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Abstract
ThegeneralizedPronymethod is a reconstruction technique for a large variety of sparse
signal models that can be represented as sparse expansions into eigenfunctions of a
linear operator A. However, this procedure requires the evaluation of higher powers of
the linear operator A that are often expensive to provide. In this paper we propose two
important extensions of the generalized Prony method that essentially simplify the
acquisition of the needed samples and, at the same time, can improve the numerical
stability of the method. The first extension regards the change of operators from A to
ϕ(A), where ϕ is a suitable operator-valuedmapping, such that A and ϕ(A) possess the
same set of eigenfunctions. The goal is now to choose ϕ such that the powers of ϕ(A)

are much simpler to evaluate than the powers of A. The second extension concerns
the choice of the sampling functionals. We show how new sets of different sampling
functionals Fk can be applied with the goal being to reduce the needed number of
powers of the operator A (resp. ϕ(A)) in the sampling scheme and to simplify the
acquisition process for the recovery method.
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1 Introduction

The recovery of signals which can be represented or approximated by finite expan-
sions into “signal atoms” is a task regularly encountered in a variety of fields such as
signal processing, biology, and engineering. These signal atoms have a fixed structure
and can be identified by a small number of real or complex parameters. Therefore,
sparse expansions into these signal atoms often permit an arbitrarily high resolution
in contrast to classical sampling schemes based on Hilbert space techniques. At the
same time these signal models frequently allow a better physical interpretation. The
most prominent and well-studied signal model of this kind is a sparse expansion into
complex exponentials, i.e.,

f (x) :=
M∑

j=1

c j exp(Tj x) =
M∑

j=1

c j z
x
j , (1.1)

with pairwise different z j := exp(Tj ) and with parameters c j ∈ C\{0} and Tj ∈ C.
Using the classical Prony method, the parameters c j and z j can be computed from
the 2M equidistant samples f (�), � = 0, . . . , 2M − 1, see e.g. [27] or [25], Chapter
10, and the references therein. Observe that, in order to extract Tj from z j in a unique
way, we need to restrict Im Tj to an interval of length 2π.

In practical applications we have to take special care of the numerical instabilities
that can occur using Prony’s method. There have been many attempts to provide
improved numerical algorithms, including the Pisarenko method [22], MUSIC [31],
ESPRIT [15], Matrix Pencil Methods [14], and the approximate Prony method [29].
Furthermore, to ensure the consistency in case of noisy measurements, modifications
of Prony’s method have been proposed, see e.g. [8,16,18,35]. The interest in Prony-
like methods has strongly increased during recent years, especially because of their
utilization for the recovery of signals of finite rate of innovation, see e.g. [7,12,33,
34]. In particular, the close connection between the exponential sum in (1.1) and the
expansion into shifted Diracs,

s(t) =
M∑

j=1

c j δ(t − t j ) (1.2)

with c j ∈ C\{0} and t j ∈ R, is extensively used. Indeed the Fourier transform of
s(t) is of the form (1.1), where Tj = it j , and thus s(t) can be reconstructed from
only 2M of its Fourier samples, see also [21,28]. Moreover, Prony’s method and its
generalizations provide new approaches for nonlinear sparse approximation of smooth
functions, and there are close relations to optimal approximation of functions in Hardy
spaces [1,6,23,24].

An essential extension of the classical Prony method has been proposed in [19],
where the recovery of expansions into exponentials has been generalized to the recov-
ery of expansions into eigenfunctions of linear operators.

Let us assume that A : V → V is a linear operator on a normed vector space V ,
and let σ(A) be a subset of the point spectrum of A that contains pairwise different
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eigenvalues. Further, we consider the corresponding set of eigenfunctions vλ of A such
that vλ can be uniquely identified by λ ∈ σ(A). In other words, the eigenspace to λ is
fixed as a one-dimensional space. Then, the generalized Prony method in [19] allows
the reconstruction of expansions f of the form

f =
M∑

j=1

c j vλ j (1.3)

with c j ∈ C\{0} and with pairwise distinct λ j ∈ σ(A). According to [19], the
eigenvalues λ j belonging to the “active” eigenfunctions vλ j and the coefficients
c j , j = 1, . . . , M can be uniquely recovered from the (complex) values F(A� f ),
� = 0, . . . , 2M − 1, where F : V → C is a functional that can be chosen arbitrarily
up to the condition Fvλ �= 0 for all λ ∈ σ(A). The expansion into exponentials in
(1.1) can be seen as a special case of (1.3) if we take V = C(R), A = S1 with the shift
operator given by S1 f := f (· + 1), and the point evaluation functional F f := f (0).
Indeed, the exponentials exp(Tj ·) are eigenfunctions of S1 to the eigenvalues exp(Tj )

which are pairwise different for Tj ∈ R+ i[−π,π). The needed samples F(A� f ) are
in this case of the form F(A� f ) = F(S�

1 f ) = F( f (· + �)) = f (�).
There have been other attempts to generalize the idea of Prony’s method to different

expansions, including sparse polynomials [4], piecewise sinusoidal signals [5], and
sparse expansions into Legendre polynomials [20] or Chebyshev polynomials [30]
and into Lorentzians [2]. All these expansions can also be recovered directly using the
approach in [19]. An extension of the generalized Prony method to the multivariate
case based on Artinian Gorenstein algebras and the flat extension principle has been
given by Mourrain [17].

However, the generalized Prony method is not always simple to apply since it
requires the computation of higher powers of the operator A in order to achieve
the needed sample values F(A� f ) for the reconstruction procedure. While for shift
operators these samples are easy to acquire, the problem is much more delicate for
differential or integral operators of higher order. Indeed, the shift operator Sτ, with
Sτ f := f (· + τ), and its generalizations play a special role, since the power S�

τ is
equivalent to S�τ, i.e., to a simple shift operator with shift length �τ. Expansions into
eigenfunctions of generalized shift operators are therefore of special interest, since
they can be recovered just by suitable function samples, see [26].

In this paper, we reconsider the generalized Pronymethod in [19] inmore detail and,
in particular, study two extensions that provide us more freedom in data acquisition
for the recovery of expansions of the form (1.3).

The first extension is based on the observation that for a given linear operator A there
is often a different linear operator B that possesses the same eigenfunctions to different
eigenvalues. For example, the exponential function exp(T x) is an eigenfunction of the
shift operator Sτ to the eigenvalue eτT , but at the same time also an eigenfunction
of the differential operator d

dx to the eigenvalue T . Thus, we need to understand how
this observation can help us to solve the signal recovery problem, and, in particular,
for a given linear operator A, how to find a different linear operator B with the same
eigenfunctions that may be easier to apply.
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The secondextensiondirectly aims at generalizing the sampling functional F .While
it is appealing that the 2M parameters of the signal model in (1.1) and (1.3) can be
theoretically obtained from only 2M samples, in many applications we are faced with
a parameter identification problem, where a large number of noisy samples is given,
and we need to identify the parameters in a stable manner. Therefore, we go away
from sampling schemes that use a minimal number of sampling values being ordered
in matrices with Hankel structure. We will show that there is much more freedom
to choose a set of different sampling functionals Fk , where each sampling functional
leads to a linear equation providing one condition for the vector of coefficients of the
Prony polynomial. Our approach also covers previous ideas to identify the frequency
parameters Tj of the exponential sum in (1.1) using equispaced sampling sequences
with different sampling sizes simultaneously, see [9].

Our ideas to provide simple acquisition schemes to recover expansions into eigen-
functions of linear operators also open theway for new approaches for sparse nonlinear
approximation of (non-stationary) signals and images.

The paper is organized as follows. In Sect. 2 we reconsider the Prony method for
exponential sums. We first show how it can be understood as a method to recover a
sparse expansion into eigenfunctions of the shift operator Sτ on the one hand and of
the differential operator d

dx on the other hand. In Sect. 2.3 we employ an exponential
operator notation to show how the two operators Sτ and d

dx are related to each other.
Further, we introduce an idea, how the sampling scheme can be generalized using a
set of different sampling functionals Fk instead of F(Ak).

Section 3 is devoted to the new generalized operator based Prony method (GOP).
We start with recalling the generalized Prony method from [19] and transfer it into our
new notation. Sections 3.2 and 3.3 are concerned with the two new extensions, first
the change of operators from A to ϕ(A), where ϕ is an analytic function, and second
the generalization of the sampling scheme. In particular, we introduce admissible sets
of sampling functionals Fk that allow a unique reconstruction of expansions of the
form (1.3). In Sect. 3.4 we give a detailed example, where GOP is applied to sparse
cosine expansions.

In Sect. 4, we discuss the application of GOP for the recovery of eigenfunctions
of differential operators. We show that special linear differential operators of first and
second order lead by a transfer from the operator A to ϕ(A) (with an exponential map
ϕ) to generalized shift operators whose powers can be simply evaluated in sampling
schemes.

Section 5 is devoted to a further investigation of the second extension, the gen-
eralized sampling. We embed the functions f in (1.3) into a suitable Hilbert space
and employ a dual approach for the sampling scheme. Then our sampling functionals
Fk : V → C can be written as inner products with special kernels φk as Riesz rep-
resenters, i.e., Fk( f ) = 〈 f , φk〉. Therefore the application of Fk to powers A� f or
(ϕ(A))� f to obtain the required sampling values can be rewritten by applying powers
of the adjoint operator A∗ to the kernel φk . In this way, we are able to find admissible
sampling schemes for the recovery of expansions into eigenfunctions of differential
operators in terms of moments. We demonstrate the principle for the recovery of expo-
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nential sums and for the recovery of sparse Legendre expansions using only moments
of f .

The considerations in this paper provide the starting point for further studies that
focus on the improvement of the numerical stability of the generalized Prony method.
But this problem is beyond the scope of this paper and will be the further investigated.

2 An Introductory Example: Revisiting Prony’s Method Using Shift
and Differential Operators

2.1 Prony’s Method Based on the Shift Operator

The classical Pronymethod is away to reconstruct the parameters c j ∈ C\{0}, Tj ∈ C,
j = 1, . . . , M , of the weighted sum of exponentials

f (x) =
M∑

j=1

c j exp(Tj x). (2.1)

Using equidistant sample values f (k), k = 0, . . . , 2M − 1, exact recovery is possible
if Tj ∈ R+ i[−π, π), see e.g. [27]. Usually, we assume that there is an a priori known
bound C such that Im Tj ∈ [−Cπ, Cπ), and the parameters Tj can still be recovered
using a rescaling argument and taking sampling values f (kh) with h ≤ 1/C instead
of h = 1. With

M :=
⎧
⎨

⎩

M∑

j=1

c j e
Tj x : M < ∞, c j ∈ C\{0}, Tj ∈ R + i[−Cπ, Cπ), ∀ j �= i : Tj �= Ti ,

⎫
⎬

⎭

we denote the model class of all finite linear combinations of complex exponentials
that can be recovered by Prony’s method.

