only possible
for LB(�, d, r) to differ from dim Sr

d(�) by a constant in large degree. In fact, the
only term in which we can have error is the approximation provided by Proposition 4.6
to the constant C which is equal to dim H2(R/J [�̂]) for d � 0. If γ is a boundary

vertex, we see from Proposition 4.6 that its contribution to C is
3r+1∑

i=0

dimHr
i (�γ ) −

LB�(�, i, r) . If dimHr
i (�γ ) = max

{(i+2
2

)
,LB�(�, i, r)

}
for 0 ≤ i ≤ 3r + 1,

then this contribution coincides exactly with

3r+1∑

i=0

dim

[(
i + 2

2

)
− LB�(�, i, r)

]

+
=

3r+1∑

i=0

dim [−χ(J [�], i)]+

and we capture the entire contribution of the boundary vertex γ to C .
If γ is an interior vertex, the proof of Theorem 4.7 in Sect. 4 shows that its

contributions to C in degree d ≤ Dγ can be accounted for; in particular the term
dim J(γ )d for d ≤ Dγ appears both in C and in the Euler characteristic of J
with opposite signs, and so it cancels. By Propositions 4.6 and 4.4, the contribu-

tion of γ to C in degrees d > Dγ is
3r+1∑

i=Dγ +1
dimHr

i (�γ ) − LB�(�, i, r) . If

dimHr
i (�γ ) = max

{(i+2
2

)
,LB�(�, i, r)

}
for i > Dγ then we again capture all

of the contribution of the interior vertex γ to C .
This leads us to Questions 7.1 and 7.2 in [17], namely, is it typically true that

dimHr
d(�) = max

{(
d + 2

2

)
,LB�(�, d, r)

}
(22)

when � is a generic open vertex star, and that for d > Dγ and � a generic closed
vertex star

dimHr
d(�) = max

{(
d + 2

2

)
,LB�(�, d, r)

}
? (23)

(Theorem 4.7 shows that dimHr
d(�) = (d+2

2

)
when d ≤ Dγ and� is a generic closed

vertex star.) There are configurations for open vertex stars, discussed in [17], where

it is not true that dimHr
d(�) = max

{(d+2
2

)
,LB�(�, d, r)

}
even for generic vertex

positions. If such a configuration is present as the star of a boundary vertex inside of
a larger tetrahedral partition, then our lower bound will not give the exact dimension
in large degree. We do raise the possibility in Question 7.2 of [17] that there could
be finitely many sub-configurations which serve as obstructions to the correctness
of Equation (22) when � is generic. We are not aware of any configurations where
Equation (23) fails for generic vertex positions when d > Dγ .

Remark 6.5 The formula we give in Theorem 2.6 is a lower bound for dim Sr
d(�)

for d � 0 when � is generic. That is, it only depends on purely combinatorial
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information of � such as how many triangular faces are incident upon a given edge,
and not on geometric information such as whether the linear span of these triangular
faces coincide. It is well-known that such coincident linear spans cause a jump in
the dimension of Sr

d(�). As we indicate in [17, Example 6.2], our techniques can
sometimes be adjusted to improve the lower bound LB(�, d, r) for these types of
special positions. We leave this as a future research direction. Other special positions,
such as the special positions of theMorgan–Scott configuration, may depend on global
geometry which is invisible to our methods.

Remark 6.6 Aswediscuss and illustrate inSect. 5.4, it is possible that our bound inThe-
orem2.6holds for polytopal subdivisions as long as someappropriatemodifications are
made. We comment on a few subtleties that arise in the polytopal case. First, our argu-
ments in this paper are simplified by the existence of a generic dimension for Sr

d(�)

when � is simplicial—see Sect. 3.4. The lower bound we present in Theorem 2.6 is
a lower bound for this generic dimension. On the other hand, it is not entirely clear
what a generic polytopal subidivision is, as we pointed out in the final paragraph of
Sect. 5.4. Thus to verify Theorem 2.6 for polytopal subdivisions wewould need to take
care to define what generic dimension is, or find an argument that avoids this notion.

A related complication that arises in the non-simplicial case is the presence of
‘unexpected’ associated primes for H2(R/J [�̂]), where � ⊂ R

2 is a polytopal com-
plex. By ‘unexpected,’ wemean that the associated prime is not the ideal of a face of�.
McDonald and Schenck first observed these in [26] for planar polytopal splines, where
they prove that such associated primes contribute a vertex-like term to the dimension
of the spline space. The associated primes of the homologies ofR/J [�̂]were further
analyzed in [15] for� a higher dimensional polytopal subdivision. The non-simplicial
example we analyze in Example 5.4 also appears in [15, Example 6.4], where it is
shown that there are ‘unexpected’ associated primes for certain vertex positions. At
these vertex positions, Proposition 4.5 falls apart because dim H2(R/J [�̂])d is even-
tually linear in d and dim H1(R/J [�̂])d is eventually constant. It is not too difficult
to see that these unexpected associated primes do not show up for sufficiently gen-
eral vertex positions in Example 5.4. However, in order to extend our Theorem 2.6 to
polytopal subdivisions, we would need a guarantee that such ‘unexpected’ associated
primes do not appear for a ‘generic’ polytopal complex (whatever this may mean!). A
cautionary example is provided by Barnette’s first diagram [39, Example 5.11]; here
a coincidence of four lines (at a point which is not a vertex of the polytopal complex)
is imposed simply by the combinatorial structure—that is, the partially ordered set
of inclusions among the faces. Thus it may not be possible to exclude ‘unexpected’
associated primes even for ‘generic’ polytopal complexes.

For these reasons,we do not attempt in this paper to extendTheorem2.6 to polytopal
subdivisions, but leave this as a future avenue of research.

Funding N. Villamizar was supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) New Investigator Award EP/V012835/1.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included

123

Constructive Approximation (2024) 59:1–3028



in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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