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Abstract
Morrey (function) spaces and, in particular, smoothness spaces of Besov–Morrey or
Triebel–Lizorkin–Morrey type have enjoyed a lot of interest recently. Here we turn our
attention to Morrey sequence spacesmu,p = mu,p(Z

d), 0 < p ≤ u < ∞, which have
yet been considered almost nowhere. They are defined as natural generalizations of
the classical �p spaces. We consider some basic features, embedding properties, a pre-
dual, a corresponding version of Pitt’s compactness theorem, and further characterize
the compactness of embeddings of related finite-dimensional spaces.

Keywords Morrey sequence spaces · Pitt’s theorem · compact embeddings · entropy
numbers

Mathematics Subject Classification 46E35 · 46A45 · 46B45

1 Introduction

Morrey (function) spaces and, in particular, smoothness spaces of Besov–Morrey or
Triebel–Lizorkin–Morrey type were studied in recent years quite intensively and sys-
tematically. Decomposition methods like atomic or wavelet characterizations require
suitably adapted sequence spaces. This has been done to some extent already. We are
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interested in related sequence spaces of Morrey type, but first we briefly review some
basic facts about the much more prominent function spaces of Morrey type.

Originally, Morrey spaces were introduced in [32], when studying solutions of
second order quasi-linear elliptic equations in the framework of Lebesgue spaces.
They can be understood as a complement (generalization) of the Lebesgue spaces
L p(R

d). In particular, the Morrey space Mu,p, 0 < p ≤ u < ∞, is defined as the
collection of all complex-valued Lebesgue measurable functions on R

d such that

‖ f |Mu,p(R
d)‖ = sup

x∈Rd ,R>0
Rd( 1u − 1

p )

(∫
B(x,R)

| f (y)|p dy

) 1
p

< ∞, (1.1)

where B(x, R) = {y ∈ R
d : |x − y| < R} are the usual balls centered at x ∈ R

d with
radius R > 0. Obviously, Mp,p(R

d) = L p(R
d), and Mu,p(R

d) = {0} if p > u.
Moreover,M∞,p(R

d) = L∞(Rd) such that the usual assumption is p ≤ u < ∞. As
can be seen from the definition, Morrey spaces describe the local behavior of the L p

norm, which makes them useful when describing the local behavior of solutions of
nonlinear partial differential equations, cf. [22, 25–26, 27, 30, 31, 50]. Furthermore,
applications in harmonic analysis and potential analysis can be found in the papers
[2–4]. For more information, we refer to the books [1] and [48] and, in particular, to
the fine surveys [46, 47] by Sickel.

As for the smoothness spaces of Morrey type, aside from Besov–Morrey spaces
N s

u,p,q(R
d) in [22, 30, 31], and their counterparts Triebel–Lizorkin–Morrey spaces

E s
u,p,q(R

d), cf. [49], their atomic andwavelet characterizations were already described
in the papers [39, 41–44], and we simplified the appearing sequence spaces nsu,p,q
in [18] to some extent. There are further related approaches to Besov-type spaces
Bs,τ
p,q(R

d) and Triebel–Lizorkin-type spaces Fs,τ
p,q(R

d), cf. [48] with forerunners in
[12–14, 55, 56]. Triebel provided a third approach, so-called local and hybrid spaces,
in [53, 54], but they coincide with appropriately chosen spaces of type Bs,τ

p,q(R
d) or

Fs,τ
p,q(R

d), cf. [57].
Recently, based on some discussion at the conference “Banach Spaces andOperator

Theory with Applications” in Poznań in July 2017, we found that Morrey sequence
spaces mu,p = mu,p(Z

d), 0 < p ≤ u < ∞, have been considered almost nowhere.
The paper [6] concerns another type of discretization than we have in mind. To the
best of our knowledge, there is only the paper [16] (and an interesting application in
[17]) so far that is devoted to this subject. They are defined as natural generalizations
of �p = �p(Z

d) via

mu,p =

⎧⎪⎨
⎪⎩λ = {λk}k∈Zd ⊂ C :

‖λ|mu,p‖ = sup
j∈N0;m∈Zd

|Q− j,m | 1u − 1
p

⎛
⎝ ∑

k: Q0,k⊂Q− j,m

|λk |p
⎞
⎠

1
p

< ∞

⎫⎪⎬
⎪⎭ ,
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where Q j,m = 2− j (m +[0, 1)d) are dyadic cubes of side length 2− j , j ∈ Z,m ∈ Z
d .

Clearly, mp,p = �p.
We consider some basic features in Sect. 2 and present our main embedding result,

Theorem 3.1, in Sect. 3, which reads as follows: Let 0 < p1 ≤ u1 < ∞ and 0 <

p2 ≤ u2 < ∞. Then the embedding

mu1,p1 ↪→ mu2,p2

is continuous if, and only if, the following conditions hold:

u1 ≤ u2 and
p2
u2

≤ p1
u1

.

The embedding is never compact.
In Sect. 4, we describe a pre-dual Xu,p of mu,p, 1 ≤ p < u < ∞, which is a

separable Banach space, unlike mu,p.
Dealing with the closure m00

u,p of finite sequences in mu,p, we obtain a counterpart
to Pitt’s theorem [37] in our setting as follows, see Theorem 5.3 below: Let 1 < p <

u < ∞ and 1 ≤ q < ∞. Then any bounded linear operator

T : m00
u,p → �q

is compact. The above sequence spaces are not rearrangement invariant. Further infor-
mation about the Pitt theorem in rearrangement invariant setting can be found in [8]
and [28].

Finally, we further characterize the compactness of embeddings of related finite-
dimensional spaces and obtain for the asymptotic behavior of the dyadic entropy
numbers of such a finite-dimensional embedding that

ek
(
id j : m2 jd

u1,p1 → m2 jd

u2,p2

)
∼ 2−k2− jd

2
jd
(

1
u2

− 1
u1

)
,

where j ∈ N, 0 < pi ≤ ui < ∞, i = 1, 2, and k ∈ N0 with k � 2 jd .

2 Morrey Sequence Spaces

2.1 Preliminaries

First we fix some notation. By N we denote the set of natural numbers, by N0 the
set N ∪ {0}, and by Z

d the set of all lattice points in R
d having integer components.

For a ∈ R, let 
a� := max{k ∈ Z : k ≤ a} and a+ := max{a, 0}. All unimportant
positive constants will be denoted by C , occasionally with subscripts. By the notation
A � B, we mean that there exists a positive constant C such that A ≤ C B, whereas
the symbol A ∼ B stands for A � B � A. We denote by | · | the Lebesgue measure
when applied to measurable subsets of R

d .
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Given two (quasi-) Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the
natural embedding of X into Y is continuous.

For 0 < p < ∞, we denote by �p = �p(Z
d),

�p(Z
d) =

⎧⎪⎨
⎪⎩λ = {λk}k∈Zd ⊂ C : ‖λ|�p‖ =

⎛
⎝∑

k∈Zd

|λk |p
⎞
⎠

1
p

< ∞

⎫⎪⎬
⎪⎭ ,

complemented by

�∞(Zd) =
{

λ = {λk}k∈Zd ⊂ C : ‖λ|�∞‖ = sup
k∈Zd

|λk | < ∞
}

.

If {λ∗
ν}ν∈N stands for a nonincreasing rearrangement of a sequence λ = {λk}k∈Zd ∈

�u(Z
d), 0 < u < ∞, then

�u,∞(Zd) =
{
λ = {λk}k∈Zd ⊂ C : ‖λ|�u,∞‖ = sup

ν∈N
ν1/uλ∗

ν < ∞
}

denote the Lorentz sequence spaces, as usual. Finally, we adopt the custom to denote
by c = c(Zd), c0 = c0(Zd), and c00 = c00(Zd) the corresponding subspaces of
�∞(Zd) of convergent, null, and finite sequences, respectively; that is,

c =
{
λ = {λk}k∈Zd ∈ �∞ : ∃ μ ∈ C : |λk − μ| −−−−→|k|→∞ 0

}
,

c0 =
{
λ = {λk}k∈Zd ∈ �∞ : |λk | −−−−→|k|→∞ 0

}
,

c00 = {
λ = {λk}k∈Zd ∈ �∞ : ∃ r0 ∈ N0 : λk = 0 for |k| > r0

}
.

