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Abstract
We show that the problem of finding the measure supported on a compact set K ⊂ C

such that the variance of the least squares predictor by polynomials of degree at most
n at a point z0 ∈ C

d\K is a minimum is equivalent to the problem of finding the
polynomial of degree at most n, bounded by 1 on K , with extremal growth at z0.
We use this to find the polynomials of extremal growth for [−1, 1] ⊂ C at a purely
imaginary point. The related problem on the extremal growth of real polynomials was
studied by Erdős (Bull Am Math Soc 53:1169–1176, 1947).

Keywords Optimal polynomial prediction measures · Polynomials of extremal
growth · Complex polynomials

Mathematics Subject Classification 41A17 · 30A10 · 62K05

1 Introduction

In this work we consider two classical extremum problems for polynomials. The first
is very easy to state. Indeed, let us denote the complex polynomials of degree at most n
in d complex variables by Cn[z], z ∈ C

d . Then for K ⊂ C
d compact and z0 ∈ C

d\K
an external point, we say that Pn(z) ∈ Cn[z] has extremal growth relative to K at z0
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if

Pn = argmaxp∈Cn [z]
|p(z0)|
‖p‖K (1)

where ‖p‖K denotes the sup-norm of p on K . Alternatively, we may normalize p to
be 1 at the external point and use

Pn = argmaxp∈Cn [z], p(z0)=1
1

‖p‖K . (2)

We note that for this to be well-defined we require that K be polynomial determin-
ing, i.e., if p ∈ C[z] is such that p(x) = 0 for all x ∈ K , then p = 0. We refer the
interested reader to the survey [2] for more about what is known about this problem.

The second problem is from the field of optimal design for polynomial regression.
To describe it we reduce to the real case K ⊂ R

d , and note that we may write any
p ∈ Rn[z] in the form

p =
N∑

k=1

θk pk

where Bs := {p1, p2, . . . , pN } is a basis for Rn[z] and N := (n+d
d

)
its dimension.

Suppose now that we observe the values of a particular p ∈ Rn[z] at a set ofm ≥ N
points X := {x j : 1 ≤ j ≤ m} ⊂ K with some random errors; i.e., we observe

y j = p(x j ) + ε j , 1 ≤ j ≤ m

where we assume that the errors ε j ∼ N (0, σ ) are independent. In matrix form this
becomes

y = Vnθ + ε

where θ ∈ R
N , y, ε ∈ R

m and

Vn :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(x1) p2(x1) · · · pN (x1)
p1(x2) p2(x2) · · · pN (x2)

· ·
· ·
· ·
· ·
· ·

p1(xm) p2(xm) · · · pN (xm)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
m×N

is the associated Vandermonde matrix.
Our assumption on the error vector ε means that

cov(ε) = σ 2 Im ∈ R
m×m .
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Now, assuming that Vn is of full rank, the least squares estimate of θ is

θ̂ := (V t
n Vn)

−1V t
n y.

Note that the entries of
1

m
V t
n Vn are the discrete inner products of the pi with respect

to the measure

μX = 1

m

m∑

k=1

δxk . (3)

More specifically,

1

m
V t
n Vn = Gn(μX )

where

Gn(μ) :=
[∫

K
pi (x)p j (x)dμ

]

1≤i, j≤N
∈ R

N×N (4)

is the moment, or Gram, matrix of the polynomials pi with respect to the measure μ.

In general we may consider arbitrary probability measures on K , setting

M(K ) := {μ : μ is a probability measure on K }.

Now if

p(z) =

⎡

⎢⎢⎢⎢⎣

p1(z)
p2(z)

·
·

pN (z)

⎤

⎥⎥⎥⎥⎦
∈ R

N (5)

then the least squares estimate of the observed polynomial is

pt (z)θ̂ .

We may compute its variance at any point z ∈ R
d to be

var(pt (z)θ̂) = σ 2pt (z)(V t
n Vn)

−1p(z)

= 1

m
σ 2pt (z)(Gn(μX ))−1p(z) (6)

where μX is again given by (3). Now, it is easy to verify that for any μ ∈ M(K ) with
non-singular Gram matrix,

pt (z)(Gn(μ))−1p(z) = Kμ
n (z, z)
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where, for {q1, . . . , qN } ⊂ Rn[z], a μ-orthonormal basis for Rn[z],

Kμ
n (w, z) :=

N∑

k=1

qk(w)qk(z)

is theBergman kernel forRn[z]. The function Kμ
n (z, z) is also known as the (reciprocal

of) the Christoffel function for Rn[z]. In particular, we see that the variance (6) is
proportional to KμX

n (z, z).
We may generalize easily to the complex case, K ⊂ C

d , where now the p j form a
basis for Cn[z] and

Gn(μ) :=
[∫

K
pi (z)p j (z)dμ

]

1≤i, j≤N
∈ C

N×N . (7)

In the case that Gn(μ) is non-singular then the kernel is

Kμ
n (w, z) :=

N∑

k=1

qk(w)qk(z)

for {q1, . . . , qN } ⊂ Cn[z], a μ-orthonormal basis for Cn[z]. Then, for an external
point z0 ∈ C

d\K , a measure μ0 ∈ M(K ) is said to be an optimal prediction (or
extrapolation) measure for z0 relative to K (of order n) if it minimizes the complex
analogue of the variance (6) of the polynomial predictor at z0; i.e., if

