
Constr Approx (2018) 48:301–335
https://doi.org/10.1007/s00365-018-9420-z

Spectral Properties of Block Jacobi Matrices

Grzegorz Świderski1
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Abstract We study the spectral properties of bounded and unbounded Jacobimatrices
whose entries are bounded operators on a complex Hilbert space. In particular, we
formulate conditions assuring that the spectrum of the studied operators is continuous.
Uniform asymptotics of generalized eigenvectors and conditions implying complete
indeterminacy are also provided.
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variation
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1 Introduction

Let H be a complex Hilbert space. Consider two sequences a = (an : n ≥ 0) and
b = (bn : n ≥ 0) of bounded linear operators on H such that for every n ≥ 0,
the operator an has a bounded inverse and bn is self-adjoint. Then one defines the
symmetric tridiagonal matrix by the formula1

1 By X∗ we denote the adjoint operator to X .
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A =

⎛
⎜⎜⎜⎜⎜⎝

b0 a0 0 0 . . .

a∗
0 b1 a1 0 . . .

0 a∗
1 b2 a2 . . .

0 0 a∗
2 b3

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

.

The action ofA on any sequence of elements fromH is defined by the formal matrix
multiplication. Let the operator A be the minimal operator associated withA. Specif-
ically, by A we mean the closure in �2(N;H) of the restriction of A to the set of the
sequences of finite support. Let us recall that

〈x, y〉�2(N;H) =
∞∑
n=0

〈xn, yn〉H, �2(N;H) =
{
x ∈ HN : 〈x, x〉�2(N;H) < ∞

}
.

The operator A is called a block Jacobi matrix. It is self-adjoint provided the Carleman
condition is satisfied, i.e.

∞∑
n=0

1

‖an‖ = ∞, (1)

where ‖·‖ is the operator norm (see [2, Theorem VII-2.9]).
Block Jacobi matrices are related to such topics as: matrix orthogonal polynomials

(see [8]), the matrix moment problem (see [13]), difference equations of finite order
(see [10]), partial difference equations (see [2]), level dependent quasi-birth–death
processes (see [9] and references therein). For further applications, we refer to [20,25].

The theory of block Jacobi matrices is much less developed than the scalar ones,
i.e., corresponding toH = C. The aim of this paper is to provide extensions of results
obtained in [26,28] forH = R to the case of arbitraryH. It is of interest as we provide
new results even for H = C

d with d ≥ 1, i.e., the most common (apart from R)
studied case.

Originally, we were interested in the unbounded case, i.e.,

lim
n→∞

∥∥a−1
n

∥∥ = 0.

But it seems that even the bounded case is notwell understood (see [19,23]). Therefore,
we present a unified treatment of both bounded and unbounded cases. In the unbounded
case, the formulation of our results is simpler.

In the proofs of the presented theorems we will use the following notion. A nonzero
sequence (un : n ≥ 0) will be called a generalized eigenvector associated with z ∈ C

if it satisfies the recurrence relation

a∗
n−1un−1 + bnun + anun+1 = zun, (n ≥ 1).

In Sect. 3, we show the correspondence between asymptotic behavior of generalized
eigenvectors and the spectral properties of A.
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The first main result of this article is Theorem 4, which generalizes the results
obtained in [26] to the operator case. Its formulation involves an additional parameter
sequence α = (αn : n ≥ 0). In Sect. 5, we present some of the possible choices of α.
The following theorem is a special case of Theorem 4 (obtained for αn = an).

Theorem 1 Assume

lim
n→∞

∥∥a−1
n

∥∥ = 0, lim
n→∞

∥∥a−1
n bn

∥∥ = 0

and2

(a)
∞∑
n=1

∥∥[an+1a∗
n+1−a∗

nan ]−
∥∥

‖an‖2 < ∞,

(b)
∞∑
n=0

‖anbn+1−bnan‖
‖an‖2 < ∞,

(c)
∞∑
n=0

1
‖an‖2 = ∞.

Then the operator A is self-adjoint.Moreover,3 σ(A) = R and σp(A) = ∅ provided

lim
n→∞

∥∥∥∥
an

‖an‖ − C

∥∥∥∥ = 0,

where C is invertible.

Before we formulate the next result, we need a definition. Given a positive integer
N , we define the total N -variation VN of a sequence of vectors x = (

xn : n ≥ 0
)
from

a vector space V by

VN (x) =
∞∑
n=0

‖xn+N − xn‖ .

Observe that if (xn : n ≥ 0)has afinite total N -variation, then for each j ∈ {0, . . . , N−
1}, a subsequence (xkN+ j : k ≥ 0) is a Cauchy sequence.

The following theorem is interesting even for N = 1. Since recently block periodic
Jacobi matrices have obtained some attention (see [7,19]), we formulate it for an
arbitrary natural number N .

Theorem 2 Let N ≥ 1 be an integer. Assume

VN

(
a−1
n : n ≥ 0

)
+ VN

(
a−1
n bn : n ≥ 0

)
+ VN

(
a−1
n a∗

n−1 : n ≥ 1
)

< ∞.

Let

2 For a self-adjoint operator X ∈ B(H), we define X− by the spectral theorem.
3 By σ(A) we denote the spectrum of the operator A, whereas σp(A) is the set of its eigenvalues.
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(a) lim
n→∞

∥∥a−1
n − Tn

∥∥ = 0,

(b) lim
n→∞

∥∥a−1
n bn − Qn

∥∥ = 0,

(c) lim
n→∞

∥∥a−1
n a∗

n−1 − Rn
∥∥ = 0,

(d) lim
n→∞

∥∥∥ an‖an‖ − Cn

∥∥∥ = 0

for N-periodic sequences (Tn : n ≥ 0), (Qn : n ≥ 0), (Rn : n ≥ 0), and (Cn : n ≥ 0)
with Cn invertible. Let � be the set of λ ∈ R such that4

F(λ) = Re

[(
0 −CN−1

C∗
N−1 0

) N−1∏
i=0

(
0 Id

−Ri λTi − Qi

)]

is a strictly positive or a strictly negative operator onH⊕H. Then for every compact set
K ⊂ �, there are positive constants c1, c2 such that for every generalized eigenvector
associated with λ ∈ K and every n ≥ 1,

c1
(
‖u0‖2 + ‖u1‖2

)
≤ ‖an‖

(
‖un−1‖2 + ‖un‖2

)
≤ c2

(
‖u0‖2 + ‖u1‖2

)
. (2)

When the Carleman condition is satisfied, the asymptotics (2) implies the similar
conclusion as Theorem 1; i.e., σp(A) ∩ � = ∅ and σ(A) ⊃ �. In the scalar case, the
subordination theory (see, e.g., [6]) implies that in fact the spectrum of A is purely
absolutely continuous on �. Unfortunately, a subordination theory for the nonscalar
case has not been formulated (but there is some progress, see [5]). We expect that in
our case the spectrum of A is, similarly to the scalar case, purely absolutely continuous
of the maximal multiplicity on �.

It is also of interest to obtain a characterization when the symmetric operator A is
not self-adjoint (see, e.g., [12,29]). The following theorem shows that in the setting
of Theorem 2, the Carleman condition is also necessary to the self-adjointness of A.

Theorem 3 Let the assumptions of Theorem 2 be satisfied with � �= ∅. If (1) is not
satisfied, then the conclusion of Theorem 2 holds for � = C. Consequently, for every
z ∈ C,

ker[A∗ − zId] � H.

Hence,wehave the so-called complete indeterminate case. In particular, the symmetric
operator A is not self-adjoint but it has self-adjoint extensions.

The estimate implied by Theorem 3 is useful even in the scalar case (see [3]).
The method of the proofs of the presented theorems is based on an extension

of the techniques used in [26,28]. In these articles, one examines the positivity or
the convergence of sequences of quadratic forms on R

2 acting on the vector of two
consecutive values of a generalized eigenvector u associated with λ ∈ � ⊂ R; i.e.,

4 The real part of the operator X is defined by Re [X ] = 1
2 (X + X∗).
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Sn =
〈
Xn(λ)

(
un−1
un

)
,

(
un−1
un

)〉

R2
,

for a suitably chosen sequence (Xn(λ) : n ≥ 0), Xn(λ) ∈ B(R2). In trying to extend
this method, one encounters several difficulties.

First of all, what is the right quadratic form for the operator case? One real number
should control the norm of generalized eigenvectors, which, unlike the scalar case,
need not be real. Moreover, the convergence (or at least positivity) should be easily
expressible in terms of the recurrence relation. What additionally complicates the
matter is the fact that in general the parameters (an : n ≥ 0) and (bn : n ≥ 0),
unlike the scalars, are not commuting with each other. The first one need not even be
symmetric. Moreover, because of the fact that the Hilbert spaceH can be arbitrary, we
cannot assume that it is locally compact. This complicates the analysis of the proposed
quadratic forms.