As we mostly deal with sequence spaces on Z
d , we shall often omit it from their

notation, for convenience.

2.2 The Concept

Let Q j,m , j ∈ Z, m ∈ Z
d , denote the usual dyadic cubes in R

d , i.e., Q0,0 = [0, 1)d
and Q j,m = 2− j (m + Q0,0).

Definition 2.1 Let 0 < p ≤ u < ∞. We define mu,p = mu,p(Z
d) by

mu,p(Z
d) =

⎧⎪⎨
⎪⎩λ = {λk}k∈Zd ⊂ C :

‖λ|mu,p‖ = sup
j∈N0;m∈Zd

|Q− j,m | 1u − 1
p

⎛
⎝ ∑

k: Q0,k⊂Q− j,m

|λk |p
⎞
⎠

1
p

<∞

⎫⎪⎬
⎪⎭ .
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Remark 2.2 In [16] the corresponding one-dimensional counterpart was introduced
and studied.

Proposition 2.3 Let 0 < p ≤ u < ∞.

(i) mu,p is a (quasi-) Banach space.
(ii) If u = p, then mu,u = �u; if u < p, then mu,p = {0}. If p1 ≤ p2 ≤ u, then

mu,p2 ↪→ mu,p1 .
(iii) For any p and u, we have mu,p ↪→ �∞.
(iv) If p < u, then �u,∞ ↪→ mu,p.
(v) If p < u, then mu,p and c0, c are incomparable; that is, mu,p �⊂ c0, mu,p �⊂ c,

c0 �⊂ mu,p, c �⊂ mu,p.

Proof Part (i) is standard; the completeness can be shown similarly to the (one-
dimensional) counterpart in [16].

The first two assertions in (ii) are obvious; the monotonicity in p is a matter of
Hölder’s inequality. Concerning (iii), clearly for any m ∈ Z

d ,

|λm | = |Q0,m | 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q0,m

|λk |p
⎞
⎠

1
p

≤ sup
j∈N0;m∈Zd

|Q− j,m | 1u − 1
p

⎛
⎝ ∑

k: Q0,k⊂Q− j,m

|λk |p
⎞
⎠

1
p

= ‖λ|mu,p‖,

such that finally, taking the supremum over all m ∈ Z
d ,

‖λ|�∞‖ ≤ ‖λ|mu,p‖.
We prove (iv). Let {λ∗

ν}ν∈N be a nonincreasing rearrangement of a sequence λ =
{λk}k∈Zd . Then for any cube Q− j,m , we have

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p
⎞
⎠

1/p

≤
⎛
⎝ 2 jd∑

ν=1

|λ∗
ν |p
⎞
⎠

1/p

≤ sup
r∈N

r1/uλ∗
r

⎛
⎝ 2 jd∑

ν=1

ν−p/u

⎞
⎠

1/p

≤ C‖λ|�u,∞‖ |Q− j,m | 1p − 1
u ,

since p < u and |Q− j,m | = 2 jd . Hence ‖λ|mu,p‖ ≤ C‖λ|�u,∞‖.
It remains to deal with (v). Consider first the constant sequence λ1 = {1}k∈Zd ∈ c.

Then

‖λ1|mu,p‖ = sup
j∈N0;m∈Zd

|Q− j,m | 1u − 1
p |Q− j,m | 1p = sup

j∈N0

2 jd/u = ∞,

which disproves c ⊂ mu,p (and simultaneously strengthens (iii) by mu,p � �∞). A
slight modification disproves c0 ⊂ mu,p: choose ε such that 0 < ε < d

u , and consider
λ̃ = {λ̃k}k∈Zd given by λ̃k = |k|−ε. Then λ̃ ∈ c0. On the other hand,
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‖λ̃|mu,p‖ ≥ c sup
j∈N0

|Q− j,0|
1
u − 1

p 2− jε|Q− j,0|
1
p = c sup

j∈N0

2 j(d/u−ε) = ∞,

which gives c0 �⊂ mu,p.
Now consider a special sequence λ = {λk}k∈Zd that looks as follows:

λk =
{
1 if k = (2r , 0, . . . , 0) for some r ∈ N,

0 otherwise.

Obviously λ /∈ c; in particular, λ /∈ c0. Now, by construction,

‖λ|mu,p‖ ≤ c sup
j∈N0

|Q− j,0|
1
u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Q− j,0

|λk |p
⎞
⎠

1
p

≤ c′ sup
r∈N

2rd( 1u − 1
p )r

1
p < ∞.

So the subspaces c0, c, and mu,p of �∞ are incomparable in the above sense. ��
Remark 2.4 Obviously, Definition 2.1 gives the discrete counterpart of Mu,p(R

d) in
view of (1.1). More precisely, given some sequence λ = {λk}k∈Zd ∈ mu,p,

fλ =
∑
k∈Zd

λkχQ0,k ∈ Mu,p,

where χA denotes the characteristic function of a set A ⊂ R
d , as usual.

Conversely, let f0 ∈ Mu,p, and define λ0 = {λ0k}k∈Zd by λ0k =
(∫

Q0,k
| f0(y)|p

dy
)1/p

, k ∈ Z
d . Then ‖λ0|mu,p‖ ≤ ‖ f0|Mu,p‖. Hence there is some obvious

correspondence between the Morrey sequence and function spaces, respectively.

Remark 2.5 As in the case of the function spaces Mu,p(R
d), one might complement

Definition 2.1 in the case of 0 < p ≤ u = ∞ by

m∞,p(Z
d) =

⎧⎪⎨
⎪⎩λ = {λk}k∈Zd ⊂ C :

‖λ|m∞,p‖ = sup
j∈N0;m∈Zd

|Q− j,m |− 1
p

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p
⎞
⎠

1
p

< ∞

⎫⎪⎬
⎪⎭ ,

where in the case of p = u = ∞, the latter sum has to be replaced by the supremum,
as usual. Using this definition, we can show that m∞,p = �∞. This is obvious for
p = u = ∞, so let us assume p < u = ∞. In view of Proposition 2.3(iii), it remains
to show that �∞ ↪→ m∞,p if p < u = ∞. Let λ ∈ �∞. Thus for any j ∈ N0 and
m ∈ Z

d ,
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|Q− j,m |− 1
p

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p
⎞
⎠

1
p

≤ |Q− j,m |− 1
p ‖λ|�∞‖ |Q− j,m | 1p = ‖λ|�∞‖,

which results in ‖λ|m∞,p‖ ≤ ‖λ|�∞‖.
Remark 2.6 Let Q denote an arbitrary closed cube in R

d with |Q| ≥ 1. We put

‖λ|mu,p‖(1) = sup
Q:|Q|≥1

|Q| 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q

|λk |p
⎞
⎠

1
p

,

‖λ|mu,p‖(2) = sup
Q:|Q|≥1

|Q| 1u − 1
p

⎛
⎝ ∑

k:Q0,k∩Q �=∅
|λk |p

⎞
⎠

1
p

.

Then ‖λ|mu,p‖(1) and ‖λ|mu,p‖(2) are equivalent norms in mu,p. It is obvious that
‖λ|mu,p‖ ≤ ‖λ|mu,p‖(1) ≤ ‖λ|mu,p‖(2). On the other hand, let Q be a cube centered
at x0 with size r ≥ 1. We take a cube Q̃ centered at x0 with size r + 2. If we choose j
in such a way that 2 j−1 < r + 2 ≤ 2 j , then there are at most 2d dyadic cubes Q− j,mi

such that Q− j,mi
cover Q̃. Then |Q− j,m | ≤ 2d |Q̃| ≤ 22d |Q|, and in consequence,

‖λ|mu,p‖(2) ≤ cd,u,p‖λ|mu,p‖(1) ≤ Cd,u,p‖λ|mu,p‖.

Proposition 2.7 Let N ∈ N, 0 < p j ≤ u j < ∞, j = 1, . . . , N, and λ( j) =
{λ( j)

k }k∈Zd ∈ mu j ,p j , j = 1, . . . , N. Then λ(1) · · · λ(N ) = {λ(1)
k · · · λ(N )

k }k∈Zd ∈ mu,p,
with

‖λ(1) · · · λ(N )|mu,p‖ ≤ ‖λ(1)|mu1,p1‖ · · · ‖λ(N )|muN ,pN ‖,

where

1

u
=

N∑
j=1

1

u j
and

1

p
≥

N∑
j=1

1

p j
.

