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Abstract
Weconstruct a least squares approximationmethod for the recovery of complex-valued
functions from a reproducing kernel Hilbert space on D ⊂ Rd . The nodes are drawn
at random for the whole class of functions, and the error is measured in L2(D, �D).
We prove worst-case recovery guarantees by explicitly controlling all the involved
constants. This leads to new preasymptotic recovery bounds with high probability for
the error of hyperbolic Fourier regression on multivariate data. In addition, we further
investigate its counterpart hyperbolic wavelet regression also based on least squares
to recover non-periodic functions from random samples. Finally, we reconsider the
analysis of a cubature method based on plain random points with optimal weights and
reveal near-optimal worst-case error bounds with high probability. It turns out that
this simple method can compete with the quasi-Monte Carlo methods in the literature
which are based on lattices and digital nets.
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recovery · Hyperbolic wavelet regression
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1 Introduction

We consider the problem of learning complex-valued multivariate functions on a
domain D ⊂ Rd from function samples on the set of nodes X := {x1, . . . , xn} ⊂ D.
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The functions are modeled as elements from some reproducing kernel Hilbert space
H(K ) with kernel K : D× D→ C. The nodes X are drawn independently according
to a tailored probabilitymeasure depending on the spectral properties of the embedding
of H(K ) in L2(D, �D), where the error is measured. Our main focus in this paper
is on worst-case recovery guarantees. In fact, we aim at recovering all f ∈ H(K )

simultaneously from sampled values at the sampling nodes inXwith high probability.
To be more precise, we implement algorithms and provide error bounds to control the
worst-case error

sup
‖ f ‖H(K )≤1

‖ f − SmX f ‖L2(D,�D),

where SmX is the fixed recovery operator. In contrast to that, the problem of recon-
structing an individual function from random samples has been considered by several
authors in the literature, e.g., Smale and Zhou [61], Bohn [5,6], Bohn and Griebel [7],
Cohen et al. [13], Chkifa et al. [10], Cohen and Migliorati [16], and many others to
mention just a few.

Let us emphasize that we do not develop a Monte Carlo method here. It is rather
the use of “random information” which gained substantial interest in the information-
based complexity (IBC) community and in the field of compressed sensing, see the
recent survey [28] and [24]. We construct a recovery operator SmX which computes
a best least squares fit SmX f to the given data ( f (x1), . . . , f (xn))� from the finite-
dimensional space spanned by the first m − 1 singular vectors of the embedding

Id : H(K )→ L2(D, �D). (1.1)

The right singular vectors e1(·), e2(·), . . . of this embedding are arranged according to
their importance, i.e., with respect to the non-increasing rearrangement of the singular
values σ1 ≥ σ2 ≥ · · · > 0.

The investigations in this paper are inspired by the recent results by Krieg and
Ullrich [34], which triggered substantial progress in the field. See also the discussion
below in Remark 5.9 and [45, Sect. 7]. In this paper, we extend and improve the
results from [34] in several directions. In particular, we investigate and implement
a least squares regression algorithm under weaker conditions and give practically
useful parameter choices which lead to a controlled failure probability and explicit
error bounds.

A typical error bound relates the worst-case recovery error to the sequence of
singular numbers (σk)k∈N of the embedding (1.1) which represent the approximation
numbers or linear widths. One main contribution of this paper is the following general
bound, where all constants are determined precisely under mild conditions. Recall
that (ek(·))k∈N denotes the sequence of right singular vectors of the embedding (1.1),
i.e., the eigenfunctions of Id∗ ◦ Id : H(K ) → H(K ), and σ1 ≥ σ2 ≥ · · · > 0 the
corresponding singular numbers.

Theorem 1.1 (cf. Corollary 5.6) Let H(K ) be a separable reproducing kernel Hilbert
space of complex-valued functions on a subset D ⊂ Rd such that the positive semidef-
inite kernel K : D × D → C satisfies supx∈D K (x, x) < ∞. Let further �D denote
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a probability measure on D. Furthermore, for n ∈ N and δ ∈ (0, 1/3), we define
m ∈ N such that

N (m) := sup
x∈D

m−1∑

k=1
σ−2k |ek(x)|2 ≤ n

48
(√

2 log(2n)− log δ
)

holds. Then, the random reconstruction operator SmX (see Algorithm 1), which uses
samples on the n i.i.d. (according to �D) drawn nodes in X, satisfies

P

(
sup

‖ f ‖H(K )≤1
‖ f − SmX f ‖2L2(D,�D) ≤

29

δ
max

{
σ 2
m,

log(8n)

n
T (m)

})
≥ 1− 3δ,

where T (m) := supx∈D
∑∞

k=m |ek(x)|2.
The occurrence of the fundamental quantity N (m) is certainly not a surprise. It
is also known as spectral function (see [26] and the references therein), and in
case of orthogonal polynomials, it is the inverse of the infimum of the Christof-
fel function (cf., e.g., [23]). It represents a well-known ingredient for inequalities
related to sampling and discretization, see, for instance, Gröchenig and Bass [1],
Gröchenig [25,26], Temlyakov [63,64], and Temlyakov et al. [20]. If, for instance,
N (m) ∈ O(m) holds, we achieve near-optimal error bounds with respect to the num-
ber of used sampling values n. Note that by a straightforward computationwe also have
T (m) ≤ 2

∑∞
k≥m/2 σ 2

k N (4k)/k. Hence, if N (m) ∈ O(m), the bound in Theorem 1.1
is upper bounded by

sup
‖ f ‖H(K )≤1

‖ f − SmX f ‖2L2(D,�D) ≤
CK ,�D

δ · m
∞∑

k≥m/2

σ 2
k (1.2)

with m := n/(c1 log(n) + c2 log(δ−1)) and a constant CK ,�D > 0 depending on the
measure �D and the kernel K .

In the general case we do not necessarily have N (m) ∈ O(m). Here, a technique
called “importance sampling”, see, e.g., [27,46,57,58], turns out to be useful, see
Algorithm 2. As proposed in [16] and specified in full detail in [34], one may sample
from a reweighted distribution using a specific density �m , defined in (5.12) below,
which is different for any m and depends on the spectral properties of the embedding
(1.1). It determines the important “area” to sample. In other words, we incorporate
additional knowledge about the spectral properties of our embedding. The underlying
recovery operator is still constructive, and the determined error bounds hold with high
probability. Computing this envelope density (and sample from it) has been studied in
[16, Sect. 5]. A refinement of this technique together with Theorem 1.1 leads to the
following precise bounds under even weaker conditions.

Theorem 1.2 (cf. Theorem 5.8) Let H(K ) be a separable reproducing kernel Hilbert
space of complex-valued functions on a subset D ⊂ Rd . Let further �D denote a
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non-trivial σ -finite measure on D, and we assume that the positive semidefinite kernel
K : D × D → C satisfies

∫

D
K (x, x) �D(dx) <∞.

Furthermore, for n ∈ N and δ ∈ (0, 1/3) we fix

m :=
⌊

n

96(
√
2 log(2n)− log δ)

⌋
.

Then, the random reconstruction operator S̃mX (see Algorithm 2), which uses n samples
drawn according to a probability measure depending on �D,m and K satisfies

P

⎛

⎝ sup
‖ f ‖H(K )≤1

‖ f − S̃mX f ‖2L2(D,�D) ≤
50

δ
max

⎧
⎨

⎩σ 2
m,

log(8n)

n

∞∑

j=m
σ 2
j

⎫
⎬

⎭

⎞

⎠ ≥ 1− 3δ.

(1.3)

By the same reasoning as above we may replace the error bound in (1.3) by (1.2)
but this time with a universal (and precisely determined) constant C > 0. The result
refines the bound in [34] as we give precise constants here in the general situation.

A further application of our least squares method is in the field of numerical
integration. Oettershagen [52], Belhadji et al. [2], Groechenig [26], Migliorati and
Nobile [43], and many others used least squares optimization to design quadrature
rules. This results in (complex-valued) weights q := (q1, . . . , qn)� in a cubature
formula, i.e.,

Q̃m
X f = q� · f =

n∑

j=1
q j f (x j ) :=

∫

D
S̃mX f dμD,

where f := ( f (x j ))nj=1 and μD is the measure for which we want to compute the

integral. In our setting, the integration nodes X = {x1, . . . , xn} are determined once
in advance for the whole class. Clearly, the bounds from Theorems 1.1, 1.2 can be
literally transferred to control the worst-case integration error

sup
‖ f ‖H(K )≤1

∣∣∣∣
∫

D
f (x) dx − Q̃m

X f

∣∣∣∣ ,

see Theorems 7.1, 7.2.
As the main example, we consider the recovery of functions from Sobolev spaces

with mixed smoothness (also known as tensor product Sobolev spaces or hyperbolic
cross-spaces). This problem has been investigated bymany authors in the last 30 years,
see [18] and the references therein. The above general bound on the worst-case errors
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can, for instance, be used for any non-periodic embedding

Id : Hs
mix([0, 1]d) → L2([0, 1]d), s > 1/2.

The spaces Hs
mix([0, 1]d) can be represented in various ways as a reproducing kernel

Hilbert space satisfying the requirements of the above theorems, see the concrete
collection of examples in [3, Section 7.4]. Applying Theorem 1.2 and plugging in
well-known upper bounds on the singular numbers we improve on the asymptotic
sampling bounds in [18, Sect. 5], see also Dinh Dũng [17] and Byrenheid [8] for
the non-periodic situation. In addition, using refined preasymptotic estimates for the
(σ j ) j∈N in the non-periodic situation (see [33, Section 4.3]) yields reasonable bounds
for sampling numbers in case of small n.

Let us emphasize that the result by Krieg and Ullrich [34] can be considered as a
major progress for the research on the complexity of this problem. They disproved
Conjecture 5.6.2. in [18] for p = 2 and 1/2 < s < (d − 1)/2. Indeed, the celebrated
sparse grid points are outperformed in a certain range for s. This represents a first
step toward the solution of [18, Outstanding Open Problem 1.4]. As a consequence
of the recent contributions by Nagel et al. [45] and Temlyakov [65] based on the
groundbreaking solution of the Kadison–Singer problem by Marcus et al. [42], it is
now evident that sparse grid methods are not optimal in the full range of parameters
(except maybe in d = 2). Still it is worth mentioning that the sparse grids represent
the best known deterministic construction what concerns the asymptotic order. Indeed,
the guarantees are deterministic and only slightly worse compared to random nodes in
the asymptotic regime. However, regarding preasymptotics the random constructions
provide substantial advantages.

In this paper, we use the simple least squares algorithm from [5,14,16,34], and
we show that using random points makes it also possible to obtain explicit worst-
case recovery bounds also for small n. In the periodic setting the analysis benefits
from the fact that the underlying eigenvector system is a bounded orthonormal system
(BOS), see (2.8), which implies in particular N (m) ∈ O(m). In case of the complex
Fourier system, we have a BOS constant B = 1 and obtain dimension-free constants.
This allows for a priori estimates on the number of required samples and arithmetic
operations in order to ensure accuracy ε > 0with our concrete algorithm. In particular,
we incorporate recent preasymptotic bounds for the singular values (σk)k∈N, see [36,
37] and [33]. We obtain with probability larger than 1 − 3δ for the periodic mixed
smoothness space Hs

mix(T
d) with 2s > 1+ log2 d equipped with the ‖ · ‖#-norm (see

(8.4) below) the worst-case bound

sup
‖ f ‖#≤1

‖ f − Sm,#
X f ‖2L2(Td )

≤ 10s

δ(2s − 1− log2 d)

(
16

3m

) 2s
1+log2 d

.

The number of samples n scales similarly as after (1.2) with precisely determined
absolute constants c1, c2 < 70, see Corollary 8.4.

We also demonstrate in Sect. 9 that the BOS assumption is not necessary for getting
a practical algorithm. Similar as in [5] we use an algorithm called “hyperbolic wavelet
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regression” and show that it recovers non-periodic functions belonging to a Sobolev
spacewithmixed smoothness Hs

mix from the n nodesX drawn according to the uniform
measure with a rate similar as for the periodic case. The proposed approach achieves
rates which improve on the bounds in [5] and are only worse by logs n in comparison
with the optimal rates achieved by hyperbolic wavelet best approximation studied in
[21,60].

Finally, by our refined analysis we were able to settle a conjecture in [52] that
the worst-case integration error for Hs

mix(T
d) is bounded in order by n−s log(n)ds

with high probability. This conjecture was based on the outcome of several numerical
experiments (described in [52]) where the worst-case error has been simulated using
the RKHS Riesz representer. It is remarkable in two respects. First, it is possible
to benefit from higher-order smoothness although we use plain random points. And
second, this simple method can compete with most of the quasi-Monte Carlo methods
based on lattices and digital nets studied in the literature, see [22, pp. 195, 247].
Moreover, if s < (d−1)/2 we get a better asymptotic rate than sparse grid integration
which is shown to be of order n−s log(n)(d−1)(s+1/2), see [19].

We practically verify our theoretical findings with several numerical experiments.
There, we compare the recovery error for the least squares regression method SmX to
the optimal error given by the projection on the eigenvector space. We also study a
non-periodic regime, where we randomly sample points according to the Chebyshev
measure. Algorithmically, the coefficients c := (ck)

m−1
k=1 ∈ Cm−1 of the approximation

SmX := ∑m−1
k=1 ck σ−1k ek can be obtained by computing the least squares solution of

the (over-determined) linear system of equations Lm c = ( f (x j ))nj=1, where Lm :=
(
σ−1k ek(x j )

)n;m−1
j=1; k=1 ∈ Cn×(m−1). In order to solve this linear system of equations,

one can apply a standard conjugate gradient type iterative algorithm, e.g., LSQR [54].
The corresponding arithmetic costs are bounded from above by C R m n < C R n2,
where C > 0 is an absolute constant and R the number of iterations which is rather
small due to the well-conditioned least squares matrices.
Outline In Sect. 2, we describe the setting in which we want to perform the worst-
case analysis. There we use the framework of reproducing kernel Hilbert spaces of
complex-valued functions. Section 3 is devoted to the least squares algorithm, where
the worst-case analysis is given in Sects. 5, 8, and 9. In the first place, we present the
general results in Sect. 5. Section 8 considers the particular case of hyperbolic Fourier
regression. In Sect. 9, we investigate the particular case of non-periodic functions
with a bounded mixed derivative and their recovery via hyperbolic wavelet regression.
The main tools from probability theory, like concentration inequalities for spectral
norms and Rudelson’s lemma, are provided in Sect. 4. The analysis of the recovery
of individual functions (Monte Carlo) is given in Sect. 6. Consequences for optimally
weighted numerical integration based on plain random points are given in Sect. 7 and
8.2. Finally, the numerical experiments are shown and discussed in Sect. 10.
Notation As usual N denotes the natural numbers, N0 := N ∪ {0}, Z denotes the
integers, R the real numbers, and C the complex numbers. If not indicated otherwise
the symbol logdenotes the natural logarithm.Cn denotes the complexn-space,whereas
Cm×n denotes the set of allm×n-matrices Lwith complex entries. The spectral norm
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(i.e., the largest singular value) of matrices L is denoted by ‖L‖ or ‖L‖2→2. Vectors
and matrices are usually typesetted bold with x, y ∈ Rn or Cn . For 0 < p ≤ ∞
and x ∈ Cn we denote ‖x‖p := (

∑n
i=1 |xi |p)1/p with the usual modification in the

case p = ∞. If T : X → Y is a continuous operator we write ‖T : X → Y‖ for its
operator (quasi-)norm. For two sequences (an)∞n=1, (bn)∞n=1 ⊂ R we write an � bn if
there exists a constant c > 0 such that an ≤ c bn for all n. We will write an � bn if
an � bn and bn � an . We write f ∈ O(g) for non-negative functions f , g if there is
a constant c > 0 such that f ≤ cg. D denotes a subset of Rd and �∞(D) the set of
bounded functions on D with ‖ · ‖�∞(D) the supremum norm.