Kμ0
n (z0, z0) = inf

μ∈M(K )
Kμ
n (z0, z0). (8)

However, as it turns out (see Example 1.1 below), such optimal prediction measures
need not be definite (i.e., the associated Grammatrix need not be non-singular). Hence
we need to re-formulate so that indefinite measures are allowed. Indeed, as is well
known there is a variational form for Kμ

n (z0, z0) :

Kμ
n (z0, z0) = sup

p∈Cn [z]
|p(z0)|2∫

K |p(z)|2dμ
= sup

p∈Cn [z], p(z0)=1

1∫
K |p(z)|2dμ. (9)

Note that in the case of an indefinite measure this value may be +∞. Any polynomial
Pμ,z0
n ∈ Cn[z] such that

Pμ,z0
n = argmaxp∈Cn [z], p(z0)=1

1∫
K |p(z)|2dμ (10)
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is said to be a prediction polynomial for μ and if μ0 is an optimal prediction measure
we call Pμ0,z0

n an optimal prediction polynomial. In the case that (9) is∞we interpret
(10) to mean that the polynomial Pμ0,z0

n is such that
∫
K |Pμ0,z0

n (z)|2dμ = 0.
Hence, in general, we say that μ0 ∈ M(K ) is an optimal prediction measure for

z0 relative to K if μ0 satisfies (8) with Kμ
n defined by (9).

We note that if μ is definite then

Pμ,z0
n (z) = Kμ

n (z0, z)

Kμ
n (z0, z0)

is unique and
∫
K |Pμ,z0

n (z)|2dμ(z) = 1/Kμ
n (z0, z0). In the case that μ is indefinite

then Pμ,z0
n need not be unique.

Example 1.1 Consider K = [−1, 1]2 considered as a subset of C2, z0 = (2, 0),
μ = 1

4δ(−1,0)+ 3
4δ(1,0), and degree n = 1. Then it is easy to check that any polynomial

of the form Pμ,z0
1 (x, y) = x/2+ cy, c ∈ C, is a prediction polynomial for μ. We will

see in the next section that μ is an optimal prediction measure which also shows that
optimal prediction measures may be indefinite.

In the univariate case however, optimal prediction polynomials are always definite.

Lemma 1.2 Suppose that K ⊂ C is Cn[z] determining and that z0 ∈ C\K . Then any
optimal prediction measure μ is definite; i.e., the Gram matrix Gn(μ) is non-singular.

Proof If the support of a measure μ has n or fewer distinct points there exists a
polynomial p ∈ Cn[z] such that p ≡ 0 on the support while p(z0) = 1. Hence

1∫
K |p(z)|2dμ = ∞

and μ cannot be an optimal prediction measure as taking any n + 1 points a0, . . . , an
in K and positive numbers w0, . . . , wn with

∑n
j=0 w j = 1, the measure ν :=∑n

j=0 w jδa j is definite. Thus K
ν
n (z0, z) is a nontrivial polynomial of degree n with

K ν
n (z0, z0) = sup

p∈Cn [z], p(z0)=1

1∫
K |p(z)|2dν < ∞.


�
Hoel and Levine [5] show that in the univariate case, for K = [−1, 1], and any

z0 ∈ R\K , a real external point, the optimal prediction measure is unique and is a
discrete measure supported at the n + 1 extremal points xk = cos(kπ/n), 0 ≤ k ≤ n,

of Tn(x) the classical Chebyshev polynomial of the first kind (see Lemma 3.1 below).
In this case it turns out that

Kμ0
n (z0, z0) = T 2

n (z0). (11)
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Notably, as is well known, Tn(x) is the polynomial of extremal growth for any point
z0 ∈ R\[−1, 1] relative to K = [−1, 1].Also, Erdős [3] has shown that theChebyshev
polynomial is also extreme relative to [−1, 1] for real polynomials at points z0 ∈ C

with |z0| ≥ 1; i.e.,

max
p∈Rn [x], ‖p‖[−1,1]≤1

|p(z0)| = |Tn(z0)|.

The problem for real polynomials and |z0| ≤ 1 or for complex polynomials p ∈ C[z]
has remained unsolved up to now.

We show in Sect. 2 that (11) is not an accident, and that there is a general equivalence
of our two extremum problems. In Sect. 3 we give a complete and unique characteriza-
tion of optimal prediction measures and polynomials of extremal growth for the case
of the unit interval K = [−1, 1] ⊂ C. Finally, in Sect. 4 we will use this to compute
the polynomials of extremal growth and the optimal prediction measures for a purely
imaginary complex point z0 ∈ C\[−1, 1].

2 A Kiefer–Wolfowitz Type Equivalence Theorem

Kiefer and Wolfowitz [6] have given a remarkable equivalence between what are
called D-optimal and G-optimal designs; i.e., probability measures that maximize the
determinant of the design matrix Gn(μ) and those that minimize the maximum over
x interior to K , of the prediction variance; i.e., minimize maxx∈K Kμ

n (x, x). Here
we give an analogous equivalence, for a single exterior point z0 ∈ C

d\K , with the
problem of extremal polynomial growth.