Proof Obviously 0 < 1
u = ∑N

j=1
1
u j

≤ ∑N
j=1

1
p j

≤ 1
p such that mu,p is well defined

for 0 < p ≤ u < ∞. The rest is iterated application of Hölder’s inequality. ��
Proposition 2.8 Let 0 < p ≤ u < ∞, λ ∈ mu,p, and 0 < r < ∞. Then |λ|r =
{|λk |r }k∈Zd ∈ mu/r ,p/r with

∥∥∥ |λ|r |m u
r ,

p
r

∥∥∥ = ‖λ|mu,p‖r .

Proof This follows by the definition immediately. ��
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Proposition 2.9 Let 0 < p < u ≤ ∞. Then mu,p is nonseparable.

Proof If u = ∞, then m∞,p = �∞ in view of Remark 2.6, and the result is well
known. So assume 0 < p < u < ∞ now. Let E be a subset of N. We consider the
following sequences λ(E) defined by

λ
(E)
k =

{
1 if k = (2r , 0, . . . , 0) and r ∈ E,

0 otherwise.

It should be clear that

‖λ(E)|mu,p‖ ≤ ‖λ(N)|mu,p‖.
So all the sequences belong to mu,p(Z

d) if λ(N) ∈ mu,p(Z
d). For any cube Q− j,m ,

we have by construction,

|Q− j,m | 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λ(N)
k |p

⎞
⎠

1
p

≤ |Q− j,0|
1
u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Q− j,0

|λ(N)
k |p

⎞
⎠

1
p

≤ 2 jd( 1u − 1
p ) j

1
p ≤ C < ∞.

Hence λ(N) ∈ mu,p(Z
d). If E and F are different subsets of N, then

‖λ(E) − λ(F)|mu,p‖ ≥ 1.

Thus mu,p(Z
d) contains a noncountable set of sequences such that the distance

between two different elements of it is at least 1. ��
Remark 2.10 Let us mention briefly that in [16], further (one-dimensional) approaches
to weak and generalized Morrey sequence spaces were considered.

3 Embeddings

We prove our main result about embeddings of different Morrey sequence spaces.
Here we also use and adapt some ideas of our paper [18], cf. the proof of Theorem 3.2
there. A similar construction was used by P. Olsen in [33], cf. the proof of Theorem
10 in [33].

Theorem 3.1 Let 0 < p1 ≤ u1 < ∞ and 0 < p2 ≤ u2 < ∞. Then the embedding

mu1,p1 ↪→ mu2,p2 (3.1)

is continuous if and only if the following conditions hold:

u1 ≤ u2 and
p2
u2

≤ p1
u1

. (3.2)

The embedding (3.1) is never compact.

123
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Proof Step 1. First we prove the sufficiency of the conditions. If u1 = u2, then
p2 ≤ p1, and by the Hölder inequality we get for any j ∈ N0 and m ∈ Z

d ,

|Q− j,m |− 1
p2

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p2
⎞
⎠

1
p2

≤ |Q− j,m |− 1
p1

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p1
⎞
⎠

1
p1

.

So (3.1) holds for u1 = u2.
Let now u1 < u2. If

p1
u1

= p2
u2
, then for any j ∈ N0 and m ∈ Z

d , we get

2
jd( 1

u2
− 1

p2
)

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p2
⎞
⎠

1
p2

≤ sup
k:Q0,k⊂Q− j,m

|λk |1−
p1
p2

⎡
⎢⎣2 jd( 1

u1
− 1

p1
)

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p1
⎞
⎠

1
p1

⎤
⎥⎦

p1
p2

.

The last inequality implies that

‖λ|mu2,p2‖ ≤ ‖λ|mu1,p1‖
p1
p2 ‖λ|�∞‖1−

p1
p2 ≤ ‖λ|mu1,p1‖. (3.3)

If p2
u2

<
p1
u1
, then p1 > p̃1 = u1

p2
u2
. So the statement follows from (3.3) and the

monotonicity, see Proposition 2.3(ii).
Step 2. We consider the necessity of the conditions.

Substep 2.1. First we assume that u2 < u1. For any j ∈ N, we put m j =
(22 j , 0, . . . , 0) ∈ Z

d . We put

λk =
{

|Q− j,m j |−
1
u1 if Q0,k ⊂ Q− j,m j

0 otherwise.

Then straightforward calculation shows that ‖λ|mu1,p1‖ = 1. On the other hand,

sup
j∈N0

|Q− j,m j |
1
u2

− 1
p2

⎛
⎜⎝ ∑

k:Q0,k⊂Q− j,m j

|λk |p2
⎞
⎟⎠

1/p2

= sup
j∈N0

|Q− j,m j |
1
u2

− 1
u1 = ∞.

So {λk}k does not belong to mu2,p2 .
Substep 2.2. Now we assume that u1 ≤ u2 and p1

u1
<

p2
u2

, in particular, p1
u1

< 1.
For any j ∈ N, we put

k j =
⌊
2
d j(1− p1

u1
)
⌋

;

123



514 Constructive Approximation (2020) 51:505–535

recall 
x� = max{l ∈ Z : l ≤ x}. Then 1 ≤ kν < 2dν and

k j ≤ cp1q1 2
d( j−ν)kν, if 1 ≤ ν < j . (3.4)

For convenience let us assume that cp1q1 = 1 (otherwise the argument below has to

be modified in an obvious way). For any j ∈ N, we define a sequence λ( j) =
{
λ

( j)
k

}
k

in the following way. We assume that k j elements of the sequence equal 1 and the

rest is equal to 0. If Q0,k � Q− j,0, then we put λ
( j)
k = 0. Moreover, because of

the inequality (3.4), we can choose the elements that equal 1 in such a way that the
following property holds:

if Q−ν,� ⊆ Q− j,0 and Q−ν,� =
2dν⋃
i=1

Q0,mi ,

then at most kν elements λ
( j)
0,ki

equal 1.

By construction, if Q−ν,� ⊆ Q− j,0, then

∑
k:Q0,k⊂Q−ν,�

|λ( j)
0,k |q1 ≤ kν ≤ 2

dν(1− p1
u1

)
, (3.5)

and the last sum is equal to kν if ν = j . Thus

‖λ( j)|mu1,p1‖ ≤ 1. (3.6)

Furthermore, the assumption 0 <
p1
u1

<
p2
u2

≤ 1 implies that

⌊
2
d j(1− p1

u1
)
⌋

2
d j(1− p2

u2
)

−→ ∞ if j → ∞ .

So for any N ∈ N, there exists a number jN ∈ N such that

N2
d jN (1− p2

u2
) ≤

⌊
2
d jN (1− p1

q1
)
⌋

= k jN =
∑

k:Q0,k⊂Q− jN ,0

|λ( jN )
0,k |p2 .

But this immediately implies that

N 1/p2 ≤ ‖λ( jN )|mu2,p2‖ . (3.7)

However, since we assume that the embedding (3.1) holds, there is a positive con-
stant c > 0 such that

‖λ( j)|mu2,p2‖ ≤ c ‖λ( j)|mu1,p1‖ ≤ c for any λ( j) ∈ mu1,p1 .
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In view of the last inequalities (3.6) and (3.7), we get

N 1/p2 ≤ ‖λ( jN )|mu2,p2‖ ≤ C‖λ( jN )|mu1,p1‖ ≤ C ,

and this leads to a contradiction for large N .
Step 3. The noncompactness of (3.1) immediately follows from Proposition 2.3,

�u1 ↪→ mu1,p1 ↪→ mu2,p2 ↪→ �∞,

and the noncompactness of �u1 ↪→ �∞. ��
Corollary 3.2 Let 0 < p1 ≤ u1 < ∞ and 0 < p2 ≤ u2 < ∞. Then mu1,p1 = mu2,p2
(in the sense of equivalent norms) if and only if u1 = u2 and p1 = p2.

Proof This follows immediately from Theorem 3.1. ��
Corollary 3.3 Let 0 < p1 ≤ u1 < ∞ and 0 < p2 ≤ u2 < ∞.

(i) Then mu1,p1 ↪→ �u2 if and only if u1 ≤ u2 and p1 = u1, that is, if and only if
mu1,p1 = �u1 and �u1 ↪→ �u2 .