2 Reproducing Kernel Hilbert Spaces

Wewill work in the framework of reproducing kernel Hilbert spaces. The relevant the-
oretical background can be found in [3, Chapt. 1] and [11, Chapt. 4]. Let L2(D, �D)

be the space of complex-valued square-integrable functions with respect to �D . Here,
D ⊂ Rd is an arbitrary subset and �D a measure on D. We further consider a repro-
ducing kernel Hilbert space H(K ) with a Hermitian positive definite kernel K (x, y)
on D × D. The crucial property is the identity

f (x) = 〈 f , K (·, x)〉H(K ) (2.1)

for all x ∈ D. It ensures that point evaluations are continuous functionals on H(K ).
We will use the notation from [11, Chapt. 4]. In the framework of this paper, the finite
trace of the kernel ∫

D
K (x, x) �D(dx) <∞ (2.2)

or its boundedness
‖K‖∞ := sup

x∈D

√
K (x, x) <∞ (2.3)

is assumed. The boundedness of K implies that H(K ) is continuously embedded into
�∞(D), i.e.,

‖ f ‖�∞(D) ≤ ‖K‖∞ · ‖ f ‖H(K ).

Note that we do not need the measure �D for this embedding.
The embedding operator

Id : H(K )→ L2(D, �D)

is compact under the integrability condition (2.2), which we always assume from now
on.We additionally assume that H(K ) is at least infinite dimensional. However, we do
not assume the separability of H(K ) here. Due to the compactness of Id the operator
Id∗ ◦ Id provides an at most countable system of strictly positive eigenvalues (λ j ) j∈N.
These eigenvalues are summable as a consequence of (2.2) and (2.5), (2.6) below, such
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that the singular numbers (σ j ) j∈N belong to �2. Indeed, let Id∗ be defined in the usual
way as

〈Id( f ), g〉L2 = 〈 f , Id∗(g)〉H(K ).

Then, W�D := Id∗ ◦ Id : H(K ) → H(K ) is non-negative definite, self-adjoint and
compact. Let (λ j , e j ) j∈N denote the eigenpairs of W�D , where (e j ) j∈N ⊂ H(K )

is an orthonormal system of eigenvectors, and (λ j ) j∈N the corresponding positive
eigenvalues. In fact,W�De j = λ j e j and 〈e j , ek〉H(K ) = δ j,k . The sequence of positive
eigenvalues is arranged in non-increasing order, i.e.,

λ1 ≥ λ2 ≥ λ3 ≥ · · · > 0.

Note that we have by Bessel’s inequality

‖ f ‖2H(K ) ≥
∞∑

k=1
|〈 f , ek〉H(K )|2. (2.4)

Let us point out that by (2.4), the function

x �→
∞∑

k=1
|ek(x)|2 ≤ K (x, x) (2.5)

exists pointwise in C. This implies

∞∑

k=1
λk ≤

∫

D
K (x, x) �D(dx) (2.6)

and we get by λ j = σ 2
j that Id : H(K ) → L2(D, �D) is a Hilbert–Schmidt operator

if (2.2) holds. We will restrict to the situation where we have equality in (2.6). This
can be achieved by posing additional assumptions, namely that H(K ) is separable and
�D is σ -finite, see [11, Thm. 4.27]. It further holds that

〈e j , ek〉L2 = 〈Id(e j ), Id(ek)〉L2 = 〈Wej , ek〉H(K ) = λ j 〈e j , ek〉H(K ) = λ jδ j,k .

Hence, (e j ) j∈N is also orthogonal in L2(D, �D) and ‖e j‖2 =
√

λ j =: σ j . We define

the orthonormal system (η j ) j∈N := (λ
−1/2
j e j ) j∈N in L2(D, �D).

For our subsequent analysis, the quantity

N (m) := sup
x∈D

m−1∑

k=1
|ηk(x)|2 (2.7)

plays a fundamental role. We often need the related quantity T (m) := supx∈D
∑∞

k=m|ek(x)|2 which can be estimated by T (m) ≤ 2
∑∞

k≥m/2 σ 2
k N (4k)/k. The first one is
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sometimes called “spectral function”, see [26] and the references therein. Clearly,
by (2.6) N (m) and T (m) are well defined if the kernel is bounded, i.e., if (2.3) is
assumed. In fact, T (m) is bounded by ‖K‖∞. It may happen that the system (ηk)k∈N
is a uniformly �∞(D) bounded orthonormal system (BOS), i.e., we have for all k ∈ N

‖ηk‖�∞(D) ≤ B. (2.8)

Let us call B the BOS constant of the system. In this case, we have N (m) ≤ (m −
1)B2 ∈ O(m) and T (m) ≤ B2∑∞

k=m λk .

Remark 2.1 We would like to point out an issue concerning the embedding operator
Id : H(K )→ L2(D, �D) defined above. As discussed in [11, p. 127], this embedding
operator is in general not injective as it maps a function to an equivalence class. As a
consequence, the system of eigenvectors (e j ) j∈N may not be a basis in H(K ). (Note
that H(K ) may not even be separable.) However, there are conditions which ensure
that the orthonormal system (e j ) j∈N is an orthonormal basis in H(K ), see [11, 4.5]
and [11, Ex. 4.6, p. 163], which is related toMercer’s theorem [11, Thm. 4.49]. Indeed,
if we additionally assume that the kernel K (·, ·) is bounded and continuous on D× D
(for a domain D ⊂ Rd ), then H(K ) is separable and consists of continuous functions,
see [3, Thms. 16, 17]. If we finally assume that the measure �D is a Borel measure
with full support, then (e j ) j∈N is a complete orthonormal system in H(K ). In this
case, we have the pointwise identity

K (x, y) =
∞∑

j=1
e j (y) e j (x), x, y ∈ D, (2.9)

as well as equality signs in (2.4), (2.5) and (2.6), see, for instance, [3, Cor. 4]. Let us
emphasize that a Mercer kernel K (·, ·), which is a continuous kernel on D × D with
a compact domain D ⊂ Rd satisfies all these conditions, see [11, Thm. 4.49]. In this
case, we even have (2.9) with absolute and uniform convergence on D × D. Let us
point out that to our surprise, Theorem 1.2 (Theorem 5.8) holds already true under the
finite trace condition (2.2) if H(K ) is separable and �D is σ -finite. We do not have to
assume continuity of the kernel. Note that the finite trace condition is natural in this
context as [29] shows.

3 Least Squares Regression

Our algorithm essentially boils down to the solution of an over-determined system

L c = f

where L ∈ Cn×m is a matrix with n > m. It is well known that the above system
may not have a solution. However, we can ask for the vector c which minimizes the
residual ‖f − L c‖2. Multiplying the system with L∗ gives
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L∗ L c = L∗ f

which is called the system of normal equations. If L has full rank, then the unique
solution of the least squares problem is given by

c = (
L∗ L

)−1 L∗ f .

From the fact that the singular values of L are bounded away from zero, we get
the following quantitative bound on the spectral norm of the Moore–Penrose inverse
(L∗ L)−1 L∗.

Proposition 3.1 Let L ∈ Cn×m be a matrix with m < n with full rank and singular
values τ1, . . . , τm > 0 arranged in non-increasing order.

(i) Then, also thematrix (L∗ L)−1 L∗ has full rank and singular values τ−1m , . . . , τ−11
(arranged in non-increasing order).

(ii) In particular, it holds that

(
L∗ L

)−1 L∗ = V∗ �̃U

whenever L = U∗�V, where � ∈ Rn×m is a rectangular matrix only with
(τ1, . . . , τm) on the “main diagonal” and orthogonal matrices U ∈ Cn×n and
V ∈ Cm×m. Here, �̃ ∈ Rm×n denotes the matrix with (τ−11 , . . . , τ−1m ) on the
“main diagonal”.

(iii) The operator norm ‖(L∗ L)−1 L∗‖ can be controlled as follows:

‖ (L∗ L)−1 L∗‖ ≤ τ−1m .

For function recovery, we will use the following matrix

Lm := Lm(X) =
⎛

⎜⎝
η1

(
x1
)

η2
(
x1
) · · · ηm−1

(
x1
)

...
...

...

η1 (xn) η2 (xn) · · · ηm−1 (xn)

⎞

⎟⎠ , (3.1)

for X = {x1, . . . , xn} ⊂ D of distinct sampling nodes and the system (ηk)k∈N :=
(λ
−1/2
k ek)k∈N. Below we will see that this matrix behaves well with high probability

if n is large enough and the nodes in X are chosen independently and identically
�D-distributed from D.
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Algorithm 1 Least squares regression.
Input: X = {x1, ..., xn} ⊂ D set of distinct sampling nodes,

f = ( f (x1), ..., f (xn))� samples of f evaluated at the nodes from X,
m ∈ N m < n such that the matrix Lm := Lm (X) from (3.1)

has full (column) rank.

Solve the over-determined linear system

Lm (c1, ..., cm−1)� = f

via least squares (e.g. directly or via the LSQR algorithm [54]), i.e., compute

(c1, ..., cm−1)� := (L∗m Lm )−1 L∗m f .

Output: c = (c1, ..., cm−1)� ∈ Cm−1 coefficients of the approximant SmX f :=∑m−1
k=1 ck ηk .

Using Algorithm 1, we compute the coefficients ck , k = 1, . . . ,m − 1, of the
approximant

SmX f :=
m−1∑

k=1
ck ηk . (3.2)

Note that the mapping f �→ SmX f is linear for a fixed set of sampling nodes X ⊂ D.

4 Concentration Inequalities

We will consider complex-valued random variables X and random vectors (X1, . . . ,

XN ) on a probability space (
,A,P). As usual we will denote with EX the expec-
tation of X . With P(A|B) and E(X |B), we denote the conditional probability

P(A|B) := P(A ∩ B)

P(B)

and the conditional expectation

E(X |B) = E(χB · X)

P(B)
, (4.1)

where χB : 
→ {0, 1} is the indicator function on B.
Let us start with the classical Markov inequality. If Z is a random variable, then

P(|Z | > t) ≤ E|Z |
t

, t > 0.

Of course, there is also a version involving conditional probability and expectation.
In fact,

P(|Z | > t | B) ≤ E(|Z | | B)

t
, t > 0. (4.2)
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Let us state concentration inequalities for the normof sumsof complex rank-1matrices.
For the first result, we refer to Oliveira [53]. We will need the following notational
convention: For a complex (column) vector y ∈ CN (or �2), we will often use the
tensor notation for the matrix

y⊗ y := y y∗ = y y� ∈ CN×N (orCN×N).

Proposition 4.1 Let yi , i = 1, . . . , n, be i.i.d. copies of a random vector y ∈ CN such
that ‖yi‖2 ≤ M almost surely. Let further E(yi ⊗ yi ) = � ∈ CN×N and 0 < t < 1.
Then, it holds

P

(∥∥∥∥∥
1

n

n∑

i=1
yi ⊗ yi −�

∥∥∥∥∥ > t

)
≤ (2min(n, N ))

√
2 exp

(
− nt2

12M2

)
.

Proof In order to show the probability estimate, we refer to the proof of [53, Lem. 1]
and observe

P

(∥∥∥∥∥
1

n

n∑

i=1
yi ⊗ yi −�

∥∥∥∥∥ > t

)
≤ (2min(n, N ))

1
1−2M2s/n exp

(
−st + 2M2s2

n − 2M2s

)

for 0 ≤ s ≤ n/(2M2). Sincewe restrict 0 < t < 1, the choice s = (4+2
√
2)−1nt/M2

yields

(2min(n, N ))
1

1−2M2s/n exp

(
−st + 2M2s2

n − 2M2s

)

= (2min(n, N ))
√
2 exp

(
− nt2

(6+ 4
√
2)M2

)

and, finally, the assertion holds. ��
Remark 4.2 A slightly stronger version for the case of real matrices can be found in
Cohen, Davenport, Leviatan [13] (see also the correction in [14]). For yi , i = 1, . . . , n,
i.i.d. copies of a random vector y ∈ RN sampled from a bounded orthonormal system,
one obtains the concentration inequality

P

(∥∥∥∥
1

n

n∑

i=1
yi ⊗ yi − I

∥∥∥∥ > t

)
≤ 2N exp(−ctn/M2),

where ct = (1 + t)(ln(1 + t)) − t . This leads to improved constants for the case of
real matrices.

The following result goes back to Lust-Piquard and Pisier [41], and Rudelson [59].
The complex version with precise constants can be found in Rauhut [56, Cor. 6.20].
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Proposition 4.3 Let yi ∈ CN (or �2), i = 1, . . . , n, and εi independent Rademacher
variables taking values ±1 with equal probability. Then,

Eε

∥∥∥∥∥

n∑

i=1
εi yi ⊗ yi

∥∥∥∥∥ ≤ CR
√
log(8min{n, N }) ·

√√√√
∥∥∥∥∥

n∑

i=1
yi ⊗ yi

∥∥∥∥∥ · max
i=1,...,n ‖y

i‖2,

(4.3)

with

CR =
√
2+ 1

4
√
2 log(8)

∈ [1.53, 1.54]. (4.4)

Remark 4.4 The result is proved for complex (finite) matrices. Note that the factor√
log(8min{n, N }) is already an upper bound for

√
log(8r), where r is the rank of

the matrix
∑

i y
i ⊗ yi . The proof of Proposition 4.3 with the precise constant is based

on [56, Lem. 6.18] which itself is based on a non-commutative Khintchine inequality,
see [56, 6.5]. This technique allows for controlling all the involved constants. Let us
comment on the situation N = ∞, i.e., y j ∈ �2, where this inequality keeps valid
with the factor

√
log(8n). In fact, if the matrices B j in [56, Thm. 6.14] are replaced

by rank-1-operators B j : �2 → �2 of type B j = y j ⊗ y j with ‖y j‖2 < ∞, then
all the arguments keep valid and an �2-version of this non-commutative Khintchine
inequality is available. This implies an �2-version of [56, Lem. 6.18] which reads as
follows: Let y j ∈ �2, j = 1, . . . , n, and p ≥ 2. Then,

(
Eε

∥∥∥∥∥

n∑

i=1
εi yi ⊗ yi

∥∥∥∥∥

p)1/p

≤ 23/(4p)n1/p
√
p e−1/2

√√√√
∥∥∥∥∥

n∑

i=1
yi ⊗ yi

∥∥∥∥∥ · max
i=1,...,n ‖y

i‖2.

Sincewe control themoments of the randomvariable representing the normon the left-
hand side, we are now able to derive a concentration inequality by standard arguments
[56, Prop. 6.5]. This concentration inequality then easily implies the �2-version of
(4.3).

As a consequence of this result, we obtain the following deviation inequality in the
mean which will be sufficient for our purpose.

Corollary 4.5 Let yi , i = 1, . . . , n, be i.i.d. randomvectors fromCN or �2 with ‖yi‖2 ≤
M almost surely. Let further � = E(yi ⊗ yi ). Then, with N > n we obtain

E

∥∥∥∥∥
1

n

n∑

i=1
yi ⊗ yi −�

∥∥∥∥∥ ≤ 4C2
R
log(8n)

n
M2 + 2CR

√
log(8n)

n
M
√‖�‖.