Recalling the ideas in [19,26], we can reinterpret and generalize the method using
a shift operator. The exponential sum in (2.1) can be understood as an expansion into
M eigenfunctions of the shift operator Sτ : C(R) → C(R) for some τ �= 0 with
Sτ f (x) := f (x + τ). More precisely, we observe that

(Sτ exp(Tj ·))(x) = exp(Tj (x + τ)) = exp(Tjτ) exp(Tj x);

i.e., the exponentials exp(Tj x) occurring in (2.1) are eigenfunctions of Sτ to the
eigenvalues exp(Tjτ). This implies

(Sτ − exp(Tjτ)I ) exp(Tj ·) = 0,
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where I denotes the identity operator. We define the Prony polynomial

P(z) = Pτ(z) :=
M∏

j=1

(z − exp(Tjτ))

with the monomial representation

P(z) =
M∑

�=0

p�z
� = zM +

M−1∑

�=0

p� z
�

and observe for f in (2.1) that

P(Sτ) f =
M∑

�=0

p�S
�
τ f =

M∑

�=0

p�S
�
τ

M∑

j=1

c j exp(Tj ·)

=
M∑

j=1

c j exp(Tj ·)
(

M∑

�=0

p� exp(Tjτ�)

)

=
M∑

j=1

c j exp(Tj ·) P(exp(Tjτ)) = 0.

Thus, f solves the difference equation P(Sτ) f = 0. In particular, we also have

Skτ P(Sτ) f = P(Sτ) Skτ f =
M∑

�=0

p� S
�+k
τ f = 0, k ∈ Z.

We fix an arbitrary value x0 ∈ R and employ the point evaluation functional Fx0 with
Fx0 f := f (x0) to compute the samples Fx0 S

k
τ f = f (x0 + τk), k = 0, . . . , 2M − 1.

Then we obtain the homogeneous equation system

Fx0(S
k
τ P(Sτ) f ) =

M∑

�=0

p� f (x0 + τ(k + �)) = 0, k = 0, . . . , M − 1, (2.2)

for the vector p = (p0, . . . , pM )T of coefficients of P(z). For f ∈ M and fixed
τ < C−1 the arising coefficient matrix ( f (x0 + τ(k + �)))

M−1,M
k=0,�=0 ∈ C

M×M+1 is of
Hankel structure and has full rank M , see [19,27]. Thus, p is uniquely defined with
pM = 1, and we can extract the zeros exp(Tjτ) of the polynomial P(z) and compute
Tj , j = 1, . . . , M . Finally, the vector of coefficients c = (c j )Mj=1 in (2.1) can be
computed as a least squares solution of the Vandermonde system

V2M,M c = (Skτ f (x0))
2M−1
k=0 = ( f (x0 + τk))2M−1

k=0

with V2M,M := (exp(Tj (x0 + τk))2M−1,M
k=0, j=1 .
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2.2 Prony’s Method Based on the Differential Operator

We now present a different viewpoint and interpret f (x) in (2.1) as the solution of a
linear ordinary differential equation of order M . In fact, the functions exp(Tj x) are
also eigenfunctions of the first derivative operator d

dx : C∞(R) → C∞(R); i.e.,

(
d

dx
exp(Tj ·)

)
(x) = Tj exp(Tj x),

and thus

(
d

dx
− Tj I

)
exp(Tj ·) = 0

for all Tj ∈ C, where I denotes the identity operator.We can now proceed as before, by
replacing the shift operator with the differential operator. Employing the eigenvalues
Tj , we define the characteristic polynomial

P̃(z) :=
M∏

j=1

(z − Tj ) =
M∑

�=0

p̃� z
� = zM +

M−1∑

�=0

p̃� z
�.

We apply the corresponding linear differential operator P̃
( d
dx

)
of order M to the

function f in (2.1) and find

P̃

(
d

dx

)
f =

M∏

j=1

(
d

dx
− Tj I

)
f =

( M∑

�=0

p̃�

d�

dx�

)
f

=
M∑

�=0

p̃�

M∑

j=1

c j T
�
j exp(Tj ·) =

M∑

j=1

c j exp(Tj ·)
( M∑

�=0

p̃� T
�
j

)

=
M∑

j=1

c j exp(Tj ·) P̃(Tj ) = 0;

i.e., f in (2.1) solves the homogeneous differential equation P̃
( d
dx

)
f = 0. We par-

ticularly observe that

dk

dxk
P̃

(
d

dx

)
f = P̃

(
d

dx

)
f (k) = 0

for all k ∈ N, where f (k) denotes the k-th derivative of f . As before, we can exploit
this observation in order to reconstruct the parameters c j and Tj , j = 1, . . . , M , that
identify f . We fix a value x0 ∈ R and apply the point evaluation functional Fx0 with
Fx0 f = f (x0) to obtain the equations

123



254 Constructive Approximation (2020) 52:247–282

Fx0

(
dk

dxk
P̃

(
d

dx

)
f

)
= Fx0

(
P̃

(
d

dx

)
f (k)

)
=

M∑

�=0

p̃� f (k+�)(x0) = 0, (2.3)

for k = 0, . . . , M − 1. This homogeneous linear equation system yields the vector
p̃ = ( p̃0, . . . , p̃M ) of coefficients of the Prony polynomial P̃(z). Also here, the arising
Hankel matrix ( f (k+�)(x0))

M−1,M
k=0,�=0 has full rank M , such that p̃ is uniquely defined

with p̃M = 1, see [19]. In turn we find the zeros Tj , j = 1, . . . , M , of P̃(z). Now the
coefficients c j can be obtained by solving the overdetermined linear system

M∑

j=1

c j T
k
j exp(Tj x0) = f (k)(x0), k = 0, . . . , 2M − 1.

2.3 Generalization 1: Switch Between Operators with the Same Eigenfunctions

An essential difference between the two approaches is that the required input values
have completely different structure. Instead of the derivative values f (k)(x0) for some
x0 ∈ R and k = 0, . . . , 2M − 1 for d

dx , we just need to provide the function values
f (x0 + kτ), k = 0, . . . , 2M − 1 for Sτ.
The second essential difference regards the condition of the matrices involved in

the method. For d
dx we have to find the zero eigenvector of the Hankel matrix H̃ =

( f (k+�)(x0))
M−1,M
k=0,�=0 ∈ C

M×M+1. Using the structure of f (x) in (2.1), H̃ has the
factorization

H̃ = ṼM,M diag(c1, . . . , cM ) diag(exp(T1x0), . . . , exp(TMx0)) ṼT
M+1,M ,

with the Vandermonde matrices ṼM,M = (T �
j )

M−1,M
�=0, j=1 and ṼM+1,M = (T �

j )
M,M
�=0, j=1.

In contrast, for Sτ we have instead to solve the eigenvalue problem with the Hankel
matrix H = ( f (x0 + τ(k + �)))

M−1,M
k=0,�=0 with the factorization

H = VM,M diag(c1, . . . , cM ) diag(exp(T1x0), . . . , exp(TMx0))VT
M+1,M ,

whereVM,M = (exp(Tjτ�))
M−1,M
�=0, j=1 andVM+1,M = (exp(Tjτ�))

M,M
�=0, j=1. Depending

on the range of the parameters Tj the occurring Vandermonde matrices can have
completely different condition numbers. If e.g. Tj = i Im Tj , then the knots exp(Tjτ)

determining VM,M lie on the unit circle while the Tj determining ṼM,M lie on the
imaginary axis.

We are therefore interested in understanding the connection between the two meth-
ods to recover (2.1). Both approaches work, since the exponentials exp(Tj x) are
eigenfunctions to the two different operators Sτ and d

dx . But the corresponding spectra
are different. While the eigenvalues with regard to the differential operator d

dx are of
the form Tj , for the shift operator Sτ the eigenvalues are exp(Tjτ). Obviously, the

spectra are connected by the map exp(τ·) : λ → exp(λτ). With exp z =
∞∑
k=0

zk
k! we
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indeed have

exp

(
τ
d

dx

)
exp(T x) =

∞∑

k=0

τk

k!
dk

dxk
exp(T x) =

m∑

k=0

τk

k! T
k exp(T x)

= exp(τT ) exp(T x) = Sτ exp(T x) (2.4)

for all T ∈ C, and in turn for any analytic function f ∈ M

exp

(
τ
d

dx

)
f (x) = f (τ + x) = (Sτ f )(x),

see [11]. Thus, using the analytic function exp(τ·), we can map from the differential
operator d

dx to the shift operator Sτ, thereby staying with the same eigenfunctions but
changing the eigenvalues. This observation is summarized in the following Theorem.

Theorem 2.1 Let d
dx : C1(R) → C(R) be the first derivative operator. Then, each

T ∈ C is an eigenvalue of d
dx . For some C > 0 let ΛC := R + i [−Cπ, Cπ) be a

given subset of C, and let ϕτ(x) := exp(τx) with τ ≤ C−1. Then ϕτ is well-defined
on C and

(
d

dx
− T I

)
exp(T x) = 0

implies

ϕτ

(
d

dx

)
exp(T x) − ϕτ (T I ) exp(T x) = (Sτ − exp(τ T ) I ) exp(T x) = 0,

where Sτ is the shift operator as before. Furthermore, the map ϕτ : T → exp(τ T ) is
injective on ΛC .

Proof Obviously, d
dx exp(T x) = T exp(T x) for all T ∈ C. For all T ∈ ΛC the value

ϕτ(T ) = exp(τ T ) is well-defined, and ϕτ(T1) = ϕτ(T2) yields T1 = T2 + 2πki
τ ,

k ∈ Z, i.e., T1 = T2 for T1, T2 ∈ ΛC . The remaining assertions follow from (2.4).
��

Theorem 2.1 has strong implications on the reconstruction of f (x) in (2.1) using
Prony’s method. We can replace the operator d

dx by the operator Sτ in order to recon-
struct f in (2.1), as we have seen in the previous two subsections.