(ii) Then �u1 ↪→ mu2,p2 if and only if u1 ≤ u2, that is, if and only if �u1 ↪→ �u2 .

Proof This follows immediately from Theorem 3.1. ��
Remark 3.4 Let us mention the following essential feature: if 0 < p < u < ∞,
that is, we are in the proper Morrey situation, then there is never an embedding into
any space �r whenever 0 < r < ∞, but we always have mu,p ↪→ �∞, in view of
Proposition 2.3(iii) and Corollary 3.3(i).

Remark 3.5 We briefly want to compare Theorem 3.1 with forerunners in [16] and in
the parallel setting of Morrey function spaces.

In [16, Prop. 2.4] the one-dimensional counterpart of Theorem 3.1 can be found in
the case when (in our notation) 1 ≤ p2 ≤ p1 ≤ u1 = u2 < ∞, with some discussion
about the sharpness of that result. Obviously condition (3.2) is automatically satisfied
in this case. The method of their proof in [16] is different from ours.

We turn to function spaces and first consider spaces Mu,p(Q) defined on a cube
Q, where (1.1) has to be adapted appropriately. Then by a result of Piccinini in [34],
see also [35], for 0 < pi ≤ ui < ∞, i = 1, 2,

Mu1,p1(Q) ↪→ Mu2,p2(Q) if and only if p2 ≤ p1 and u2 ≤ u1.

This result was extended to R
d by Rosenthal in [38], reading as

Mu1,p1(R
d) ↪→ Mu2,p2(R

d) if and only if p2 ≤ p1 ≤ u1 = u2.

So a similar diversity as in the classical L p-setting (spaces on bounded domains versus
R
d versus sequence spaces �p) is obvious.
What is, however, more surprising is the similarity with our result [18, Thm. 3.2]

in the context of sequence spaces nsu,p,q appropriate for smoothness Morrey spaces.
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In the limiting situation s1 − d
u1

= s2 − d
u2

(and in adapted notation), we have shown
that

ns1u1,p1,q1 ↪→ ns2u2,p2,q2

if and only if (3.2) and q1 ≤ q2.

4 A Pre-dual ofmu,p

Results concerning (pre-)dual spaces in the setting of Morrey function spaces have
some history; we refer to [5, 20, 58] and, more recently, to [2] in this respect. We rely
on the paper [40, Sect. 4], where further discussion can also be found.

Definition 4.1 Let 1 ≤ p < u < ∞ and 1
p + 1

p′ = 1, as usual. For any j ∈ N0, we

define X ( j)
u,p = X ( j)

u,p(Z
d) by

X ( j)
u,p(Z

d) =

⎧⎪⎨
⎪⎩λ = {λk}k∈Zd ⊂ C :

‖λ‖( j)
u,p = 2 jd( 1

p − 1
u )
∑
m∈Zd

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p′
⎞
⎠

1
p′

< ∞

⎫⎪⎬
⎪⎭ . (4.1)

Lemma 4.2 Let 1 ≤ p < u < ∞ and j ∈ N0. Then

X ( j)
u,p(Z

d) = �1(Z
d) (4.2)

(in the sense of equivalent norms). Moreover, the embedding

id j : X ( j)
u,p(Z

d) ↪→ �u′(Zd)

satisfies ∥∥∥id j : X ( j)
u,p(Z

d) ↪→ �u′(Zd)

∥∥∥ = 1. (4.3)

Proof We begin with (4.2). Note that

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p′
⎞
⎠

1
p′

≤
∑

k:Q0,k⊂Q− j,m

|λk | ≤ 2 j dp

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p′
⎞
⎠

1
p′

.
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Hence, by definition,

‖λ‖( j)
u,p = 2 jd( 1

p − 1
u )
∑
m∈Zd

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p′
⎞
⎠

1
p′

≥ 2 jd( 1
p− 1

u )
∑
m∈Zd

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |
⎞
⎠ 2− j dp

= 2− j du
∑
k∈Zd

|λk | = 2− jd 1
u ‖λ|�1‖, (4.4)

hence X ( j)
u,p ↪→ �1. Conversely,

‖λ‖( j)
u,p = 2 jd( 1

p − 1
u )
∑
m∈Zd

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p′
⎞
⎠

1
p′

≤ 2 jd( 1
p − 1

u )
∑
k∈Zd

|λk | = 2 jd( 1
p− 1

u )‖λ|�1‖, (4.5)

which results in �1 ↪→ X ( j)
u,p and thus finishes the proof of (4.2).

Similarly to (4.4), we obtain for the embedding id j ,

‖λ‖( j)
u,p = 2 jd( 1

p − 1
u )
∑
m∈Zd

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p′
⎞
⎠

1
p′

≥ 2 jd( 1
p− 1

u )
∑
m∈Zd

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |u′
⎞
⎠

1
u′

2
− jd( 1

u′ − 1
p′ )

≥ 2 jd( 1
p − 1

u − 1
p + 1

u )

⎛
⎝∑

k∈Zd

|λk |u′
⎞
⎠

1
u′

= ‖λ|�u′ ‖,

since p′ > u′ > 1. Thus ‖ id j ‖ ≤ 1. Now let m0 ∈ Z
d be fixed, and consider

λ0 = {λ0k}k∈Zd given by

λ0k =
{
2− j d

u′ if Q0,k ⊂ Q− j,m0 ,

0 otherwise.
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Thus ‖λ0|�u′ ‖ = 2− j d
u′ |Q− j,m0 |

1
u′ = 1, and

‖λ0‖( j)
u,p = 2 jd( 1

p − 1
u )
∑
m∈Zd

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λk |p′
⎞
⎠

1
p′

= 2 jd( 1
p − 1

u )2− j d
u′ |Q− j,m0 |

1
p′

= 2
jd( 1

p − 1
u − 1

u′ + 1
p′ ) = 1,

such that finally ‖ id j ‖ ≥ 1. This completes the proof of (4.3). ��

Now we combine the above sequence spaces X ( j)
u,p(Z

d) at level j ∈ N0 as follows.

Definition 4.3 Let 1 ≤ p < u < ∞. We define Xu,p = Xu,p(Z
d) by

Xu,p(Z
d) =

⎧⎨
⎩λ = {λk}k∈Zd ⊂ C : for any j ∈ N0 there exists λ( j) ∈ X ( j)

u,p(Z
d)

such that λ =
∞∑
j=0

λ( j), and
∞∑
j=0

‖λ( j)‖( j)
u,p < ∞

⎫⎬
⎭ , (4.6)

equipped with the norm

‖λ|Xu,p‖ = inf
∞∑
j=0

‖λ( j)‖( j)
u,p , (4.7)

where the infimum is taken over all admitted decompositions of λ according to (4.6).

Proposition 4.4 Let 1 ≤ p < u < ∞.

(i) Then
�1(Z

d) ↪→ Xu,p(Z
d) ↪→ �u′(Zd)

and
∥∥∥id : �1(Z

d) ↪→ Xu,p(Z
d)

∥∥∥ =
∥∥∥id : Xu,p(Z

d) ↪→ �u′(Zd)

∥∥∥ = 1. (4.8)

(ii) Let for n ∈ Z
d , e(n) = {e(n)

k }k∈Zd be given by

e(n)
k =

{
1 if n = k,

0 otherwise.

The system {e(n)}n∈Zd forms a normalized unconditional basis in Xu,p(Z
d).

(iii) Xu,p(Z
d) is a separable Banach space.

123



Constructive Approximation (2020) 51:505–535 519

Proof Step 1. Let λ ∈ �1. Then Lemma 4.2 applied with j = 0, in particular (4.2),
imply that we obtain an admitted representation of λ in (4.6) choosing λ(0) = λ ∈ X (0)

u,p

and λ( j) = 0, j ∈ N. This ensures λ ∈ Xu,p and, in view of (4.7) and (4.5),

‖λ|Xu,p‖ ≤ ‖λ‖(0)
u,p ≤ ‖λ|�1‖.

Thus ‖ id : �1(Z
d) ↪→ Xu,p(Z

d)‖ ≤ 1. If λ ∈ Xu,p, then there exists a decomposition
according to (4.6), and we can conclude

‖λ|�u′ ‖ ≤
∞∑
j=0

∥∥∥λ( j)|�u′
∥∥∥ ≤

∞∑
j=0

‖λ( j)‖( j)
u,p,

wherewe applied (4.3). Taking the infimumover all possible representations according
to (4.6), we get by (4.7) that

‖λ|�u′ ‖ ≤ ‖λ|Xu,p‖, and thus
∥∥∥id : Xu,p(Z

d) ↪→ �u′(Zd)

∥∥∥ ≤ 1.