Combining the definition of an optimal prediction measure (8) and the variational
form for the kernel (9), the problem of minimal variance is to find

min
μ∈M(K )

max
p∈Cn [z], p(z0)=1

1∫
K |p(z)|2dμ.

It turns out that this can be easily analyzed using the classical Minimax theorem
(see e.g. Gamelin [4, Thm. 7.1, Ch. II]).

Proposition 2.1 Theminimal variance is the square of themaximal polynomial growth,
i.e.,

min
μ∈M(K )

max
p∈Cn [z], p(z0)=1

1∫
K |p(z)|2dμ = max

p∈Cn [z], p(z0)=1

1

‖p‖2K
.

Proof First note that we may simplify to

min
μ∈M(K )

max
p∈Cn [z], p(z0)=1

1∫
K |p(z)|2dμ = 1/

{
max

μ∈M(K )
min

p∈Cn [z], p(z0)=1

∫

K
|p(z)|2dμ

}
.
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Now, for μ ∈ M(K ) and p ∈ Cn[z] such that p(z0) = 1, let

f (μ, p) :=
∫

K
|p(z)|2dμ.

It is easy to confirm that f is quasiconcave in μ and quasiconvex in p and hence by
the Minimax Theorem

max
μ∈M(K )

min
p∈Cn [z], p(z0)=1

∫

K
|p(z)|2dμ = min

p∈Cn [z], p(z0)=1
max

μ∈M(K )

∫

K
|p(z)|2dμ.

However, as μ = δx ∈ M(K ) for every x ∈ K , it follows that

max
μ∈M(K )

∫

K
|p(z)|2dμ = ‖p‖2K .

Consequently, the minimum variance is given by

min
μ∈M(K )

max
p∈Cn [z], p(z0)=1

1∫
K |p(z)|2dμ = max

p∈Cn [z], p(z0)=1

1

‖p‖2K
,

as claimed. 
�

We remark that the Minimax theorem in a similar context has been used before to
get pointwise estimates of solutions to the ∂̄-equation by Berndtsson in [1, p. 206].

It is also possible to give a more precise relation between the extremal polynomials
for the two problems (of minimum variance and extremal growth).

Theorem 2.2 A measure μ0 ∈ M(K ) is an optimal prediction measure for z0 /∈ K
relative to K if and only if there is an associated (optimal) prediction polynomial
Pμ0,z0
n (z) ∈ Cn[z], (10), such that ‖Pμ0,z0

n ‖K = ‖Pμ0,z0
n ‖L2(μ0), i.e.,

max
z∈K |Pμ0,z0

n (z)|2 =
∫

K
|Pμ0,z0

n (z)|2dμ0,

or, equivalently, if and only if there is an associated prediction polynomial that is also
a polynomial of extremal growth at z0 relative to K .
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Proof First suppose that Pμ0,z0
n (z) ∈ Cn[z] is an optimal prediction polynomial

associated with μ0 such that ‖Pμ0,z0
n ‖K = ‖Pμ0,z0

n ‖L2(μ0)
. Then for any μ ∈ M(K ),

Kμ
n (z0, z0) = max

p∈Cn [z], p(z0)=1

1∫
K |p(z)|2dμ

≥ 1∫
K |Pμ0,z0

n (z)|2dμ
≥ 1∫

K ‖Pμ0,z0
n (z)‖2K dμ

= 1

‖Pμ0,z0
n (z)‖2K

= 1∫
K |Pμ0,z0

n (z)|2dμ0

= Kμ0
n (z0, z0)

and hence μ0 is optimal.
To see that Pμ0,z0

n is also a polynomial of extremal growth, let p ∈ Cn[z] be any
other polynomial for which p(z0) = 1. Then

‖Pμ0,z0
n ‖2K = ‖Pμ0,z0

n ‖2L2(μ0)

=
∫

K
|Pμ0,z0

n (z)|2dμ0

≤
∫

K
|p(z)|2dμ0 (asPμ0,z0

n is a prediction polynomial)

≤ ‖p‖2K .

Hence

‖Pμ0,z0
n ‖K = min

p∈Cn [z], p(z0)=1
‖p‖K

and Pμ0,z0
n is indeed a polynomial of extremal growth.

Conversely, suppose thatμ0 is optimal and let Pμ0,z0
n (z) ∈ Cn[z] be a polynomial of

extremal growth for z0 relative to K , i.e., Pμ0,z0
n (z0) = 1 and for any other p ∈ Cn[z]

such that p(z0) = 1,

‖Pμ0,z0
n ‖K ≤ ‖p‖K .

We claim that Pμ0,z0
n is an optimal prediction polynomial and that ‖Pμ0,z0

n ‖K =
‖Pμ0,z0

n ‖L2(μ0)
.

To see this note that by Proposition 2.1

max
p∈Cn [z], p(z0)=1

1∫
K |p(z)|2dμ0

= 1

‖Pμ0,z0
n ‖2K

;
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i.e.,

min
p∈Cn [z], p(z0)=1

∫

K
|p(z)|2dμ0 = ‖Pμ0,z0

n ‖2K .

Hence

‖Pμ0,z0
n ‖2K ≤

∫

K
|Pμ0,z0

n (z)|2dμ0

≤
∫

K
‖Pμ0,z0

n ‖2K dμ0

= ‖Pμ0,z0
n ‖2K ;

i.e.,
∫
K |Pμ0,z0

n (z)|2dμ0 = ‖Pμ0,z0
n ‖2K .