Proof Bywell-known symmetrization technique (see [24, Lem. 8.4]), Proposition 4.3,
and the Cauchy–Schwarz inequality, we obtain

F := E

∥∥∥∥∥
1

n

n∑

i=1
yi ⊗ yi −�

∥∥∥∥∥ ≤ 2EyEε

∥∥∥∥∥
1

n

n∑

i=1
εiyi ⊗ yi

∥∥∥∥∥
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≤ 2CR

√
log(8n)

n

(
E max

i=1,...,n ‖y
i‖22

)1/2
(
E

∥∥∥∥∥

n∑

i=1
yi ⊗ yi

∥∥∥∥∥

)1/2

≤ 2CR

√
log(8n)√

n
M

︸ ︷︷ ︸
=:a

⎛

⎜⎜⎜⎜⎝
E

∥∥∥∥∥
1

n

n∑

i=1
yi ⊗ yi −�

∥∥∥∥∥
︸ ︷︷ ︸

=F

+‖�‖︸︷︷︸
=:b

⎞

⎟⎟⎟⎟⎠

1/2

.

Hence, we get F2 ≤ a2(F + b) and we solve this inequality with respect to F , which
yields

0 ≤ F ≤ a2

2
+
√
a4

4
+ a2b ≤ a2 + a

√
b

and this corresponds to the assertion. ��

5 Worst-case Errors for Least-Squares Regression

5.1 RandomMatrices from Sampled Orthonormal Systems

Let us start with a concentration inequality for the spectral norm of a matrix of type
(3.1). It turns out that the complex matrix Lm := Lm(X) ∈ Cn×(m−1) has full rank
with high probability, where the elements of the set X ⊂ D of sampling nodes are
drawn i.i.d. at random according to �D . We will find below that the eigenvalues of

Hm := Hm(X) = 1

n
L∗m Lm ∈ C(m−1)×(m−1)

are bounded away from zero with high probability if m is small enough compared
to n. We speak of an “oversampling factor” n/m. In case of a bounded orthonormal
systemwith BOS constant B, see (2.8), it will turn out that a logarithmic oversampling
is sufficient, see (5.2) below. Note that the boundedness constant B may also depend
on the underlying spatial dimension d. However, if, for instance, the complex Fourier
system {exp(2π i k · x) : k ∈ Zd} is considered, we are in the comfortable situation
that B = 1.

Proposition 5.1 Let n,m ∈ N, m ≥ 2. Let further {η1(·), η2(·), η3(·), . . .} be the
orthonormal system in L2(D, �D) induced by the kernel K and the n sampling nodes
in X be drawn i.i.d. at random according to �D. Then, it holds for 0 < t < 1 that

P (‖Hm − Im‖ > t) ≤ (2n)
√
2 exp

(
− nt2

12 · N (m)

)
,

where N (m) is defined in (2.7) and Im = diag(1) ∈ {0, 1}(m−1)×(m−1).
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Proof We set yi := (
η1(xi ), . . . , ηm−1(xi )

)∗
, i = 1, . . . , n, and observe

Hm := Hm(X) = 1

n
L∗m Lm = 1

n

n∑

i=1
yi ⊗ yi .

Moreover, due to the fact that we have an orthonormal system (ηk)k∈N, we obtain that
E(Hm) = Im . The result follows by noting that M2 ≤ N (m) in Proposition 4.1. ��
Remark 5.2 From this proposition we immediately obtain that the matrix Hm ∈
C(m−1)×(m−1) has only eigenvalues larger than t := 1/2 with probability at least
1− δ if

N (m) ≤ n

48(
√
2 log(2n)− log δ)

. (5.1)

Hence, in case of a bounded orthonormal system with BOS constant B > 0, see (2.8),
we may choose

m ≤ κδ,B
n

log(2n)
(5.2)

with κδ,B := (log(1/δ)+√2)−1B−2/48.

From Proposition 5.1 we get that all m − 1 singular values τ1, . . . , τm−1 of Lm

from (3.1) are all not smaller than
√
n/2 and not larger than

√
3n/2 with probability

at least 1 − δ if m is chosen such that (5.1) holds. In terms of Proposition 3.1, this
means that τ1, . . . , τm−1 ≥ √n/2. This leads to an upper bound on the norm of the
Moore–Penrose inverse that is required for the least squares algorithm.

Proposition 5.3 Let {η1(·), η2(·), η3(·), . . .} be the orthonormal system in L2(D, �D)

induced by the kernel K . Let further m, n ∈ N, m ≥ 2, and 0 < δ < 1 be chosen such
that they satisfy (5.1). Then, the random matrix Lm from (3.1) satisfies

‖ (L∗m Lm
)−1 L∗m‖ ≤

√
2

n

with probability at least 1− δ.

In addition to the matrix Lm , we need to consider a second linear operator that is
defined using sampling values of the eigenfunctions e j . The importance of this operator
has been pointed out in [34], where strong results on the concentration of infinite
dimensional random matrices have been used. Since we only need the expectation of
the norm, we only use Rudelson’s lemma, see Proposition 4.3, and a symmetrization
technique. This allows us to control the constants.

Proposition 5.4 Let X = {x1, . . . , xn} ⊂ D be a set of n sampling nodes drawn
uniformly and i.i.d. at random according to �D, and consider the n i.i.d. random
sequences

yi =
(
em

(
xi
)

, em+1
(
xi
)

, . . .
)�

, i = 1, . . . , n,
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together with T (m) := sup
x∈D

∞∑
k=m

|ek(x)|2 <∞, see (2.7). Then, the operator

�m : �2 → Rn, z �→
⎛

⎜⎝
〈z, y1〉�2

...

〈z, yn〉�2

⎞

⎟⎠

has expected norm

E
(
‖�m‖2

)
≤ n

(
σ 2
m + 4C2

R
log(8n)

n
T (m)+ 2CR σm

√
log(8n)

n
T (m)

)
. (5.3)

Proof Note that �∗m�m =
n∑

i=1
yi ⊗ yi and

�m := E

(
1

n
�∗m�m

)
= E

(
yi ⊗ yi

)
= diag

(
σ 2
m, σ 2

m+1, . . .
)

.

This gives

‖�m‖2 = ‖�∗m�m‖ ≤ ‖�∗m�m − n�m‖ + n‖�m‖.

Finally, the bound in (5.3) follows from Corollary 4.5 (see also Remark 4.4 for N =
∞), the fact that ‖�m‖ = λm = σ 2

m and M2 = T (m). ��

5.2 Worst-case Errors with High Probability

Theorem 5.5 Let H(K ) be a separable reproducing kernel Hilbert space on a domain
D ⊂ Rd with a positive semidefinite kernel K (x, y) such that supx∈D K (x, x) < ∞.
We denote with (σ j ) j∈N the non-increasing sequence of singular numbers of the
embedding Id : H(K ) → L2(D, �D) for a probability measure �D. Let further
0 < δ < 1 and m, n ∈ N, where m ≥ 2 is chosen such that (5.1) holds. Drawing the
n sampling nodes in X i.i.d. at random according to �D, we have for the conditional
expectation of the worst-case error

E

(
sup

‖ f ‖H(K )≤1
‖ f − SmX f ‖2L2(D,�D)

∣∣∣‖Hm − Im‖ ≤ 1/2

)

≤ 1

1− δ

(
3σ 2

m + 8C2
R
log(8n)

n
T (m)+ 4CR σm

√
log(8n)

n
T (m)

)

≤ 3+ 8C2
R + 4CR

1− δ
max

{
σ 2
m,

log(8n)

n
T (m)

}
(5.4)

with CR from (4.4).
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Proof Let f ∈ H(K ) such that ‖ f ‖H(K ) ≤ 1. Let further X = {x1, . . . , xn} be such
that‖Hm−Im‖ ≤ 1/2.Usingorthogonality and the reproducingproperty SmX Pm−1 f =
Pm−1 f , we estimate

‖ f − SmX f ‖2L2(D,�D) = ‖ f − Pm−1 f ‖2L2(D,�D) + ‖Pm−1 f − SmX f ‖2L2(D,�D)

≤ σ 2
m + ‖SmX (Pm−1 f − f ) ‖2L2(D,�D)

= σ 2
m +

∥∥∥
(
L∗m Lm

)−1 L∗m
(
(Pm−1 f − f )

(
xk
))n

k=1

∥∥∥
2

2

≤ σ 2
m +

2

n

n∑

k=1

∣∣∣ ( f − Pm−1 f ) (xk)
∣∣∣
2
,

(5.5)

where Pm−1 f denotes the projection
∑m−1

j=1 〈 f , e j 〉e j in H(K ) yielding ‖ f −
Pm−1 f ‖L2(D,�D) ≤ σm . Note further, that for any x ∈ D

( f − Pm−1 f ) (x)

=
〈
f , K (·, x)−

∞∑

j=1
e j (·)e j (x)+

∞∑

j=1
e j (·)e j (x)−

m−1∑

j=1
e j (·)e j (x)

〉

H(K )

=
∞∑

j=m
〈 f , e j 〉H(K )e j (x)+ 〈 f , T (·, x)〉H(K ),

where T (·, x) = K (·, x)−∑∞
j=1 e j (·)e j (x) denotes an element in H(K ). Its norm is

given by

‖T (·, x)‖2H(K ) := 〈T (·, x), T (·, x)〉H(K ) = K (x, x)−
∞∑

j=1
|e j (x)|2. (5.6)

This gives

∣∣∣ ( f − Pm−1 f ) (x)
∣∣∣
2 ≤

∣∣∣∣∣∣

∞∑

j=m
〈 f , e j 〉H(K )e j (x)

∣∣∣∣∣∣

2

+ 2‖ f ‖2H(K )‖T (·, x)‖H(K )

√√√√
∞∑

j=m
|e j (x)|2

+ ‖ f ‖2H(K )‖T (·, x)‖2H(K )

(2.5)≤
( ∞∑

i=m
〈 f , ei 〉H(K )ei (x)

)⎛

⎝
∞∑

j=m
〈 f , e j 〉H(K )e j (x)

⎞

⎠

+ ‖ f ‖2H(K )‖T (·, x)‖H(K )

(‖T (·, x)‖H(K ) + 2‖K‖∞
)
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≤
∞∑

i=m

∞∑

j=m
〈 f , ei 〉H(K )〈 f , e j 〉H(K )ei (x)e j (x)

+ 3‖T (·, x)‖H(K )‖K‖∞‖ f ‖2H(K ).

Returning to (5.5) we estimate

n∑

k=1

∣∣∣ ( f − Pm−1 f )
(
xk
) ∣∣∣

2 ≤ ‖ (〈 f , e j 〉H(K )

)
j∈N ‖22 ‖�m‖2

+ 3‖K‖∞‖ f ‖2H(K )

n∑

k=1
‖T

(
·, xk

)
‖

≤ ‖ f ‖2H(K )

(
‖�m‖2 + 3‖K‖∞

n∑

k=1
‖T

(
·, xk

)
‖
)

,

(5.7)
where �m denotes the infinite matrix from Proposition 5.4. Note that we used (2.4)
in the last but one step. The relation in (5.7) together with (5.5) and ‖ f ‖H(K ) ≤ 1
implies

‖ f − SmX f ‖2L2(D,�D) ≤ σ 2
m + ‖

(
L∗m Lm

)−1 L∗m‖2 ·
n∑

k=1

∣∣∣ ( f − Pm−1 f )
(
xk
) ∣∣∣

2

= σ 2
m +

2

n
‖�m‖2 + 6‖K‖∞

n

n∑

k=1
‖T

(
·, xk

)
‖.

Integrating on both sides yields

∫

‖Hm−Im‖≤1/2
sup

‖ f ‖H(K )≤1
‖ f − SmX f ‖2L2(D,�D) �n

D (dX)

≤ σ 2
m +

2

n
E
(
‖�m‖2

)
+ 6‖K‖∞

n

n∑

k=1

∫

D
‖T

(
·, xk

)
‖ �D(dx)

= σ 2
m +

2

n
E
(
‖�m‖2

)
.

(5.8)

Note that the integral on the right-hand side of (5.8) vanishes because of (5.6) and
the fact that we have an equality sign in (2.6) due to our assumptions (separability of
H(K )). This gives

0 =
∫

D
K (x, x) �D(dx)−

∫

D

∞∑

j=1
λ j �D(dx)

=
∫

D

⎛

⎝K (x, x)−
∞∑

j=1
|e j (x)|2

⎞

⎠ �D(dx).
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Taking Proposition 5.4 and (4.1) into account and noting that P(‖Hm − Im‖ ≤ 1/2)
is larger than 1− δ, we obtain the assertion. ��

In addition to that we may easily get a deviation inequality by using Markov’s
inequality and standard arguments. It reads as follows.

Corollary 5.6 Under the same assumptions as in Theorem 5.5, it holds for fixed δ > 0

P

(
sup

‖ f ‖H(K )≤1
‖ f − SmX f ‖2L2(D,�D) ≤

C

δ
max

{
σ 2
m,

log(8n)

n
T (m)

})
≥ 1− 3δ,

(5.9)
where C := 3+ 8C2

R + 4CR < 28.05 is an absolute constant.

Proof We define the events

A :=
{
X : sup

‖ f ‖H(K )≤1
‖ f − SmX f ‖2L2(D,�D) ≤ t

}
,

B := {X : ‖Hm − Im‖ ≤ 1/2}

and split up

P(A) = 1− P
(
A�

)
= 1− P

(
A� ∩ B

)
− P

(
A� ∩ B�

)
.

Treating each summand separately, we have

P
(
A� ∩ B

)
= P

(
A�|B

)
P(B) ≤ P

(
A�|B

)
,

P
(
A� ∩ B�

)
≤ P

(
B�

)
≤ δ.

Next we estimate P(A�|B) using the Markov inequality (4.2), Theorem 5.5, and
setting

t := 3+ 8C2
R + 4CR

δ
max

{
σ 2
m,

log(8n)

n
T (m)

}

which yields

P
(
A�|B

)
≤

E
(
A�|B

)

t
≤ δ

1− δ

δ≤1/2≤ 2δ

and the assertion follows. ��
Example 5.7 Theorem 5.5 as well as Corollary 5.6 can also be applied to non-bounded
orthonormal systems which may lead to non-optimal error bounds. For instance, let
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D = [−1, 1] and �D the normalized Lebesgue measure on D = [−1, 1]. Then, the
second-order operator A defined by

A f (x) = −((1− x2)v′)′

characterizes for s > 1 weighted Sobolev spaces

H(Ks) :=
{
f ∈ L2(D) : As/2 f ∈ L2(D)

}

which are in fact reproducing kernel Hilbert spaces with reproducing kernel

Ks(x, y) =
∑

k∈N

(
1+ (k(k + 1))s

)−1 Pk(x)Pk(y),

where Pk : D → R, k ∈ N, are L2(D)-normalized Legendre polynomials. Clearly,
(Pk)k∈N provides an ONB in L2(D) and plays the role of (ηk)k∈N in our setting.
Moreover, we have ek = λkηk = (1 + (k(k + 1))s)−1/2Pk , and, accordingly, σk =
(1+ (k(k + 1))s)−1/2. The two quantities N (m) and T (m) are given by

N (m) = sup
x∈D

m−1∑

k=1
|Pk(x)|2 =

m−2∑

k=0

2k + 1

2
= (m − 1)2

2
,

T (m) = sup
x∈D

∞∑

k=m

2k − 1

2(1+ (k(k + 1))s
�

∞∑

k=m
k−2s+1 � m−2s+2.