To complete the proof of (i), we have to show the converse inequalities in (4.8).
However, X ( j)

u,p ↪→ Xu,p for any j ∈ N0 with ‖ id : X ( j)
u,p ↪→ Xu,p‖ ≤ 1, such that

(4.3) yields

1 = ‖ id : X ( j)
u,p ↪→ �u′ ‖ ≤ ‖ id : Xu,p ↪→ �u′ ‖,

confirming the latter equality in (4.8). Now we are done, since

1 = ‖ id : �1 ↪→ �u′ ‖ ≤ ‖ id : �1 ↪→ Xu,p‖ ‖ id : Xu,p ↪→ �u′ ‖ = ‖ id : �1 ↪→ Xu,p‖.

Step 2. Concerning (ii), one can easily calculate that ‖e(n)|Xu,p‖ = 1 and that the
system is complete in Xu,p. So the statement follows from the trivial inequality

∥∥∥ ∑
|n|≤�

εnλne
(n)|Xu,p

∥∥∥ ≤
∥∥∥ ∑

|n|≤�

λne
(n)|Xu,p

∥∥∥,

εn = ±1, λn ∈ C, cf., e.g., [19, Theorem 6.7].
Step 3. The proof of (iii) is standard. ��

Proposition 4.5 Let 1 ≤ p < u < ∞. ThenXu,p(Z
d) is a pre-dual space ofmu,p(Z

d).
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Proof Let μ ∈ mu,p, λ ∈ Xu,p(Z
d) and let λ = ∑∞

j=0 λ( j), λ( j) ∈ X ( j)
u,p. Then

∣∣∣ ∑
k∈Zd

λkμk

∣∣∣ ≤
∞∑
j=0

∑
k∈Zd

|λ( j)
k μk |

=
∞∑
j=0

∑
m∈Zd

∑
k:Q0,k⊂Q− j,m

|λ( j)
k μk |

≤
∞∑
j=0

∑
m∈Zd

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|μk |p
⎞
⎠

1
p
⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λ( j)
k |p′

⎞
⎠

1
p′

≤ ‖μ|mu,p‖
∞∑
j=0

2d j(
1
p − 1

u )
∑
m∈Zd

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|λ( j)
k |p′

⎞
⎠

1
p′

≤ ‖μ|mu,p‖
∞∑
j=0

‖λ( j)‖( j)
u,p.

Taking the infimum over all representations of λ, we get

∣∣∣ ∑
k∈Zd

λkμk

∣∣∣ ≤ ‖μ|mu,p‖‖λ|Xu,p‖.

On the other hand, if f ∈ (Xu,p(Z
d))′, then

| f (λ)| ≤ ‖ f ‖ ‖λ|Xu,p‖,

where ‖ f ‖ = sup‖λ|Xu,p‖=1 | f (λ)|, as usual. For any dyadic cube Q−ν,m , ν ∈ N0, we
take

λ(ν,m) =
∑

k:Q0,k⊂Q−ν,m

2νd( 1
p − 1

u )
λke

(k).

Then λ(ν,m) ∈ Xu,p if and only if {λk}k∈Zd ∈ �2
νd

p′ (Q−ν,m) and ‖λ(ν,m)|Xu,p‖ ≤
‖{λk}k |�2νd

p′ (Q−ν,m)‖. Moreover,

∣∣∣ ∑
k:Q0,k⊂Q−ν,m

λk2
νd( 1

p − 1
u ) f (e(k))

∣∣∣ =
∣∣∣ f (λ(ν,m))

∣∣∣ ≤ ‖ f ‖ ‖λ(ν,m)|Xu,p‖

≤ ‖ f ‖ ‖{λk}k |�2dν

p′ (Q−ν,m)‖.
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By duality for the �p spaces, we get {2νd( 1
p − 1

u ) f (e(k))}k ∈ �2
dν

p (Q−ν,m) and

|Q−ν,m | 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q−ν,m

| f (e(k))|p
⎞
⎠

1
p

= ‖{2νd( 1
p− 1

u ) f (e(k))}k |�2dν

p (Q−ν,m)‖

≤ ‖ f ‖ .

So { f (e(k))}k ∈ mu,p(Z
d) and ‖{ f (e(k))}k |mu,p‖ ≤ ‖ f ‖. ��

Next we define a closed proper subspace of mu,p as follows. Let c00 denote the
finite sequences in C, that is, sequences that possess only finitely many nonvanishing
elements. We define m00

u,p = m00
u,p(Z

d) to be the closure of c00 in mu,p,

m00
u,p = c00

‖·|mu,p‖.

Obviously m00
u,p is separable. We shall prove below that Xu,p is the dual space of

m00
u,p. We begin with some general properties. For that reason, let us denote bym0

u,p =
m0

u,p(Z
d) the subspace of null sequences which belong to mu,p,

m0
u,p = mu,p ∩ c0 .

Then we have the following basic properties.

Lemma 4.6 Let 0 < p < u < ∞. Then m0
u,p and m00

u,p are proper closed subspaces
of mu,p, with

m00
u,p � m0

u,p � mu,p.

Proof By definition, m00
u,p is a closed subspace of mu,p. The fact that m0

u,p � mu,p

is a proper subspace of mu,p follows from Proposition 2.3(v). We show that m0
u,p is

closed in mu,p,

m0
u,p = m0

u,p
‖·|mu,p‖

.

Clearly m0
u,p ⊆ m0

u,p
‖·|mu,p‖

, so we have to verify the converse inclusion. Let λ =
{λk}k∈Zd ∈ m0

u,p
‖·|mu,p‖

and ε > 0 be arbitrary. Then, by definition, there exists some
μ = {μk}k∈Zd ∈ m0

u,p such that

‖μ − λ|mu,p‖ = sup
j∈N0,m∈Zd

|Q− j,m | 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|μk − λk |p
⎞
⎠

1
p

< ε. (4.9)
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Now μ ∈ m0
u,p ⊂ mu,p and mu,p is complete, thus λ ∈ mu,p. Moreover, applying

(4.9) with j = 0 implies that

‖μ − λ|�∞‖ = sup
k∈Zd

|μk − λk | < ε.

However, μ ∈ m0
u,p ⊂ c0 thus leads to λ ∈ c0. So finally λ ∈ mu,p ∩ c0 = m0

u,p.
It remains to verify that m00

u,p � m0
u,p. First note that, by definition, m00

u,p ⊆ m0
u,p.

Now consider special lattice points m j = (22 j , 0, . . . , 0) ∈ Z
d , j ∈ N0, and put

λk =
{
2− j du if Q0,k ⊂ Q− j,m j ,

0 otherwise.

Then λ ∈ c0 ∩ mu,p = m0
u,p, but obviously λ /∈ m00

u,p. ��
Remark 4.7 The above result sheds some further light on the difference of the two
norms ‖ · |�∞‖ and ‖ · |mu,p‖, since in the classical setting,

c00
‖·|�∞‖ = c0

is well known, in contrast to m00
u,p � m0

u,p.

We need the following lemma.

Lemma 4.8 Let 0 < p < u < ∞ and λ ∈ m00
u,p(Z

d). Then there exists a dyadic cube
Q(λ) such that

‖λ|mu,p‖ = |Q(λ)| 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q(λ)

|λk |p
⎞
⎠

1
p

.

Proof For any sequence λ ∈ mu,p and any dyadic cube Q, we shall denote by λ|Q
the restriction of λ to Q, i.e., (λ|Q)k = λk if Q0,k ⊂ Q and (λ|Q)k = 0 otherwise.
Without loss of generality, we may assume λ �≡ 0.

We choose a positive number ε < 1 − 2d( 1u − 1
p ). If λ ∈ m00

u,p, then there exists a
dyadic cube Q̃ such that

‖λ − λ|Q̃ |mu,p‖ ≤ ε‖λ|mu,p‖.