Moreover,

max
p∈Cn [z], p(z0)=1

1∫
K |p(z)|2dμ0

= 1

‖Pμ0,z0
n ‖2K

= 1∫
K |Pμ0,z0

n (z)|2dμ0

and so Pμ0,z0
n is also an optimal prediction polynomial associated with μ0. 
�

In particular, if μ0 is definite then

∫

K
|Pμ0,z0

n (z)|2dμ0 = ‖Pμ0,z0
n ‖2K = 1/Kμ0

n (z0, z0).

Remark 2.3 It is easily confirmed that |Pμ0,z0
n (z)| ≡ ‖Pμ0,z0

n ‖K on the support of μ0.

Consequently optimal prediction measures are always supported on a real algebraic
subset of K of degree 2n.

Example 2.4 Recall the situation of Example 1.1: K = [−1, 1]2 ⊂ C
2 with the mea-

sure μ0 := 1
4δ(−1,0) + 3

4δ(1,0). We show that this is an optimal prediction measure
for the external point z0 = (2, 0) and polynomials of degree at most 1. As men-
tioned in Example 1.1, the prediction polynomials for this measure and point are
p(x, y) = x/2 + cy, c ∈ C. For the particular polynomial Pμ0,z0

1 (x, y) := x/2, we
have ‖Pμ0,z0

1 ‖2K = 1/4 and
∫
K |Pμ0,z0

1 (x, y)|2dμ0 = 1/8 + 3/8 = 1/4. Hence by
Theorem 2.2, μ0 is an optimal prediction measure.

We now give an example showing that optimal prediction measures need not be
unique, even in the univariate situation. Let

K = D = {z ∈ C : |z| ≤ 1}

and fix z0 with |z0| > 1. Write z0 = |z0|eiφ for a fixed angle φ.
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Proposition 2.5 Consider the measure

dμ(θ) :=
[ ∞∑

k=−∞
|z0|−|k|eik(θ+φ)

]
1

2π
dθ,

i.e., dμ, the Poisson kernel for 1/z0 times dθ/(2π), supported on the unit circle. Then
μ is an optimal prediction measure for K = D and z0 /∈ D for any degree n.

Proof For j = 0,±1,±2, . . ., let

m j (μ) :=
∫

K
z jdμ =

∫ 2π

0
ei jθdμ(θ) = 1

2π

∫ 2π

0

[ ∞∑

k=−∞
|z0|−keik(θ+φ)

]
ei jθdθ.

It follows easily that for any j ,

m j (μ) = |z0|− j e−i jφ = z− j
0 . (12)

Thus the Gram matrix for μ with respect to the basis {1, z, . . . , zn} for C1[z] is

Gn(μ) = G(z−1
0 ) :=

⎡

⎢⎢⎢⎢⎣

1 z−1
0 z−2

0 . . . z−n
0

z̄−1
0 1 z−1

0 . . . z−(n−1)
0

...
...

. . .
...

z̄−n
0 z̄−(n−1)

0 z̄−(n−2)
0 . . . 1

⎤

⎥⎥⎥⎥⎦
.

More generally, we define, for |z| �= 1,

G(z) :=

⎡

⎢⎢⎢⎣

1 z z2 . . . zn

z̄ 1 z . . . z(n−1)

...
...

. . .
...

z̄n z̄(n−1) z̄(n−2) . . . 1

⎤

⎥⎥⎥⎦ .

One easily verifies that

G(z)−1 := 1

|z|2 − 1

⎡

⎢⎢⎢⎢⎢⎣

−1 z 0 . . . 0 0
z̄ −(1 + |z|2) z . . . 0 0
...

...
. . .

...

0 0 . . . z̄ −(1 + |z|2) z
0 0 0 . . . z̄ −1

⎤

⎥⎥⎥⎥⎥⎦
.
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Next, letting, for z �= 0,

P(z) :=

⎡

⎢⎢⎢⎢⎣

1
z−1

·
·

z−n

⎤

⎥⎥⎥⎥⎦
∈ C

n+1, (13)

we easily verify that

P∗(z)G(z)−1P(z) = |z|−2n .

Thus we have

Kμ0
n (z0, z0) = P∗(z−1

0 )G(z−1
0 )−1P(z−1

0 ) = |z−1
0 |−2n = |z0|2n .

But it is well-known that pn(z) = zn is a polynomial of degree n of extremal growth
at z0 relative to K (see [2]); thus we know from Proposition 2.1 the optimal value
infν∈M(K ) K ν

n (z0, z0) is

|pn(z0)|2 = |z0|2n

and the proof is complete. 
�
For each degree n we can produce additional optimal prediction measures by taking

any discrete measure ν that reproduces the moments of μ present in the Gram matrix
Gn(μ). Such discrete measures ν can be constructed, e.g., by Szegő quadrature (see
section 7 of [7]). 
�

However, as we will see in the next section, for a real interval and a point exterior
to this interval, optimal prediction measures are unique.