Applying Theorem 5.5 or Corollary 5.6 and choosing m as large as possible, leads to
the relation m2 ∼ n/ log n, which is far from optimal with respect to the number n of
used samples, i.e., we observe worst-case error estimates of the form

sup
‖ f ‖H(Ks )≤1

‖ f − SmX f ‖L2(D) � σm ∼ m−s �
(
log(n)

n

)s/2

in expectation and with high probability, respectively.
On the other hand, the result by Bernardi and Maday [4, Thm. 6.2] using a poly-

nomial interpolation operator jn−1 at Gauss points guarantees

sup
‖ f ‖H(Ks )≤1

‖ f − jn−1 f ‖L2(D) � log(n)

ns
,

which is optimal in its main rate s. However, as it turns out below (see Example 5.10),
it is not optimal with respect to the power of the logarithm. ��
Example 5.7 illustrates that the suggested approach will lead to worst-case error esti-
mates with high probability. However, the achieved upper bounds are not optimal in
specific situations. We will overcome this limitation in the next section by drawing the

123



Constructive Approximation (2021) 54:295–352 315

Algorithm 2Weighted least squares regression.

Input: X = {x1, ..., xn} ⊂ D set of distinct sampling nodes,
f = ( f (x1), ..., f (xn))� samples of f evaluated at the nodes from X,
m ∈ N m < n such that the matrix L̃m in (5.10) has full

(column) rank.

Compute reweighted samples g := (gk )
n
k=1 with gk :=

{
0, �m (xk ) = 0,

f (xk )/
√

�m (xk ), �m (xk ) �= 0.
Solve the over-determined linear system

L̃m (c̃1, ..., c̃m−1)� = g , L̃m :=
(
lk, j

)n,m−1
k=1, j=1 , lk, j :=

{
0, �m (xk ) = 0,

η j (xk )/
√

�m (xk ), �m (xk ) �= 0,
(5.10)

via least squares (e.g. directly or via the LSQR algorithm [54]), i.e., compute

(c̃1, ..., c̃m−1)� := (L̃∗m L̃m)−1 L̃∗m g.

Output: c̃ = (c̃1, ..., c̃m−1)� ∈ Cm−1 coefficients of the approximant S̃mX f :=∑m−1
j=1 c̃ j η j .

sampling nodes with respect to a weighted, tailored distribution and apply a weighted
least squares algorithm.

5.3 Improvements Due to Importance Sampling

We are interested in the question of optimal sampling recovery of functions from
reproducing kernel Hilbert spaces in L2(D, �D). The goal is to get reasonable bounds
in n, preferably in terms of the singular numbers of the embedding. Theorem 5.5
already gives a satisfying answer in case of bounded kernels and N (m) ∈ O(m). In
order to drop both conditions, we will use a weighted (deterministic) least squares
algorithm (see Algorithm 2) to recover functions f ∈ H(K ) from samples at random
nodes (“random information” in the sense of [28]). The approach is a slight modifica-
tion of the one proposed earlier in [34]. A technique will be used, which is known as
“(optimal) importance sampling”, where one defines a density function depending on
the spectral properties of the embedding operator. The sampling nodes are then drawn
according to this density. In the Monte Carlo setting (or “randomized setting”) this
has been successfully applied, e.g., by Cohen and Migliorati [16], see Remark 6.3.
Also in connection with compressed sensing it led to substantial improvements when
recovering multivariate functions, see [57,58]. Authors originally applied this tech-
nique, e.g., for the approximation of integrals, see [27]. However, the setting in which
we are interested in requires additional work since the sampling nodes are supposed
to be drawn in advance for the whole class of functions.

As already mentioned, we construct a more suitable distribution which is used
to draw the sampling nodes at random. In particular, we tailor a probability density
function �m : D → C such that μm , which is given by

μm(A) :=
∫

A
�m(x)�D(dx), A ⊂ D measurable . (5.11)
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Then, we may draw the sampling nodes in X ⊂ D i.i.d. at random according to
μm . For the chosen set X, we define the approximation operator S̃mX as indicated in
Algorithm 2.

Choosing the specific density function

�m(x) := 1

2

⎛

⎜⎝
1

m − 1

m−1∑

j=1
|η j (x)|2 +

⎛

⎝
∞∑

j=m
λ j

⎞

⎠
−1⎛

⎝K (x, x)−
m−1∑

j=1
|e j (x)|2

⎞

⎠

⎞

⎟⎠

(5.12)
guarantees worst-case error estimates which are optimal up to logarithmic factors and
up to a specific failure probability.

Theorem 5.8 Let H(K ) be a separable reproducing kernel Hilbert space of complex-
valued functions defined on D such that

∫

D
K (x, x) �D(dx) <∞

for some non-trivial σ -finite measure �D on D, where (σ j ) j∈N denotes the non-
increasing sequence of singular numbers of the embedding Id : H(K )→ L2(D, �D).
Let further δ ∈ (0, 1/3) and n ∈ N large enough, such that

m :=
⌊

n

96(
√
2 log(2n)− log δ)

⌋
≥ 2 (5.13)

holds. Moreover, we assume �m : D → C and μm as stated in (5.12) and (5.11). We
draw each node in X := {x1, . . . , xn} ⊂ D i.i.d. at random according to μm, which
yields

P

⎛

⎝ sup
‖ f ‖H(K )≤1

‖ f − S̃mX f ‖2L2(D,�D) ≤
C

δ
max

⎧
⎨

⎩σ 2
m,

log(8n)

n

∞∑

j=m
σ 2
j

⎫
⎬

⎭

⎞

⎠ ≥ 1− 3δ,

(5.14)
where C := 3+ 16C2

R + 4
√
2CR < 49.5 is an absolute constant.

Proof We emphasize that the second argument of the max term in (5.14) makes sense
since we know from (2.6) that the sequence of singular numbers is square-summable.
As a technical modification of the density function, which has been presented in [34],
we use the density �m : D → R as stated in (5.12). As above, the family (e j (·)) j∈N
represents the eigenvectors of the non-vanishing eigenvalues of the compact self-
adjoint operatorW�D := Id∗ ◦ Id : H(K )→ H(K ), the sequence (λ j ) j∈N represents

the ordered eigenvalues, and finally η j := λ
−1/2
j e j . Since we assume the separability

of H(K ) and the σ -finiteness of �D we observe equality in (2.6), cf. [11, Thm. 4.27],
and thus, we easily see that

∫
D �m(x) �D(dx) = 1. Let us define a family of kernels
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K̃m(x, y), indexed by m ∈ N, via

K̃m(x, y) := K (x, y)√
�m(x)�m(y)

, (5.15)

and a new measure μm as stated in (5.11) with the corresponding weighted space
L2(D, μm). Clearly, K̃m(·, ·) is a positive type function. As a consequence of

|K (x, y)| ≤ √
K (x, x) ·√K (y, y), x, y ∈ D,

we obtain by an elementary calculation that with a constant cm > 0 it holds

|K (x, y)| ≤ cm
√

�m(x) ·√�m(y). (5.16)

Indeed,

K (x, x) =
m−1∑

j=1
|e j (x)|2 +

⎛

⎝K (x, x)−
m−1∑

j=1
|e j (x)|2

⎞

⎠

=
m−1∑

j=1
λ j |η j (x)|2 +

⎛

⎝
∞∑

j=m
λ j

⎞

⎠ ·
⎛

⎝
∞∑

j=m
λ j

⎞

⎠
−1⎛

⎝K (x, x)−
m−1∑

j=1
|e j (x)|2

⎞

⎠

≤ cm�m(x)

with

cm := 2max

⎧
⎨

⎩λ1(m − 1),
∞∑

j=m
λ j

⎫
⎬

⎭ .

Hence, if �m(x) or �m(y) happens to be zero, thenwemay put K̃m(x, y) := 0 in (5.15).
In any case, due to (5.16), the kernel K̃m(x, y) fits the requirements in Theorem 5.5.
In fact, in Theorem 5.5 it is necessary that Ñ (m) and T̃ (m) are well defined and
that we have access to function values in order to create the matrices L̃m and take
the function values f (xk), k = 1, . . . , n. Let us discuss the quantities Ñ (m) and
T̃ (m) appearing in Theorem 5.5 for this new kernel K̃m(x, y) first. It is clear, that
the embedding Id : H(K̃m) → L2(D, μm) shares the same spectral properties as
the original embedding. Note that a function g belongs to H(K̃m) if and only if
g(·) = f (·)/√�m(·), f ∈ H(K ), where we always put 0/0 := 0. Clearly, as a
consequence of (5.16) and (5.17) below (together with a density argument), we have
that�(x) = 0 implies f (x) = 0 for all f ∈ H(K ).Moreover, whenever ‖ f ‖H(K ) ≤ 1,
the function g := f /

√
�m satisfies ‖g‖H(K̃m) ≤ 1. Indeed, let

f (·) =
N∑

i=1
αi K (·, xi ). (5.17)
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Then, 〈 f , f 〉H(K ) =∑N
j=1

∑N
i=1 αiα j K (x j , xi ). We have

g = f (·)/√�m(·) =
N∑

i=1
αi K

(
·, xi

)
/
√

�m(·)

=
N∑

i=1
αi

√
�m

(
xi
) K (·, xi )
√

�m(·)√�m(xi )
.

This implies

〈g, g〉H(K̃m ) =
N∑

j=1

N∑

i=1
αiα j

√
�m(xi )

√
�m(x j )

K (x j , xi )√
�m(x j )

√
�m(xi )

= 〈 f , f 〉H(K ).

What remains is a standard density argument. The singular numbers of the new embed-
ding remain the same. The singular vectors ẽk(·) and η̃k(·) are slightly different. They
are the original ones divided by

√
�m(·). In fact,

Ñ (m) := sup
x∈D

m−1∑

k=1
|ηk(x)|2/�m(x) ≤ 2(m − 1) sup

x∈D

m−1∑

k=1
|ηk(x)|2/

m−1∑

j=1
|η j (x)|2

= 2(m − 1).

Furthermore, taking (2.5) into account, we find

T̃ (m) := sup
x∈D

∞∑

k=m
|ek(x)|2/�m(x)

≤ 2

⎛

⎝
∞∑

j=m
λ j

⎞

⎠ sup
x∈D

∞∑

k=m
|ek(x)|2/

⎛

⎝K (x, x)−
m−1∑

j=1
|e j (x)|2

⎞

⎠

≤ 2

⎛

⎝
∞∑

j=m
λ j

⎞

⎠ sup
x∈D

∞∑

k=m
|ek(x)|2/

∞∑

j=m
|e j (x)|2

≤ 2
∞∑

j=m
λ j = 2

∞∑

j=m
σ 2
j .

(5.18)

In order to define the new reconstruction operator S̃mX we need to create the matrices
L̃m using the new function system η̃k and take function evaluations f (x1), . . . , f (xn).
In more detail, we solve the least squares problem

123



Constructive Approximation (2021) 54:295–352 319

L̃m c̃ = g, where L̃m :=
(
η̃ j (xk)

)n,m−1
k=1, j=1 , g :=

(
f (x1)√
�m(x1)

, . . . ,
f (xn)√
�m(xn)

)�
,

and the vector c̃ contains the coefficients of the least squares approximation SmX (g) =∑m−1
j=1 c̃ j η̃ j of g := f /

√
�m . This leads to Algorithm 2. Consequently, Theorem 5.5

allows to estimate the error

‖g − SmX (g)‖L2(D,μm ) = ‖ f −√�m SmX (g)‖L2(D,�D) = ‖ f − S̃mX f ‖L2(D,�D),

where S̃mX f := √�m SmX (g) =∑m−1
j=1 c̃ jη j (x).

We stress that S̃mX f and the direct computation of SmX f using Lm c = f may not
coincide since both are based on different least squares problems in general.

It remains to note that for fixed n and m as in (5.13) we have for X = (x1, . . . , xn)
the relation

sup
‖ f ‖H(K )≤1

‖ f − S̃mX ( f )‖2L2(D,�D) = sup
‖ f ‖H(K )≤1

‖ f /√�m − SmX
(
f /
√

�m
) ‖2L2(D,μm )

≤ sup
‖g‖H(K̃m)≤1

‖g − SmX (g)‖2L2(D,μm ).

Applying a slight modification of Corollary 5.6, i.e., setting

t := 1

δ

(
3σ 2

m + 8C2
R
log(8n)

n
T̃ (m)+ 4CR σm

√
log(8n)

n
T̃ (m)

)

in the proof, yields

P

⎛

⎝ sup
‖ f ‖H(K )≤1

‖ f − S̃mX f ‖2L2(D,�D) ≤
C

δ
max

⎛

⎝σ 2
m,

log(8n)

n

∞∑

j=m
σ 2
j

⎞

⎠

⎞

⎠ ≥ 1− 3δ,

where we took (5.18) into account and C = 3+ 16C2
R + 4

√
2CR is as stated above. ��

Remark 5.9 (i) In order to prove the theorem in full generality for separable RKHS,
we use a technical modification of the density function presented in [34]. Clearly,
as a consequence of (2.5) the function �m is positive and defined pointwise for
any x ∈ D. Moreover, it can be computed precisely from the knowledge of
K (x, x) and the first m − 1 eigenvalues and corresponding eigenvectors. The
pointwise defined density function will be an essential ingredient for drawing
the nodes in X, on the one hand, and performing a reweighted least squares
fit on the other hand. Note that also point evaluations of the density function
are used in the algorithm. To circumvent the lacking injectivity we introduce a
new reproducing kernel Hilbert space H(K̃m) built upon the modified density
function. To this situation Corollary 5.6 is applied, and we obtain Theorem 5.8,
which also improves the results in [34] by determining explicit constants. In turn,
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we show, that the original algorithm proposed by [34] also works in this more
general situation since both densities are equal almost everywhere.

(ii) The situation of a non-separable RKHS H(K ) is not considered in Theorem 5.8.
It has been considered in the subsequent paper [44] by Moeller and T. Ullrich.
Here the sampling density has to be modified even further to get a bound

sup
‖ f ‖H(K )≤1

‖ f − S̃mX f ‖2L2(D,�D) ≤ c1 max

⎧
⎨

⎩
1

n
,
1

m

∑

k≥m/2

σ 2
k

⎫
⎬

⎭

with probability larger than 1 − c2n1−r and m := �n/(c3r log(n))�. With this
method we cannot get beyond the rate n−1/2 in case of non-separable Hilbert
spaces H(K ).

(iii) While this paperwas under review, the statement “recoverywith high probability”
has been refined by Ullrich [66] and, independently, byMoeller and Ullrich [44].
In fact, the failure probability of the above recovery can be controlled by n−r (and
is therefore decaying polynomially in the number of samples) by only paying a
multiplicative constant r in the bounds, see also (ii).

(iv) As a further follow up, Nagel et al. [45] developed a subsampling technique to
select a subset J ⊂ X of O(m) nodes out of the randomly chosen node set X
such that the corresponding least squares recovery operator S̃mJ gives

sup
‖ f ‖H(K )≤1

‖ f − S̃mJ f ‖2L2(D,�D) ≤
C logm

m

∞∑

k=cm
σ 2
k

with precisely determined universal constants C, c > 0.

Example 5.10 (i) If we choose m � n/ log(n) according to (5.13) and assume a
polynomial decay of the singular values, i.e., σm � m−s logα m with s > 1/2
(which is, for instance, the case for Sobolev embeddings into L2), we find

sup
‖ f ‖H(Ks )≤1

‖ f − S̃mX f ‖L2(D) � m−s logα m � n−s logα+s n.

Accordingly, we observe the best possible main rate−s with respect to the used
number of samples n, i.e., we achieve optimality up to logarithmic factors. For a
more specific example, see (ii) below and Sect. 8.