2.4 Generalization 2: Changing the Sampling Scheme

In the two previous examples in Sects. 2.1 and 2.2 we have applied the point evaluation
functional Fx0 with some x0 ∈ R and used the samples

Fx0(S
k
τ f ) = f (x0 + kτ) and Fx0

(
dk

dxk
f

)
= f (k)(x0), k = 0, . . . , 2M − 1,
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respectively, to recover f ∈ M. According to [19], we can, however, use any other
linear functional F : C∞ → C with the only restriction that F applied to the eigen-
functions exp(T x) should bewell-defined and nonzero for all T in the parameter range
we are interested in. We can, for example, take

F f =
∫

�

f (x) K (x) dx

with some � ⊂ R and some rather arbitrary kernel function K (x) such that F f is
well defined and

∫
�
exp(T x) K (x) dx �= 0 for all T ∈ C. Thus, the choice of F

gives us already some freedom to choose the sampling scheme. Taking, e.g., K (x) =∑L
r=−L wrδ(x − rτ) with the delta distribution δ and some positive weights wr , or

just K (x) := χ[−1/2,1/2)(x), we arrive at smoothed sampling values

F(Skτ f ) =
L∑

r=−L

wr f ((k + r)τ) or F(Skτ f ) =
∫ 1/2

−1/2
f (x + τk) dx

instead of f (x0 + τk) for k = 0, . . . , 2M − 1.
We can now generalize the sampling scheme even further if we allow ourselves

to employ more than the minimal number of 2M input data. We inspect again the
equations

Fx0(S
k
τ P(Sτ) f ) = 0, k = 0, . . . , M − 1,

that lead in (2.2) to the Hankel system determining the coefficient vector p of the Prony
polynomial P(z). We already have P(Sτ) f = 0, and the application of Skτ does not
change the right-hand side of the equation. Therefore, for each k = 0, . . . , M − 1, we
can replace Fx0 S

k
τ by a new linear functional Fk to obtain the M equations to recover

p. We only need to make sure that the obtained M equations are linearly independent.
For example, we could take Fk = Fx0 S

k
θ with a parameter θ /∈ {0, τ} and obtain

an equation system

Fx0(S
k
θ P(Sτ) f ) =

M∑

�=0

p� f (x0 + kθ + �τ) = 0, k = 0, . . . , M − 1.

The arising coefficientmatrix ( f (x0+kθ+�τ))
M−1,M
k=0,�=0 does not haveHankel structure

butmay possess a better condition than ( f (x0+(k+�)τ))
M−1,M
k=0,�=0. Taking, e.g., θ = 2τ

we need the 3M − 1 sample values f (x0 + τ(2k + �)) to recover f in (2.1).

Considering the method in Sect. 2.2, we can also replace the functionals Fx0
dk

dxk
in

(2.3) by other linear functionals Fk . Taking, for example, Fk = Fx0 S
k
τ then we obtain

the system

Fx0

(
Skτ P̃

(
d

dx

)
f

)
=

M∑

�=0

p� f (�)(x0 + τk) = 0, k = 0, . . . , M − 1.
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Here, we now need the input data f (�)(x0 + kτ), k = 0, . . . , M − 1, � = 0, . . . , M ,
using only derivatives up to orderM and its equidistant shifts. In Sect. 3.3 and in Sect. 5
we will investigate such generalized sampling schemes in more detail and particularly
show that the examples above provide sampling matrices of full rank M , such that f
in (2.1) can be uniquely reconstructed.

Remark 2.2 1. Special generalized sampling schemes for the shift operator and the
differential operator have also been proposed by Seelamantula [32], but without con-
sidering the relations between these operators. However, a rigorous investigation of
rank properties of the involved matrices has not been given in [32]. The representation
of Prony’s method as an approach to reconstruct expansions into eigenfunctions of
linear operators has been given already in [19].

2. For the special case of recovery of expansions into shifted Diracs in (1.2), it has
been extensively studied how to retrieve the needed Fourier samples from low-pass
projections with suitable sampling kernels, see e.g. [2,5,7,12,33,34].

3 Generalized Operator Based PronyMethod

We want to study the two new observations considered for the special operators d
dx

and Sτ in Sects. 2.3 and 2.4 in a more general setting. We will call the new method
Generalized Operator based Prony Method (GOP). For that purpose, we start with
recalling the generalized Prony method from [19].

3.1 Generalized PronyMethod

Let V be a normed vector space over C and let A : V → V be a linear operator.
Assume that A possesses a non-empty point spectrum σP (A) and let σ(A) ⊂ σP (A)

be a (sub)set with pairwise different eigenvalues of A. We assume further that there is
a corresponding set of eigenfunctions, i.e., for each λ ∈ σ(A) we have a vλ ∈ V with
A vλ = λvλ, and the mapping λ �→ vλ is injective. In other words, the eigenspace
to λ is one-dimensional, or, if this is not the case, we have to determine one relevant
eigenfunction vλ corresponding to λ in advance, which may occur in the expansion
that we want to recover. Throughout the paper, we will assume that the considered
eigenfunctions vλ are normalized, i.e., ‖vλ‖V = 1.

We want to reconstruct M-sparse expansions into eigenfunctions of A of the form

f =
M∑

j=1

c j vλ j (3.1)

where λ j ∈ σ(A) and where we always assume c j ∈ C\{0} for j = 1, . . . , M . The
considered set of possible expansions is given as

M(A) :=
⎧
⎨

⎩ f =
M∑

j=1

c j vλ j : M < ∞, c j ∈ C\{0}, λ j ∈ σ(A), λ j �= λk for j �= k

⎫
⎬

⎭ .

(3.2)
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The generalized Prony method in [19] provides an algorithm to recover f using only
2M complex measurements. For that purpose, a linear functional F : V → C is
introduced that satisfies F(vλ) �= 0 for all λ ∈ σ(A).

Theorem 3.1 (Generalized Prony method [19]). With the assumptions above, the
expansion (3.1) of eigenfunctions vλ j of the linear operator A can be uniquely recon-
structed from the values F(Ak f ), k = 0, . . . , 2M − 1.

Proof We give an outline of the proof in [19] with our notation. Observe that f is com-
pletely reconstructed if we recover the subsetΛ f := {λ1, . . . , λM } ⊂ σ(A) of “active
eigenvalues” and the complex coefficients c j , j = 1, . . . , M . The eigenfunctions vλ j

are then uniquely determined by λ j .
Let P(z) = ∏M

j=1(z − λ j ) = ∑M
�=0 p� z� be the Prony polynomial determined

by the set of M pairwise different (unknown) active eigenvalues λ j ∈ Λ f , and p =
(p0, . . . , pM−1, pM )T with pM = 1 denotes the vector of its monomial coefficients.
Then we obtain by (3.1)

P(A f ) =
M∏

k=1

(A − λk I ) f =
M∑

j=1

c j

M∏

k=1

(A − λk I ) vλ j = 0, (3.3)

and therefore

F(Ak P(A) f ) = F

(
Ak

(
M∑

�=0

p� A
� f

))
=

M∑

�=0

p� F(A�+k f ) = 0 (3.4)

for all k ∈ N. Taking M equations for k = 0, . . . , M − 1, is already sufficient to
recover the coefficient vector p, since the matrix

(
F(A�+k f )

)M−1,M

k=0,�=0

has full rank M . This can be seen from the factorization

(
F(A�+k f )

)M−1,M

k=0,�=0
=

⎛

⎝F

⎛

⎝A�+k
M∑

j=1

c jvλ j

⎞

⎠

⎞

⎠
M−1,M

k=0,�=0

=
⎛

⎝
M∑

j=1

c j F
(
A�+kvλ j

)
⎞

⎠
M−1,M

k=0,�=0

=
⎛

⎝
M∑

j=1

c j F(vλ j

⎞

⎠ λ�+k
j

)M−1,M

k=0,�=0

= VΛ f ,M,M diag (c j F(vλ j ))
M
j=1 V

T
Λ f ,M+1,M (3.5)

with the Vandermonde matrices

VΛ f ,M,M := (λkj )
M−1,M
k=0, j=1, VΛ f ,M+1,M := (λkj )

M,M
k=0, j=1
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having full rank M . Thus, we can first compute p as the right eigenvector of
(F(A�+k f ))M−1,M

k=0,�=0 to the eigenvalue 0 with normalization pM = 1, determine P(z),
then extract the zeros λ of P(z) to recover λ j , j = 1, . . . , M , and finally compute
the coefficients c j , j = 1, . . . , M , by solving an overdetermined linear system of the
form

F(Ak f ) =
M∑

j=1

c j λ
k
j F(vλ j ), k = 0, . . . , 2M − 1.

��
Remark 3.2 As shown in [19] and [26], many expansions fit into the scheme of Theo-
rem 3.1. In Sect. 2 we have used A to be the shift operator or the differential operator.
Other examples in [19] and [26] include the dilation operator, generalized shift oper-
ators, as well as the Sturm-Liouville differential operator of second order.

3.2 Generalization 1: Change of Operators

The actions Ak f needed for the generalized Prony method to recover f ∈ M(A) in
(3.2) may be very expensive to acquire. Therefore we can try to replace the operator
A by a different operator with the same eigenfunctions vλ such that the powers of this
new operator are simpler to realize. We start with the following definition.

Definition 3.3 (Iteration Operator). Let A : V → V be a linear operator, and let
σ(A) �= ∅ be a subset of the point spectrum σP (A)with pairwise different eigenvalues
and with corresponding normalized eigenfunctions vλ such that the map λ �→ vλ is
injective for λ ∈ σ(A). Further, let ϕ : σ(A) → C be an injective function. We call
Φ = Φϕ an iteration operator for A if Φ : M(A) → M(A) is a well-defined linear
operator and Φ vλ = ϕ(λ) vλ for all λ ∈ σ(A).

The injectivity of ϕ in Definition 3.3 implies that the values ϕ(λ) are pairwise
different for all λ ∈ σ(A). In particular, we can show that for analytic functions ϕ the
operator Φ = ϕ(A) is an iteration operator.

Theorem 3.4 Let A : V → V be a linear operator, and let σ(A) �= ∅ be a subset of
the point spectrum σP (A) with pairwise different eigenvalues and with corresponding
eigenfunctions vλ such that themap λ �→ vλ is injective for λ ∈ σ(A). Letϕ : σ(A) →
C be an analytic, injective function. Then ϕ(A) is an iteration operator, i.e., it is a
well-defined linear operator on M(A) and

(A − Iλ) vλ = 0

implies

(ϕ(A) − ϕ(λ)I ) vλ = 0.