The second issue concerns the problem of how one can express quantitatively
the rate of divergence or deviation from the positivity of the parameters. As simple
examples of diagonal an and bn show, the divergence of the norms is too coarse. The
scaling from Theorem 2(d) seems to be a natural one. However, there are also different
possibilities known in the literature (see [11]).

The article is organized as follows. In Sect. 2, we present basic notions needed
in the rest of the article. In Sect. 3, we define generalized eigenvectors and prove
the correspondence of their asymptotic behavior with the spectral properties of A.
In Sect. 4, we prove Theorem 4. Next, in Sect. 5, we present its special cases. In
particular, the choice of the parameter sequence αn ≡ Id motivates us to define the
notion of N -shifted Turán determinants in Sect. 6. Section 6 is devoted to the proof of
Theorems 2 and 3. In Sect. 7, we present the situation when one can compute exact
asymptotics of u. In the scalar case, it has applications to the so-called Christoffel
functions. Finally, in Sect. 8, we present some examples illustrating the sharpness of
the assumptions.

2 Preliminaries

In this section, we collect some basic notation and properties, which will be needed
hereafter.

2.1 Operators

On the space of bounded operators, we consider only the norm topology. In particular,
a sequence (Xn : n ≥ 0) converges to X provided

lim
n→∞ ‖Xn − X‖ = 0,

where ‖·‖ is the operator norm.
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For a sequence of operators (Xn : n ≥ 0) and n0, n1 ∈ N, we set

n1∏
k=n0

Xk =
{
Xn1Xn1−1 · · · Xn0 , n1 ≥ n0,

Id, otherwise.

For any bounded operator X , we define its real part by

Re [X ] = 1

2
(X + X∗).

Direct computation shows that for any bounded operator Y , one has

Y ∗Re [X ] Y = Re
[
Y ∗XY

]
(3)

and
Re [X + Y ] = Re [X ] + Re [Y ] . (4)

Moreover,
‖Re [X ]‖ ≤ ‖X‖ . (5)

For a number x ∈ R, we define its negative part by the formula

x− = max(0,−x).

For a self-adjoint operator X , we define X− by the spectral theorem.
For any bounded operator X , we define its absolute value by

|X | = (X∗X)1/2.

2.2 Total Variation

Given a positive integer N , we define the total N -variationVN of a sequence of vectors
x = (xn : n ≥ 0) from a vector space V by

VN (x) =
∞∑
n=0

‖xn+N − xn‖ .

Observe that if (xn : n ≥ 0)has afinite total N -variation, then for each j ∈ {0, . . . , N−
1}, a subsequence (xkN+ j : k ≥ 0) is a Cauchy sequence.

Proposition 1 If V is a normed algebra, then

VN (xn yn : n ≥ 0) ≤ sup
n∈N

‖xn‖ VN (yn : n ≥ 0) + sup
n∈N

‖yn‖VN (xn : n ≥ 0).
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Proof Observe that

xn+N yn+N − xn yn = (xn+N − xn)yn+N + xn(yn+N − yn).

Hence,

‖xn+N yn+N − xn yn‖ ≤ ‖xn+N − xn‖ ‖yn+N‖ + ‖xn‖ ‖yn+N − yn‖ .

Consequently,

‖xn+N yn+N − xn yn‖ ≤ sup
m∈N

‖ym‖ ‖xn+N − xn‖ + sup
m∈N

‖xm‖ ‖yn+N − yn‖ .

Summing by n, the result follows. ��

3 Generalized Eigenvectors and the Transfer Matrix

For a number z ∈ C, a nonzero sequence u = (un : n ≥ 0)will be called a generalized
eigenvector provided that it satisfies

a∗
n−1un−1 + bnun + anun+1 = zun, (n ≥ 1). (6)

For each nonzero α ∈ H ⊕ H, there is a unique generalized eigenvector u such that5

(u0, u1)t = α. If the recurrence relation (6) holds also for n = 0, with the convention
that a−1 = u−1 = 0, then u is a formal eigenvector of the matrix A associated with z.

For each (z ∈ C), we define the transfer matrix Bn(z) by

Bn(z) =
(

0 Id
−a−1

n a∗
n−1 a−1

n (zId − bn)

)
, (n > 0). (7)

Then for any generalized eigenvector u corresponding to z, we have

(
un
un+1

)
= Bn(z)

(
un−1
un

)
, (n > 0). (8)

It is easy to verify that

B−1
n (z) =

((
a∗
n−1

)−1
(zId − bn) − (

a∗
n−1

)−1
an

Id 0

)
. (9)

The rest of this section concerns relations between generalized eigenvectors and
spectral properties of block Jacobi matrices.

The proof of [1, Lemma 2.1] implies that the adjoint operator to A can be described
as the restriction of A to �2(N;H); i.e., A∗x = Ax for x ∈ Dom(A∗), where

5 We employ the following notation: (v1, v2)t =
(

v1
v2

)
.

123



308 Constr Approx (2018) 48:301–335

Dom(A∗) = {x ∈ �2(N;H) : Ax ∈ �2(N;H)}. (10)

The following proposition is essential in examining properties of A∗.
Proposition 2 Let z ∈ C. The sequence u satisfies Au = zu if and only if

u0 ∈ H, u1 = a−1
0 (zId − b0)u0,

a∗
n−1un−1 + bnun + anun+1 = zun (n ≥ 1).

(11)

Proof It immediately follows from the direct computations. ��
The following corollary describes some of the situations when we can describe the

deficiency spaces of the operator A explicitly.

Corollary 1 Let z ∈ C. If every generalized eigenvector associated with z belongs to
�2(N;H), then

ker[A∗ − zId] � H. (12)

In particular, if (12) is satisfied for z = ±i , then the symmetric operator A is not
self-adjoint, but it has self-adjoint extensions.

Proof Observe that the space ker[A∗ − zId] is a Hilbert space. Indeed, since ker[A∗ −
zId] = Im [A − zId]⊥ (see, e.g., [24, formula (7.1.45)]) it is a closed subspace of
�2(N;H).

Define the operator T : ker[A∗ − zId] → H by Tu = u0. Then by (11), Tu = 0
implies u = 0; hence, T is injective. To prove the surjectivity, take u0 ∈ H \ {0};
then the sequence u defined by (11) is a generalized eigenvector associated with z.
Therefore, it belongs to �2(N;H). Hence, by (10), u ∈ Dom(A∗), and consequently,
T is surjective. Since the mapping T is a contraction, it is a bounded linear bijection.
By the inverse mapping theorem, the operator T is a linear isomorphism.

The assertion about the self-adjoint extensions of A follows from von Neumann’s
extension theorem (see, e.g., [24, Theorem 7.4.1]). ��
Remark 1 The proof of [21, Theorem 1] shows that the same conclusion holds if every
generalized eigenvector associated with z = 0 belongs to �2(N;H). As was pointed
out in [4], the formulation of [21, Theorem 1] has a typo.

The following proposition is an adaptation of [26, Proposition 2.1]. We include it
for the sake of self-containment.

Proposition 3 Let z ∈ C. If every generalized eigenvector u associated with z does
not belong to �2(N;H), then z /∈ σp(A∗) and z ∈ σ(A∗).
Proof Letu �= 0be such thatAu = zu. ThenbyProposition2,u is a generalized eigen-
vector associated with z. By assumption, u /∈ �2(N;H). Therefore, u /∈ Dom(A∗),
and consequently, z /∈ σp(A∗).

Observe that the vector u such that (A − zId)u = δ0v, where 0 �= v ∈ H, has to
satisfy the following recurrence relation:

b0u0 + a0u1 = zu0 + v,

a∗
n−1un−1 + bnun + anun+1 = zun, (n ≥ 1).
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Hence u is a generalized eigenvector; thus u /∈ �2(N;H). Therefore, u /∈ Dom(A∗),
and consequently, the operator A∗ − zId is not surjective; i.e., z ∈ σ(A∗). ��

Remark 2 In the scalar case, if the assumptions of Proposition 3 are satisfied for z = 0,
then the operator A is self-adjoint. We expect the same behavior for every H.

4 A Commutator Approach

The aim of this section is to prove the following theorem.

