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Abstract Trigonometric formulas are derived for certain families of associated Leg-
endre functions of fractional degree and order, for use in approximation theory. These
functions are algebraic, and when viewed as Gauss hypergeometric functions, belong
to types classified by Schwarz, with dihedral, tetrahedral, or octahedral monodromy.
The dihedral Legendre functions are expressed in terms of Jacobi polynomials. For
the last two monodromy types, an underlying ‘octahedral’ polynomial, indexed by the
degree and order and having a nonclassical kind of orthogonality, is identified, and
recurrences for it are worked out. It is a (generalized) Heun polynomial, not a hyper-
geometric one. For each of these families of algebraic associated Legendre functions,
a representation of the rank-2 Lie algebra so(5,C) is generated by the ladder operators
that shift the degree and order of the corresponding solid harmonics. All such repre-
sentations of so(5,C) are shown to have a common value for each of its two Casimir
invariants. The Dirac singleton representations of so(3, 2) are included.
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1 Introduction

The first-kind associated Legendre functions Pμ
ν (z), or the Ferrers versions Pμ

ν (z),
are classical. (Pμ

ν (z) and Pμ
ν (z) are continuations of each other, with respective real

domains z ∈ (1,∞) and z ∈ (−1, 1)). The roles they play when the degree ν

and order μ equal integers n,m are familiar. The Legendre, or Ferrers polynomi-
als Pn(z) := P0n(z), n = 0, 1, 2, . . ., are orthogonal on [−1, 1] and are used in series
expansions. The spherical harmonics Ym

n (θ, φ) ∝ Pmn (cos θ)eimφ are orthogonal on
the symmetric space S2 = SO(3)/SO(2), and appear in harmonic analysis based on
the Lie group SO(3).

It is less well known that Ferrers functions Pμ
ν (z) of a fixed orderμ, and degrees that

may be nonintegral but are spaced by integers, can also be used in series expansions.
The fundamental relation, due to Love and Hunter [21], is one of biorthogonal-
ity: ∫ 1

−1
Pμ

ν (z)P−μ

ν′ (−z) dz = 0, (1.1)

which holds if (i) Reμ ∈ (−1, 1), and (ii) the degrees ν, ν′ differ by a nonzero even
integer and are not half-odd-integers. For suitable ν0, μ ∈ C, this makes possible
bilateral expansions of the form

f (z) =
∞∑

n=−∞
cnP

μ
ν0+2n(z), z ∈ (−1, 1), (1.2)

and in particular, the calculation of the coefficients cn as inner products in L2[−1, 1].
(This is the usual Legendre expansion if (ν0, μ) = (0, 0), as P−ν−1 = Pν

for all ν.) For conditions on f sufficient for (interior) pointwise convergence,
see [20,21].

The restriction to Reμ ∈ (−1, 1) comes from the requirement that the expansion
functions lie in L2[−1, 1]. If the order μ is not a positive integer, Pμ

ν (z) will have
leading behavior as z → 1− proportional to (1 − z)−μ/2, but in general its lead-
ing behavior as z → (−1)+ comprises two terms: one proportional to (1 + z)−μ/2,
and one to (1 + z)+μ/2. The implications for convergence of the integral in (1.1)
are obvious. These asymptotics have motivated the suggestion by Pinsky [32] that
when Reμ < 0, the series (1.2) should really be viewed as an expansion of [(1− z)/
(1 + z)]μ/2 f (z) in the functions [(1 − z)/(1 + z)]μ/2 Pμ

ν0+2n(z). This enables a
discussion of endpoint convergence, because the latter functions do not diverge as
z → 1−, (−1)+.