If Q ∩ Q̃ = ∅, then

|Q| 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q

|λk |p
⎞
⎠

1
p

≤ |Q| 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q

|λk − (λ|Q̃)k |p
⎞
⎠

1
p

≤ ε‖λ|mu,p‖ < ‖λ|mu,p‖.
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If Q̃ � Q, then

|Q| 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q

|λk |p
⎞
⎠

1
p

≤ 2d( 1u − 1
p )|Q̃| 1u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Q̃

|(λ|Q̃)k |p
⎞
⎠

1
p

+ |Q| 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q

|λk − (λ|Q̃)k |p
⎞
⎠

1
p

≤
(
2d( 1u − 1

p ) + ε
)

‖λ|mu,p‖ < ‖λ|mu,p‖

by the choice of ε. Therefore,

‖λ|mu,p‖ = max
Q⊂Q̃

|Q| 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q

|λk |p
⎞
⎠

1
p

and the lemma is proved. ��

Proposition 4.9 Let 1 ≤ p < u < ∞. The dual space to m00
u,p(Z

d) is isometrically

isomorphic to Xu,p(Z
d).

Proof By Proposition 4.5, the spaceXu,p is a pre-dual space ofmu,p. So it is sufficient
to show that any functional on m00

u,p can be represented by some element of Xu,p with
the equality of norms.

First we prove that the space m00
u,p can be isometrically embedded into a closed

subspace of an appropriate vector valued c0 space. Let for j ∈ N0 and m ∈ Z
d ,

A j,m = �p(Q− j,m, w j,m) be a weighted finite-dimensional �p space, equipped with
the norm

‖γ |A j,m‖ = ‖γν‖( j,m)
p =

⎛
⎝ 2 jd∑

ν=1

|γν |p|Q− j,m | p
u −1

⎞
⎠

1
p

= 2 jd( 1u − 1
p )

⎛
⎝ 2 jd∑

ν=1

|γν |p
⎞
⎠

1
p

,

where γ = {γν}2 jd

ν=1.
The space c0(A j,m) is the space of all sequences a = {a( j,m)} j∈N0,m∈Zd with

a( j,m) ∈ A j,m , j ∈ N0, m ∈ Z
d , and such that ‖a( j,m)|A j,m‖ → 0 if j + |m| → ∞.

We equip c0(A j,m) with the usual norm, i.e.,

‖a|c0(A j,m)‖ = sup
j∈N0,m∈Zd

‖a( j,m)|A j,m‖.
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It is well known that the dual space of c0(A j,m) is �1(A′
j,m), where b =

{b( j,m)} j∈N0,m∈Zd ∈ �1(A′
j,m) means

‖b|�1(A′
j,m)‖ =

∑
j∈N0,m∈Zd

‖b( j,m)|A′
j,m‖ < ∞.

Moreover,

(a, b) =
∑

j∈N0,m∈Zd

(a j,m, b j,m),

cf., e.g., [51, Lemma 1.11.1].
Let λ = {λk}k∈Zd ∈ m00

u,p. We define the mapping

T : m00
u,p � λ �→ {λ( j,m)} j∈N0,m∈Zd ∈ c0(A j,m)

by putting λ
( j,m)
k = λk if Q0,k ⊂ Q− j,m .

An argument similar to the one used in the proof of Lemma 4.8 shows that
‖T (λ)|A j,m‖ → 0 if j → ∞ or/and |m| → ∞. Furthermore, by construction,

‖{λ( j,m)} j,m |c0(A j,m)‖ = ‖λ|mu,p‖.

So we can identify m00
u,p with a closed subspace of c0(A j,m).

Let f ∈ (mu,p)
′. The above identification and theHahn–Banach theorem imply that

f can be extended to a continuous linear functional f̃ on c0(A j,m) and ‖ f̃ ‖ = ‖ f ‖.
But f̃ has a representation of the form

f̃ ({λ( j,m)} j,m) =
∑

j∈N0,m∈Zd

∑
k:Q0,k⊂Q− j,m

λ
( j,m)
k μ

( j,m)
k (4.10)

and

‖ f̃ ‖ =
∑

j∈N0,m∈Zd

|Q− j,m | 1p − 1
u

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

|μ( j,m)
k |p′

⎞
⎠

1
p′

. (4.11)

If {λ( j,m)} j,m = T (λ), then the sum (4.10) can be rearranged in the following way:

f (λ) = f̃ (T (λ)) =
∞∑
j=0

∑
k∈Zd

λkμ
( j)
k ,

where the sequence μ( j) = {μ( j)
k }k∈Zd is given by μ

( j)
k = μ

( j,m)
k if Q0,k ⊂ Q− j,m .

Recall that for any k, there is exactly one cube Q− j,m of size 2 jd such that Q0,k ⊂
Q− j,m . Moreover, (4.11) reads as
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‖ f ‖=‖ f̃ ‖=
∞∑
j=0

2 jd( 1
p − 1

u )
∑
m∈Zd

⎛
⎝ ∑

k:Q0,k⊂Q− j,m

2d j(
1
p − 1

u )|μ( j)
k |p′

⎞
⎠

1
p′

=
∞∑
j=0

‖μ( j)‖( j)
u,p

by (4.1). Hence definition (4.6) yields that the sequence μ = ∑∞
j=0 μ( j) ∈ Xu,p

and

f (λ) =
∞∑

k∈Zd

λkμk with ‖ f ‖ = ‖μ|Xu,p‖. ��

Remark 4.10 Similar calculations for the Morrey function spaces can be found in [40]
and [29]. In the last paper, Köthe dual spaces to Morrey-type spaces generated by a
basis of measurable functions are studied. In particular, Theorems 2.1 and 2.2 ibidem
are related to our Propositions 3.5 and 3.9.

Moreover, arguments similar to those used in the proof of Proposition 4.9 show
that

�u(Z
d) ↪→ m00

u,p(Z
d) ↪→ c0(Z

d).

We recall that mu,p(Z
d) ↪→ �∞(Zd), cf. Proposition 2.3.

5 Pitt’s Compactness Theorem

Nowwe prove Pitt’s theorem for theMorrey sequence spaces. We follow the approach
presented in [9] and [15]. The original result reads as follows.

Theorem 5.1 ([37]) Let 1 ≤ q < p < ∞. Every bounded linear operator from �p
into �q or from c0 into �q is compact.

We start with the following lemma that shows the similarity of m00
u,p(Z

d) to c0 if
p < u.

Lemma 5.2 Let 0 < p < u < ∞ and w(n) be a sequence in m00
u,p(Z

d), which is

weakly convergent to zero, wn⇁0. Then for any λ ∈ m00
u,p(Z

d),

lim sup
n→∞

‖λ + w(n)|mu,p(Z
d)‖ = max

{
‖λ|mu,p(Z

d)‖, lim sup
n→∞

‖w(n)|mu,p(Z
d)‖
}

.

Proof Step 1. First we assume that the sequence λ ∈ m00
u,p is finite. The sequences

λ + w(n) and w(n) belong to m00
u,p, therefore, according to Lemma 4.8, there exist

dyadic cubes Qn and Q̃n such that
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‖λ + w(n)|mu,p‖ = |Qn|
1
u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Qn

|λk + w
(n)
k |p

⎞
⎠

1
p

,

‖w(n)|mu,p‖ = |Q̃n|
1
u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Q̃n

|w(n)
k |p

⎞
⎠

1
p

.

By the definition of lim sup there is always a subsequence of cubes {Qni }i such that

lim sup
n→∞

‖λ + w(n)|mu,p‖ = lim
i→∞ |Qni |

1
u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Qni

|λk + w
(ni )
k |p

⎞
⎠

1
p

. (5.1)

The cubes Qn are dyadic cubes of size at least one; therefore we may assume that the
subsequence satisfies one of the following alternative conditions:

(1) there exists a dyadic cube Q such that Qni ⊂ Q for any i, (5.2)

(2) lim
i→∞ |Qni | = ∞, (5.3)

(3) sup
i

|Qni | < ∞ and Qni ∩ Qn j = ∅ if i �= j . (5.4)

A similar statement holds for the cubes Q̃n .
Please note that the weak convergence of the sequence w(n) to zero implies the

uniform convergence to zero of the coordinates of w(n) on any dyadic cube Q. In the
next steps we shall denote by Q̃(λ) the dyadic cube that contains the support of λ.