Theorem 4 Let A be a Jacobi matrix. Assume that there is a sequence (αn : n ≥ 0)
of elements from B(H) such that

(a)
∞∑
n=1

∥∥Re[αn+1a∗
n+1−a∗

na
−1
n−1αn−1an]−

∥∥
‖αna∗

n‖ < ∞,

(b)
∞∑
n=1

∥∥a−1
n−1αn−1an−αn

∥∥
‖αna∗

n‖ < ∞,

(c)
∞∑
n=1

∥∥αnbn+1−bna
−1
n−1αn−1an

∥∥
‖αna∗

n‖ < ∞,

(d)
∞∑
n=1

1‖αna∗
n‖ = ∞.

Let � be the set of λ ∈ R such that the following limit exists in the norm and defines
a strictly positive operator on H ⊕ H:

C(λ) = lim
n→∞

1∥∥αna∗
n

∥∥Re
[(

αna∗
n −(λId − bn)a

−1
n−1αn−1an

0 a∗
na

−1
n−1αn−1an

)]
.

Then σp(A∗) ∩ � = ∅ and σ(A∗) ⊃ �.

Given a sequence (αn : n ≥ 0) of elements from B(H) and λ ∈ R, we define a
sequence of binary quadratic forms Qλ on H ⊕ H by the formula

Qλ
n(v) = 1∥∥αna∗

n

∥∥
〈
Re

[(
αn−1a∗

n−1 −αn−1(λId − bn)
0 αna∗

n

)]
v, v

〉
.

Moreover, we define the sequence of functions by the formula

Sn(α, λ) = ∥∥αna
∗
n

∥∥ Qλ
n

((
un−1
un

))
, (13)

where u is the generalized eigenvector corresponding to λ such that (u0, u1)t = α ∈
H ⊕ H.

The first proposition provides a different representation of Sn .
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Proposition 4 An alternative formula for Sn is

Sn(α, λ) =
〈
Re

[(
αna∗

n −(λId − bn)a
−1
n−1αn−1an

0 a∗
na

−1
n−1αn−1an

)](
un
un+1

)
,

(
un
un+1

)〉
.

Proof By (8), one has

Sn(α, λ) =
〈
Re

[(
αn−1a∗

n−1 −αn−1(λId − bn)
0 αna∗

n

)]

B−1
n (λ)

(
un
un+1

)
, B−1

n (λ)

(
un
un+1

)〉

=
〈(

B−1
n (λ)

)∗
Re

[(
αn−1a∗

n−1 −αn−1(λId − bn)
0 αna∗

n

)]

B−1
n (λ)

(
un
un+1

)
,

(
un
un+1

)〉
.

Then formula (9) implies

(
B−1
n (λ)

)∗ (
αn−1a∗

n−1 −αn−1(λId − bn)
0 αna∗

n

)
B−1
n (λ)

=
(

(λId − bn)a
−1
n−1 Id

−a∗
na

−1
n−1 0

)(
0 −αn−1an

αna∗
n 0

)

=
(

αna∗
n −(λId − bn)a

−1
n−1αn−1an

0 a∗
na

−1
n−1αn−1an

)
.

Hence, by formula (3),

Sn(α, λ) =
〈
Re

[(
αna∗

n −(λId − bn)a
−1
n−1αn−1an

0 a∗
na

−1
n−1αn−1an

)](
un
un+1

)
,

(
un
un+1

)〉
,

which completes the proof. ��
The next proposition provides assumptions on the quadratic form under which it

controls the norm of generalized eigenvectors.

Proposition 5 Let � be the set of λ ∈ R such that the following limit exists in the
operator norm and defines a strictly positive operator:

C(λ) = lim
n→∞

1∥∥αna∗
n

∥∥Re
[(

αna∗
n −(λId − bn)a

−1
n−1αn−1an

0 a∗
na

−1
n−1αn−1an

)]
.

Then for every λ ∈ �, there is an integer N and positive constants c1, c2 such that for
every generalized eigenvector u associated with λ and 0 �= α ∈ H ⊕ H,

c1
∥∥αna

∗
n

∥∥ (
‖un‖2 + ‖un+1‖2

)
≤ Sn(α, λ) ≤ c2

∥∥αna
∗
n

∥∥ (
‖un‖2 + ‖un+1‖2

)
,
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(n ≥ N ).

Proof Fix λ ∈ �. Let

μmin
n = min σ(Zn), μmax

n = max σ(Zn),

where

Zn = 1∥∥αna∗
n

∥∥Re
[(

αna∗
n − (λId − bn)a

−1
n−1αn−1an

0 a∗
na

−1
n−1αn−1an

)]
.

Hence,

μmin
n ≤ Sn(α, λ)∥∥αna∗

n

∥∥ ( ‖un‖2 + ‖un+1‖2
) ≤ μmax

n .

But from the definition of C(λ), we have

lim
n→∞ μmin

n = min σ(C(λ)), lim
n→∞ μmax

n = max σ(C(λ)),

which are positive numbers. Therefore, there is N and c1, c2 > 0 such that for every
n ≥ N ,

c1 ≤ Sn(α, λ)∥∥αna∗
n

∥∥ (‖un‖2 + ‖un+1‖2
) ≤ c2,

and the proof is complete. ��
The next corollary together with Proposition 3 suggest the method of proving that

every λ ∈ � is not an eigenvalue of A but belongs to σ(A).

Corollary 2 Under the assumptions of Proposition 5, together with

∞∑
n=0

1∥∥αna∗
n

∥∥ = ∞,

if

lim inf
n→∞ Sn(α, λ) > 0,

then u does not belong to �2(N;H).

Proof By Proposition 5,

Sn(α, λ)

c2
∥∥αna∗

n

∥∥ ≤ ‖un‖2 + ‖un+1‖2
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for a positive constant c2. Therefore, there exists a constant c > 0 such that

c∥∥αna∗
n

∥∥ ≤ ‖un‖2 + ‖un+1‖2 ,

which cannot be summable. ��
The following lemma is the main algebraic part of the proof of Theorem 4.

Lemma 1 Let u be a generalized eigenvector associated with λ ∈ R and α ∈ H⊕H.
Then

[Sn+1(α, λ) − Sn(α, λ)]−
‖un‖2 + ‖un+1‖2

≤
∥∥∥∥Re

[
αn+1a

∗
n+1 − a∗

na
−1
n−1αn−1an

]−∥∥∥∥
+ |λ|

∥∥∥a−1
n−1αn−1an − αn

∥∥∥ +
∥∥∥αnbn+1 − bna

−1
n−1αn−1an

∥∥∥ .

Proof By Proposition 4 and formula (13), we have

Sn+1(α, λ) − Sn(α, λ) =
〈
Re

[
Cλ
n

] (
un
un+1

)
,

(
un
un+1

)〉

for

Cλ
n =

(
αna∗

n −αn(λId − bn+1)

0 αn+1a∗
n+1

)
−

(
αna∗

n −(λId − bn)a
−1
n−1αn−1an

0 a∗
na

−1
n−1αn−1an

)

=
(
0 (λId − bn)a

−1
n−1αn−1an − αn(λId − bn+1)

0 αn+1a∗
n+1 − a∗

na
−1
n−1αn−1an

)
.

Hence,

Sn+1(α, λ) − Sn(α, λ) =
〈
Re

[
αn+1a

∗
n+1 − a∗

na
−1
n−1αn−1an

]
un+1, un+1

〉
H

+ λRe
〈(
a−1
n−1αn−1an − αn

)
un+1, un

〉
H

+Re
〈(

αnbn+1 − bna
−1
n−1αn−1an

)
un+1, un

〉
H .

By the Schwarz inequality, the result follows. ��
We are ready to prove Theorem 4.

Proof of Theorem 4 By virtue of Corollary 2 and Proposition 3, it is enough to show
that lim infn Sn(α, λ) > 0 for every λ ∈ � and a nonzero α ∈ H ⊕ H.

Fix λ ∈ � and a nonzero α ∈ H ⊕ H. By Proposition 5, there exists N such that
for every n ≥ N , Sn(α, λ) > 0 holds. Let us define

Fn(α, λ) = Sn+1(α, λ) − Sn(α, λ)

Sn(α, λ)
.
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Then

Sn+1(α, λ)

Sn(α, λ)
= 1 + Fn(α, λ),

and consequently,

Sn(α, λ)

SN (α, λ)
=

n−1∏
k=N

(
1 + Fk(α, λ)

)
.