3 A Complex Point External to [−1, 1]
We now consider K = [−1, 1] ⊂ C and z0 ∈ C\K .We normalize so that the extremal

polynomials are Pμ0,z0
n (z) = K

μ0
n (z0,z)√
K

μ0
n (z0,z0)

; these have supremum norm 1 on [−1, 1].
As mentioned in Remark 2.3 above, the support of an optimal prediction measure in
this case is a subset of [−1, 1] where |Pμ0,z0

n (z)| = 1, its maximum value. It is not
possible that |Pμ0,z0

n (z)| ≡ 1 on all of [−1, 1] and hence the support of μ0 consists
of at most 2n points in [−1, 1], counting multiplicities. Any interior point, being a
local maximum of |Pμ0,z0

n |, must be of even multiplicity and hence there can be at
most n interior points. However, exactly n interior (double) points would mean that
z = ±1 are not maximum points of |Pμ0,z0

n (z)|; i.e., |Pμ0,z0
n (±1)| < 1. But then

the fact that limz→±∞ |Pμ0,z0
n (z)| = ∞ would imply that there are two other points

outside [−1, 1] where |Pμ0,z0
n (z)| attains the value 1, giving 2n + 2 > 2n real points

where the value 1 is attained, an impossibility. Hence there are at most n − 1 interior
points in the support of μ0. The fact that Gn(μ0) is non-singular requires that there
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are at least n + 1 support points, and these must therefore consist of n − 1 interior
points together with the two endpoints±1; i.e., x0 := −1, xn := +1 and n−1 internal
(double) points −1 < x1 < · · · < xn−1 < 1. Consequently

μ0 =
n∑

i=0

wiδxi

with weights wi > 0,
∑n

i=0 wi = 1.
Given the support points xi there is a simple recipe for the optimal weights, given

already in [5].

Lemma 3.1 (Hoel–Levine) Suppose that −1 = x0 < x1 < · · · < xn = +1 are given.
Then among all discrete probability measures supported at these points, the measure
with

wi := |
i (z0)|∑n
i=0 |
i (z0)| , 0 ≤ i ≤ n (14)

with 
i (z) the i th fundamental Lagrange interpolating polynomial for these points,
minimizes Kμ

n (z0, z0).

Proof We first note that for such a discrete measure, {
i (z)/√wi }0≤i≤n form an
orthonormal basis. Hence

Kμ
n (z0, z0) =

n∑

i=0

|
i (z0)|2
wi

. (15)

In the case of the weights chosen according to (14) we obtain

Kμ0
n (z0, z0) =

(
n∑

i=0

|
i (z0)|
)2

. (16)

We claim that for any choice of weights Kμ
n given by (15) is at least as large as that

given by (16). To see this, just note that by the Cauchy–Schwartz inequality,

(
n∑

i=0

|
i (z0)|
)2

=
(

n∑

i=0

|
i (z0)|√
wi

· √
wi

)2

≤
(

n∑

i=0

|
i (z0)|2
wi

)
·
(

n∑

i=0

wi

)

=
n∑

i=0

|
i (z0)|2
wi

.


�
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Remark 3.2 We note that the optimal Kμ0
n (z0, z0) given by (16) is the Lebesgue func-

tion squared. Hence the problem of finding the support of the optimal prediction
measure amounts to finding the n + 1 interpolation points −1 = x0 < x1 < · · · <

xn = +1 for which the Lebesgue function evaluated at the external point z0,

�(z0) :=
n∑

i=0

|
i (z0)|,

is as small as possible.

Recall that the optimal prediction polynomials Pμ0,z0
n (z) = K

μ0
n (z0,z)√
K

μ0
n (z0,z0)

have

supremum norms 1 on [−1, 1].

Lemma 3.3 Suppose that the measure μ0 is supported at the points −1 = x0 < x1 <

· · · < xn = +1 with optimal weights given by (14). Then

Pμ0,z0
n (z) =

n∑

i=0

sgn(
i (z0))
i (z)

where sgn(z) := z/|z| is the complex sign of z ∈ C.

Proof Using again the fact that {
i (z)/√wi }0≤i≤n form a set of orthonormal polyno-
mials, we have

Pμ0,z0
n (z) = 1

�(z0)

n∑

i=0


i (z0)√
wi


i (z)√
wi

= 1

�(z0)

n∑

i=0

(
�(z0)


i (z0)

|
i (z0)|

)

i (z)

=
n∑

i=0


i (z0)

|
i (z0)| · 
i (z).


�

Remark 3.4 By the equivalence Theorem 2.2 the support of the optimal prediction
measure and the polynomial of extremal growth will be given by those points −1 =
x0 < x1 < · · · < xn = +1 for which

max−1≤x≤1

∣∣∣∣∣

n∑

i=0


i (z0)

|
i (z0)| · 
i (x)

∣∣∣∣∣ = 1.

123



444 Constructive Approximation (2021) 54:431–453

4 A Purely Imaginary Point External to [−1, 1]
In the case of z0 = ai, 0 �= a ∈ R, a purely imaginary point, it turns out that there
are remarkable formulas for the polynomial of extremal growth as well as for the
support of the optimal prediction measure. Both of these will depend on the point z0
(as opposed to the real case z0 ∈ R\[−1, 1] where Hoel and Levine [5] showed that
the support is always the set of extreme points of the Chebyshev polynomial Tn(x)).

To begin we will first analyze the degrees n = 1 and n = 2 cases.