(ii) Let us reconsider the setting from Example 5.7. Theorem 5.8 provides a highly
improved sampling strategy compared to the one discussed in Example 5.7.
Certainly, we change the underlying distribution for the random selection of
the sampling nodes and we incorporate weights in the least squares algorithm,
cf. Algorithm 2. However, this allows for a crucial improvement of the relation
of the maximal polynomial degree m and the number n of sampling nodes to
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m ∼ n/ log(n), which leads to estimates

sup
‖ f ‖H(Ks )≤1

‖ f − S̃mX f ‖L2(D) � max

⎧
⎨

⎩σm,

√√√√m−1
∞∑

k=m
σ 2
k

⎫
⎬

⎭ � m−s �
(
log(n)

n

)s

that are optimal in m and—up to logarithmic factors—even optimal in n. Here
s > 1/2 is admitted. Compared to the results in Example 5.7, we obtain the same
rates of convergence with respect to the polynomial degree m and significantly
improved rates of convergence with respect to the number n of used sampling
values. Note that instead of the density given in (5.12) wemay use the Chebyshev
measure given by the density �(x) = (π

√
1− x2)−1 on D = [−1, 1] since the

L2-normalized Legendre polynomials Pk(x) are dominated by C(1 − x2)−1/4
for all k ∈ N0, see [57]. Hence, in contrast to (5.12), this sampling measure is
universal for all m.

In comparison with the results in Example 5.7, we obtain a significantly better rate
of convergence with respect to the number n of used sampling values. Applying the
recent result mentioned in Remark 5.9(iv) we obtain for the subsampled weighted
least squares operator the worst-case error bound

sup
‖ f ‖H(Ks )≤1

‖ f − S̃mJ f ‖L2(D) �
√
log(n)

ns
.

Note that S̃mJ f uses n ∈ O(m) many samples of f . ��

5.4 The Power of Standard Information and Tractability

The approximation framework studied in this paper has been first considered by
Wasilkowski, Woźniakowski in 2001, see [67]. After that many authors dealt with
the problem on how well can we approximate functions from RKHS by only using
function values. For further historical remarks see [51] and [45, Rem. 1].

In this context, sampling values are called standard information abbreviated by
�std. In contrast to this, one may also allow linear information (abbreviated by �all),
which means that the approximation is computed from a number of information about
the function coming from arbitrary linear functionals. Clearly, �std is a subset of �all

due to (2.1). It is well known that the best possible worst-case error with respect to m
information coming from �all can be achieved by approximating functions by means
of their corresponding exact Fourier partial sum within span{η j : j = 1, . . . ,m}.
Then, the corresponding worst-case error is determined by σm+1, see [48, Cor. 4.12],
which establishes a natural lower bound on the worst-case error with respect to �std.
One crucial question in IBC is to determine whether or not standard information �std

is as powerful as linear information �all. In this context, “power” is usually identified
with the order of convergence of the considered error with respect to the number of
used information.
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FromTheorem 5.8, see also Example 5.10(i), we obtain that the polynomial order of
convergence for standard information is the same as for linear information if the kernel
has a finite trace (i.e., Id : H(K )→ L2(D, �D) is a Hilbert–Schmidt operator). This
problemhas been addressed in [38], [50,OpenProblem1] and [51,OpenProblem126].
In [34], this observation has been already made for the situation that the embedding
operator is injective (such that the eigenvectors of the strictly positive eigenvalues form
an orthonormal basis in H(K ), see Remark 2.1). The contribution of Theorem 5.8 is
to get explicitly determined constants, on the one hand. On the other hand, it shows
that separability of the RKHS and a finite trace condition is essentially enough for this
purpose. Note that the finite trace condition can not be avoided, see [29].

We will further discuss some consequences for the tractability of this problem. For
the necessary notions and definitions from the field of information-based complexity,
see [48,49,51].We comment on polynomial tractability with respect to linear informa-
tion �all and standard information �std. Let us consider the family of approximation
problems

APPd : H(Kd) → L2(Dd , �Dd ), d ∈ N,

where Kd : Dd×Dd → C is a family of reproducing kernels. In [48, Thm. 5.1] strong
polynomial tractability of the family {APPd} with respect to �all is characterized as
follows: There is a τ > 0 such that

C := sup
d

⎛

⎝
∞∑

j=1
σ τ
j,d

⎞

⎠
1/τ

<∞, (5.19)

where σ j,d , j = 1, . . ., are the singular values belonging to APPd for fixed d. From
our analysis in Theorem 5.8, we directly obtain a sufficient condition for polynomial
tractability with respect to�std.Without going into detail, we denote by nwor(ε, d;�),
� ∈ {�std,�all}, the minimal number n of information out of the specified class �

any algorithm requires in order to achieve a worst-case error ε for the d-dimensional
approximation problem. Certainly, nwor(ε, d;�) usually depends on ε, the dimen-
sion d and �. At this point, we would like to mention that polynomial tractability
means that nwor(ε, d;�) ≤ C ε−p dq ,C, p, q ≥ 0, i.e., nwor(ε, d;�) can be bounded
by terms that are both polynomial in d and polynomial in ε. Furthermore, the problem
APPd is called strongly polynomial tractable in the case that the estimate on nwor

holds with q = 0.

Theorem 5.11 The family {APPd} is strongly polynomially tractable with respect to
�std

(i) if there exists τ ≤ 2 such that (5.19) holds true or
(ii) if {APPd} is strongly polynomially tractable with respect to �all with exponent

0 < pall < 2, i.e., nwor(ε, d;�all) ≤ Call ε
−pall .
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More precisely, there are constants Cstd, δ > 0 only depending on (C, τ ) or (Call, pall)
such that

nwor
(
ε, d;�std

)
≤ Cstd ε−pstd log(1/ε)δ

with pstd = τ in case (i) and pstd = pall in case (ii).

Proof Note that (ii) implies (i) with τ = 2. Furthermore, Theorem 5.8 implies strong
polynomial tractability if (i) is assumed. In case (i) we may use Stechkin’s lemma [18,
Lem. 7.8]which gives that

∑∞
j=m σ 2

j,d ≤ C2m−2/τ+1 for all d. This gives the exponent
pstd = τ and an additional log due to (5.13). If (ii) is assumed then

∑∞
j=m σ 2

j,d ≤
C ′m−2/pall+1 for all d. ��

Theorem 5.11 is stronger than [51, Thm. 26.20] in two aspects. As pointed out
in the proof, assumption (i) is weaker than (ii), which is essentially the one in [51,
Thm. 26.20]. Furthermore, our statement is stronger since pstd equals pall. The authors
in [51, 26.6.1] showed that pstd = pall + 1

2 [pall]2 and proposed that “the lack of the
exact exponent represents another major challenge” and formulated Open Problem
127. Our considerations prove that the dependence on ε of the tractability estimates
on nwor(ε, d;�all) and nwor(ε, d;�std) coincide up to logarithmic factors. Similar
assertions hold true when strong polynomial tractability is replaced by polynomial
tractability. The modifications are straightforward.

Example 5.12 Let us consider an example from [37,55], namely, if s1 ≤ s2 ≤ · · · ≤ sd ,
then

H (Kd) := H �smix

(
Td

)
= Hs1(T)⊗ · · · ⊗ Hsd (T)

and APPd : H �smix(T
d) → L2(T

d). Here T = [0, 1], where opposite points are
identified, and Hs(T) is normed by

‖ f ‖2Hs :=
∑

k∈Z
| f̂k |2 ws(k)

2

withws(k) = max{1, (2π)s |k|s}, see also Sect. 8. The smoothness vector �s is supposed
to grow in j , e.g., for β > 0 we have

s j ≥ β log2( j + 1), j ∈ N. (5.20)

It has been shown in [55], see also [37], that the growth condition (5.20) is necessary
and sufficient for polynomial tractability with respect to �all. Taking Theorem 5.11
into account, we easily check that (5.19) is satisfied with τ ≤ 2 whenever β · τ > 1,
which means that β > 1/2 is sufficient for strong polynomial tractability. In this case
we obtain for any 1/β < τ ≤ 2 that

nwor
(
ε, d;�std

)
≤ Cτ ε−τ .
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6 Recovery of Individual Functions

In this section, we are interested in the reconstruction of an individual function f
(taken from the unit ball of H(K )) from samples at random nodes. In the IBC com-
munity, see [48,49,51], such a scenario is called “randomized setting”, which refers
to the occurrence of a random element in the algorithm (Monte Carlo). The following
investigations improve on the results in [68] from different points of view. On the one
hand, it is not necessary to choose sampling nodes according to a whole bunch of
probability density functions according to Remark 6.3. On the other hand, assuming
a bounded kernel turns out to be sufficient to obtain the rate of convergence match-
ing that of (σk)k∈N when randomly choosing sampling nodes according to the given
probability measure �D due to Corollary 6.2.

However, the subsequent analysis is related to the one in [13,14]. With similar
techniques as above we will get an estimate for the conditional mean of the individual
error ‖ f − SmX f ‖L2(D,�D).

Theorem 6.1 Let �D be a probability measure on D and H(K ) denote a reproducing
kernel Hilbert which is compactly embedded into the space L2(D, �D). Let m, n ∈ N,
m ≥ 2, be chosen such that (5.1) holds for some 0 < δ < 1. Let further f be a fixed
function such that ‖ f ‖H(K ) ≤ 1. Drawing each sampling node inX = {x1, . . . , xn} ⊂
D i.i.d. at random according to �D, we have for the conditional expectation of the
individual error

E
(
‖ f − SmX f ‖2L2(D,�D)

∣∣∣‖Hm − Im‖ ≤ 1/2
)
≤ 1

1− δ

(
σ 2
m +

Cδ

log n
σ 2
m

)
≤ 1.1

1− δ
σ 2
m,

where 0 < Cδ ≤ 0.06 depends on δ.

Proof This time we follow the proof of [13, Thm. 2] and obtain

‖ f − SmX f ‖2L2(D,�D) = ‖ f − Pm−1 f ‖2L2(D,�D) + ‖Pm−1 f − SmX f ‖2L2(D,�D)

≤ σ 2
m + ‖SmX (Pm−1 f − f ) ‖2L2(D,�D)

≤ σ 2
m + ‖

(
L∗m Lm

)−1 ‖2 ‖L∗m
(
g(x1), . . . , g(xn)

)� ‖22

≤ σ 2
m +

4

n2

m−1∑

k=1

∣∣∣∣∣∣

n∑

j=1
ηk(x j )g(x j )

∣∣∣∣∣∣

2

= σ 2
m +

4

n2

m−1∑

k=1

n∑

j=1

n∑

i=1
g(xi )g(x j )ηk(xi )ηk(x j ),

where g = f − Pm−1 f . Averaging on both sides yields

∫

‖Hm−Im‖≤1/2
‖ f − SmX f ‖2L2(D,�D) �n

D(dx)
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≤ σ 2
m +

4

n2

m−1∑

k=1

n∑

j=1

n∑

i=1
E
(
g(xi )g(x j )ηk(xi )ηk(x j )

)

= σ 2
m +

4

n

m−1∑

k=1

∫

D
|g(x)|2|ηk(x)|2 �D(dx)

+ 4n(n − 1)

n2

m−1∑

k=1

∣∣∣∣
∫

D
g(x)ηk(x) �D(dx)

∣∣∣∣
2

.

Note that the last summand on the right-hand side vanishes since g is orthogonal to
ηk , k = 1, . . . ,m − 1. This gives

∫

‖Hm−Im‖≤1/2
‖ f − SmX f ‖2L2(D,�D) �n

D(dx)

≤ σ 2
m +

4N (m)

n
‖ f − Pm−1 f ‖2L2(D,�D)

≤ σ 2
m +

Cδ

log(2n)
σ 2
m

by taking 4N (m)/n ≤ Cδ/ log(2n) into account, see (5.1), and there exists a Cδ ≤
4

48
√
2
≤ 0.06. ��

Analogous to the proof of Corollary 5.6, one shows the following result.

Corollary 6.2 Under the same assumptions as in Theorem 6.1, it holds for fixed δ > 0

P

(
‖ f − SmX f ‖2L2(D,�D) ≤

1

δ
σ 2
m

(
1+ 0.06

log n

))
≥ 1− 3δ.

Remark 6.3 (i) Following [16] we may relax the condition (5.1) to

m :=
⎢⎢⎢⎣ n

48
(√

2 log(2n)− log δ
)

⎥⎥⎥⎦+ 1,

when sampling with respect to the new measure (importance sampling)

μm(A) :=
∫

A
�m(x) �D(dx),

where �m is given by

�m(x) := 1

m − 1

m−1∑

k=1
|ηk(x)|2.
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Then, the corresponding approximation of the function f is based on the solution
of a weighted least squares problem similar to the one discussed in Sect. 5.3. Note
that we do not have to assume the square summability of the singular numbers
of the embedding Id : H(K )→ L2(K , �D) here.

(ii) The result of Theorem 6.1 advanced with (i) directly leads to estimates on the
power of standard information, see Sect. 5.4, in the so-called randomized setting,
cf. [51]. Roughly speaking, n sampling values (standard information) in the
randomized setting are at least as powerful as cn/ log n linear information, i.e.,
the supremum over all f ∈ H(K ) of the expected approximation error that is
caused by the weighted least squares regression is almost as good as the best
possible worst-case approximation error caused by the projection. The recent
work [40] treats that topic in full detail. Moreover, in [39] the authors present
improvements on the power of standard information in the so-called average
case setting. Both paper investigate the weighted least squares regression given
in Algorithm 2 using the techniques that yielded the results of this section.

(iii) Togetherwith theWeaver subsampling technique in [45], see also [47], we obtain

eran
(
n, d;�std

)

≤ C min
{√

log n · edet
(
c1n, d;�all

)
, edet

(
c2n/ log n, d;�all

)}
,

with three universal constants C, c1, c2 > 0, where we use the notation from
[48,49,51]. This is a further significant improvement of the results in [40] in the
situation above if the sequence (σk)k∈N decays “faster” than k−1/2.

While this paper was under review, it was shown by Cohen and Dolbeault [15]
that even eran(n, d;�std) ≤ Cedet(cn, d;�all) holds true. Note that this result is also
based on a weighted least squares method and [47].

7 Optimal Weights for Numerical Integration

Weconsider the problem of approximating the integral with respect toμD of a function
f by the cubature rule Qm

X

IntμD f :=
∫

D
f dμD ≈ Qm

X f :=
n∑

j=1
q j f

(
x j
)
= q� f ,

where the weights q j are determined by X = {x1, . . . , xn}. Indeed, assuming Lm of
full column rank and following Oettershagen [52], we set

q := Lm (L∗m Lm)−1 b ∈ Cn,

where b := (
bk
)m−1
k=1 ∈ Cm−1 with bk :=

∫

D
ηk dμD . (7.1)
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In fact, the cubature rule Qm
X is the implicit integration of the least squares solution

SmX f :=∑m−1
k=1 ckηk , cf. (3.2), c := (L∗m Lm)−1 L∗m f , since

Qm
X f =

n∑

j=1
q j f

(
x j
)
=b�

(
L∗m Lm

)−1 L∗m f =
m−1∑

k=1
ck

∫

D
ηk dμD =

∫

D
SmX f dμD .

Using this, we give upper bounds on the integration error caused by Qm
X .

Theorem 7.1 LetμD be ameasure on D such that L1(D, �D) ↪→ L1(D, μD). Denote
with

C�,μ := ‖ Id : L1 (D, �D) → L1(D, μD)‖ <∞

the norm of the embedding. Under the same assumptions as in Theorem 5.5, it holds
for fixed δ > 0

P

(
sup

‖ f ‖H(K )≤1

∣∣∣∣
∫

D
f dμD−Qm

X f

∣∣∣∣
2

≤ 29C2
�,μ

δ
max

{
σ 2
m,

log(8n)

n
T (m)

})
≥1−3δ.

Proof Using the embedding relation of the different L1-spaces we have

∣∣∣∣
∫

D
f dμD − Qm

X f

∣∣∣∣ =
∣∣∣∣
∫

D
f − SmX f dμD

∣∣∣∣ ≤
∫

D

∣∣∣ f − SmX f
∣∣∣ dμD

≤ C�,μ

∫

D

∣∣∣ f − SmX f
∣∣∣ d�D

≤ C�,μ ‖ f − Sm f ‖L2(D,�D). (7.2)

We conclude the proof using Corollary 5.6. ��
In Theorem 7.1, we assume that the kernel is bounded, i.e., supx∈D K (x, x) < ∞.