Hence,
∞∑

k=N

[Fk(α, λ)]− < ∞ (14)

implies lim infn Sn(α, λ) > 0. By Proposition 5,

Sn(α, λ) ≥ c−1‖αna
∗
n‖

(‖un‖2 + ‖un+1‖2
)

for some constant c > 0. Hence, by Lemma 1,

[Fn(α, λ)]− ≤ c

‖αna∗
n‖

(∥∥Re[αn+1a
∗
n+1 − a∗

na
−1
n−1αn−1an]−

∥∥

+ |λ|∥∥a−1
n−1αn−1an − αn

∥∥ + ∥∥αnbn+1 − bna
−1
n−1αn−1an

∥∥)
,

which is summable by assumptions (a), (b), and (c). This shows (14). The proof is
complete. ��

5 Special Cases of Theorem 4

In this section, we show several choices of the sequence (αn : n ≥ 0). In this way, we
show the flexibility of our approach. For the simplification of the condition for C(λ),
we assume that the sequence (an : n ≥ 0) tends to infinity; i.e.,

lim
n→∞

∥∥a−1
n

∥∥ = 0.

This condition implies that C(λ) does not depend on λ.
The first theorem is an extension of [18, Theorem 1.6] to the operator case. Since

Sect. 6 is devoted to the proof of a far reaching extension of this result, we omit the
details.

Theorem 5 Assume:

(a)
∞∑
n=1

∥∥a∗
n+1a

−1
n − a∗

na
−1
n−1

∥∥ < ∞,

(b)
∞∑
n=1

∥∥a−1
n−1 − a−1

n

∥∥ < ∞,
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(c)
∞∑
n=1

∥∥bn+1a−1
n − bna

−1
n−1

∥∥ < ∞,

(d)
∞∑
n=0

1
‖an‖ = ∞,

and C(λ) defined for αn ≡ Id is a positive operator onH⊕H. Then the assumptions
of Theorem 4 are satisfied.

We are ready to prove Theorem 1. Let us note that this result is a vector valued
version of [26, Theorem 4.3]. In the scalar case, it has far-reaching applications (see
[26, Section 5]).

Proof of Theorem 1 Take αn = an . It is sufficient to show that � = R. We have

C(λ) = lim
n→∞

1∥∥ana∗
n

∥∥Re
[(

ana∗
n − (λId − bn)

(
a∗
n

)−1
a∗
nan

0 a∗
nan

)]

= Re

[(
CC∗ 0
0 C∗C

)]
,

which is clearly positive for λ ∈ R. Hence, � = R. ��
To formulate the last example, we need a definition. Let

log(0)(x) = x, log(i+1)(x) = log
(
log(i)(x)

)
, (i ≥ 0), (15)

and

g j (x) =
j∏

i=1

log(i)(x).

The following theorem is a vector valued version of [26, Theorem 4.3], and its proof
is inspired by the techniques employed in the proof of [17, Theorem 3].

Theorem 6 Assume that for positive integers K , N and a non-negative summable
sequence cn:

(a) lim
n→∞ a−1

n = 0,

(b) (1 − cn)Id ≤ |(a∗
n−1)

−1an| ≤
(
1 + 1

n +
K∑
j=1

1
ng j (n)

+ cn

)
Id for n > N,

(c) the sequence (bn : n ≥ 0) is bounded and
∞∑
n=0

∥∥a−1
n bn − bn+1a−1

n

∥∥ < ∞,

(d)
∞∑
n=1

‖a−1
n ‖
n < ∞.

Then the assumptions of Theorem 4 are satisfied with � = R.
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Proof We can assume that log(K )(N ) > 0. Let

αn =
{
Id for n < N ,

ngK (n)
(
a∗
n

)−1 otherwise.

We have to compute the set � and check the assumptions (a), (b), (c) of Theorem 4.
Let us begin with the computation of �. We have

1∥∥αna∗
n

∥∥
(

αna∗
n −(λId − bn)a

−1
n−1αn−1an

0 a∗
na

−1
n−1αn−1an

)

=
⎛
⎜⎝
Id − (n−1)gK (n−1)

ngK (n)
(λId − bn)

(
a∗
n

)−1
∣∣∣(a∗

n−1

)−1
an

∣∣∣2

0 (n−1)gK (n−1)
ngK (n)

∣∣∣(a∗
n−1

)−1
an

∣∣∣2

⎞
⎟⎠ ,

which by the hypotheses (a) and (b) tends to

(
Id 0
0 Id

)
,

which is clearly a positive operator on H ⊕ H for any λ ∈ R. Hence, � = R.
Let us show the assumption (a). We have

αn+1a∗
n+1 − a∗

na
−1
n−1αn−1an∥∥αna∗

n

∥∥ = (n + 1)gK (n + 1)

ngK (n)
Id

− (n − 1)gK (n − 1)

ngK (n)

∣∣ (a∗
n−1

)−1
an

∣∣2

≥
[
(n + 1)gK (n + 1)

ngK (n)
− (n − 1)gK (n − 1)

ngK (n)

(
1 + 1

n
+

K∑
j=1

1

ng j (n)
+ cn

)2]
Id.

The above expression has been estimated in the proof of [26, Theorem 4.3].
Next, since

αnbn+1 − bna
−1
n−1αn−1an = αnbn+1 − bnαn + bn

(
αn − a−1

n−1αn−1an
)

,

the hypothesis (c) implies that the assumption (b) will be satisfied if we show that the
assumption (c) holds.

We have

a−1
n−1αn−1an − αn∥∥αna∗

n

∥∥ = (n − 1)gK (n − 1)

ngK (n)
a−1
n−1

(
a∗
n−1

)−1
an − (

a∗
n

)−1 = a−1
n−1Tn,
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where

Tn = (n − 1)gK (n − 1)

ngK (n)
W ∗

n − W−1
n , Wn = a∗

na
−1
n−1.

By virtue of the hypothesis (d), the assumption (c) will be satisfied as long as

‖Tn‖ ≤ c

(
1

n
+ c′

n

)
(16)

for a constant c > 0 and a non-negative summable sequence (c′
n : n ≥ 0). Because

TnT
∗
n =

(
(n − 1)gK (n − 1)

ngK (n)

)2

W ∗
n Wn − 2

(n − 1)gK (n − 1)

ngK (n)
Id + (

W ∗
n Wn

)−1
,

and because of the non-negativity of TnT ∗
n and

∥∥TnT ∗
n

∥∥ = ‖Tn‖2, the inequality (16)
will be satisfied if

TnT
∗
n ≤ c2

(
1

n
+ c′

n

)2

Id.

The spectral theorem applied to W ∗
n Wn implies that the above inequality will be

satisfied if

(
(n − 1)gK (n − 1)

ngK (n)

)2

λn − 2
(n − 1)gK (n − 1)

ngK (n)
+ λ−1

n ≤
(
1

n
+ c′

n

)2

(17)

for every λn ∈ σ(W ∗
n Wn), which by the hypothesis (b) corresponds to

λn ∈
[(
1 − cn

)2
,

(
1 + 1

n
+

K∑
j=1

1

ng j (n)
+ cn

)2]
.

But

(
(n − 1)gK (n − 1)

ngK (n)

)2

λn − 2
(n − 1)gK (n − 1)

ngK (n)
+ λ−1

n

=
(

(n − 1)gK (n − 1)

ngK (n)

√
λn − 1√

λn

)2

,

and the above expression has been estimated in the proof of [26, Theorem 4.3]. This
shows (17) and ends the proof. ��
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6 Turán Determinants

Let us note that for H = R, the expression Sn for αn ≡ Id (see (13)) is known as
the Turán determinant (see [14]). Hence, Theorem 5 motivates us to the following
construction. Fix a positive integer N and a Jacobi matrix A. Let us define a sequence
of quadratic forms Qz on H ⊕ H by the formula

Qz
n(v) = 1

‖an+N−1‖
〈
Re

[(
an+N−1 0

0 a∗
n+N−1

)
EXn(z)

]
v, v

〉
, (18)

where

Xn(z) =
n+N−1∏
j=n

B j (z) and E =
(
0 −Id
Id 0

)
.

Then we define the N -shifted Turán determinants by

Sn(α, z) = ‖an+N−1‖ Qz
n

((
un−1
un

))
, (19)

where u is the generalized eigenvector corresponding to z ∈ C such that (u0, u1)t =
α ∈ H ⊕ H.

The rest of this section is devoted to the analysis of the sequence Sn . Since the proof
of the uniform convergence of Sn is quite involved, we divide it into 3 subsections.
The method used here is an adaptation of the techniques employed in [28].

6.1 Almost Uniform Nondegeneracy

Let � be a subset of C. In this section, we consider the family {Qz : z ∈ �} defined
in (18).

We say that {Qz : z ∈ �} is uniformly nondegenerated on K ⊂ � if there are
c ≥ 1 and M ≥ 1 such that for all v ∈ H ⊕ H, z ∈ K , and n ≥ M ,

c−1 ‖v‖2 ≤ ∣∣Qz
n(v)

∣∣ ≤ c ‖v‖2 .