4.1 Degree n = 1

Here the support of the extremal measure is necessarily x = −1 and x1 = +1. We
will compute Pμ0,z0

1 (z) using the formula given in Lemma 3.3. Indeed in this case,

0(z) = (1 − z)/2 and 
1(z) = (1 + z)/2 so that

sgn(
0(ia)) = sgn

(
1 − ia

2

)
= 1 + ia√

a2 + 1

and

sgn(
1(ia)) = sgn

(
1 + ia

2

)
= 1 − ia√

a2 + 1
.

Hence,

Pμ0,z0
1 (z) = 1 + ia√

a2 + 1

1 − z

2
+ 1 − ia√

a2 + 1

1 + z

2

= 1√
a2 + 1

{1 − iaz}.

Since ±1 is necessarily the support of the optimal prediction measure it is immediate
that ‖Pμ0,z0

1 ‖[−1,1] = 1, as is also easily verified by a simple direct calculation.

4.2 Degree n = 2

We claim that the support of the optimal prediction measure is x0 = −1, x1 = 0 and
x2 = +1. However, this is not automatic and we will have to verify that the norm of
Pμ0,z0
2 is indeed 1. Now, it is easy to see, for this support, that


0(z) = z(z − 1)

2
, 
1(z) = 1 − z2, 
2(z) = z(z + 1)

2
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for which

sgn(
0(ia)) = sgn

(
ia(ia − 1)

2

)

= −ia

|a| · −ia − 1√
a2 + 1

= i sgn(a)
1 + ia√
a2 + 1

,

sgn(
1(ia)) = sgn(1 + a2) = +1,

and, after a simple calculation,

sgn(
2(ia)) = i sgn(a)
ia − 1√
a2 + 1

.

From this we may easily conclude that

Pμ0,z0
2 (z) =

2∑

i=0

sgn(
i (z0))
i (z)

= sgn(a)√
a2 + 1

(
−(a + sgn(a)

√
a2 + 1)z2 − i z + sgn(a)

√
a2 + 1

)
.

The fact that ‖Pμ0,z0
2 ‖[−1,1] = 1 is an immediate consequence of the following lemma.

Lemma 4.1 For x ∈ R we have

|Pμ0,z0
2 (x)|2 = 1 + (|a| + √

a2 + 1)2

a2 + 1
x2(x2 − 1)

= 1 + (x2 − 1)R2
1(x), R1(x) := |a| + √

a2 + 1√
a2 + 1

x .

Proof This follows from elementary calculations starting with the formula for
Pμ0,z0
2 (x) given above. 
�
We now define a sequence of polynomials, Qn(z), based on the above degrees

n = 1 and n = 2 cases, for which we will show that Qn(z) = cn P
μ0,z0
n (z) for certain

cn ∈ C with modulus |cn| = 1. We will also define a sequence of polynomials Rn(x)
which will play the role of R1(x) in the Lemma for general degree n.

Now, as the formula for Pμ0,z0
2 depends on the sign of a, in order to simplify

the formulas we will assume that a > 0. For a < 0, one may use the relation
Pμ0,ia
2 (z) = Pμ0,−ia

2 (−z).
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Definition 4.2 For a > 0 we define the sequences of polynomials Qn(z) and Rn(z)
by

Q1(z) = − az + i√
a2 + 1

, (= (−i)Pμ0,z0
1 (z))

Q2(z) = 1√
a2 + 1

(
−(a +

√
a2 + 1)z2 − i z +

√
a2 + 1

)
, (= Pμ0,z0

2 (z))

Qn+1(z) = 2zQn(z) − Qn−1(z), n = 2, 3, . . . .

and

R0(z) = a√
a2 + 1

,

R1(z) = a + √
a2 + 1√

a2 + 1
z,

Rn+1(z) = 2zRn(z) − Rn−1(z), n = 1, 2, . . . .

Since the recursions are both those of the classical Chebyshev polynomials it is not
surprising that there are formulas for Qn(z) and Rn(z) in terms of these.

Lemma 4.3 We have

Qn(z) = 1√
a2 + 1

(
−(az + i)Tn−1(z) +

√
a2 + 1(1 − z2)Un−2(z)

)

where Tn(z) is Chebyshev polynomial of the first kind and Un(z) := 1
n+1T

′
n+1(z) that

of the second kind.

Proof Letqn(z)denote the right side of the proposed identity.Weproceedby induction.
For n = 1 we have

q1(z) = 1√
a2 + 1

(
−(az + i)T1−1(z) +

√
a2 + 1(1 − z2)U1−2(z)

)

= 1√
a2 + 1

(−(az + i) × 1 + 0)

= Q1(z).

Similarly, for n = 2 we have

q2(z) = 1√
a2 + 1

(
−(az + i)T2−1(z) +

√
a2 + 1(1 − z2)U2−2(z)

)

= 1√
a2 + 1

(
−(az + i)z +

√
a2 + 1(1 − z2)

)

= 1√
a2 + 1

(
−(a +

√
a2 + 1)z2 − i z +

√
a2 + 1

)

= Q2(z).
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The result now follows easily from the fact that both kinds of Chebyshev polynomials
satisfy the same recursion as used in the definition of Qn(z). 
�
Lemma 4.4 We have

Rn(z) = 1√
a2 + 1

(√
a2 + 1zUn−1(z) + aTn(z)

)
.