Substep 1.1We prove that

max

{
‖λ|mu,p‖, lim sup

n→∞
‖w(n)|mu,p‖

}
≤ lim sup

n→∞
‖λ + w(n)|mu,p‖ . (5.5)

We have that

‖λ|mu,p‖ = |Q(λ)| 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q(λ)

|λk |p
⎞
⎠

1
p

= lim
i→∞ |Q(λ)| 1u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Q(λ)

|λk + w
(ni )
k |p

⎞
⎠

1
p

≤ lim
i→∞ |Qni |

1
u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Qni

|λk + w
(ni )
k |p

⎞
⎠

1
p

= lim sup
n→∞

‖λ + w(n)|mu,p‖,
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where we used (5.1). Let

lim sup
n→∞

‖w(n)|mu,p‖ = lim
i→∞ |Q̃ni |

1
u − 1

p

⎛
⎜⎝ ∑

k:Q0,k⊂Q̃ni

|w(ni )
k |p

⎞
⎟⎠

1
p

.

If the sequence of cubes Q̃ni satisfies the condition (5.2), then ‖w(ni )|mu,p‖ → 0. So
the inequality (5.5) holds.

If the sequence of cubes Q̃ni satisfies the condition (5.3), then

|Q̃ni |
1
u − 1

p

⎛
⎜⎝ ∑

k:Q0,k⊂Q̃ni

|w(ni )
k |p

⎞
⎟⎠

1
p

≤ |Q̃ni |
1
u − 1

p

⎛
⎜⎝ ∑

k:Q0,k⊂Q̃ni

|λk + w
(ni )
k |p

⎞
⎟⎠

1
p

+
( |Q̃ni |

|Q̃(λ)|
) 1

u − 1
p

‖λ|mu,p‖.

But (|Q̃ni |/|Q̃(λ)|) 1
u − 1

p → 0, so the inequality (5.5) holds also in this case.
If the sequence of cubes Q̃ni satisfies the condition (5.4), then for sufficiently large

i we have λ|Q̃ni
= 0, and again the inequality (5.5) holds.

Substep 1.2. Now we prove the inequality converse to (5.5), i.e.,

lim sup
n→∞

‖λ + w(n)|mu,p‖ ≤ max

{
‖λ|mu,p‖, lim sup

n→∞
‖w(n)|mu,p‖

}
.

We can proceed in a similar way as in the last step, now using the cubes Qni . If the
sequence of cubes Qni satisfies the condition (5.2), then

|Qni |
1
u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Qni

|w(ni )
k |p

⎞
⎠

1
p

→ 0.

So
lim sup
n→∞

‖λ + w(n)|mu,p‖ ≤ ‖λ|mu,p‖.
If the sequence of cubes Qni satisfies the condition (5.3), then similarly as above we
conclude

|Qni |
1
u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Qni

|λk + w
(ni )
k |p

⎞
⎠

1
p

≤ |Qni |
1
u − 1

p

⎛
⎝ ∑

k:Q0,k⊂Qni

|w(ni )
k |p

⎞
⎠

1
p

+
( |Qni |

|Q̃(λ)|
) 1

u − 1
p ‖λ|mu,p‖,

and the last summand tends to zero when i → ∞.
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If the sequence of cubes Qni satisfies the condition (5.4), then once more the

sequences λ + w
(ni )
k and w

(ni )
k coincide for sufficiently large i .

Step 2. The general case is true by the density of finitely supported sequences in
m00

u,p since the norm is a Lipschitzian function. ��
Now we can finally establish Pitt’s theorem in our context.

Theorem 5.3 Let 1 < p < u < ∞ and 1 ≤ q < ∞. Then any bounded linear
operator T from m00

u,p(Z
d) into �q(Z

d) is compact.

Proof Due to Proposition 4.4, Lemma 4.8, Proposition 4.9, and Lemma 5.2, we can
follow the arguments presented in [9]. We only sketch the proof for the convenience
of the reader.

The dual space to m00
u,p is separable, cf. Proposition 4.4(ii) and Proposition 4.9, so

every bounded sequence in m00
u,p has a weak Cauchy subsequence and T is compact

if it is weak-to-norm continuous.
We may assume that ‖T ‖ = 1. Let 0 < ε < 1. We choose xε ∈ m00

u,p such
that ‖xε|mu,p‖ = 1 and 1 − ε ≤ ‖T (xε)|�q‖ ≤ 1. Let wn⇁0 in m00

u,p, and let

‖w(n)|mu,p‖ ≤ M . Lemma 5.2 and the analogous statement for �q , cf. [9], imply for
t > 0 that

‖T (xε)|�q‖q+tq lim sup
n→∞

‖T (w(n))|�q‖q

= lim sup
n→∞

‖T (xε + tw(n))|�q‖q

≤ lim sup
n→∞

‖xε + tw(n)|mu,p‖q

= max

(
‖xε|mu,p‖q , tq lim sup

n→∞
‖(w(n))|mu,p‖q

)
.

This leads to

lim sup
n→∞

‖T (w(n))|�q‖q ≤ t−q
[
max

(
1, tqMq)− (1 − ε)q

]
.

The choice 0 < ε ≤ min(1, M−2q) and t = ε
1
2q implies

lim sup
n→∞

‖T (w(n))|�q‖q ≤ ε−1/2 (1 − (1 − ε)q
)
.

Taking the limit with ε → 0, we have shown that ‖T (w(n))|�q‖ → 0. ��
Remark 5.4 One canfind in the literature results that can be considered as a quantitative
version of Pitt’s theorem. For example, one can characterize the compactness of the
diagonal operator Dσ : �p → �q , 1 ≤ q < p < ∞, in terms of entropy numbers or
some s-numbers, cf. [7] or [24] and the references given there. Such estimates are not
the subject of our paper. In the next section, we comment a bit on the behavior of the
entropy numbers of embeddings in the finite dimensional case.
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6 Finite Dimensional Morrey Sequence Spaces

Finally we shall briefly deal with finite dimensional sequence spaces related to mu,p.
We have at least two reasons for doing so. First, in view of Theorem 3.1, there is never
a compact embedding between two sequence spaces of Morrey type—whereas any
continuous embedding between finite-dimensional spaces is compact. Secondly, when
dealing with smoothness Morrey spaces like N s

u,p,q or E s
u,p,q , for instance, wavelet

decompositions usually lead to appropriate sequence spaces that should be studied in
further detail. In this spirit it is quite natural and helpful to understand finite sequence
spaces of Morrey type better than so far.

For the latter reason we do not consider finite Morrey sequence spaces as general
as possible, but only a special ‘level’ version of it.

Definition 6.1 Let 0 < p ≤ u < ∞, j ∈ N0, be fixed and K j = {k : Q0,k ⊂ Q− j,0}.
We define

m2 jd

u,p =

⎧⎪⎨
⎪⎩λ = {λk}k∈K j ⊂ C :

‖λ|m2 jd

u,p‖ = sup
Q−ν,m⊂Q− j,0

|Q−ν,m | 1u − 1
p

⎛
⎝ ∑

k:Q0,k⊂Q−ν,m

|λk |p
⎞
⎠

1
p

< ∞

⎫⎪⎬
⎪⎭ ,

(6.1)

where the supremum is taken over all ν ∈ N0 and m ∈ Z
d such that Q−ν,m ⊂ Q− j,0.

Remark 6.2 Similarly one can define spaces related to any cube Q− j,m , m ∈ Z
d , but

they are isometrically isomorphic tom2 jd

u,p, so we restrict our attention to the last space.

Clearly, for u = p, this space coincides with the usual 2 jd -dimensional space �2
jd

p ,

that is, m2 jd

p,p = �2
jd

p .

Lemma 6.3 Let 0 < p1 ≤ u1 < ∞, 0 < p2 ≤ u2 < ∞ and j ∈ N0 be given. Then
the norm of the compact identity operator

id j : m2 jd

u1,p1 ↪→ m2 jd

u2,p2 (6.2)

satisfies

‖ id j ‖ =

⎧⎪⎨
⎪⎩
1 if p1 ≥ p2 and u2 ≥ u1,

1 if p1 < p2 and p2
u2

≤ p1
u1

,

2
jd( 1

u2
− 1

u1
)

if p1 ≥ p2 and u2 < u1,

(6.3)

and in the remaining case, there is a constant c, 0 < c ≤ 1, independent of j such that

c 2
jd( 1

u2
− p1

u1 p2
) ≤ ‖ id j ‖ ≤ 2

jd( 1
u2

− p1
u1 p2

)
if p1 < p2 and

p2
u2

>
p1
u1

. (6.4)
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Proof In the case of p1 ≥ p2, the upper estimate for ‖ id j ‖ follows from Hölder’s
inequality and the corresponding relations between u1 and u2. The lower estimate in
the case of u1 ≤ u2 follows by applying the sequence λ = {λk}k with λ0 = 1 and
λk = 0 if k �= 0 . Otherwise, if u1 > u2, we can use the sequence λ = {λk}k with
λk ≡ 1 for any k.