We say that {Qz : z ∈ �} is almost uniformly nondegenerated on � if it is uniformly
nondegenerated on each compact subset of �.

We begin with two simple auxiliary results that will be needed in the proof of the
nondegeneracy of the considered quadratic forms.

Lemma 2 For every n and λ ∈ R, one has

(
an 0
0 a∗

n

)
EBn(λ) =

[
B−1
n (λ)

]∗ (
an−1 0
0 a∗

n−1

)
E .

123



318 Constr Approx (2018) 48:301–335

Proof Using (9) and (7), one can compute that both sides are equal to

(
a∗
n−1 −(λId − bn)
0 a∗

n

)
,

and the result follows. ��
Proposition 6 Let N be an integer. Assume:

(a) lim
n→∞

∥∥a−1
n a∗

n−1 − Rn
∥∥ = 0,

(b) lim
n→∞

∥∥∥ an‖an‖ − Cn

∥∥∥ = 0,

for N-periodic sequences of invertible operators R and C. Then

lim
n→∞

∥∥∥∥
‖an‖

‖an−1‖ Id − C−1
n C∗

n−1R
−1
n

∥∥∥∥ = 0.

In particular,

lim
n→∞

∣∣∣∣
‖an‖

‖an−1‖ − rn

∣∣∣∣ = 0

for a positive N-periodic sequence

rn =
∥∥∥C−1

n C∗
n−1R

−1
n

∥∥∥ .

Proof We have

‖an‖
‖an−1‖ Id =

(
an

‖an‖
)−1 a∗

n−1

‖an−1‖
(
a−1
n a∗

n−1

)−1
.

Hence,

lim
n→∞

∥∥∥∥
‖an‖

‖an−1‖ Id − C−1
n C∗

n−1R
−1
n

∥∥∥∥ = 0,

and the result follows. ��
In the next proposition, we examine the limiting behavior of the considered

quadratic forms.

Proposition 7 Let N ≥ 1 be an integer. Assume:

(a) lim
n→∞

∥∥a−1
n − Tn

∥∥ = 0,

(b) lim
n→∞

∥∥a−1
n bn − Qn

∥∥ = 0,

(c) lim
n→∞

∥∥a−1
n a∗

n−1 − Rn
∥∥ = 0,
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(d) lim
n→∞

∥∥∥ an‖an‖ − Cn

∥∥∥ = 0,

for N-periodic sequences T, Q, R, and C such that for every n, the operators Rn and
Cn are invertible. Then on every compact subset ofC, the sequence (‖Xn(·)‖ : n ≥ 0)
is uniformly bounded. Moreover,

lim
n→∞

∥∥∥∥∥∥

⎛
⎝

an+N−1‖an+N−1‖ 0

0
a∗
n+N−1‖an+N−1‖

⎞
⎠ EXn(·) − Fn(·)

∥∥∥∥∥∥
= 0 (20)

uniformly on compact subsets of C, where

Fn(z) =
(
Cn+N−1 0

0 C∗
n+N−1

)
E

N+n−1∏
k=n

(
0 Id

−Rk zTk − Qk

)
.

Proof Let us define

Xn(z) =
n+N−1∏
j=n

B j (z), where Bn(z) =
(

0 Id
−Rn zTn − Qn

)
.

We have

‖Bn(z) − Bn(z)‖ ≤
∥∥∥Rn − a−1

n a∗
n−1

∥∥∥ + |z|
∥∥∥a−1

n − Tn
∥∥∥ +

∥∥∥Qn − a−1
n bn

∥∥∥ ,

which tends to 0 uniformly on compact subsets of C. Consequently, since every func-
tion Bn(·) is continuous, one has

lim
n→∞ ‖Xn(·) − Xn(·)‖ = 0

uniformly on the compact subsets ofC. In particular, this implies (20) and the uniform
boundedness of (‖Xn(·)‖ : n ≥ 0) on every compact subset of C. ��

Finally, in the last proposition, we formulate the conditions under which the
sequence {Qz : z ∈ �} is almost uniformly nondegenerated.

Proposition 8 Let the assumptions of Proposition 7 be satisfied. If for every i ∈ N

and every z ∈ � there is ε(i, z) ∈ {−1, 1} such that

ε(i, z)Re
[
F i (z)

]
> 0, (21)

then (Qz : z ∈ �) is almost uniformly nondegenerated. Moreover, if � ⊂ R, then the
same conclusion follows provided (21) holds only for i = 0.
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Proof By (20) and (21), we have that for every compact K ⊂ � there is a constant
c > 0 such that for n sufficiently large and all z ∈ K ,

ε(i, z)Re

⎡
⎣

⎛
⎝

an+N−1‖an+N−1‖ 0

0
a∗
n+N−1‖an+N−1‖

⎞
⎠ EXn(z)

⎤
⎦ > cId.

This implies the uniform nondegeneracy of {Qz : z ∈ K }.
Consider λ ∈ R. According to Lemma 2, we have

‖an+N‖
‖an+N−1‖

⎛
⎝

an+N‖an+N‖ 0

0
a∗
n+N‖an+N‖

⎞
⎠EXn+1(λ)

=
[
B−1
n+N (λ)

]∗
⎛
⎝

an+N−1‖an+N−1‖ 0

0
a∗
n+N−1‖an+N−1‖

⎞
⎠ EXn(λ)B−1

n (λ).

Let n = kN + i , and let us compute the limit of both sides as k tends to ∞. By
Propositions 6 and 7, we have

riF i (λ) = [B−1
i (λ)

]∗F i−1(λ)B−1
i (λ),

where

Bi (λ) =
(

0 Id
−Ri λTi − Qi

)

and the convergence is uniform on every compact subset of R. By (3), this implies
that if for some ε(λ) ∈ {−1, 1},

ε(λ)Re
[
F0(λ)

]
> 0,

then for every j ∈ {0, 1, . . . , N − 1},

ε(λ)Re
[
F j (λ)

]
> 0.

The proof is complete. ��

6.2 Asymptotics of Generalized Eigenvectors

This section is devoted to showing the implications of the nondegeneracy of (Qz :
z ∈ �) together with the positivity of |Sn| to the asymptotics of the generalized
eigenvectors.
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Theorem 7 Let the family {Qz : z ∈ K } defined in (18) be uniformly nondegenerated
on a compact set K . Suppose that there are c ≥ 1 and M ′ > 0 such that for all
α ∈ H ⊕ H such that ‖α‖ = 1, z ∈ K, and n ≥ M,

c−1 ≤ |Sn(α, z)| ≤ c. (22)

Then there is c ≥ 1 such that for all z ∈ K, n ≥ 1, and for every generalized
eigenvector u corresponding to z,

c−1
(
‖u0‖2 + ‖u1‖2

)
≤ ‖an+N−1‖

(
‖un−1‖2 + ‖un‖2

)
≤ c

(
‖u0‖2 + ‖u1‖2

)
.

Proof Let z ∈ K , and let u be a generalized eigenvector corresponding to z such that
(u0, u1)t = α, ‖α‖ = 1. Since {Qz : z ∈ K } is uniformly nondegenerated, there are
c ≥ 1 and M ≥ M ′ such that for all n ≥ M ,

c−1 ‖an+N−1‖
(
‖un−1‖2 + ‖un‖2

)
≤ |Sn(α, z)| ≤ c ‖an+N−1‖

(
‖un−1‖2+‖un‖2

)
,

which together with (22) implies that there is c ≥ 1 such that for all n ≥ M ,

c−1 ≤ ‖an+N−1‖
(
‖un−1‖2 + ‖un‖2

)
≤ c.

For the general nonzero α, we use the fact that

Sn

(
α

‖α‖ , z

)
= 1

‖α‖2 Sn(α, z)

and generalized eigenvectors depend linearly on the initial conditions. ��
Corollary 3 Suppose that the assumptions of Theorem 7 are satisfied. Let 	 ⊂ H ⊕
H \ {0} be a bounded closed set, and let K ⊂ � be a compact set. Assume that for
N-periodic sequence of self-adjoint operators (Dn : n ≥ 0),

lim
n→∞

∥∥∥∥
1

‖an+N−1‖Re
[(

an+N−1 0
0 a∗

n+N−1

)
EXn(z)

]
−

(
Dn 0
0 Dn

)∥∥∥∥ = 0 (23)

uniformly on K and

g(α, z) = lim
n→∞ Sn(α, z)

uniformly on 	 × K. Then

lim
n→∞ ‖an+N−1‖

(〈Dnun−1, un−1〉H + 〈Dnun, un〉H
) = g

uniformly on 	 × K.
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Proof Fix ε > 0. By (23), there is M such that for all n ≥ M , z ∈ K , and v ∈ H⊕H,

∣∣Qz
n(v) − (〈Dnv1, v1〉H + 〈Dnv2, v2〉H

)∣∣ ≤ ε ‖v‖2 .