Proof Let rn(z) denote the right side of the proposed identity. We again proceed by
induction. For n = 0 we have

r0(z) = 1√
a2 + 1

(√
a2 + 1zU−1(z) + aT0(z)

)

= a√
a2 + 1

= R0(z).

Similarly, for n = 1 we have

r1(z) = 1√
a2 + 1

(√
a2 + 1zU0(z) + aT1(z)

)

= 1√
a2 + 1

(√
a2 + 1z × 1 + a × z

)

= a + √
a2 + 1√

a2 + 1
z

= R1(z).

The result now follows easily from the fact that both kinds of Chebyshev polynomials
satisfy the same recursion as used in the definition of Rn(z). 
�

Now, just for theChebyshev polynomials Tn(z) andUn−1(z) there is the Pell identity

T 2
n (z) − (z2 − 1)U 2

n−1(z) ≡ 1. (17)

We will show that for real z ∈ R, the polynomials Qn(z) and Rn−1(z) satisfy a
similar Pell identity.

Proposition 4.5 For z = x ∈ R, we have

|Qn(x)|2 − (x2 − 1)R2
n−1(x) ≡ 1.

Proof By Lemma 4.3, z = x ∈ R, we may write

Qn(x) = 1√
a2 + 1

(
−(ax + i)Tn−1(x) +

√
a2 + 1(1 − x2)Un−2(x)

)

= 1√
a2 + 1

(
−iTn−1(x) +

{
−axTn−1(x) +

√
a2 + 1(1 − x2)Un−2(x)

})

123



448 Constructive Approximation (2021) 54:431–453

so that

|Qn(x)|2 = 1

a2 + 1

(
T 2
n−1(x) +

(
−axTn−1(x) +

√
a2 + 1(1 − x2)Un−2(x)

)2)
.

Hence, using the Chebyshev Pell identity (17),

(a2 + 1)(1 − |Qn(x)|2)
= (a2 + 1) − T 2

n−1(x) − a2x2T 2
n−1(x)

− (a2 + 1)(1 − x2)2U 2
n−2(x) + 2a

√
a2 + 1x(1 − x2)Un−2(x)Tn−1(x)

= (a2 + 1)(1 − T 2
n−1(x)) + a2(1 − x2)T 2

n−1(x) − (a2 + 1)(1 − x2)2U 2
n−2(x)

+ 2a
√
a2 + 1x(1 − x2)Un−2(x)Tn−1(x)

= (a2 + 1)(1 − x2)U 2
n−2(x) + a2(1 − x2)T 2

n−1(x) − (a2 + 1)(1 − x2)2U 2
n−2(x)

+ 2a
√
a2 + 1x(1 − x2)Un−2(x)Tn−1(x)

= (1 − x2)
{
(a2 + 1)U 2

n−2(x) + a2T 2
n−1(x) − (a2 + 1)(1 − x2)U 2

n−2(x)

+ 2a
√
a2 + 1xUn−2(x)Tn−1(x)

}

= (1 − x2)
{
(a2 + 1)[1 − (1 − x2)]U 2

n−2(x) + a2T 2
n−1(x)

+ 2a
√
a2 + 1xUn−2(x)Tn−1(x)

}

= (1 − x2)
{
(a2 + 1)x2U 2

n−2(x) + a2T 2
n−1(x) + 2a

√
a2 + 1xUn−2(x)Tn−1(x)

}

= (1 − x2)
{√

a2 + 1xUn−2(x) + aTn−1(x)
}2

= (1 − x2)(a2 + 1)R2
n−1(x).

The last equality follows from Lemma 4.4. 
�
From the Pell identity Proposition 4.5, we immediately have

Corollary 4.6 For x ∈ [−1, 1],

|Qn(x)| ≤ 1

and its maximum of 1 is attained at the endpoints x = ±1 and the zeros of Rn−1(x).

Indeed, we claim that the endpoints together with the zeros of Rn−1(x) form the
support of the optimal prediction measure. To this end we first prove that Rn−1(x) has
n − 1 zeros in (−1, 1).

Lemma 4.7 The polynomials Rn(x) have n distinct zeros in (−1, 1) which interlace
the extreme points of Tn(x), cos(kπ/n), 0 ≤ k ≤ n.
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Proof Using the fact that T ′
n(x) = nUn−1(x), we have that at an interior extremal

point of Tn(x), cos(kπ/n), 1 ≤ k ≤ (n − 1),

Rn(cos(kπ/n)) = 1√
a2 + 1

(√
a2 + 1zUn−1(cos(kπ/n)) + aTn(cos(kπ/n))

)

= 1√
a2 + 1

(
0 + a(−1)k

)

= a√
a2 + 1

(−1)k

so that

sgn(Rn(cos(kπ/n))) = (−1)k, 1 ≤ k ≤ (n − 1).

Further, for k = 0, cos(kπ/n) = 1,

Rn(1) = 1√
a2 + 1

(√
a2 + 1Un−1(1) + aTn(1)

)

= 1√
a2 + 1

(
n
√
a2 + 1 + a

)

so that

sgn(Rn(cos(0π/n))) = +1 = (−1)0.