This means, if vλ is an eigenfunction of A corresponding to the eigenvalue λ, then vλ

is also an eigenfunction of ϕ(A) corresponding to the eigenvalue ϕ(λ).
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Proof Since ϕ is assumed to be analytic on σ(A), it follows that its power series
ϕ(z) = ∑∞

n=0 an z
n converges for z ∈ σ(A). Thus, A vλ = λ vλ implies for all

λ ∈ σ(A)

ϕ(A) vλ =
∞∑

n=0

an Anvλ = lim
N→∞

N∑

n=0

anλ
nvλ = ϕ(λ) vλ.

Further, the injectivity of ϕ implies that the eigenvalues ϕ(λ), λ ∈ σ(A), are pairwise
distinct. Thus, ϕ(A) is well-defined on M(A) and satisfies all assumptions of an
iteration operator. ��

Example 3.5 1. One example has been already seen in Sect. 2. We can take V =
C∞(R), A = d

dx with σP (A) = C according to Theorem 2.1. Further, let σ(A) =
R + i [−Cπ, Cπ) ⊂ σP (A). Then, ϕ(z) := exp(τ z) with 0 < τ ≤ 1/C is injective
on σ(A), and we obtain the iteration operator ϕ(A) = Sτ onM(A).

2. We take ϕ(z) = z−1 and σ(A) ∈ σP (A)\{0}. Then ϕ(A) = A−1 is well-defined
onM(A) and

A vλ = λ vλ ⇔ A−1 vλ = 1

λ
vλ.

For example, A = Sτ with τ �= 0 yields A−1 = S−τ. The dilation operator Da :
C(R) → C(R) with Da f (x) := f (ax), a �= 0 and |a| �= 1, yields D−1

a f (x) =
f ( 1a x).
3. Consider the operator A on C∞(R) given by

A f (x) := x
d f

dx
(x) = x f ′(x)

with eigenfunctions x p for p ∈ R to the eigenvalues p ∈ R. We use ϕ(z) = exp(τ z)
with τ ∈ R\{0} and obtain for each polynomial xm that

exp

(
τx

d

dx

)
xm =

∞∑

�=0

τ�

�!
(
x

d

dx

)�

xm =
∞∑

�=0

τ�

�! m
� xm = eτm xm = (eτx)m,

see also [10]. Thus,ϕ(A) is here the dilation operator Dexp(τ). The injectivity condition
for ϕ(z) is satisfied since exp(τp) is strictly monotone as a function in p. ��

What does a change from A to ϕ(A)mean for the reconstruction scheme to recover
an expansion f in (3.1)? Using the operator A and a functional F , Theorem 3.1
implies that we need (at least) the sample values F(Ak f ), k = 0, . . . , 2M − 1 for the
recovery of f . Changing from A to ϕ(A), we observe that all assumptions required in
Theorem 3.1 also hold for ϕ(A), and we can now reconstruct f in (3.1) from samples
F(ϕ(A)k f ), k = 0, . . . , 2M − 1, thereby employing the new Prony polynomial
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Pϕ(z) :=
M∏

j=1

(
z − ϕ(λ j )

) :=
M∑

�=0

p� z
�.

Taking a suitable ϕ may have two advantages. First, the samples F(ϕ(A)k f ),
k = 0, . . . , 2M − 1, may be much simpler to acquire. In Sects. 3.5 and 4, we will
present many examples, where a change from linear differential operators A to gener-
alized shift operators ϕ(A) leads to new recovery schemes for the expansions in (3.1)
employing just function values of f instead of high order derivative values.

Second, the numerical scheme to recover f can be essentially stabilized. The main
reason for that is the change of eigenvalues from λ ∈ Λ f to ϕ(λ) ∈ ϕ(Λ f ). The
eigenvalues play an important role for the matrices involved in the Prony algorithms.
Compared with the generalized Prony method, we get now instead of (3.5) the Hankel
matrix factorization

(
F(ϕ(A)�+k f )

)M−1,M

k=0,�=0
= Vϕ(Λ f ),M,M diag (c j F(vλ j ))

M
j=1 V

T
ϕ(Λ f ),M+1,M

with the Vandermonde matrices

Vϕ(Λ f ),M,M := (ϕ(λ j )
k)

M−1,M
k=0, j=1, Vϕ(Λ f ),M+1,M := (ϕ(λ j )

k)
M,M
k=0, j=1

to recover the coefficient vector p = (p0, . . . , pM )T of the Prony polynomial Pϕ .

3.3 Generalization 2: Change the Sampling Scheme

As we have seen in Theorems 3.1 and 3.4, the expansion f = ∑M
j=1 c j vλ j into

eigenfunctions of the operator A can be recovered using either the samples F(Ak f )
or the samples F(ϕ(A)k f ) for k = 0, . . . , 2M − 1, where F : V → C is a linear
functional satisfying F(vλ) �= 0 for all λ ∈ σ(A). Having a closer look at the Eqs.
(3.3) and (3.4) we observe however that already P(A) f = 0, such that F Ak can be
replaced by different functionals.

Definition 3.6 (Sampling Functionals). Let A : V → V be a linear operator and let
σ(A) be a fixed subset of pairwise different eigenvalues of A. Further, let

Vσ(A) := {vλ : A vλ = λ vλ, λ ∈ σ(A), ‖vλ‖V = 1}

be the corresponding set of eigenfunctions such that the mapping λ → vλ is injective
on σ(A). Then {Fk}M−1

k=0 with

Fk : V → C, k = 0, . . . , M − 1,

forms an admissible set of sampling functionals for A if for all finite subsets ΛM ⊂
σ(A) with cardinality M < ∞ the matrix

(Fk(vλ))
M−1
k=0,λ∈ΛM

has full rank M .
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If the set of functionals {Fk}M−1
k=0 is admissible for a linear operator A, then it is also

admissible for any iteration operator ϕ(A), since the eigenvectors vλ do not change.
Then we obtain

Theorem 3.7 Assume that {Fk}M−1
k=0 forms an admissible set of sampling functionals

for the linear operator A : V → V according to Definition 3.6. Let f ∈ M(A) be a
linear expansion into eigenfunctions of A as in (3.1). Then the sampling matrix

(
Fk(A

� f )
)M−1,M

k=0,�=0
∈ C

M×(M+1)

possesses rank M and is called an admissible sampling matrix for f . Further, if
Φ = ϕ(A) is an iteration operator of A as given in Theorem 3.4, then also

(
Fk(Φ

� f )
)M−1,M

k=0,�=0
∈ C

M×(M+1)

possesses rank M and is therefore an admissible sampling matrix.

Proof We show the second equation for Φ = ϕ(A), where ϕ is an injective analytic
function on σ(A). Then the first equation follows by taking ϕ(z) = z. We find

(
Fk(ϕ(A)� f )

)M−1,M

k=0,�=0

=
⎛

⎝Fk(ϕ(A)�
M∑

j=1

c j vλ j )

⎞

⎠
M−1,M

k=0,�=0

=
⎛

⎝
M∑

j=1

c j ϕ(λ j )
� Fk(vλ j )

⎞

⎠
M−1,M

k=0,�=0

= (
Fk(vλ j )

)M−1,M
k=0, j=1

diag (c j )
M
j=1

(
ϕ(λ j )

�
)M,M

j=1,�=0
.

All three matrices in this factorization have full rank M by assumption, and the asser-
tion follows. In particular, the last matrix is a Vandermonde matrix generated by M
pairwise distinct values ϕ(λ j ), j = 1, . . . , M . ��
Example 3.8 Comparisonwith formula (3.4) yields that Fk = FAk , k = 0, . . . , M−1,
is always an admissible set of sampling functionals, since the proof of Theorem 3.1
shows that (F(Ak+� f ))M−1,M

k=0,�=0 has full rank M for each f inM(A). ��
Further, we have

Lemma 3.9 Let A : V → V be a linear operator, and let σ(A) �= ∅ be a subset of
the point spectrum σP (A) with pairwise different eigenvalues and with corresponding
eigenfunctions vλ such that the map λ �→ vλ is injective for λ ∈ σ(A). Let ψ be an
analytic injective function on σ(A). Assume that F : V → C is a linear functional
with Fvλ �= 0 for all λ ∈ σ(A). Then {Fk}M−1

k=0 := {F(ψ(A)k)}M−1
k=0 is an admissible

set of sampling functionals and the matrix
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(Fk(A
� f ))M−1,M

k=0,�=0 = (F(ψ(A)k A� f ))M−1,M
k=0,�=0 ∈ C

M×M+1

is an admissible sampling matrix for each f ∈ M(A).

Proof From ψ(A)k vλ = ψ(λ)k vλ it follows that

Fk(vλ) = F(ψ(A)k vλ) = ψ(λ)k F(vλ)

is bounded and nonzero by assumption. Further, for f ∈ M(A),

(
F(ψ(A)k A� f )

)M−1,M

k=0,�=0
=

⎛

⎝F

⎛

⎝ψ(A)k A�
M∑

j=1

c j vλ j

⎞

⎠

⎞

⎠
M−1,M

k=0,�=0

=
⎛

⎝F

⎛

⎝
M∑

j=1

c j ψ(λ j )
k λ�

j vλ j

⎞

⎠

⎞

⎠
M−1,M

k=0,�=0

= Vψ(Λ f ),M,M diag ((c j F(vλ j )))
M
j=1V

T
Λ f ,M+1,M

with Λ f = {λ1, . . . , λM }, Vψ(Λ f ),M,M := ((ψ(λ j ))
k)

M−1,M
k=0, j=1 and VΛ f ,M+1,M :=

(λ�
j )
M,M
�=0, j=1. These two Vandermonde matrices have full rank M since the λ j ∈ Λ f

are pairwise different and ψ is injective on Λ f with ψ(λ j ) �= 0 for λ j ∈ Λ f . ��

3.4 Generalized Operator Based PronyMethod (GOP)

The following theorem summarizes the central statement of the generalized operator-
based Prony method (GOP) and the corresponding proof results in an algorithm to
solve the reconstruction problem for f ∈ M(A) in (3.2).

Theorem 3.10 (Generalized Operator based Prony Method). Let A : V → V be a
linear operator on the normed vector space V over C, and let σ(A) be a subset of
pairwise different eigenvalues of A. Let Φ = ϕ(A) be an iteration operator of A as
given in Definition 3.3. Assume that the set {Fk}M−1

k=0 is an admissible set of sampling
functionals according to Definition 3.6. Then each f ∈ M(A) can be completely
recovered from the complex samples Fk(ϕ(A)� f ), k = 0, . . . , M − 1, � = 0, . . . , M.