Hence,
∣∣Sn − ‖an+N−1‖

(〈Dnun−1, un−1〉H + 〈Dnun, un〉H
)∣∣

≤ ε ‖an+N−1‖
( ‖un−1‖2 + ‖un‖2

)

uniformly on 	 × K . By Theorem 7, there is a constant c′ > 0 such that

∣∣Sn − ‖an+N−1‖
(〈Dnun−1, un−1〉H + 〈Dnun, un〉H

)∣∣ ≤ εc′

uniformly on 	 × K . The proof is complete. ��

6.3 The Proof of the Convergence

In this section, we are going to prove that the sequence (Sn : n ≥ 0) is convergent,
which leads to the proofs of Theorem 2 and 3.

Let us begin with the main algebraic part of the proof.

Lemma 3 Let u be a generalized eigenvector associated with z ∈ C and α ∈ H⊕H.
Then

|Sn+1(α, z) − Sn(α, z)|
‖un−1‖2 + ‖un‖2

≤ ‖Xn(z)‖ ‖an+N‖
(∥∥∥a−1

n+Na
∗
n+N−1 − a−1

n a∗
n−1

∥∥∥

+ |z|
∥∥∥a−1

n+N − a−1
n

∥∥∥ + |z − z|
∥∥∥a−1

n+N

∥∥∥
+

∥∥∥a−1
n+Nbn+N − a−1

n bn
∥∥∥
)

.

Proof The formula (8) implies

Sn+1(α, z) =
〈
Re

[(
an+N 0
0 a∗

n+N

)
EXn+1(z)

](
un
un+1

)
,

(
un
un+1

) 〉

=
〈(
Bn(z)

)∗Re
[(

an+N 0
0 a∗

n+N

)
EXn+1(z)

]
Bn(z)

(
un−1
un

)
,

(
un−1
un

) 〉
.

Therefore, by the formulas (3) and (4),

Sn+1 − Sn =
〈
Re [Cn(z)]

(
un−1
un

)
,

(
un−1
un

) 〉
, (24)

where

Cn(z) = (
Bn(z)

)∗
(
an+N 0
0 a∗

n+N

)
EXn+1(z)Bn(z)−

(
an+N−1 0

0 a∗
n+N−1

)
EXn(z).
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By using E−1 = −E , we can write

(
Bn(z)

)∗ (
an+N 0
0 a∗

n+N

)
EXn+1(z)Bn(z)

= −(
Bn(z)

)∗
(
an+N 0
0 a∗

n+N

)
EBn+N (z)EEXn(z).

Hence,

Cn(z) = −
[(

Bn(z)
)∗ (

an+N 0
0 a∗

n+N

)
EBn+N (z)E +

(
an+N−1 0

0 a∗
n+N−1

)]
EXn(z).

Now we can compute

(
Bn(z)

)∗
(
an+N 0
0 a∗

n+N

)
EBn+N (z)E

=
(
0 − an−1

(
a∗
n

)−1

Id (zId − bn)
(
a∗
n

)−1

)(
0 − an+N

a∗
n+N 0

)

(
Id 0

a−1
n+N (λId − bn+N ) a−1

n+Na
∗
n+N−1

)

=
(

−an−1
(
a∗
n

)−1
a∗
n+N 0

(zId − bn)
(
a∗
n

)−1
a∗
n+N − an+N

)(
Id 0

a−1
n+N (zId − bn+N ) a−1

n+Na
∗
n+N−1

)

=
(

−an−1
(
a∗
n

)−1
a∗
n+N 0

(zId − bn)
(
a∗
n

)−1
a∗
n+N − (zId − bn+N ) − a∗

n+N−1

)
.

Therefore,

Cn(z) = −
(

−an−1
(
a∗
n

)−1
a∗
n+N + an+N−1 0

(zId − bn)
(
a∗
n

)−1
a∗
n+N − (zId − bn+N ) 0

)
EXn(z).

In particular, we can estimate

‖Cn(z)‖ ≤ ‖Xn(z)‖
∥∥a∗

n+N

∥∥ (∥∥∥an+N−1(a
∗
n+N )−1 − an−1(a

∗
n)

−1
∥∥∥

+ |z|
∥∥∥(a∗

n)
−1 − (a∗

n+N )−1
∥∥∥ + |z − z|

∥∥∥a−1
n+N

∥∥∥
+

∥∥∥bn+N (a∗
n+N )−1 − bn(a

∗
n)

−1
∥∥∥
)

.

Therefore, by the last inequality together with (24), the Schwarz inequality, and (5),
the result follows. ��

The main result of this section is the following theorem.
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Theorem 8 Assume that for an integer N ≥ 1:

(a) VN

(
a−1
n : n ≥ 0

)
+ VN

(
a−1
n bn : n ≥ 0

)
+ VN

(
a−1
n a∗

n−1 : n ≥ 1

)
< ∞;

(b) ‖an+1‖
‖an‖ < c1 for a constant c1 > 0 and all n ∈ N;

(c) the family defined in (18)
{
Qz : z ∈ K

}
is uniformly nondegenerated on

a compact connected set K .

Then there is c ≥ 1 such that for every n ≥ 1, for all z ∈ K ∩ R, and for every
generalized eigenvector u corresponding to z, we have

c−1
(
‖u0‖2 + ‖u1‖2

)
≤ ‖an‖

(
‖un−1‖2 + ‖un‖2

)
≤ c

(
‖u0‖2 + ‖u1‖2

)
.

Moreover, if
∞∑
n=0

∥∥a−1
n

∥∥ < ∞, (25)

then the same conclusion holds for z ∈ K.

Proof Let 	 ⊂ H⊕H \ {0} be a connected bounded closed set. Let Sn be a sequence
of functions defined by (19). In view of Theorem 7, it is enough to show that there are
c ≥ 1 and M > 0 such that

c−1 ≤ |Sn(α, z)| ≤ c (26)

for all α ∈ 	, z ∈ K , and n > M . The study of the sequence (Sn : n ≥ 1) is motivated
by the method developed in [28].

Given a generalized eigenvector corresponding to z ∈ K such that (u0, u1)t = α ∈
	, we can easily see that for each n ≥ 2, un , considered as a function of α and z, is
continuous on 	 × K . As a consequence, the function Sn is continuous on 	 × K .
Since {Qz : z ∈ K } is uniformly nondegenerated, there is M > 0, such that for each
n ≥ M , the function Sn has no zeros and has the same sign for all z ∈ K and α ∈ 	.
Otherwise, by the connectedness of 	 × K , there would be α ∈ 	 and z ∈ K such
that Sn(α, z) = 0, which would contradict the nondegeneracy of Qz

n .
Next, we define a sequence of functions (Fn : n ≥ M) on 	 × K by setting

Fn = Sn+1 − Sn
Sn

.

Then
Sn
SM

=
n−1∏
j=M

(1 + Fj ). (27)

First of all, let us show that

C−1 ≤ |SM (α, z)| ≤ C (28)

for a constant C > 1 independent of α and z. If this is the case, then by (27) and the
fact that each function Fn is continuous, to conclude (26) it is enough to show that the
product
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n∏
j=M

(1 + Fj )

converges uniformly on 	 × K to a limit that is bounded away from 0, which will be
satisfied if we prove that

∞∑
j=M

sup
α∈	

sup
z∈K

|Fn(α, z)| < ∞. (29)

Let us observe that by (19) and (5),

|SM (α, z)| ≤ ‖aM+N−1‖ ‖XM (z)‖ ( ‖uM−1(α, z)‖2 + ‖uM (α, z)‖2 )
. (30)

Moreover, by (8),

‖uM−1(α, z)‖2 + ‖uM (α, z)‖2 = 〈Y (z)α,Y (z)α〉 = 〈[Y (z)]∗Y (z)α, α〉 (31)

for

Y (z) =
M−1∏
i=1

Bi (z). (32)

Hence,

‖uM−1(α, z)‖2 + ‖uM (α, z)‖2 ≤
[
M−1∏
i=1

‖Bi (z)‖2
]

‖α‖2 . (33)

For every i , the function z �→ ‖Bi (z)‖ is continuous on the compact set K . Hence,
it is uniformly bounded. Furthermore, by the boundedness of 	, one has that ‖α‖ is
bounded as well. This shows that the right-hand side of (33) is uniformly bounded on
	 × K . Similarly,