However, as we will see below it is enough to assume
∫
D K (x, x) �D(dx) < ∞ and

that �D is a finite measure. We define the following modified (reweighted) cubature
formula

Q̃m
X f :=

∫

D
S̃mX f (x)�D(x) = q̃� f

=
(
D�m L̃m

(
L̃∗mL̃m

)−1
b
)�

f = b�
(
L̃∗mL̃m

)−1
L̃∗mD�m f ,

where f is the vector of function samples
(
f (x1), . . . , f (xn)

)
, the vector b is given

as in (7.1), L̃m as in Algorithm 2, and

D�m = diag

(
1/
√

�m(x1), . . . , 1/
√

�m(xn)
)

.
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Here, �m(·) is given by (5.12) above and depends on the spectral properties of the
kernel. Note that we simply put the respective entry to 0 in D�m if �m(xn) happens to
be zero.

Theorem 7.2 If �D denotes a finite measure and
∫
D K (x, x) �D(dx) <∞, then

sup
‖ f ‖H(K )≤1

∣∣∣∣
∫

D
f (x) �D(dx)− Q̃m

X( f )

∣∣∣∣
2

≤ 50

δ
�D(D)max

⎧
⎨

⎩σ 2
m,

log(8n)

n

∞∑

j=m
σ 2
j

⎫
⎬

⎭
(7.3)

holds with probability larger than 1−3δ if the n nodes inX are drawn i.i.d. according
to (5.11) above.

Proof Using the bound on the L2(D, �D) error from Theorem 5.8 together with (7.2)
above, we obtain (7.3) with high probability if the nodes X are sampled according to
the measure (5.11). ��
Remark 7.3 The previous result essentially improves on the bound in [2, Thm. 1]
if the singular values decay polynomially. Note that we assume that �D is a finite
measure and

∫
D K (x, x) �D(dx) < ∞. In [2, Thm. 1], a logarithmic oversampling is

not required; however, the error bounds are worse by a factor n, which is substantial,
e.g., in the case of the Sobolev kernel, see Sect. 8.2.

8 Hyperbolic Cross-Fourier Regression

In the sequel, we are interested in the recovery of functions from periodic Sobolev
spaces. That is, we consider functions on the torus Td � [0, 1)d where opposite
points are identified. Note that the unit cube [0, 1]d is preferred here since it has
Lebesgue measure 1 and is therefore a probability space. We could have also worked
with [0, 2π ]d and the Lebesgue measure (which can be made a probability measure
by a d-dependent rescaling). The general error bounds for the recovery error given
below (in terms of (σ j ) j∈N like in Theorem 8.2) are not affected by this rescaling
since the sequence (σ j ) j∈N then also changes. However, some of the preasymptotic
estimates for the (σ j ) j∈N are sensitive with respect to a different domain as the results
in Krieg [33] point out.

For α ∈ N we define the space Hα
mix(T

d) as the Hilbert space with the inner
product

〈 f , g〉Hα,∗
mix
:=

∑

j∈{0,α}d
〈D(j) f , D(j)g〉L2(Td ). (8.1)

Defining the weight

wα,∗(k) = (1+ (2π |k|)2α)1/2, k ∈ Z, (8.2)

and the univariate kernel function

K 1
α,∗(x, y) :=

∑

k∈Z

exp(2π ik(y − x))

wα,∗(k)2
, x, y ∈ T,
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directly leads to

Kd
α,∗(x, y) := K 1

α,∗(x1, y1)⊗ · · · ⊗ K 1
α,∗(xd , yd), x, y ∈ Td , (8.3)

which is a reproducing kernel for Hα
mix(T

d). The Fourier series representation of
Kd

α,∗(x, y) is specified by

Kd
α,∗(x, y) :=

∑

k∈Zd

exp(2π i k · (y− x))
wα,∗(k1)2 · · ·wα,∗(kd)2

=
∑

k∈Zd

exp(2π i k · (y− x))
∏d

j=1
(
1+ (2π |k j |)2α

) , x, y ∈ Td .

In particular, for any f ∈ Hα
mix(T

d) we have

f (x) = 〈 f , Kd
α,∗(x, ·)〉Hα,∗

mix
.

The kernel defined in (8.3) associated with the inner product (8.1) can be extended to
the case of fractional smoothness s > 0 replacing α by s in (8.2)–(8.3) which in turn
leads to the inner product

〈 f , g〉Hs,∗
mix
:=

∑

k∈Zd

f̂k ĝk

d∏

j=1
ws,∗(k j )2

and the corresponding norm

‖ f ‖∗ := ‖ f ‖Hs,∗
mix
:=

⎛

⎝
∑

k∈Zd

| f̂k|2
d∏

j=1
ws,∗(k j )2

⎞

⎠
1/2

.

The (ordered) sequence (λ∗j )∞j=1 of eigenvalues of the correspondingmappingW =
Id∗ ◦ Id, where Id : H(

Kd
s,∗
) → L2(T

d) is the non-increasing rearrangement of the
numbers

⎧
⎨

⎩λ∗k :=
d∏

j=1
ws,∗(k j )2 =

d∏

j=1
(1+ (2π |k j |)2s)−1 : k ∈ Zd

⎫
⎬

⎭ .

The corresponding orthonormal system (e∗j )∞j=1 in H
(
Kd
s,∗
)
is given by

⎧
⎨

⎩ek(x) := exp(2π i k · x)
d∏

j=1
(1+ (2π |k j |)2s)−1/2 : k ∈ Zd

⎫
⎬

⎭ .
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Consequently, the orthonormal system (η∗j )∞j=1 in L2(T
d) is the properly ordered

classical Fourier system ηk(x) = exp(2π i k · x). This directly implies the following
behavior of the quantity N (m) defined in (2.7). It holds

N (m) = m − 1 and T∗(m) =
∞∑

j=m
λ∗j =

∞∑

j=m
(σ ∗j )2.

Remark 8.1 It is possible to define a smoothness vector s = (s1, . . . , sd) to emphasize
different smoothness in different coordinate directions. Such kernels will be denoted
with Ks(x, y). In [37], the authors establish preasymptotic error bounds which can be
used for the least squares analysis as we will see below.

Recent estimates in [35] allow for determining uniform recovery guarantees with
preasymptotic error bounds. For this study, we need to change the kernel weight to
a less natural, but for preasymptotic considerations more convenient structure of the
weight

ws,#(k) = (1+ 2π |k|)s, k ∈ Z, (8.4)

s > 0. As a consequence, the univariate kernel

K 1
s,#(x, y) :=

∑

k∈Z

exp(2π ik(y − x))

ws,#(k)2
, x, y ∈ T,

as well as the tensor product kernel

Kd
s,#(x, y) :=

∑

k∈Zd

exp(2π i k · (y− x))
∏d

j=1(1+ 2π |k j |)s
, x, y ∈ Td ,

changes and has modified Fourier series expansions. Of course, the weightws,# yields
an equivalent norm

‖ f ‖# := ‖ f ‖Hs,#
mix(T

d )
=
⎛

⎝
∑

k∈Zd

| f̂k|2
d∏

j=1

(
1+ 2π |k j |

)2s
⎞

⎠
1/2

in the space Hs
mix(T

d). However, from a complexity theoretic point of view, it is
worth noting the difference of both approaches. The respective unit balls belonging
to both norms differ significantly since the equivalence constants for both norms
may depend badly on d. Moreover, we stress on the fact that the non-increasing
rearrangements of the eigenvalues (λ#j )

∞
j=1 of the mapping W = Id∗ ◦ Id, where

Id : H(
Kd
s,#

)→ L2(T
d), differs from (λ∗j )∞j=1 since the associated mappings j → k

do not coincide. Accordingly, the sampling operators Sm,∗
X and Sm,#

X are defined with
respect to the different non-increasing rearrangements of the basis functions ηk, and
thus, may also differ.
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Despite the fact that there are many more different equivalent norms for Hs
mix(T

d),
we will use only the mentioned ones in order to apply advantageous known upper
bounds on the eigenvalues λ∗j and λ#j . In the regime of interest here, the recovery of
periodic functions with mixed smoothness, we even have preasymptotic bounds for
these eigenvalues/singular values available (see [33,35,36]). Note that theoretically
everything is known about the singular values σ�

m , � ∈ {∗, #}, since the behavior of
this sequence is determined by the non-increasing rearrangement of the reciprocals
of the tensor product weights

∏d
j=1 ws,�(k j ), cf. (8.2) and (8.4). The analysis of the

rearrangement of multi-indexed sequences has been revealed that the upper bound

σ #
m ≤ min

(
1,

16

3m

) s
1+log2 d ≤

(
16

3m

) s
1+log2 d

(8.5)

holds for all m ∈ N, cf. [35, Thm. 4.1].
One may argue that the kernel Kd

s,# is less “natural” than the kernel Kd
s,∗. For this

purpose we use the observation by Krieg [33], which yields the preasymptotic bound

σ ∗m ≤
(
1.26

m

) 1.83·s
4+log2(d)

in the range 2 ≤ m ≤ 3d , where the exponent scales also linearly in s.

8.1 Uniform Recovery of Functions from Hs
mix(T

d)

First, we consider the asymptotic behavior of the sampling error caused by the pre-
sented least squares approach. Since the asymptotic bounds on λ∗j and λ#j differ only
by constants that we do not specify explicitly, we study both cases collectively. For
� ∈ {∗, #}, the asymptotic behavior of the sequence (σ�

j )∞j=1 for the embedding

Id : H(Kd
s,�) → L2(T

d) has been known for a long time, cf. [18, Chapt. 4] and the

references therein. There is a constant C̃�
d which depends exponentially on d such

that
σ�
m ≤ C̃�

d m−s(logm)s(d−1), m ∈ N. (8.6)

As a direct consequence of Corollary 5.6, we determine explicit error bounds as
well as the asymptotic error behavior (8.7), where the latter holds for all equivalent
norms in Hs

mix(T
d). Please note that the constants C�

d depend heavily on the specific
norm. Moreover, a statement similar to (8.7) can be also obtained with the technique
in [34].

Theorem 8.2 Let d ∈ N, s > 1/2, δ > 0 and n ∈ N be given. Choose m ∈ N, m ≥ 2,

m ≤
⌊

n

48(
√
2 log(2n)− log δ)

⌋
+ 1
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and draw the n sampling nodes inX uniformly i.i.d. at random inTd . Then, we achieve

P

(
sup

‖ f ‖�≤1
‖ f − Sm,�

X f ‖2L2(Td )
≤ 29

δ
max

{(
σ�
m

)2
,
log(8n)

n

∞∑

k=m
(σ�

k )2

})

≥ 1− 3δ.

In particular, there is a constant C�
d > 0 depending on d such that for 0 < δ < 1/3

it holds

P

(
sup

‖ f ‖�≤1
‖ f − Sm,�

X f ‖L2(Td ) ≤
C�
d√
δ
n−s(log n)sd

)
≥ 1− 3δ. (8.7)

Proof The result follows from Corollary 5.6 and our specific situation where B = 1,
N (m) = m − 1 and T�(m) =∑∞

k=m(σ�
k )2. We estimate T�(m) using [12]

T�(m) := sup
x∈D

∞∑

k=m
|ek(x)|2 =

∞∑

k=m
(σ�

k )2 � m−2(s−1/2)(logm)2(d−1)s � m(σ�
m )2.

Hence, the right-hand side in (5.9) can be bounded from above by a constant times
σ�
m , which behaves as n−s(log n)sd . ��
In addition, we investigate the preasymptotic error behavior using the aforemen-

tioned estimates (8.5) on the singular values σ #
m that belongs to Id : H(

Kd
s,#

) →
L2(T

d). Since the upper bounds have been proven only for this specific type of map-
pings, the following results, in particular the explicitly determined constants, may only
hold for RKHS with weight functions ws(k) ≥ ∏d

j=1(1 + |k j |)s , which is fulfilled
for ws,#.

Theorem 8.3 Let d ∈ N, s > (1+ log2 d)/2, 0 < δ < 1, and n ∈ N such that

m :=
⌊

n

48(
√
2 log(2n)− log δ)

⌋
+ 1 (8.8)

is at least 2. Drawing the n sampling nodes in X uniformly i.i.d. at random in Td

yields

E

(
sup

‖ f ‖#≤1
‖ f − Sm,#

X f ‖2L2(Td )

∣∣∣‖Hm,# − Im‖ ≤ 1/2

)

≤ 29

6 (1− δ)

2s

2s − 1− log2 d

(
16

3m

) 2s
1+log2 d

.
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Proof We apply Theorem 5.5 and take into account that we choose

m :=
⌊

n

48(
√
2 log(2n)− log δ)

⌋
+ 1 ≤ n

48
√
2 log(2n)

+ 1

for large enough n. Furthermore, we set c := 16/3, β := 2s/(1+ log2 d) and estimate
T#(m), see (8.5),

T#(m) := sup
x∈D

∞∑

k=m
|ek(x)|2 =

∞∑

k=m

(
σ #
k

)2 ≤ cβ
∞∑

k=m
k−β

≤ cβ

(
m−β + 1

β − 1
m−β+1

)
≤ cβ β

β − 1
m−β+1.

Taking (5.4) into account, we bound

E

(
sup

‖ f ‖#≤1
‖ f − Sm,#

X f ‖2L2(Td )

∣∣∣‖Hm,# − Im‖ ≤ 1/2

)

≤ cβm−β

1− δ

(
3+ 8C2

R
m log(8n)

n

β

β − 1
+ 4CR

√
m log(8n)

n

β

β − 1

)

≤ β cβm−β

(1− δ)(β − 1)

(
3+ 8C2

Rb + 4CR
√
b
)

,

where b := log(8n)

48
√
2 log(2n)

+ log(8n)
n . The term in the brackets is monotonically decreasing

in n. We stress that the last estimates are reasonable for m ≥ 2 and thus, we need at
least n ≥ 464. This choice of n leads to an upper bound of the termwithin the brackets
which is 29/6. Thus, for m ≥ 2, the estimate

E

(
sup

‖ f ‖#≤1
‖ f − Sm,#

X f ‖2L2(Td )

∣∣∣‖Hm,# − Im‖ ≤ 1/2

)
≤ 29β cβm−β

6 (1− δ)(β − 1)

holds and the assertion follows. ��
Similar to Corollary 5.6, we apply Markov’s inequality to get a lower bound on the
success probability of the randomly chosen sampling set.

Corollary 8.4 Under the same assumptions as in Theorem 8.3, it holds

P

(
sup

‖ f ‖#≤1
‖ f − Sm,#

X f ‖2L2(Td )

≤ 29

6 δ

2s

2s − 1− log2 d

(
256(

√
2 log(2n)− log δ)

n

) 2s
1+log2 d

⎞

⎠
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≥ P

(
sup

‖ f ‖#≤1
‖ f − Sm,#

X f ‖2L2(Td )
≤ 29

6 δ

2s

2s − 1− log2 d

(
16

3m

) 2s
1+log2 d

)

≥ 1− 3δ.

Proof We follow the argumentation in the proof of Corollary 5.6 using the inequality

m−1 ≤ 48(
√
2 log(2n)− log δ)

n
.

��
Example 8.5 For s = 5 and d = 16, we would like to fulfill

P

(
sup

‖ f ‖#≤1
‖ f − Sm,#

X f ‖L2(Td ) ≤ 0.1

)
≥ 0.99,

i.e., with δ = 1/300 we choose m := 2 873 smallest possible such that

2900

(
16

3m

)2

≤ 0.01

holds. Clearly, for n such that m − 1 = 2 872 ≤ n
48(
√
2 log(2n)−log δ)

holds, we observe

the desired estimate. We choose the smallest possible n := 3 879 166.