Proof To recover f = ∑M
j=1 c j vλ j ∈ M(A), we only have to determine the setΛ f =

{λ1, . . . , λM } of “active eigenvalues” and the corresponding coefficients c j ∈ C\{0},
j = 1, . . . , M , since the map λ → vλ is assumed to be injective. Further, since ϕ is
also injective on σ(A), we can determine the set ϕ(Λ f ) = {ϕ(λ j ) : j = 1, . . . , M}
instead of Λ f by Theorem 3.4.

Now let

Pϕ(z) :=
M∏

j=1

(
z − ϕ(λ j )

) =
M∑

�=0

p� z
�
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be the Prony polynomial determined by the unknown pairwise different active eigen-
values ϕ(λ j ) of ϕ(A) for λ j ∈ Λ f , where p = (p0, . . . , pM−1, pM )T with pM = 1
denotes the vector of coefficients in the monomial representation of Pϕ(z). Then

Pϕ(ϕ(A)) f =
M∏

k=1

(ϕ(A) − ϕ(λk)I ) f

=
M∑

j=1

c j

M∏

k=1

(ϕ(A) − λk I ) vλ j = 0,

and therefore,

Fk(Pϕ(ϕ(A)) f ) = Fk

(
M∑

�=0

p� ϕ(A)� f

)
=

M∑

�=0

p�Fk(ϕ(A)� f ) = 0, k = 0, . . . , M − 1.

Thus, we obtain a homogeneous linear system to compute p, where, by Theorem 3.7
(with A replaced by ϕ(A)), the coefficient matrix is the admissible sampling matrix
(Fk(ϕ(A)� f ))M−1,M

k=0,�=0 ∈ C
M×M+1 with full rank M . Hence, p is uniquely determined

by this system using the normalization pM = 1. We can now extract the zeros ϕ(λ j ),
j = 1, . . . , M , and thus Λ f = {λ1, . . . , λM }. Finally, we compute the coefficients cλ

as solutions of the linear system

Fk(ϕ(A)� f ) =
M∑

j=1

c jϕ(λ j )
�Fk(vλ j ), � = 0, . . . , M, (3.6)

where the coefficient matrix is of full rank, since Fk(vλ j ) �= 0 and the arising

Vandermonde matrix ((ϕ(λ j ))
�)

M,M
�=0, j=1 has full rank M since the values ϕ(λ j ),

j = 1, . . . , M , are pairwise different. ��
The proof of Theorem 3.10 is constructive and leads to the following algorithm for

the recovery of f ∈ M(A). We assume here that we have an iteration operator ϕ(A)

and a given set of admissible sampling functionals Fk such that the sampling matrix
(Fk(ϕ(A)� f ))M−1,M

k=0,�=0 ∈ C
M×M+1 for the operator ϕ(A) has full rank M .

Algorithm 3.11 (GOP).
Input: Fk

(
ϕ(A)� f

)
, � = 0, . . . , M , k = 0, . . . , M − 1, where f ∈ M(A).

• Compute the kernel vector p = (p0, . . . , pM−1, pM )T with pM = 1 of the matrix
(Fk(ϕ(A)� f ))M−1,M

k=0,�=0 ∈ C
M×M+1.

• Compute the M zeros ϕ(λ j ), j = 1, . . . , M , of the Prony polynomial Pϕ(z) =∑M
�=0 p�z� and identify the active eigenfunctions vλ j by ϕ(A) vλ j = ϕ(λ j ) vλ j .

Compute λ j from ϕ(λ j ) to obtain Λ f = {λ1, . . . , λM }.
• Compute c j by solving the system in (3.6).
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Output: Parameters λ j and c j , j = 1, . . . , M such that f =
M∑
j=1

c j vλ j .

Remark 3.12 1. The generalized Prony method in [19] is a special case of GOP if we
take ϕ(z) = z and Fk = F Ak for some suitable functional F . In this case the sampling
matrix has Hankel structure and we need only 2M input values.

2. Ifwe choose Fk = F(ψ(A)k ·) for someanalytic functionψ as inLemma3.9, then
the samplingmatrix can be taken in the form (F(ψ(A)k ϕ(A)� f ))M−1,M

k=0,�=0 ∈ C
M×M+1,

where as in Lemma 3.9, we have replaced the powers of A by powers of ϕ(A). This
sampling matrix is also admissible, and the proof can be performed as for Lemma 3.9.

3. GOP can be also generalized to operators with eigenvalues of higher geometric
multiplicity, similar to the generalized Prony method, [19]. This approach leads to a
Prony polynomial with zeros of higher multiplicity. We also refer to [3,17]. In this
paper we restrict ourselves to the case where the correspondence between λ and ϕ(λ)

and vλ, respectively, is bijective.

3.5 Application of GOP to Cosine Expansions

In this section, we want to explain the ideas of GOP in a simple example.
Consider the expansion

f (x) :=
M∑

j=1

c j cos(α j x), (3.7)

where we want to recover the 2M parameters α j ∈ [0, C) ⊂ R and c j ∈ C\{0},
j = 1, . . . , M . We observe that A := − d2

dx2
is an operator on C∞(R) such that all

functions cos(αx) are eigenfunctions of A with

A cos(α·) = α2 cos(α·).

Using the generalized Pronymethod in Theorem 3.1, we can therefore reconstruct f in
(3.7) using the samples F(Ak f ) = (−1)k F( f (2k)), k = 0, . . . , 2M − 1, where f (2k)

denotes the 2k-th derivative of f . Here, the sampling functional F : C∞(R) → C

needs to satisfy F(cos(α·)) �= 0 for all all α ∈ [0,C).
Taking, e.g., the point evaluation functional F f = f (0), we need themeasurements

f (2k)(0), k = 0, . . . , 2M − 1. These measurements are usually difficult to provide, it
would be much better to use just function values of f .

We want to apply now GOP in Theorem 3.10 to reconstruct f in (3.7) in a different
way. We employ the analytic function ϕ(z) of the form

ϕ(z) =
∞∑

n=0

(−1)n
τ2n zn

(2n)! ;
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i.e., ϕ(z2) = cos(τz), and observe that the application of ϕ(A) to monomial functions
xm gives

ϕ(A) xm =
∞∑

n=0

(−1)n
τ2n

(2n)!
(

− d2

dx2

)n

xm

=
∑

0≤2n≤m

(
m

2n

)
τ2n xm−2n

= 1

2

⎛

⎝
∑

0≤n′≤m

(
m

n′

)
τn

′
xm−n′ +

∑

0≤n′≤m

(
m

n′

)
(−τ)n

′
xm−n′

⎞

⎠

= 1

2

(
(x + τ)m + (x − τ)m

) = 1

2
(Sτ + S−τ) xm

with the shift operator Sτ given by Sτ f = f (· + τ). Thus we have

ϕ(A) = 1

2
(Sτ + S−τ)

and by Theorem 3.4 it follows that

ϕ(A) cos(α·) = 1

2
(Sτ + S−τ) cos(α·) = 1

2
(cos(α(· + τ)) + cos(α(· − τ)))

= cos(ατ) cos(α·);

i.e., the eigenvalues α2 of A = − d2

dx2
are transferred to cos(τα). We can still identify

α ∈ [0,C) uniquely from cos(τα) if τ ≤ π
C .

In order to applyGOP,we also need to fix an admissible samplingmatrix.According
to Lemma 3.9, we can use an admissible set of sampling functionals

Fk = F(ϕ(A)k) = F

(
1

2
(Sτ + S−τ)

)k

= F

(
1

2k

k∑

r=0

(
k

r

)
S(k−2r)τ

)
(3.8)

and arrive with the point evaluation functional F f := f (0) at the sampling matrix(
Fk(ϕ(A)� f )

)M−1,M
k=0,�=0 with entries

Fk
(
ϕ(A)� f

)
= F

(
ϕ(A)k+� f

)
= 1

2k+�

k+�∑

r=0

(
k + �

r

)
f ((k + � − 2r)τ).

This matrix involves the function samples f (kτ), −2M + 1 ≤ k ≤ 2M − 1. Since f
in (3.7) is symmetric, it is sufficient to provide f (kτ), k = 0, . . . , 2M − 1. Indeed,
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F(ϕ(A)k+� f ) =
M∑

j=1

c j F
(
ϕ(A)k+� cos(α j ·)

)

=
M∑

j=1

c j (cos(α jτ))�+k F
(
cos(α j ·)

) =
M∑

j=1

c j
(
cos(α jτ)

)�+k

yields that the sampling matrix can be simply factorized, and all matrix factors have
full rank M .

We can employ a different sampling matrix by taking

Fk( f ) = ((Skτ + S−kτ) f )(0)

instead of (3.8) and get the matrix entries

(
(Skτ + S−kτ)(ϕ(A)� f )

)
(0) = 1

2�

�∑

r=0

(
�

r

) [
f
(
(� + k − 2r)τ) + f (� − k − 2r)τ

)]
.

(3.9)

For f of the form (3.7) this sampling matrix is also admissible since we obtain with
the Chebyshev polynomial Tk(z) := cos(k(arccos z)) that

(
(Skτ + S−kτ)ϕ(A)� f

)
(0)

= 1

2�

�∑

r=0

(
�

r

) M∑

j=1

c j
[
cos

(
α j (� + k − 2r)τ

) + cos
(
α j (� − k − 2r)τ

)]

=
M∑

j=1

c j

(
2

2�

�∑

r=0

(
�

r

)
cos

(
α j (� − 2r)τ

)
)

cos
(
α j kτ

)

=
M∑

j=1

c j

(
2

2�

�∑

r=0

(
�

r

)
T|�−2r |(cos

(
α jτ)

)
)

cos
(
α j kτ

)

= 2
M∑

j=1

c j
(
cos(α jτ))� cos(α j kτ

)
,

where we have used the identity x� = 1
2�

∑�
r=0

(
�
r

)
T|�−2r |(x). Thus

(
((Skτ + S−kτ)ϕ(A)� f )(0)

)M−1,M

k=0,�=0
= (cos(α j kτ))

M−1,M
k=0, j=1 diag (2c j )

M
j=1 ((cos(α jτ))�)

M,M
j=1,�=0,

where all matrix factors have full rank M . The sampling matrix in (3.9) applies the
idea that instead of Fk( f ) = F(ϕ(A)k f ), k = 0, . . . , M − 1, we can also use

Fk( f ) = F(pk(ϕ(A) f )), k = 0, . . . , M − 1,
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with a basis {pk}M−1
k=0 of the space of algebraic polynomials up to degree M − 1.

Here, (3.9) is obtained by using the basis of Chebyshev polynomials pk = Tk , k =
0, . . . , M − 1.