‖XM (z)‖ ≤
M+N−1∏
i=M

‖Bi (z)‖

is uniformly bounded. This implies that the right-hand side of (30) is uniformly
bounded as well. Thus, the upper bound in the inequality (28) is proved. To prove
the lower bound, let us see that the uniform nondegeneracy implies

|SM (α, z)| ≥ ‖aN+M−1‖
( ‖uM−1(α, z)‖2 + ‖uM (α, z)‖2 )

(34)

for a constant c > 0 independent of α and z. So by (31), it remains to show that
[Y (z)]∗Y (z) is a strictly positive operator uniformly with respect to z ∈ K . It will be
implied by the uniform bound on

∥∥([Y (z)]∗Y (z))−1
∥∥. According to (32),
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∥∥∥([Y (z)]∗Y (z)
)−1

∥∥∥ ≤
M−1∏
i=1

∥∥B−1
i (z)

∥∥2

and by (9), as in (33), the right-hand side of this inequality is uniformly bounded on
K . Hence, by (31), there is a constant c′ > 0 such that

‖uM−1(α, z)‖2 + ‖uM (α, z)‖2 ≥ c′ ‖α‖2 .

Consequently, by the positive distance of 	 to 0 and (34), we proved the remaining
lower bound in (28).

It remains to prove (29). Let u be a generalized eigenvector corresponding to z ∈
K such that (u0, u1)t = α ∈ 	. In view of (a), each subsequence (BkN+ j (z) :
k ≥ 1) is uniformly convergent, and consequently, the norms ‖Xn(z)‖ are uniformly
bounded with respect to n and z ∈ K . Moreover, since {Q(z) : z ∈ K } is uniformly
nondegenerated,

|Sn(α, z)| ≥ c−1 ‖an+N−1‖
( ‖un−1‖2 + ‖un‖2

)

for n ≥ M . Therefore, by Lemma 3,

|Fn(α, z)| ≤ cc′c1
(∥∥∥a−1

n+Na
∗
n+N−1 − a−1

n a∗
n−1

∥∥∥ + |z|
∥∥∥a−1

n+N − a−1
n

∥∥∥
+ |z − z|

∥∥∥a−1
n+N

∥∥∥ +
∥∥∥a−1

n+Nbn+N − a−1
n bn

∥∥∥
)

(35)

for every α ∈ 	. Using (b), we can estimate

∞∑
n=M

sup
α∈	

sup
z∈K

|Fn(α, z)| ≤ cc′c1VN

(
a−1
n a∗

n−1 : n ≥ M
)

+ cc′c1VN

(
a−1
n bn : n ≥ M

)

+ cc′c1 sup
z∈K

|z|VN

(
a−1
n : n ≥ M

)
+ cc′c1 sup

z∈K
|z − z|

∞∑
n=M

∥∥a−1
n

∥∥.

Thus, (a) and (25) imply (26). If condition (25) is not satisfied, consider K ∩R instead
K in the last inequality. The proof is complete. ��

The following corollary provides an estimate, which in the scalar case expresses
the bound on the rate of the convergence of Turán determinants to the density of the
spectral measure of A (see [27]). It follows from the standard proof of the convergence
of infinite products of numbers.

Corollary 4 Under the hypothesis of Theorem 8, for every bounded and closed 	 ⊂
H ⊕ H \ {0}, the sequence of continuous functions (Sn : n ≥ 1) converges uniformly
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on 	 × (K ∩ R) (or on 	 × K if (25) is satisfied) to the function g bounded away
from 0. Moreover, by (35), there is a constant c > 0 such that for all m > 0,

sup
α∈	

sup
z∈K∩R

|g(α, λ) − Sm(α, z)| ≤ cVN

(
a−1
n a∗

n−1 : n ≥ m
)

+ cVN

(
a−1
n : n ≥ m

)

+ cVN

(
a−1
n bn : n ≥ m

)
.

Finally, we are ready to prove Theorems 2 and 3.

Proof of Theorem 2 By Propositions 6 and 8, we have that the assumptions of Theo-
rem 8 are satisfied. Therefore, the result follows from Theorem 7. ��
Proof of Theorem 3 Since every Cn is invertible, we have

lim
n→∞

∥∥∥∥∥
(

an
‖an‖

)−1

− C−1
n

∥∥∥∥∥ = 0.

Hence, for some c > 0,
‖an‖

∥∥a−1
n

∥∥ ≤ c.

Consequently, ∥∥a−1
n

∥∥ ≤ c

‖an‖ ,

and (25) is satisfied. Moreover, this implies that Tn ≡ 0, so, in the notation of Propo-
sition 7, every F i (·) is constant. Hence, Proposition 8 implies the almost uniform
nondegeneracy of {Qz : z ∈ R}. Since F i (·) is constant on C, Proposition 8 implies
that {Qz : z ∈ C} is almost uniformly nondegenerated as well. Thus, the assump-
tions of Theorem 8 are satisfied, and consequently, Theorem 7 implies the requested
asymptotics. Finally, Corollary 1 finishes the proof. ��

7 Exact Asymptotics of Generalized Eigenvectors

The following theorem is a vector valued version of [27, Corollary 1].

Theorem 9 Let 	 ⊂ H ⊕ H \ {0} be a bounded and closed set, and let K ⊂ R (or
K ⊂ C whether the Carleman condition is not satisfied) be a compact set. Let N be
an odd integer. Let the hypotheses of Theorem 2 be satisfied. Assume further that

Tn ≡ 0, Qn ≡ 0, Rn ≡ Id,Cn ≡ C.

Then C = C∗, and

lim
n→∞ ‖an‖

(〈Cun−1, un−1〉H + 〈Cun, un〉H
) = g

uniformly on 	 × K, where
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g(α, z) = lim
n→∞ Sn(α, z)

for Sn defined in (19).

Proof We have

(
0 Id

−Id 0

)2

= −
(
Id 0
0 Id

)
.

Hence,

(
0 −C
C∗ 0

)(
0 Id

−Id 0

)N

= (−1)(N−1)/2
(
C 0
0 C∗

)
.

Consequently,

F(λ) =
(
Re [C] 0

0 Re [C]

)
.

Therefore, by Proposition 6, r Id = C−1C∗ for r = ∥∥C−1C∗∥∥. This implies that
rC = C∗. Taking norms, we obtain r = 1, and consequently, C = C∗. Moreover, by
Corollary 4, g is a continuous function on	×K that is bounded away from 0. Hence,
by Corollary 3, the result follows. ��

In the scalar case, and under stronger assumptions, similar results were obtained in
[16]. To obtain the complete information of the asymptotics, it is of interest to identify
the function g. In the scalar case, g is related to the density of the spectral measure of
A (see [27, Corollary 1]).

The following corollary is an extension of [27, Corollary 3] to the operator case.
In the scalar case, it provides exact asymptotics of the so-called Christoffel functions,
which have applications, e.g., in random matrix theory (see [22]) or signal processing
(see [15]). We believe that in the operator case, it will also have some applications.

Corollary 5 Let the assumptions of Theorem 9 be satisfied. Assume further that
∞∑
k=0

1

‖ak‖ = ∞.

Then

lim
n→∞

[
n∑

k=0

1

‖ak‖

]−1 n∑
k=0

〈Cuk, uk〉H = 1

2
g

uniformly on 	 × K, where

g(α, z) = lim
n→∞ Sn(α, z)

for Sn defined in (19).
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Proof By the Stolz–Cesàro theorem (also known as L’Hôpital’s rule for sequences),

lim
n→∞

[
n∑

k=0

1

‖ak‖

]−1 n∑
k=0

〈Cuk, uk〉H = lim
n→∞

〈Cun−1, un−1〉H + 〈Cun, un〉H
1/ ‖an−1‖ + 1/ ‖an‖

= lim
n→∞

‖an‖
(〈Cun−1, un−1〉H + 〈Cun, un〉H

)
‖an‖ / ‖an−1‖ + 1

.

Theorem 9 implies that C = C∗, and consequently, Proposition 6 shows that
‖an‖ / ‖an−1‖ tends to 1. Therefore, by Theorem 9, the result follows. ��

8 Examples

8.1 Examples of Theorem 4

In this section, we show examples of the special cases of Theorem 4 presented in
Sect. 5, i.e., to Theorems 1 and 6. Since Theorem 5 is a weaker version of Theorem 2,
the examples of it are postponed to the next section.