8.2 Numerical Integration of Periodic Functions

In [52, Sec. 4.2], the author discussed the construction of stable cubature weights for
the approximation of the integral

I( f ) :=
∫

Td
f (x) dx ≈ Qm

X f :=
n∑

j=1
q j f (x j )

for functions from periodic Sobolev spaces with dominating mixed smoothness. The
integration nodes X are drawn uniformly and independently at random from Td .
Below, in Corollary 8.6, the cubature rule Qm

X is fixed for the whole class. The result
in [52, Thm. 4.5] bounds the worst-case integration error from above by

�d,s n
−s+1/2(log n)sd−1/2.

Corresponding numerical tests promise better behavior of the integration error, cf.
[52, Rem. 4.6]. Our theoretical results of this section confirm that the optimal main
rate of the presented approach in [52] is n−s , in particular we obtain the upper bound
�d,s n−s(log n)sd for this specific setting. We achieve the following statement on the
worst-case integration error.
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Corollary 8.6 Let d ∈ N, s > 1/2 and 0 < δ < 1/3. We choose n ∈ N such that
m as stated in (8.8) is at least 2. Drawing the n sampling nodes in X uniformly i.i.d.
at random from Td , we put the cubature weight vector q to be the first column of
Lm (L∗m Lm)−1. Then, with probability at least 1− 3δ, we obtain

sup
‖ f ‖�≤1

|I ( f )− Qm
X f | ≤

√
29

δ
max

⎧
⎨

⎩σ�
m ,

√√√√ log(8n)

n

∞∑

k=m
(σ�

k )2

⎫
⎬

⎭ .

In particular, there is a constant C�
d > 0 depending on d such that for 0 < δ < 1/3

it holds with probability 1− 3δ

sup
‖ f ‖�≤1

|I ( f )− Qm
X f | ≤ C�

d√
δ
n−s(log n)sd . (8.9)

Proof We apply Theorem 7.1 with μTd = �Td ≡ 1 followed by (8.6). ��
Remark 8.7 By the same reasoning, the result in Theorem 8.3 transfers almost literally
to the integration problem. In fact, having s > (1 + log2 d)/2 we see a non-trivial
preasymptotic behavior. The above bounds show that this method based on random
points competes with most of the quasi-Monte-Carlo methods studied in the literature,
see [22, pp. 195, 247].

9 Hyperbolic Wavelet Regression

The following scenario of replacing the Fourier system by dyadic wavelets has already
been investigated byBohn [5, Sec. 5.5.2], [6] using piecewise linear prewavelets. Here,
we use orthogonal wavelets and will improve the result in [5] in two directions. First,
we remove a d-dependent log-factor and second, our result holds for the whole class
and not just one individual function, i.e., we control the worst-case error. It is worth
mentioning that we only loose a log-factor which is independent of d compared to the
benchmark result in [21].

Let us start with the necessary definitions sincewe are now in a non-periodic setting.
For s > 0 let us define the space Hs

mix(R
d) as the collection of all functions from

L2(R
d) such that

‖ f ‖Hs
mix(R

d ) =
∥∥∥∥∥

(
d∏

i=1
(1+ |yi |)s

)
F f (y)

∥∥∥∥∥
L2(Rd )

<∞.

Here F denotes the Fourier transform on Rd given by

F f (x) = 1√
2π

d

∫

Rd
f (y) exp(−i y · x) dy, x ∈ Rd.
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It is well known that Hs
mix(R

d) can be characterized using hyperbolic wavelets. Let
(ψ j,k) j∈N0,k∈Z be a univariate orthonormalwavelet system (if j = 0 thenψ0,k denotes
the orthogonal scaling function). Then, we denote with

ψj,k(x) := ψi1,k1(x1) · · ·ψ jd ,kd (xd), x ∈ Rd , j ∈ Nd
0 , k ∈ Zd ,

the corresponding hyperbolic wavelet basis in L2(R
d). For our analysis we need that

the univariate wavelet is a compactly supported wavelet, which means that ψ j,k is
supported “near” the interval [k2− j , (k + 1)2− j ]. If the wavelet basis has sufficient
smoothness and vanishing moments, then f ∈ Hs

mix(R
d) holds if and only if

⎛

⎜⎝
∑

j∈Nd
0

∑

k∈Zd

22‖j‖1s |〈 f , ψj,k〉|2
⎞

⎟⎠

1/2

<∞.

This leads to the norm equivalence

‖ f ‖Hs
mix(R

d ) �
⎛

⎜⎝
∑

j∈Nd
0

∑

k∈Zd

22‖j‖1s |〈 f , ψj,k〉|2
⎞

⎟⎠

1/2

. (9.1)

Clearly, if ‖ f ‖Hs
mix(R

d ) ≤ 1, then the sequence (2‖j‖1s〈 f , ψj,k〉)j,k has an �2-norm
bounded by a constant, which will be important for our later analysis.

Let us consider the unit cube [0, 1]d . Let further Dj be the set of all k ∈ Zd such that
the wavelet suppψj,k has a non-empty intersection with [0, 1]d . This directly leads to
the extended domain 
 given by


 :=
⋃

j∈Nd
0

⋃

k∈Dj

suppψj,k.

It holds [0, 1]d ⊂ 
, and the system (ψj,k)j∈Nd
0 ,k∈Dj

is an orthonormal system in
L2(
), however not a basis. Note that 
 is still a bounded tensor domain with a
measure proportional to 1 depending on the support length of the wavelet basis. It is
also clear that this orthonormal system is not uniformly bounded in L∞.

In the sequel we want to recover functions f ∈ Hs
mix(R

d) on the domain [0, 1]d
from samples on the slightly larger extended domain 
 in a uniform way. In other
words, the discrete locations of the sampling nodes X = {x1, . . . , xn} are chosen in
advance for the whole class of functions. Let us consider the operator

P̃� f :=
∑

‖j‖1≤�

∑

k∈Dj

〈 f , ψj,k〉ψj,k, � ∈ N,
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Algorithm 3 Hyperbolic wavelet regression.
Input: � ∈ N,

n : Ñ (�) � 2��d−1 � n
log(n)

,

X = (x1, ..., xn) ∈ Dn set of distinct sampling nodes,
f = ( f (x1), ..., f (xn))� samples of f evaluated at the

nodes from X,
such that the matrix L̃� :=
L̃�(X) from (9.2) has full (col-
umn) rank.

Solve the over-determined linear system

L̃� (cj,k)j,k = f

via least squares (e.g. directly or via the LSQR algorithm [54]), i.e., compute

(cj,k)j,k := (L̃∗� L̃�)
−1 L̃∗� f .

Output: c = (cj,k)j,k ∈ Cm(�) coefficients of the approximant S�
X f := ∑

‖j‖1≤�

∑

k∈Dj

cj,k ψ̃j,k.

which is known from hyperbolic wavelet approximation, see [21,60]. The following
worst-case error bound is well known and follows directly from (9.1):

sup
‖ f ‖Hs

mix(Rd )
≤1
‖ f − P̃� f ‖L2([0,1]d ) � 2−s�.

We now consider a special case of the matrix Lm from (3.1), namely

L̃� :=

⎛

⎜⎜⎝

(
ψ̃j,k(x1)

)�
‖j‖1≤�,k∈Dj
...(

ψ̃j,k(xn)
)�
‖j‖1≤�,k∈Dj

⎞

⎟⎟⎠ . (9.2)

Here,m = m(�) � 2��d−1 and the functions ψ̃j,k = √|
|ψj,k enumerate the properly
re-normalized wavelets ψj,k, ‖j‖1 ≤ �,k ∈ Dj, which is now an orthonormal system
in the space L2(
, �
)with the probability measure �
 = dx

|
| . The n sampling nodes
in X are drawn i.i.d. at random according to �
. Note that due to the construction,
we have that |
| is bounded by a constant which depends on the chosen wavelet
system. This, on the other hand, depends on the assumed mixed regularity properties
of the function f , i.e., the mixed smoothness s > 0. The larger s is chosen, the larger
the support of a properly chosen orthonormal wavelet system has to be. We propose
Algorithm 3 for computing the wavelet coefficients of an approximation S�

X f to f .
Note that there is a little abuse of notation since we use the wavelet level � as upper
index (in contrast to m, the dimension of the subspace used earlier).

Theorem 9.1 Let 0 < δ < 1. Let further s > 1/2 and (ψj,k)j,k be a hyperbolic and
compactly supported orthonormal wavelet system such that (9.1) holds true. Then, the
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algorithm S�
X indicated in Algorithm 3 recovers any f ∈ Hs

mix(R
d) on L2([0, 1]d)

with high probability from n = n(�) random samples which are drawn in advance for
the whole class. Precisely,

sup
‖ f ‖Hs

mix(Rd )
≤1
‖ f − S�

X f ‖L2([0,1]d ) � Cδ,d2
−�s (9.3)

with probability larger than 1− δ. The operator S�
X uses n(�) � 2��d many samples

such that the bound in (9.3) reads as C̃δ,dn−s log(n)ds in terms of the number of
samples.

Remark 9.2 (i) Note that the optimal operator P̃� uses n(�) � 2��d−1 wavelet
coefficients. The gap between sampling recovery (�std) and general linear
approximation (�all), see, e.g., [18,48,49,51], is reduced to a log-factor, which
is independent of d.

(ii) Thematrix defined in (9.2) is rather sparse. It has n � 2��d rows andm � 2��d−1
columns. In every row we have only� #{‖j‖1 ≤ �} � �d many nonzero entries.
This gives an additional acceleration for the least squares algorithm since matrix
vector multiplications are cheap in this situation.

Proof of Theorem 9.1 We follow the proof of Theorem5.5. LetX be a set of n randomly
drawn nodes from 
 according to �
. If the number n of samples satisfies (5.1), that
is

Ñ (�) := sup
x∈


∑

‖j‖1≤�

∑

k∈Dj

∣∣∣ψ̃j,k(x)
∣∣∣
2

� n

log n − log δ
, (9.4)

then

∥∥∥
(
L̃∗� L̃�

)−1
L̃∗�

∥∥∥ ≤
√
2

n

is satisfied with probability larger than 1− δ. LetX be such that this is the case. Then,
we estimate

‖ f − S�
X f ‖L2([0,1]d ) ≤ ‖ f − P̃� f ‖L2([0,1]d ) + ‖P̃� f − S�

X f ‖L2([0,1]d )

�

∥∥∥∥∥∥
f −

∑

‖j‖1≤�

∑

k∈Zd

〈 f , ψj,k〉ψj,k

∥∥∥∥∥∥
L2(Rd )

+ ‖S�
X(P̃� f − f )‖L2(
,�
)

� 2−�s +
√
2

n
·
⎡

⎣
n∑

u=1

⎛

⎝
∑

‖j‖1>�

∑

k∈Zd

〈 f , ψj,k〉ψj,k(xu)

⎞

⎠

×
⎛

⎝
∑

‖j‖1>�

∑

k∈Zd

〈 f , ψj,k〉ψj,k(xu)

⎞

⎠

⎤

⎦
1/2
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� 2−�s +
√
2

n
·
⎡

⎣
∑

‖j′‖1>�

∑

k′∈Zd

∑

‖j‖1>�

∑

k∈Zd

2‖j′‖1s2‖j‖1s〈 f , ψj′,k′ 〉〈 f , ψj,k〉
n∑

u=1

ψj′,k′(xu)

2‖j′‖1s
ψj,k(xu)
2‖j‖1s

]1/2

� 2−�s +
√
2

n

∥∥(2‖j‖1s〈 f , ψj,k〉)j,k
∥∥
2 ‖�̃�‖

� 2−�s +
√
2

n
‖�̃�‖,

where �̃� is defined similar as in Proposition 5.4. This time we put

�̃� :=

⎛

⎜⎜⎜⎝

(
2−‖j‖1sψj,k(x1)

)�
‖j‖1>�,k∈Dj

...(
2−‖j‖1sψj,k(xn)

)�
‖j‖1>�,k∈Dj

⎞

⎟⎟⎟⎠ .

Let us define the quantity

T̃ (�) := sup
x∈


∑

‖j‖1>�

∑

k∈Zd

2−2‖j‖1s |ψj,k(x)|2,

which goes along the lines of Proposition 5.4. Then, we get with literally the same
arguments

E‖�̃�‖2 � n

(
2−2�s + log n

n
T̃ (�)+ 2−�s

√
log n

n
T̃ (�)

)
. (9.5)

Let us compute T̃ (�). Due to the compact support of the wavelet system, there are for
fixed j only O(1) many wavelets ψj,k such that ψj,k(x) is non-zero. For those O(1)
wavelets, we have

|ψj,k(x)|2 � 2‖j‖1 .

Hence, we get
T̃ (�) �

∑

‖j‖1>�

2‖j‖1(1−2s) � 2�(1−2s)�d−1. (9.6)

By the same reasoning we may estimate Ñ (�) in (9.4). Clearly n may be chosen such
that

Ñ (�) � 2��d−1 � n

log(n)
. (9.7)
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Plugging (9.6) and (9.7) into (9.5), we obtain

E‖�̃�‖2 � n2−2�s .

The same standard arguments as used in Theorem 5.5 and Corollary 5.6 lead to the
bound in (9.3). It remains to estimate the number of samples n depending on �, see
(9.7). This clearly gives log(n) � � and hence n � 2��d which concludes the proof. ��

10 Numerical Experiments

10.1 Recovery of Functions from Spaces with Mixed Smoothness

In this section, we perform numerical tests for the hyperbolic cross Fourier regression
based on random sampling nodes from Sect. 8, i.e., we apply Algorithm 1 to periodic
test functions f from the spaces Hs

mix(T
d). In Fig. 1, we visualize realizations for

such random nodes in the two- and three-dimensional case.
Besides random point sets, different types of deterministic lattices have also been

used for numerical integration and function recovery, see for instance [9,31,32]. This
motivates us to consider Frolov lattices [30] and Fibonacci lattices (cf., e.g., [62,
Sec. IV.2]) in the context of this paper, see Fig. 2 for examples of such lattices.

In the following, we use the weight function

w(k) :=
d∏

i=1
(1+ |ki |2)1/2.

Note that for computational reasonswe avoid the 2π in this weightw. By the reasoning
after (8.5), the weights without 2π lead to a slightly slower decay of the respective
singular numbers.