Let now p1 < p2 and
p2
u2

≤ p1
u1
. If ‖λ|m2 jd

u1,p1‖ = 1, then

∑
k:Q0,k⊂Q−ν,m

|λk |p2 ≤
∑

k:Q0,k⊂Q−ν,m

|λk |p1 ,

since |λk | ≤ 1. So for any ν with 0 ≤ ν ≤ j , we have

2
νd(

p2
u2

−1) ∑
k:Q0,k⊂Q−ν,m

|λk |p2 ≤ 2
νd(

p2
u2

− p1
u1

)
2
νd(

p1
u1

−1) ∑
k:Q0,k⊂Q−ν,m

|λk |p1

≤ 2
νd(

p2
u2

− p1
u1

) ≤ 1.

This proves that ‖ id j ‖ ≤ 1. The opposite inequality can be proved in the same way
as in the first case.

If p1 < p2,
p2
u2

>
p1
u1
, and ‖λ|m2 jd

u1,p1‖ = 1, then analogously to the above, we can
prove that

2
νd(

p2
u2

−1) ∑
k:Q0,k⊂Q−ν,m

|λk |p2 ≤ 2
νd(

p2
u2

− p1
u1

)
.

So
‖λ|m2 jd

u2,p2‖ ≤ 2
d j( 1

u2
− p1

u1 p2
)
.

To prove the opposite inequality, we can use the same argument as in Substep 2.2 of
the proof of Theorem 3.1. We have

2
d j( 1

u2
− p1

u1 p2
) = 2

d j( 1
u2

− 1
p2

)
2
d j(1− p1

u1
) 1
p2 ≤ c−12

d j( 1
u2

− 1
p2

)
k

1
p2
j

= c−1‖λ( j)|m2 jd

u2,p2‖ ≤ ‖ id j ‖‖λ( j)|m2 jd

u1,p1‖ ≤ c−1‖ id j ‖,

cf. (3.4)-(3.6). ��
Remark 6.4 We suppose that (6.4) is in fact an equality as well, but have no proof yet.
In that case (6.3) and (6.4) could be summarized as

‖ id j ‖ ∼ 2
jd
(

1
u2

− 1
u1

min(1, p1
p2

)
)

+ .

Finally we want to characterize the compactness of the embedding id j given by
(6.2) in some further detail. We restrict ourselves to the study of entropy numbers here,
also for later use. Thus let us briefly recall the concept.
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Definition 6.5 Let A1 and A2 be two complex (quasi-) Banach spaces, k ∈ N,
and let T : A1 → A2 be a linear and continuous operator from A1 into A2. The
k th (dyadic) entropy number ek of T is the infimum of all numbers ε > 0 such that
there exist 2k−1 balls in A2 of radius ε that cover the image T U1 of the unit ball
U1 = {a ∈ A1 : ‖a|A1‖ ≤ 1}.

For details and properties of entropy numbers, we refer to [7, 10, 21, 36] (restricted
to the case of Banach spaces) and [11] for some extensions to quasi-Banach spaces.
Amongother featuresweonlywant tomention themultiplicativity of entropynumbers:
let A1, A2, and A3 be complex (quasi-) Banach spaces and T1 : A1 −→ A2, T2 :
A2 −→ A3 two operators in the sense of Definition 6.5. Then

ek1+k2−1(T2 ◦ T1) ≤ ek1(T1) ek2(T2), k1, k2 ∈ N.

Note that lim
k→∞ ek(T ) = 0 if and only if T is compact, which explains the saying

that entropy numbers measure “how compact” an operator acts.
One of themain tools in our argumentswill be the characterization of the asymptotic

behavior of the entropy numbers of the embedding �Np1 ↪→ �Np2 . We recall it for
convenience. For all n ∈ N, we have in the case of 0 < p1 ≤ p2 ≤ ∞ that

ek
(
id : �Np1 ↪→ �Np2

)
∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 1 ≤ k ≤ log 2N ,(
log(1+ N

k )

k

) 1
p1

− 1
p2

if log 2N ≤ k ≤ 2N ,

2− k
2N N

1
p2

− 1
p1 if 2N ≤ k ,

(6.5)

and in case 0 < p2 < p1 ≤ ∞, it holds that

ek
(
id : �Np1 ↪→ �Np2

)
∼ 2− k

2N N
1
p2

− 1
p1 for all k ∈ N. (6.6)

In the case 1 ≤ p1, p2 ≤ ∞, this has been proved by Schütt [45]. For p1 < 1 and/or
p2 < 1, we refer to Edmunds and Triebel [11] and Triebel [52, 7.2, 7.3] (with a little
supplement in [23]).

Corollary 6.6 Let j ∈ N, 0 < pi ≤ ui < ∞, i = 1, 2, and k ∈ N0 with k � 2 jd . Then

ek(id j : m2 jd

u1,p1 → m2 jd

u2,p2) ∼ 2−k2− jd
2
jd
(

1
u2

− 1
u1

)
. (6.7)

Remark 6.7 It will be obvious from the proof below that the assumption for k to be
sufficiently large, k � 2 jd , is not needed in all cases. But for simplicity we have stated
the result above in that setting only.
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Proof The estimate from above follows from the following commutative diagram and
the multiplicativity of entropy numbers:

m2 jd

u1,p1

id j−−−−→ m2 jd

u2,p2

id1

⏐⏐1 2⏐⏐id2
�2

jd

r1

id�, j−−−−→ �2
jd

r2

leads to

ek(id j ) ≤
∥∥∥id1 : m2 jd

u1,p1 → �2
jd

r1

∥∥∥ ∥∥∥id2 : �2
jd

r2 → m2 jd

u2,p2

∥∥∥ ek
(
id�, j : �2

jd

r1 → �2
jd

r2

)
.

We choose r1 = p1 and r2 = u2, apply Lemma 6.3, and arrive at

ek(id j ) ≤ 2
jd
(

1
p1

− 1
u1

)
ek
(
id�, j : �2

jd

p1 → �2
jd

u2

)
.

Together with (6.5) and (6.6), this leads to the upper estimate in (6.7), where only in
the case of p1 ≤ u2 the additional assumption k � 2 jd is needed.

Conversely, for the lower estimate we ‘reverse’ the above diagram, that is, we
consider

m2 jd

u1,p1

id j−−−−→ m2 jd

u2,p2

id1

2⏐⏐ ⏐⏐1id2
�2

jd

r1

id�, j−−−−→ �2
jd

r2 .

Thus we arrive at

ek
(
id�, j : �2

jd

r1 → �2
jd

r2

)
≤
∥∥∥id1 : �2

jd

r1 → m2 jd

u1,p1

∥∥∥ ∥∥∥id2 : m2 jd

u2,p2 → �2
jd

r2

∥∥∥ ek(id j ).

This time we choose r1 = u1 and r2 = p2, apply Lemma 6.3 again, and obtain

ek
(
id�, j : �2

jd

u1 → �2
jd

p2

)
≤ 2

jd
(

1
p2

− 1
u2

)
ek(id j ).

Together with (6.5) and (6.6), this completes the argument of the lower estimate in
(6.7), where now only in the case of u1 ≤ p2 the additional assumption k � 2 jd is
needed. ��
Remark 6.8 It was not our aim here to study ek(id j ) in all cases, though for several
applications also the results (and constants) for small k ∈ N are very useful. Moreover,
there are further quantities that characterize compactness of operators that admit a lot
of further interesting applications. At themoment, we concentrated on the new concept
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of Morrey sequence spaces as introduced in this paper (with some forerunner in [16])
and found in this last section that for sufficiently large k ∈ N, k � 2 jd ,

ek
(
id j : m2 jd

u1,p1 → m2 jd

u2,p2

)
∼ ek

(
id : �2

jd

u1 → �2
jd

u2

)
,

though the corresponding sequence spaces are quite different.
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