Remark 3.13 A slightly different sampling scheme was applied in [30] and in [26],
where the Prony polynomial has been written using a Chebyshev polynomial basis
instead of the monomial basis.

4 GOP for Special Linear Differential Operators of First and Second
Order

In this section we discuss the application of GOP for the recovery of expansions
into eigenfunctions of linear differential operators. In this case, we will mainly apply
iteration operators that are constructed using ϕ(z) = exp(τz) and ϕ(z) = cos(τz1/2).
We will show that the obtained iteration operators are generalized shift operators that
enable us to recover the considered expansions using only function values instead of
derivative values. We will consider sampling functionals Fk : M → C of the form

Fk( f ) = F(ϕ(A)k f ).

With this sampling, GOP is equivalent with the generalized Prony method for ϕ(A)

(instead of A) and a fixed functional F that only needs to satisfy the assumptions of
Theorem 3.1. Then, the corresponding sampling matrix is always admissible for all
f ∈ M(A) in (3.2), and we need the values F((ϕ(A)k f ), k = 0, . . . , 2M − 1 to
reconstruct f in (3.1).

4.1 Differential Operators of First Order and Generalized Shifts

Assume thatG : I → J ⊂ R is inC∞(I ) and that its first derivativeG ′(x) has no zero
on I . In particular, this means that g(x) = 1/G ′(x) is well-defined on I . Moreover,
G(x) is strictly monotone on I such that G−1(x) is also well-defined on I . Further,
let H ∈ C∞(I ).

We want to reconstruct functions of the form

f (x) =
M∑

j=1

c j e
H(x)+λ j G(x), (4.1)

i.e., we want to recover the parameters c j ∈ C\{0} and λ j ∈ R+ i[−C,C). We define
the functions

g(x) := 1

G ′(x)
, h(x) := −H ′(x)

G ′(x)
. (4.2)
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Then vλ j (x) := eH(x)+λ j G(x) are eigenfunctions of

A = g(·) d

dx
+ h(·), (4.3)

since we have for all λ ∈ C,

A vλ(x) =
(
g(x)

d

dx
+ h(x)

)
eH(x)+λG(x)

= g(x) eH(x)+λG(x) (−h(x) + λ)

g(x)
+ h(x) eH(x)+λG(x) = λ vλ(x). (4.4)

We can therefore apply the generalized Prony method to recover (4.1), and with the
operator A in (4.3) this leads to a recovery scheme that involves the samples

F
((

g(·) d

dx
+ h(·)

)k
f
)
, k = 0, . . . , 2M − 1.

However, these samples may be difficult to provide.
We therefore apply the GOP approach with ϕ(z) = exp(τz). For f of the form

(4.1) it follows that

eτA f (x) = eτ(g(·) d
dx +h(·)) f (x) =

∞∑

�=0

τ�

�!
(
g(·) d

dx
+ h(·)

)�
⎛

⎝
M∑

j=1

c j e
H(x)+λ j G(x)

⎞

⎠

=
M∑

j=1

c j

( ∞∑

�=0

τ�

�! λ�
j

)
eH(x)+λ j G(x) =

M∑

j=1

c j e
λ jτ eH(x)+λ j G(x)

= eH(x)−H
(
G−1(τ+G(x))

) M∑

j=1

c j e
H
(
G−1(τ+G(x))

)+λ j G
(
G−1(τ+G(x))

)

= eH(x)−H
(
G−1(τ+G(x))

)
f
(
G−1(τ + G(x))

)
. (4.5)

Thus, the iteration operator ϕ(A) of A is the generalized shift operator SG,H ,τ :
C(R) → C(R) with

SG,H ,τ f (x) := ϕ(A) f (x) = eτA f (x) = eH(x)−H(G−1(τ+G(x))) f (G−1(τ + G(x))).

(4.6)

This observation enables us to reconstruct f in (4.1) using function values instead of
derivative values.

Theorem 4.1 Let G : I → J ⊂ R be in C∞(I ) with |G ′(x)| > 0 for all x ∈ I , and
H ∈ C∞(I ). Further, for some fixed x0 ∈ I and 0 < |τ| ≤ π/C let τk+G(x0) ∈ G(I )
for k = 0, . . . , 2M − 1, where G(I ) := {g(x) : x ∈ I } denotes the image of G. Then
f in (4.1) with |Im λ j | ≤ C can be uniquely reconstructed from the function samples
f (G−1(τk + G(x0))), k = 0, . . . , 2M − 1.
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Proof Taking the differential operator A in (4.3)with g and h as in (4.2), it follows from
(4.4) that eH(x)+λ j G(x) are eigenfunctions of A to the pairwise distinct eigenvalues
λ j . As shown in (4.5), we can apply ϕ(z) = exp(τz) and obtain the generalized shift
operator ϕ(A) = SG,H ,τ in (4.6). One important consequence of the computations in
(4.5) is the observation that

ϕ(A)k f = eτ k A f = exp

(
τ k

(
g(·) d

dx
+ h(·)

))
f = SG,H ,kτ f

also holds. Therefore, we have SkG,H ,τ = SG,H ,kτ, see also [26] for a different proof.
We now apply Theorem 3.10 to f in (4.1) with the operator ϕ(A) = SG,H ,τ, the point
evaluation functional F( f ) = f (x0), and with Fk( f ) := F(ϕ(A)k f ). By Theorem
3.4, the eigenfunctions eH(x)+λ j G(x) of A = g(·) d

dx + h(·) to the eigenvalues λ j are
also eigenfunctions of SG,H ,τ, now to the eigenvalues eλ jτ. We only need to ensure
that these new eigenvalues are pairwise distinct. Since λ j ∈ R + i[−C,C), this is
satisfied if 0 < τ ≤ π

C . Therefore the mapping from eλ jτ to vλ j = eH(·)+λ j G(·) is
bijective. Finally, F(vλ j ) = vλ j (x0) = eH(x0)+λ j G(x0) �= 0. Hence, the sampling
matrix

(
F
(
ϕ(A)k+� f

))M−1,M

k,�=0
= ((

SG,H ,τ(k+�) f
)
(x0)

)M−1,M
k,�=0

=
(
eH(x)−H

(
G−1(τ(k+�)+G(x0))

)
f
(
G−1 (τ(k + �) + G(x0))

))M−1,M

k,�=0

is admissible by Lemma 3.9 and is already determined by the well-defined sampling
values f (G−1(τk+G(x0))), k = 0, . . . , 2M −1. Thus, Theorem 3.10 can be applied
and the assertion follows. ��

Remark 4.2 If the generalized shift operator SG,H ,τ is used to recover the expansion
f in (4.1), then the assumptions on G and H can be relaxed. It is sufficient to have
continuous functions G and H , where G is monotone on I .

Example 4.3 We want to recover an expansion of the form

f (x) =
M∑

j=1

c j e
λ j cos(x) (4.7)

and have to find the parameters c j ∈ C\{0} and λ j ∈ R + i[−π, π) by employing
Theorem 4.1. We take G(x) := cos(x) which is monotone on [0,π]; i.e., we can
choose I = [0,π] and G(I ) = [−1, 1]. Then, G : I → G(I ) is bijective, and
G−1(x) = arccos(x) is well-defined as a function from G(I ) onto I . Further, let
H(x) := 0. Taking g(x) := 1

G ′(x) = −1
sin x and h(x) := 0, we conclude that the

functions eλ j cos(x) in the expansion (4.7) are eigenfunctions of the differential operator
A = − 1

sin(x)
d
dx . We apply ϕ(z) = exp(τz) and obtain the generalized shift operator
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of the form

ϕ(A) f (x) = Scos,0,τ f (x) = f (arccos(τ + cos(x))) .

We choose x0 = 0, i.e., G(x0) = 1, and τ = − 1
M such that the values cos(x0)+ kτ =

1 − k/M ∈ G(I ) for 0 . . . , 2M − 1. Thus

Skcos,0,τ f (x0) = Scos,0,kτ f (0) = f (arccos(kτ + 1)) , k = 0, . . . , 2M − 1,

are well-defined. According to Theorem 4.1, f (x) in (4.7) is already completely
described by these values. In this case, eλ j cos(x) are eigenfunctions to Scos,0,τ cor-
responding to the eigenvalues eλ jτ. Therefore, defining the Prony polynomial

Pcos(z) =
M∏

j=1

(
z − eλ jτ

) =
M∑

�=0

p� z
�

we find with (4.7)

M∑

�=0

p� f (arccos(1 + (m + �)τ)) =
M∑

�=0

p�

M∑

j=1

c j e
λ j (cos(arccos(1+(m+�)τ)))

=
M∑

j=1

c je
λ j (1+mτ)

M∑

�=0

p� e
λ j �τ = 0

for m = 0, . . . , M − 1. This homogeneous linear system provides the coefficients p0,
. . ., pM−1, and pM = 1 of Pcos(z). Having found Pcos(z), we can extract its zeros
eλ jτ, recover λ j and finally find c j by solving a linear system for the given function
values. ��
Example 4.4 We want to recover an expansion into shifted Gaussians of the form

f (x) =
M∑

j=1

c j e
−α(x−λ j )

2
, (4.8)

where we assume that α ∈ R\{0} is given beforehand, and we need to reconstruct
c j ∈ C\{0} and λ j ∈ R, j = 1, . . . , M . By direct comparison we have e−α(x−λ j )

2 =
eλ2j eH(x)+λ j G(x) with

H(x) = −αx2, G(x) = 2αx,

and with the linear factor eλ2j . Thus, taking g(x) := 1/G ′(x) = 1/(2α) and h(x) :=
H ′(x)/G ′(x) = −x , it follows that vλ j (x) = e−α(x−λ j )

2
satisfies the differential

equation
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Table 1 Examples of operators A = g(·) d
dx +h(·), corresponding eigenfunctions vλ = exp(H(·)+λG(·))

and sampling values for k = 0, . . . , 2M − 1 with sampling parameter τ to recover expansions f in (4.1)

g(x) G(x) Eigenfunctions vλ Sampling values

1/x − 1
2 x

2 exp(H(x) − λ
2 x

2) f
(√−kτ + x0

)

1 x exp(H(x) + λx) f (kτ + x0)

x log(x) eH(x) xλ f
(
ekτx0

)

x p (p �= 1) x1−p

1−p exp(H(x) + λx1−p/(1 − p)) f ((1 − p)τk + x1−p
0 )1/1−p)

−
√
1 − x2 arccos(x) exp(H(x) + λ arccos(x)) f (cos(kτ + arccos(x0)))√

1 − x2 arcsin(x) exp(H(x) + λ arcsin(x)) f (sin(kτ + arcsin(x0)))√
x2 − 1 arcosh (x) exp(H(x) + λ arcosh (x)) f (cosh(kτ + arcosh(x0)))√
x2 + 1 arsinh (x) exp(H(x) + λ arsinh (x)) f (sinh(kτ + arsinh(x0)))
1

cos(x) sin(x) exp(H(x) + λ sin(x)) f (arcsin(kτ + sin(x0)))

− 1
sin(x) cos(x) exp(H(x) + λ cos(x)) f (arccos(kτ + cos(x0)))

− 1
cosh(x) sinh(x) exp(H(x) + λ sinh(x)) f (arsinh(kτ + sinh(x0)))

− 1
sinh(x) cosh(x) exp(H(x) + λ cosh(x)) f (arcosh(kτ + cosh(x0)))

(
1

2α

d

dx
− x

)
vλ j (x) = λ vλ j (x);

i.e., eα(x−λ j )
2
are eigenfunctions of the operator A in (4.3) with g and h as above.