Similarly, for k = n, cos(kπ/n) = −1,

Rn(−1) = 1√
a2 + 1

(√
a2 + 1(−1)Un−1(−1) + aTn(−1)

)

= 1√
a2 + 1

(n
√
a2 + 1 + a)(−1)n

so that also

sgn(Rn(cos(nπ/n))) = (−1)n .

The result follows. 
�

Suppose now that μ0 is the discrete measure supported on ±1 together with the
n − 1 zeros of Rn−1(x), with optimal weights given by Lemma 3.1.

Proposition 4.8 The polynomials Qn(z) are of extremal growth at z0 = ai relative to
K = [−1, 1]. Specifically, Qn(z) = −(i)n Pμ0,z0

n (z).
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Proof Let −1 = x0 < x1 < · · · < xn = +1 be the support points with corresponding
Lagrange polynomials 
k(z). We will show that

Qn(xk) = −(i)nsgn(
k(ai)), 0 ≤ k ≤ n

using the formula


k(z) = ωn(z)

(z − xk)ω′
n(xk)

, ωn(z) := (z2 − 1)Rn−1(z).

Our calculations will make use of the elementary facts that

Tn(ai) = (i)n

2

{
(a +

√
a2 + 1)n + (a −

√
a2 + 1)n

}
,

Un(ai) = (i)n

2
√
a2 + 1

{
(a +

√
a2 + 1)n+1 − (a −

√
a2 + 1)n+1

}

so that

Rn−1(ai) = 1√
a2 + 1

(√
a2 + 1(ai)Un−2(ai) + aTn−1(ai)

)

= (i)n−1 a√
a2 + 1

(a +
√
a2 + 1)n−1.

The endpoints are the easiest case and so we will begin with those. Specifically, for
k = 0, x0 = −1,


0(ai) = ((ai)2 − 1)Rn−1(ai)

(ai − (−1))ω′
n(−1)

= −(a2 + 1)Rn−1(ai)

(ai + 1)(−2Rn−1(−1))
.

Hence

sgn(
0(ai)) = sgn(Rn−1(ai)) sgn(Rn−1(−1)) sgn

(
1

ai + 1

)

= (−i)n−1(−1)n−1 ai + 1√
a2 + 1

.

On the other hand

Qn(−1) = 1√
a2 + 1

(
−(a(−1) + i)Tn−1(−1) +

√
a2 + 1(1 − (−1)2)Un−2(−1)

)

= 1√
a2 + 1

(a − i)(−1)n−1

= −(i)nsgn(
0(ai)),

as is easily verified.
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The other endpoint xn = +1 is very similar and so we suppress the details.
Consider now, xk, 1 ≤ k ≤ (n − 1), a zero of Rn−1(x). Then


k(ai) = ((ai)2 − 1)Rn−1(ai)

(ai − xk)(x2k − 1)R′
n−1(xk)

= −(a2 + 1)Rn−1(ai)

(ai − xk)(x2k − 1)(R′
n−1(xk))

.

Hence

sgn(
k(ai)) = sgn(Rn−1(ai)) sgn(R
′
n−1(xk)) sgn

(
1

ai − xk

)

= (i)n−1(−1)k
ai − xk√
a2 + x2k

as sgn(R′
n−1(xk)) = (−1)n−1−k, as is easy to see.

On the other hand, from the formula for Rn−1(x) given in Lemma 4.4, we see that
Rn−1(xk) = 0 implies that

Tn−1(xk) = −
√
a2 + 1

a
xkUn−2(xk).

Substituting this into the formula for Qn given in Lemma 4.3 we obtain

Qn(xk) =
{

(axk + i)xk
a

+ (1 − x2k )

}
Un−2(xk)

=
(
a + i xk

a

)
Un−2(xk).

But by the Pell identity of Proposition 4.5, |Qn(xk)| = 1 and so we must have

Qn(xk) = a + i xk√
a2 + x2k

sgn (Un−2(xk)) .

But, as the zeros of Rn−1 interlace the extreme points of Tn−1, i.e., the zeros ofUn−2,

it is easy to check that sgn(Un−2(xk)) = (−1)n−1−k . In other words,

Qn(xk) = (−1)n−1−k a + i xk√
a2 + x2k

which is easily verified to equal −(i)nsgn(
k(ai)), as claimed. 
�
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From the recursion formula for Qn(z) it is easy to see that

Qn(ai) = −(i)n
√
a2 + 1(a +

√
a2 + 1)n−1.

Hence we have

Proposition 4.9 For n = 1, 2, . . .

max
p∈Cn [z], ‖p‖[−1,1]≤1

|p(ai)| =
√
a2 + 1(|a| +

√
a2 + 1)n−1

and this maximum value is attained by Qn(z) (for a > 0).

It is worth noting that the extremal polynomial and optimal prediction measure,
unlike the real case, depend on the exterior point z0. Moreover, this extreme value is
rather larger than |Tn(ai)|. Indeed it is easy to show that

√
a2 + 1(|a| +

√
a2 + 1)n−1 − |Tn(ai)| = (

√
a2 + 1 − |a|)|Tn−1(ai)|.

One may of course wonder if there are similar formulas for general points z0 ∈
C\[−1, 1] (not just z0 = ai). However numerical experiments seem to indicate that
in general there is no three-term recurrence for the extremal polynomials.

Note added in proof It has recently come to our attention that the general extremal
values problem has been studied by Yuditskii [8].
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