For a given number n of samples, we use the m = �n/(4 log n)� frequencies
k ∈ Zd where w(k) is smallest, i.e., we define Im := {k1, . . . ,km} ⊂ Zd , |Im | =
m, assuming an arrangement of k j fulfilling w(k1) ≤ w(k2) ≤ . . .. Here ties are
broken in numerical order starting with the first component k1 of k until the last
one kd . Corresponding to our theoretical results, the goal is to compute a least squares
approximation SmX f of the projection Pm−1 f of the function f to the span{exp(2π i k ·
x) : k ∈ Im} using the n sampling values at the nodes in X.
Comments on the arithmetic cost of Algorithm 1. Building the index set Im−1, i.e.,
enumerating the basis functions η1, . . . , ηm−1, requires

≤ 4C1 d m
2 logm ≤ C1 d n m

arithmetic operations, and setting up the matrix Lm requires

≤ C2 d n m

123



Constructive Approximation (2021) 54:295–352 341

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) d = 2, n = 100 (b) d = 3, n = 316

Fig. 1 Realizations of random nodes for hyperbolic Fourier regression
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Fibonacci lattice n = 144
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Frolov lattice n = 127(a) (b)
Fig. 2 Examples of Fibonacci and Frolov lattices in d = 2 spatial dimensions

arithmetic operations, where C1,C2 > 0 are absolute constants. Afterward, running
Algorithm 1 requires

≤ C3 R n m ≤ C3 R
n2

4 log n

arithmetic operations, where C3 > 0 is an absolute constant and R ∈ N is the number
of LSQR iterations. If one chooses m as in Theorem 5.5, cf. (5.1) and (5.2), the
condition number of the matrix Lm is ≤ √3 with high probability and one obtains
R ≤ 17 for aLSQRaccuracy of≈ 10−8. Please note thatwe choosem = �n/(4 log n)�
in our experiments, which is slightly larger than the theory (5.2) requires.
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Remark 10.1 Let us compare the hyperbolic cross-Fourier regression from Sect. 8,
which uses random samples, with the single rank-1 lattice sampling approach from
[9,31], which uses highly structured deterministic sampling nodes. Up to logarithmic
factors, both approaches have comparable error estimates w.r.t. the number m of basis
functions and comparable arithmetic complexities. Single rank-1 lattice sampling has
slightly worse recovery error estimates w.r.t.m than Algorithm 1, cf. Theorem 8.2. On
the other hand, the arithmetic complexity for single rank-1 lattice sampling is slightly
better. Moreover, the error estimates when using rank-1 lattices are guaranteed upper
bounds, whereas the worst-case upper bounds in Sect. 8 hold with high probability.
However, for fixed m, the used number of samples for single rank-1 lattice sampling
is distinctly higher, i.e., almost quadratic compared to the approach from this paper.
This results in error estimates w.r.t. the number n of used sampling values that are
distinctly worse for single rank-1 lattices.

Subsequently, we consider three different test functions f : Td → R, where the
Fourier coefficients f̂k :=

∫
Td f (x) exp(−2π i k · x) dx, k ∈ Zd , of f , decay like

| f̂k| ∼ ∏d
i=1

(
1 + |ki |2

)−α/2 for α ∈ {5/4, 2, 6} and, consequently, f ∈ Hs
mix(T

d)

with s = α − 1/2− ε for ε > 0.

Test function f from H3/4−"
mix (Td)

We start with the test function

f : Td → R, f (x) :=
(
3

2

)d/2 d∏

i=1

(
1− ∣∣2(xi mod 1)− 1

∣∣)1/4 ,

where we have for the Fourier coefficients | f̂k| ∼
(∏d

i=1(1 + |ki |2)1/2
)−5/4 and,

consequently, f ∈ H3/4−ε
mix (Td), ε > 0.

InFig. 3a,wevisualize the relative approximation errors ãm := ‖ f−Pm−1 f ‖L2(Td )

for spatial dimensions d = 2, 3, 4, 5. Due to (8.6), these errors should decay
like m−0.75+ε(logm)(d−1)·(0.75−ε) for sufficiently large m. Correspondingly, we plot
m−0.75(logm)(d−1)·0.75 as black dotted graphs. We observe that the obtained approx-
imation errors nearly decay as the theory suggests.

Next, we apply Algorithm 1 on the test function f using n randomly selected
sampling nodes as sampling scheme. We do not compute the least squares solution
directly but use the iterative method LSQR [54] on the matrix Lm ,m = �n/(4 log n)�.
The obtained sampling errors g̃n := ‖ f −SmX f ‖L2(Td ) are visualized in Fig. 3b as well
as the graphs∼ n−0.75(log n)d·0.75 as dotted lines which correspond to the theoretical
upper bounds n−0.75+ε(log n)d·(0.75−ε), cf. (8.7). We set the tolerance parameter of
LSQR to 5 ·10−8 and the maximum number of iterations to 100. For d = 2 and d = 3,
the errors nearly decay like these bounds. For d = 4 and d = 5, the errors seem to
decay slightly slower than the bounds. In order to investigate this further, we also plot
the corresponding approximation errors ãm with m = �n/(4 log n)� as thick dashed
lines. We observe that these approximation errors ãm , which are the best possible
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Fig. 3 Approximation errors and least squares sampling errors for test function f ∈ H3/4−ε
mix (Td )
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Fig. 4 Least squares aliasing errors and approximation errors for test function f ∈ H3/4−ε
mix (Td )

errors that can be achieved in this setting, almost coincide with the sampling errors.
This means that we might still observe preasymptotic behavior.

For d = 2 spatial dimensions, we have a closer look at the sampling errors. In
Fig. 4a, we again plot the approximation errors ãm , m = �n/(4 log n)�. In addition,
the aliasing errors ‖Pm−1 f − SmX f ‖L2(Td ), m = �n/(4 log n)�, which are the errors
caused by Algorithm 1 since

‖ f − SmX f ‖2L2(Td )
= ‖ f − Pm−1 f ‖2L2(Td )

+ ‖Pm−1 f − SmX f ‖2L2(Td )
,
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are shown as triangles.We observe that the aliasing errors nearly decay like the approx-
imation errors, and that they are by one order of magnitude smaller. This corresponds
to the behavior we observed in Fig. 3b.

Moreover, we compare least squares using random point sets with least squares
using quasi-random point sets. In particular, so-called Frolov lattices [30]1 are con-
sidered as sampling sets in d = 2 spatial dimensions and used in Algorithm 1. The
resulting sampling errors almost coincide with the approximation errors. The aliasing
errors are visualized in Fig. 4a as circles. It is remarkable that they decay similarly
and are even lower than the aliasing errors for random nodes in most cases. A similar
behavior can be observed for dimension d = 3, cf. Fig. 4b.

In addition, we consider Fibonacci lattices in dimension d = 2, cf. Fig. 4a. For
n ≥ 832040, the matrices Lm , m = �n/(4 log n)�, contain at least two identical
columns and correspondingly, the smallest eigenvalue of L∗m Lm is zero. Therefore,
obtaining SmX f via Algorithm 1 is not possible if the least squares solution is computed
directly. An iterative method like LSQR may still work but the number of iterations
may have to be restricted. In Fig. 4a, the obtained aliasing errors via LSQR are shown
as squares, and they are smaller than in the other cases but they seem to decay slower.
However, when we decreased the tolerance parameter of the LSQR algorithm, we
observed for n ≥ 832,040 aliasing errors and sampling errors larger than 1.

Kink test function f from H3/2−"
mix (Td)

Next, we consider the kink test function f : Td → R,

f (x) =
d∏

i=1

(
15

4
√
3
· 53/4 ·max

(
1

5
−
(

(xi mod 1)− 1

2

)2

, 0

))
∈ H3/2−ε

mix (Td)

with Fourier coefficients

f̂k =
d∏

i=1

⎧
⎨

⎩

55/4
√
3

8 (−1)ki
√
5 sin(2kiπ/

√
5)−2kiπ cos(2kiπ/

√
5)

π3k3i
for ki �= 0,

51/4√
3

for ki = 0.

Besides the different test function f , we use the same setting as before.
In Fig. 5a, we visualize the relative approximation errors ãm := ‖ f −

Pm−1 f ‖L2(Td ) for spatial dimensions d = 2, 3, 4, 5. These errors should decay like
m−1.5+ε(logm)(d−1)·(1.5−ε) for sufficiently large m, and we observe that the obtained
approximation errors nearly decay as the theoretical results suggest. Next, we apply
Algorithm 1 with random nodes to the test function f using the iterative method
LSQR. The resulting sampling errors g̃n := ‖ f − SmX f ‖L2(Td ) are depicted in Fig. 5b.
In addition, the graphs ∼ n−1.5(log n)d·1.5 are shown as dotted lines which roughly
correspond to the theoretical upper bounds n−1.5+ε(log n)d·(1.5−ε). The errors seem

1 In our numerical tests, we used the Frolov lattices constructed by the methods presented in [30] which
has been published at https://ins.uni-bonn.de/content/software-frolov.
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Fig. 5 Approximation errors and least squares sampling errors for test function f ∈ H3/2−ε
mix (Td )

to decay according to this bound for d = 2 and slower for d = 3, 4, 5. Again, we
also plot the corresponding approximation errors ãm with m = �n/(4 log n)� as thick
dashed lines, and we observe that these approximation errors ã�n/(4 log n)� almost coin-
cide with the sampling errors. Correspondingly, we still have preasymptotic behavior
for d = 3, 4, 5.

Test function f from H11/2−"
mix (Td)

As a third test function f , we consider an L2-normalized product of periodic one-
dimensional B-Splines of order 6, where each factor depends on a single variable and
is a piecewise polynomial of degree 5, and therefore, we have f ∈ H11/2−ε

mix (Td).
In Fig. 6a, the relative approximation errors ãm := ‖ f − Pm−1 f ‖L2(Td )

are visualized for spatial dimensions d = 2, 3, 4, 5, which roughly decay like
m−5.5+ε(logm)(d−1)·(5.5−ε) for sufficiently large m. The sampling errors g̃n :=
‖ f − SmX f ‖L2(Td ) when applying Algorithm 1 with random nodes to the test function
f using the iterative method LSQR are depicted in Fig. 6b. In addition, the graphs
∼ n−5.5(log n)d·5.5 are plotted as dotted lines which correspond to the theoretical
upper bounds. The errors seem to decay roughly according to this bound for d = 2
and d = 3 or slightly slower. Again, the corresponding approximation errors ãm with
m = n/(4 log n) are shown as thick dashed lines, and we observe that these approx-
imation errors ã�n/(4 log n)� almost coincide with the sampling errors. This means we
still have preasymptotic behavior.
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ãm, d = 4 ãm, d = 5
m−5.5(log m)(d−1)·5.5

102 103 104 105 106
10−8

10−6

10−4

10−2

100

n
L
2

er
ro

r
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Fig. 6 Approximation errors and least squares sampling errors for test function f ∈ H11/2−ε
mix (Td )

10.2 Integration of Functions from Spaces with Mixed Smoothness

Extensive numerical tests on integration using random point sets were performed
by Oettershagen [52], cf. in particular [52, Sec. 4.1] for tests concerning numerical
integration in Sobolev spaces with mixed smoothness Hs

mix(T
d). These numerical

tests, performed for d ∈ {2, 4, 8, 16} spatial dimensions and smoothness s ∈ {1, 2, 3},
suggest that the worst-case cubature error may decay with a main rate of n−s with
additional log factors. This is a remarkable behavior since plain Monte-Carlo with
random points usually leads to an error decay of n−1/2.

However, the corresponding theoretical results in [52, Sec. 4.2] only give a main
rate of n−s+1/2. We highlight that our results obtained in this paper bridge this gap of
1/2 in the main rate, since we show a worst-case error of∼ n−s(log n)d s in Corollary
8.6, i.e., our theoretical main rate corresponds to the observations by Oettershagen
[52]. Moreover, Algorithm 1 guarantees suitable error bounds in the preasymptotic
setting, cf. Corollary 8.6 together with (8.5). More details on cubature rules based
on least squares additionally refined using some variance reduction technique can be
found in [43].

10.3 Recovery and Integration for the Non-periodic Case

Now we consider the non-periodic situation. We use the Chebyshev measure

�̃D(dx) := ∏d
t=1(π

√
1− x2t )

−1 dx as random sampling scheme on D = [−1, 1]d .
We further define the non-periodic space H̃ s

mix([−1, 1]d) via the reproducing kernel
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Fig. 7 Dilated, scaled, and shifted B-spline of order 2 considered in interval [−1, 1]

K̃ 1
s,∗(x, y) := 1+ 2

∑

h∈N0

cos(h arccos(x)) cos(h arccos(y))

ws,∗(h)2
, x, y ∈ T,

and its tensor product

K̃ d
s,∗(x, y) := K 1

s,∗(x1, y1)⊗ · · · ⊗ K 1
s,∗(xd , yd), x, y ∈ Td .

The space H̃ s
mix([−1, 1]d) is embedded into L2(D, �̃D) if and only if s > 1/2. We

denote the k-th basis index of ηk , k = 1, . . . ,m − 1, by hk :=
(
hk,t

)d
t=1 ∈ Nd

0 , and
we have η1 ≡ 1 and

ηk(x) =
d∏

t=1

√
2
min{hk,t ,1}

cos
(
hk,t arccos xt

)

if k > 1. Moreover, for the vector b ∈ Cm−1 in (7.1), we have

bk :=
∫

D
ηk dμD =

d∏

t=1

⎧
⎪⎪⎨

⎪⎪⎩

2 for hk,t = 0,
2
√
2

1−h2k,t
for hk,t ∈ 2N,

0 for hk,t ∈ 2N− 1,

(10.1)

for μD ≡ 1.
For the numerical experiments, we consider the test function

f : R→ R, f (x) :=
(

3π

49π − 48
√
3

)d/2 d∏

i=1

⎧
⎪⎨

⎪⎩

5+ 2x for − 5/2 ≤ xi < −1,
3− 2x for − 1 ≤ xi < 3/2,

0 otherwise,

on D := [−1, 1]d , where the one-dimensional version is depicted in Fig. 7. For the
Chebyshev coefficients of f , we have
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Fig. 8 Realizations of random nodes with respect to the Chebyshev measure �̃D(x)
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Fig. 9 Sampling errors and integration errors for non-periodic test function f ∈ H̃3/2−ε
mix ([−1, 1]d )

f̂k =
(

3π

49π − 48
√
3

)d/2 d∏

i=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4 ·
√
3 ki cos(2πki/3)+ sin(2πki/3)√

2(−ki + k3i )π
for ki ≥ 2,

−(3
√
6+ 2

√
2π)/(6π) for ki = 1,

11/3− 2
√
3/π for ki = 0,

and consequently, f ∈ H̃3/2−ε
mix ([−1, 1]d) for ε > 0.

We use the parameters as in Sect. 10.1 and apply Algorithm 1 on the test func-
tion f in the non-periodic setting, where we generate the random nodes with respect

to the measure �̃D(dx) := ∏d
i=1(π

√
1− x2i )

−1 dx. In Fig. 8, we show realizations
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for these random nodes. As before, we do not compute the least squares solution
directly but use the iterative method LSQR on the matrix Lm ,m = �n/(4 log n)�. The
obtained sampling errors g̃n := ‖ f − SmX f ‖L2([−1,1]d ,�D) with m = �n/(4 log n)�
are plotted in Fig. 9a as triangles as well as the corresponding approximation errors
ãm := ‖ f − Pm−1 f ‖L2([−1,1]d ,�D) as thick dashed lines. We observe that the
sampling and approximation errors almost coincide. Moreover, we plot the graphs
∼ n−1.5(log n)d·1.5 as dotted lines which correspond to the expected theoretical upper
bounds n−1.5+ε(log n)d·(1.5−ε). We observe that the obtained numerical errors nearly
decay like these theoretical upper bounds.

In addition, we use the numerically computed Chebyshev coefficients ck from
Algorithm 1 to compute the approximation QX f of I ( f ) by QX f = ∫

D SmX f dμD =∑m
k=1 ck bk where the complex numbers bk are calculated as stated in (10.1). We

repeatedly perform each test 100 times with different random nodes. The averages for
the integration errors |I ( f )−QX f | of the 100 test runs are depicted in Fig. 9b and the
maxima as error bars. Moreover, we plot the graphs ∼ n−2(log n)d·2 as dotted lines,
and we observe that the obtained integration errors approximately decay like these
graphs. For comparison, we also plot n−1.5(log n)d·1.5 for d = 2 and d = 5 as thick
solid lines which belong to the theoretical results n−1.5+ε(log n)d·(1.5−ε) one obtains
analogously to (8.9) in Sect. 8 for the non-periodic case. These thick solid lines decay
distinctly slower.

In particular, we strongly expect that the theoretical preasymptotic results in (8.5)
and [33] also hold for the Chebyshev case.
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