According to Theorem 4.1 we can therefore recover the expansion into shifted Gaus-
sians in (4.8) using the function samples

f (G−1(kτ + G(0)) = f
( τ

2α
k
)

, k = 0, . . . , 2M − 1,

where we have taken x0 = 0 and arbitrary real step size τ �= 0, sinceG(x) is monotone
on R and the eigenvalues eλ jτ are real, see also [26], Sect. 4.1. ��

Remark 4.5 We mention that there are other approaches to recover expansions into
shifted Gaussians, see, e.g., [34].When one is interested in approximation of functions
by sparse sums of the form (4.8), the question arises, whether arbitrarily narrow Gauss
pulses can be constructed by linearly combining arbitrarily wider Gauss pulses. This
question has been recently discussed in [13].

The approach to considering eigenfunctions of the form vλ(x) = eH(x)+λG(x) for
differentiable functions G(x) and H(x), where G(x) is strictly monotone on some
interval I opens the way to recover many different expansions of the form (4.1) using
only special function values of f . In Table 1, we summarize some examples for g(x),
G(x), and arbitrary H(x) (resp. h(x)), the corresponding eigenfunctions vλ as well as
the needed function samples for GOP.
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4.2 Second Order Differential Operators and Generalized Symmetric Shifts

We consider now the reconstruction problem to find all parameters c j ∈ C\{0} and
λ j ∈ [0,C) of

f (x) =
M∑

j=1

c j cos(λ j G(x)). (4.9)

As before, we assume that G ∈ C∞(I ) for some interval I = [a, b] ⊂ R and that G ′
is strictly positive (or strictly negative) on I . Let g(x) := 1/G ′(x). We now consider
the special differential operator of second order acting on f (x) as follows

B f (x) := A2 f (x) =
((

g(·) d

dx

)2
f

)
(x) = (g(x))2 f ′′(x) + g(x) g′(x) f ′(x).

(4.10)

Similarly as in (4.4), we observe that the functions eiλG(x) and e−iλG(x) are the two
eigenfunctions of B to the eigenvalue −λ2. Therefore, cos(λG(x)) and sin(λG(x))
are also eigenfunctions of B to −λ2.

In order to ensure that the map from eigenvalues to eigenfunctions −λ2 → vλ is
bijective, we restrict ourselves to the eigenfunctions cos(λG(x)) with λ ≥ 0.

Then, the function f in (4.9) can be understood as an expansion into eigenfunctions
cos(λ j G(x)) of the operator B in (4.10), and according to the generalized Prony

method in Theorem 3.1, we can reconstruct f using the values F
(
(g(·) d

dx )2k f
)
,

k = 0, . . . , 2M − 1 with some suitable functional F : C∞(I ) → C.
We want to apply GOP to derive a simpler reconstruction scheme. We take the

analytic function ϕ(z) = cos(τz1/2) and obtain for f in (4.9) according to (4.5)

ϕ(B) f (x) = ϕ(A2) f (x) = cos(τA) f (x)

= 1

2

[
exp

(
τg(·) d

dx

)
+ exp

(
− τg(·) d

dx

)]
f (x)

= 1

2

[
f (G−1(τ + G(x))) + f (G−1(−τ + G(x)))

]
.

Thus, we find a symmetric generalized shift operator

SsymG,τ f := 1

2

[
f (G−1(τ + G(·))) + f (G−1(−τ + G(·)))

]

as an iteration operator of B, and f in (4.9) can also be understood as a sparse expansion
into eigenfunctions of the operator SsymG,τ to the eigenvalues ϕ(−λ2j ) = cos(τλ j ). This
observation enables us to reconstruct f in (4.9) using only function values of f instead
of derivative values.
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Theorem 4.6 Let G : I → J ⊂ R be inC∞(I )with |G ′(x)| > 0 for all x ∈ I . Assume
further, that for some fixed x0 ∈ I we have cos(λG(x0)) �= 0 for all λ ∈ [0,C), and
for a fixed τ with 0 < |τ| ≤ π/C we have τk + G(x0) ∈ G(I ) for k = −2M +
1, . . . , 2M − 1. Then the parameters c j ∈ C\{0} and λ j ∈ [0,C), j = 1, . . . , M,
of f in (4.9) can be uniquely reconstructed from the samples f (G−1(τk + G(x0))),
k = −2M + 1, . . . , 2M − 1.

Proof We apply Theorem 3.10, where we use the operator ϕ(B) = cos(τA) = SsymG,τ ,
the point evaluation functional F f = f (x0), and the set of sampling functionals Fk =
F(ϕ(B)k), k = 0, . . . , M − 1. From Theorem 3.4 it follows that the eigenfunctions
cos(λ j G(x)) of B in (4.10) are also eigenfunctions of SsymG,τ . Indeed, we find by direct
computation

SsymG,τ cos(λ j G(x)) = 1

2

[
cos(λ j G(G−1(τ + G(x)))) + cos(λ j G(G−1(−τ + G(x))))

]

= 1

2

[
cos(λ j (τ + G(x))) + cos(λ j (−τ + G(x)))

]

= cos(λ jτ) cos(λ j G(x)).

Therefore, the eigenvalues have here the form cos(λ jτ) and are pairwise different for
λ j ∈ [0,C) if 0 < τ < π

C . Further, the sampling matrix (Fk(ϕ(B)� f ))M−1,M
k,�=0 is

admissible by Lemma 3.9. This sampling matrix has Hankel structure and is deter-
mined by

Fk( f ) = F((SsymG,τ)k f ) = ((SsymG,τ)k f )(x0) = 1

2k

k∑

r=0

(
k

r

)
f (G−1(G(x0) + (k − 2r)τ))

for k = 0, . . . , 2M − 1. Thus the assertion follows. ��
Example 4.7 We want to reconstruct expansions of the form

f (x) =
M∑

j=1

c j cos(λ j arccos(x)) (4.11)

with c j ∈ C\{0} and λ j ∈ [0,C). Therefore, we choose G(x) := arccos(x) on the
interval [−1, 1], and g(x) := 1/G ′(x) = −(1−x2)1/2. According to our observations
we take A f (x) = g(x) f ′(x) = −√

1 − x2 f ′(x) and

B f (x) = A2 f (x) =
(√

1 − (·)2 d

dx

)2

f (x) = (1 − x2) f ′′(x) − x f (x)

on I = [−1, 1]. Then, B possesses the eigenfunctions cos(λ arccos x) for λ ≥ 0.
Taking the non-negative integers λ = n ∈ N0, we particularly obtain the Cheby-
shev polynomials Tn(x) = cos(n arccos x). According to Theorem 4.6 we can
now reconstruct the expansion (4.11) using only the samples ((Ssymarccos,τ)k f )(x0),
k = 0, . . . , 2M − 1, which can be computed from the values
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f (cos(kτ + arccos(x0))), k = −2M + 1, . . . , 2M − 1.

We can choose x0 = 1 to ensure that cos(λG(x0)) = cos(λ arccos(1)) = 1 �= 0 for
all λ ∈ [0,C). Further, we take τ ∈ (0,min{π

C , π
2M }) such that kτ + arccos x0 =

kτ ∈ [0,π) for k = 0, . . . , 2M − 1. In this special case the values f (cos(kτ)), k =
0, . . . , 2M − 1, are sufficient for full recovery since the cosine function is symmetric.
Different approaches to recover expansions into Chebyshev polynomials are taken in
[30] and [26]. ��

5 Generalized Sampling for the PronyMethod

In this section we study admissible sampling schemes in GOP in more detail and want
to give some special applications.

Let us assume that the normed vector space V is a subspace of L2([a, b]) and fix
the linear operator A : V → V . We denote with σ(A) a fixed set of pairwise different
eigenvalues of A and consider the set Vσ of corresponding eigenvectors such that the
map λ → vλ is a bijective map from σ(A) onto Vσ . By Theorem 3.10 we know that
A can be replaced by an iteration operator ϕ(A).

In this section we will focus on finding an admissible set {Fk}M−1
k=0 of sampling

functionals according to Definition 3.6 such that entries of the sampling matrix
(Fk(A� f ))M−1,M

k,�=0 can be simply computed. We recall that a set of sampling func-

tionals Fk : V → C is admissible if (Fk(vλ))
M−1
k=0,λ∈ΛM

has full rank M for all subsets
ΛM ⊂ σ(A) with cardinality M . Then it follows, by Theorem 3.7, that the sampling
matrix (Fk(A� f ))M−1,M

k,�=0 has full rank M for each f ∈ M(A) such that f can be
uniquely recovered.

We consider functionals Fk : M(A) → C which can be written as

Fk( f ) := 〈 f , φk〉 =
∫ b

a
f (x) φk(x) dx, (5.1)

where (a, b) ⊆ R is a suitable interval and φk is some kernel function or distribution,
such that the integral in (5.1) is well-defined in a distribution sense. For example, we
can take φk to be the δ-distribution,

Fk( f ) := 〈 f , δ(· − x0)〉 =
∫ b

a
f (x) δ(· − x0) dx = f (x0), x0 ∈ [a, b].

Using the adjoint operator, the entries of the sampling matrix can be written as

Fk(A
� f ) = 〈A� f , φk〉 = 〈 f , (A∗)�φk〉 =

∫ b

a
f (x) (A∗)� φk(x) dx . (5.2)

If A is a linear differential operator, the consideration of powers of the adjoint operator
A∗ applied to φk is particularly useful if we cannot acquire derivative samples of f
but special moments instead. In this case, we need to assume that the kernel functions
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φk are sufficiently smooth on [a, b], such that (A∗)�φk ∈ L2([a, b]). For admissibility
we need now to ensure that (〈vλ, φk〉)M−1

k=0,λ∈ΛM
has full rank M .