Example 1 Assume that X and Y are bounded noncommuting operators on H such
that X is invertible normal and Y is self-adjoint. Let

x̃k = k
√
log(k + 1), ỹk = 1

k log(k + 1)
.

Write

x̃ k = (x̃k : 1 ≤ j ≤ k), ỹk = (ỹk : 1 ≤ j ≤ k),

i.e., the kth repetition of x̃k and ỹk . We define in the block form,

x = (x̃ k : k ≥ 1), y = (ỹk : k ≥ 1).

Then for

an = xn X, bn = ynY,

the assumptions of Theorem 1 are satisfied.

Proof We have

an+1a
∗
n+1 − a∗

nan = x2n+1XX∗ − x2n X
∗X,

which by the monotonicity of xn and normality of X is positive. Hence, the hypothesis
(a) is satisfied.
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Next, one has ‖an‖ = xn ‖X‖. Therefore, by
∞∑
n=0

1

x2n
=

∞∑
k=1

k

x̃2k
=

∞∑
k=1

1

k log(k + 1)
= ∞,

we obtain the hypothesis (c).
Finally,

‖anbn+1 − bnan‖
x2n

≤ |yn+1 − yn|
xn

‖XY‖ + |yn|
xn

‖XY − Y X‖ ,

and by the fact that (xn+1/xn : n ≥ 0) tends to 1, the hypothesis (b) will be satisfied
if (yn/xn : n ≥ 0) is summable. But

∞∑
n=0

yn
xn

=
∞∑
k=1

k
ỹk
x̃k

=
∞∑
k=1

1

k[log(k + 1)]3/2 < ∞,

and the result follows. ��
Example 2 Let K ≥ 1 be an integer and M be such that log(K )(M) > 0 (see (15)).
Assume that X and Y are bounded noncommuting self-adjoint operators on H such
that X is invertible. Let

an = xn X, bn = ynY,

for

xn = (n + M)gK (n + M), yn = 1

log(K )(n + M)
.

Then the assumptions of Theorem 6 are satisfied.

Proof The hypotheses (a) and (d) from Theorem 6 are straightforward.
Since X is self-adjoint,

(
a∗
n−1x

)−1
an = xn

xn−1
Id.

Therefore, by [26, Example 4.5], the hypothesis (b) is satisfied.
It remains to show the hypothesis (c). We have

a−1
n bn − bn+1a

−1
n = yn − yn+1

xn
X−1Y + yn+1

xn
(X−1Y − Y X−1).

Since (yn+1/xn : n ≥ 0) tends to 1, it remains to show that (yn/xn : n ≥ 0) is
summable. But

yn
xn

= 1

(n + M)gK−1(n + M)[log(K )(n + M)]2 ,
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which by the Cauchy condensation test applied K times is summable. The proof is
complete. ��

8.2 Examples of Theorems 2 and 3

The following Proposition provides a simple way of the construction of sequences
satisfying the bounded variation condition of Theorem 2.

Proposition 9 Fix N ≥ 1 and a Hilbert space H. Let (xn : n ≥ 0) and (yn : n ≥ 0)
be sequences of numbers such that xn > 0, bn ∈ R, and

VN

(
xn−1

xn
: n ≥ 1

)
+ VN

(
yn
xn

: n ≥ 0

)
+ VN

(
1

xn
: n ≥ 0

)
< ∞.

Let (Xn : n ∈ Z) and (Yn : n ∈ Z) be N-periodic sequences of bounded operators
on H such that for every n, each Xn is invertible and each Yn is self-adjoint. Let us
define

an = xn Xn, bn = ynYn .

Then

VN

(
a−1
n a∗

n−1 : n ≥ 1
)

+ VN

(
a−1
n bn : n ≥ 0

)
+ VN

(
a−1
n : n ≥ 0

)
< ∞.

Proof We have

a−1
n a∗

n−1 =
(
xn−1

xn
Id

)(
X−1
n X∗

n−1

)
, a−1

n bn =
(
yn
xn

Id

)(
X−1
n Yn

)
,

a−1
n =

(
1

xn
Id

)
X−1
n .

Therefore, it is enough to apply Proposition 1. ��
The next proposition provides a convenient form of F(λ) for N = 1.

Proposition 10 Assume;

(a) lim
n→∞ ‖an‖ = a ∈ (0,∞],

(b) lim
n→∞

an‖an‖ = C,

(c) lim
n→∞

bn‖an‖ = D,

(d) lim
n→∞

‖an−1‖
‖an‖ = 1.

Then, in the notation of Theorem 2,

F(λ) =
(

Re [C] 1
2D − λ

2a Id
1
2D − λ

2a Id Re [C]

)
.
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Proof Since

a−1
n bn =

(
an

‖an‖
)−1 bn

‖an‖ , a−1
n a∗

n−1 =
(

an
‖an‖

)−1 a∗
n−1

‖an−1‖
‖an−1‖
‖an‖ ,

we have

Q0 = C−1D, R0 = C−1C∗.

Hence, the direct computation shows that F(λ) has the requested form. ��
In the following example, we discuss the optimality of � in the case of constant

coefficients.

Example 3 Let

an =
(
1 1
1 2

)
, bn =

(
2 1
1 1

)
.

Then the assumptions of Theorem 2 are satisfied with

� =
(

−3 + √
13

2
,
9 − √

37

2

)
⊃ [0.303, 1.458].

Moreover, � is the maximal set where A has absolutely continuous spectrum of the
multiplicity 2.

Proof Let

M1 =
(

−3 − √
13

2
,
−3 + √

13

2

)
∪

(
9 − √

37

2
,
9 + √

37

2

)
,

M2 =
(

−3 + √
13

2
,
9 − √

37

2

)
.

Since (an : n ≥ 0) and (bn : n ≥ 0) are constant, it is sufficient to show that matrix
F(λ) is positive definite for λ ∈ M2.

According to Proposition 10, we have

‖an‖F(λ) =

⎛
⎜⎜⎝

1 1 1 − λ
2

1
2

1 2 1
2

1
2 − λ

2
1 − λ

2
1
2 1 1

1
2

1
2 − λ

2 1 2

⎞
⎟⎟⎠ .

The determinants of its principal minors are equal to

1, 1, −1

2
λ2 + 3

2
λ − 1

4
,

1

16
λ4 − 3

8
λ3 − 17

16
λ2 + 21

8
λ − 11

16
.
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Hence, the matrix F(λ) is positively definite whether λ ∈ M2. Moreover, the deter-
minant of the last minor is negative only for λ ∈ M1.

According to [30, Theorem 3], the matrix A is purely absolutely continuous on the
closure of the set M1 ∪ M2. Moreover, the spectrum of A is of multiplicity 1 and 2 on
M1 and M2, respectively. ��

In the next example, we consider the unbounded case for N = 1.

Example 4 Let

X =
(
1 1
1 2

)
, Y =

(
2 1
1 1

)
.

Let us assume that real sequences (xn : n ≥ 0) and (yn : n ≥ 0) such that xn > 0 and
yn ∈ R for every n satisfy

V1

(
xn−1

xn
: n ≥ 1

)
+ V1

(
yn
xn

: n ≥ 0

)
+ V1

(
1

xn
: n ≥ 0

)
< ∞

and

lim
n→∞ xn = ∞, lim

n→∞
xn−1

xn
= 1, lim

n→∞
yn
xn

= q ∈ (
√
5 − 3, 3 − √

5).

For example: xn = (n + 1)α, yn = qan for α > 0.
Then for

an = xn X, bn = ynY,

the assumptions of Theorem 2 are satisfied.

Proof In view of Proposition 9, it is enough to show that F is positive definite. In the
notation of Proposition 10,

C = 1

‖X‖ X, D = q

‖X‖Y, a = ∞.

Hence, by Proposition 10,

‖X‖ · F(λ) =

⎛
⎜⎜⎝

1 1 q q/2
1 2 q/2 q/2
q q/2 1 1
q/2 q/2 1 2

⎞
⎟⎟⎠ .

The determinants of the principal minors of this matrix are equal to

1, 1, −5

4
q2 + 1,

1

16
q4 − 7

4
q2 + 1.

123



334 Constr Approx (2018) 48:301–335

Hence, this matrix is positive definite if and only if

q ∈ (
√
5 − 3, 3 − √

5) ⊃ [−0.763, 0.763].
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16. Ignjatović, A.: Asymptotic behaviour of some families of orthonormal polynomials and an associated
Hilbert space. J. Approx. Theory 210, 41–79 (2016)

17. Janas, J.: Criteria for the absence of eigenvalues of Jacobi matrices with matrix entries. Acta Sci. Math.
(Szeged) 80(1–2), 261–273 (2014)
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