Example 5.1 We consider again the example of exponential sums to present the variety
of possible sampling matrices that can be used. Let

f (x) =
M∑

j=1

c j e
Tj x

with c j ∈ C\{0}, Tj ∈ R + i[−π, π), where eTj x are eigenfunctions of A = d
dx to

the eigenvalue Tj . HereM(A) is a subset of the Schwartz space, and thus obviously a
subspace of L2([a, b]) for each interval [a, b] and also of L2(R). We present a variety
of sampling schemes which are all admissible and of the form (5.2).

a) Let F( f ) := ∫ ∞
−∞ f (x) δ(x − x0) dx = f (x0) be the point evaluation functional

with x0 ∈ R and let Fk( f ) := F(Ak f ). Then the entries of the sampling matrix are
of the form

Fk(A
� f ) =

∫ ∞

−∞
A� f (x) Akδ(x − x0) dx =

∫ ∞

−∞
f (x) δ(k+�)(x − x0)dx = f (k+�)(x0)

used in Sect. 2.2, where we need derivative values f (k)(x0), k = 0, . . . , 2M − 1. The
used kernel functions are in this case the distributions φk = Akδ(·−x0) = δ(k)(·−x0);
i.e., derivatives of the Delta distribution. Admissibility is ensured since for any Tj ∈
R + i[−π, π),

(〈eTj ·, φk〉)M−1,M
k=0, j=1 = (T k

j e
Tj x0)

M−1,M
k=0, j=1 = (T k

j )
M−1,M
k=0, j=1 diag(e

Tj x0)Mj=1

has full rank M .
b) ByLemma3.9we can also take Fk( f ) = F(ψ(A)k f ) for some iteration operator

ψ(A) with F as in a). With ψ(A) = exp(τA) = Sτ, τ �= 0, see Example 3.5, we
obtain the admissible sampling matrix with entries

Fk(A
� f ) =

∫ ∞

−∞
(SkτA

� f )(x) δ(x − x0) dx

=
∫ ∞

−∞
f (x) ((A�)∗(Skτ)∗δ)(x − x0) dx

=
∫ ∞

−∞
f (x) δ(�)(x − τk − x0) dx = f (�)(x0 + τk),

where we need the values f (�)(x0 + kτ), � = 0, . . . , M , k = 0, . . . , M − 1, see Sect.
2.4. We have here φk = (Skτ)∗δ(· − x0) = δ(· − τk − x0), k = 0, . . . , M − 1.

c) Consider now the functional

F( f ) :=
∫ 1

0
f (x) φ(x) dx (5.3)
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with φ(x) := x2M (1 − x)2M . Then

F(eT ·) =
∫ 1

0
eT x φ(x)dx �= 0

for all T ∈ R+ i[−π, π) since φ(x) > 0 for x ∈ (0, 1). Thus, with Fk := F(Ak) we
obtain

Fk(A
� f ) = F(Ak+� f ) =

∫ 1

0
f (k+�)(x) x2M (1 − x)2M dx

= (−1)k+�

∫ 1

0
f (x)

[
x2M (1 − x)2M

](k+�)

dx

is admissible. These values can be computed from the moments
∫ 1
0 f (x)xs dx for

s = 0, . . . , 4M . The functions φk are here defined as φk := φ(k), k = 0, . . . , M − 1.
d) Let us now take the functional F as in (5.3), but with φ(x) := xM (1− x)M and

let Fk( f ) := F(exp(k A) f ) = F(Sk1 f ) according to Lemma 3.9. Then we get the
entries of the admissible sampling matrix in the form

Fk(A
� f ) =

∫ 1

0
f (�)(x + k) xM (1 − x)M dx = (−1)�

∫ 1

0
f (x + k)

[
xM (1 − x)M

](�)

dx

= (−1)�
∫ k+1

k
f (x)

[
(x − k)M (k + 1 − x)M

](�)

dx .

These entries can be computed from the moments
∫ 1
0 f (x + k) xsdx for k =

0, . . . , M − 1 and s = 0, . . . , 2M . The functions φk are of the form φk(x) =
(x − k)M (k + 1 − x)M , k = 0, . . . , M − 1.

e) Besides all the sampling schemes above, we know from Sect. 2.1 that f can be
reconstructed using the 2M samples f (x0 + kτ), k = 0, . . . , 2M − 1, with x0 ∈ R,
τ �= 0. This sampling scheme also follows from Theorem 3.10 by replacing A with
the iteration operator exp(τA) = Sτ. The simple equidistant sampling is obtained by
taking Fk = F(Skτ) and the kernel function φ(x) = δ(x − x0) as in a), such that

Fk((exp(τA))� f )) = F(Sk+� f ) = f (x0 + (k + �)τ).

The kernel functions φk are here φk = φ(· − τk), k = 0, . . . , M − 1. Taking instead
Fk = F(Sk2τ) we arrive at

Fk(S
�
τ f ) = F(Sk2τS

�
τ f ) = f (x0 + τ(2k + �)), k = 0, . . . , M − 1, � = 0, . . . , M,

and this sampling matrix is also admissible by Lemma 3.9. Here we have now φk =
φ(· − 2τk), k = 0, . . . , M − 1. ��
Besides the well-known example of exponential sums, we can also find new sampling
schemes for expansions into eigenfunctions of differential operators of higher order,
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where we need to acquire moments instead of derivative values. This can always be
achieved by employing suitable kernels φk and the adjoint operator representation in
(5.2).

Let us consider the linear differential operator

A :=
d∑

n=0

gn(·) dn

dxn
(5.4)

of order d with sufficiently smooth functions gn . Further, let σ(A) be a subset of pair-
wise distinct eigenvalues λ of A with corresponding eigenfunctions vλ ∈ L2([a, b])
such that we have a bijection λ → vλ.

Lemma 5.2 Let A be an operator in (5.4) with gn ∈ Cd([a, b]) for n = 0, . . . , d, and
let F : L2([a, b]) → C be a functional given by F f = 〈 f , φ〉, where φ ∈ Cd([a, b])
and

lim
x→a

φ(�)(x) = lim
x→b

φ(�)(x) = 0, � = 0, . . . , d.

Then

F(A f ) = 〈A f , φ〉 =
〈
f ,

d∑

n=0

(−1)r
r∑

�=0

(
r

�

)
g(�)
n φ(r−�)

〉
,

where g(�)
n and φ(�) denote the �-th derivative of gn and φ, respectively.

Proof The proof follows simply by partial integration, where the boundary terms
vanish because of the assumption on φ. ��

Thus, we can apply the sampling scheme arising from (5.2) where we need to
compute with derivatives of the kernel functions instead of derivatives of f .

Example 5.3 (Sparse Legendre Expansions). We want to recover a sparse expansion
into Legendre polynomials of the form

f (x) :=
M∑

j=1

c j Pn j (x)

where c j ∈ C\{0}, and n j ∈ N0 with 0 ≤ n1 < n2 < . . . < nM . The Legendre
polynomials Pn , n ∈ N0 are eigenfunctions of the differential operator of second
order

A f (x) := (x2 − 1) f ′′(x) + 2x f ′(x),

and we have

A Pn = n(n + 1) Pn .
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Table 2 Active degrees n j and
the corresponding linear
coefficients c j of f with
parameters in Table 2

n j 1 4 9

c j 1.703 3.193 3.710

Employing a functional of the form

F( f ) :=
∫ b

a
f (x)φP (x) dx,

with a smooth kernel φP satisfying φP (a) = φP (b) = 0 and φ′
P (a) = φ′

P (b) = 0, it
follows that

∫ b

a
A f (x) φP (x) dx =

∫ b

a
f (x) AφP (x) dx .

We choose the kernel

φP (x) :=
{

(x − a)4M (x − b)4M exp
(−α(x − β0)

2(x − β1)
2
)

x ∈ [a, b],
0 x /∈ [a, b].

(5.5)

Here, the parameters β0 and β1 are chosen to be outside of the interval [a, b], and
α ≥ 0. For α = 0, φP is a polynomial of degree 8M .

Taking for example [a, b] = [−1/2, 3/4], it follows that the functional F satisfies
the admissibility condition F(Pn) �= 0 for all n ∈ N0. Therefore, the expansion f can
be recovered from the 2M samples

F(Ak f ) =
∫ 3/4

−1/2
f (x) AkφP (x)dx, k = 0, . . . , 2M − 1.

We consider a small computational example. We want to recover the parameters c j
and n j of the expansion

f (x) =
3∑

j=1

c j Pn j (x)

from the 6 samples F(Ak f ), k = 0, . . . , 5. The true parameters are given in Table 2.
The signal with these parameters is presented in Fig. 1.
We choose now the sampling kernel φP in (5.5) with a = −1/2, b = 3/4, α = 0.1,

and −β0 = β1 = 2. The kernels AkφP , k = 0, . . . , 5, are depicted in Fig. 2. These
kernels can now be used for any 3−sparse linear combination of arbitrary Legendre
polynomials. For our example, the sampling matrix has the form
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Fig. 1 3-sparse Legendre expansion f with parameters in Table 2

Fig. 2 Sampling kernels AkφP , k = 0, 1, 2 (first row) k = 3, 4, 5 (second row) for a 3-sparse Legendre
expansion

Table 3 Computed parameters
n j and c j for f n j 1.00008823 4.00001099 9.00000026

c j 1.703 3.193 3.710

⎡

⎣
F( f ) F(A f )) F(A2 f ) F(A3 f )
F(A f ) F(A2 f )) F(A3 f ) F(A4 f )
F(A2 f ) F(A3 f )) F(A4 f ) F(A5 f )

⎤

⎦ .

The reconstructed parameters can be seen in Table 3. The polynomial degrees are
correctly recovered up to small rounding errors. We round to the closest integer and
get the exact values n j . The coefficients c j are found using a 3 × 3 Vandermonde
system. Alternatively, to recover the coefficients, we can use the orthogonality of
Legendre polynomials and obtain

123



Constructive Approximation (2020) 52:247–282 281

c j = 2n j + 1

2

∫ 1

−1
f (x)Pn j (x)dx .

The numerical instabilities due to the exponentially growing functions AkφP are an
issue in this approach. A clever choice of the parameters of φ can help to control
the amplitudes of AkφP . Another way is to apply a set of different functionals Fk as
proposed in Sect. 3.3.
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