It is not usually the case that Pμ
ν (z) and Pμ

ν (z) are elementary functions, unless
of course ν and μ are integers. This may be why such expansions as (1.2) have been
used infrequently. In this paper, we derive explicit, trigonometrically parametrized
formulas for several families of Legendre functions, expressing Pμ

ν (z), Pμ
ν (z), and

their second-kind counterparts Qμ
ν (z), Qμ

ν (z), as elementary functions. In each family,
ν, μ are nonintegral but are spaced by integers: (ν, μ) ∈ (ν0, μ0) + Z

2 for some
fractional ν0, μ0.
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The simplest example is

P
1
4+m

− 1
6+n

(cos θ) = 2−2m−3nΓ
( 3
4 − m

)−1

× (sin θ)−
1
4−m B

1
4+3m+3n
+ rmn (B−/B+), θ ∈ (0, π),

B± = B±(θ) := cos(θ/3) ±
√
4 cos2(θ/3) − 1

3
, (1.3)

where (n,m) ∈ Z
2. Here, rmn = rmn (u) is an ‘octahedral’ rational function that if

n,m ≥ 0 is a polynomial of degree 3n+2m in u; in the base case n = m = 0, it equals
unity. It satisfies differential recurrences on n and m, and three-term nondifferential
recurrences as well.

The function rm0 (u) has a hypergeometric representation in the Gauss function 2F1:
it equals 2F1

(−2m,− 1
4 − 3m; 3

4 − m
∣∣ u). But r0n (u), which according to (1.3)

appears in series of the form (1.2) when μ = 1
4 , is less classical. It satisfies a second-

order differential equation on the Riemann u-sphere with four singular points, not
three; so (if n ≥ 0) it is a Heun polynomial, not a hypergeometric one. The functions
{r0n (u)}n∈Z are mutually orthogonal on the u-interval [0, 1], in a sense that follows
from (1.1), but the orthogonality is of an unusual Sturm–Liouville kind.

It is clear from (1.3) that for any n,m ∈ Z, the function P
1
4+m

− 1
6+n

(z = cos θ) depends

algebraically on z and can be evaluated using radicals. Each of the function families
considered in this paper is similarly algebraic, and because any Legendre function can
be written in terms of 2F1, the results below are really trigonometric parametrizations
of families of algebraic 2F1’s. To see a link to prior work, recall from Frobenius theory
that each Legendre function of degree ν and orderμ satisfies a differential equation on
the Riemann sphere with three singular points, the characteristic exponent differences
at which are μ,μ, 2ν + 1. It is a classical result of Schwarz (see [35], and for more
recent expositions, [11, Sect. 2.7.2], [33, Chap. VII] and [25]) that any such equation
will have only algebraic solutions only if the (unordered, unsigned) triple of exponent
differences falls into one of several classes. The triples from (ν, μ) = (− 1

6 ,
1
4 ) +

(n,m), as in (1.3), are ( 14 ,
1
4 ,

2
3 ) + (m,m, 2n), and they lie in Schwarz’s octahedral

class V.
The families treated below include octahedral ones, with (ν + 1

2 , μ) ∈ (± 1
3 ,± 1

4 )+
Z
2, and tetrahedral ones, with (ν + 1

2 , μ) ∈ (± 1
4 ,± 1

3 ) + Z
2 or (± 1

3 ,± 1
3 ) + Z

2,
the Schwarz classes for the latter being II and III. The resulting Legendre functions
are octahedral or tetrahedral in the sense that their defining differential equation, on
the Riemann z-sphere, has as its projective monodromy group a finite subgroup of
the Möbius group PSL(2,R), which is octahedral or tetrahedral. This will not be
developed at length, but there is a strong geometric reason why {rmn (u)}n,m∈Z deserve
to be called octahedral functions, or (when n,m ≥ 0) polynomials. For general n,m,
the lifted function r̃mn = r̃mn (s) := rmn (u = s4) turns out to satisfy an equation on the
Riemann s-sphere with 14 singular points. These include s = 0,±1,±i,∞, which
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are the six vertices of an octahedron inscribed in the sphere, and also, the centers of
its eight faces.

Up to normalization, the doubly indexed functions rmn (u) are identical to specializa-
tions of triply-indexed ones introduced by Ochiai and Yoshida in their groundbreaking
work on algebraic 2F1’s [29]. For Schwarz classes such as the octahedral and tetrahe-
dral, they considered the effects of displacing the triple of exponent differences, not
by (m,m, 2n) as in the Legendre case, but by general elements of Z3. It is a key result
of the present paper that in the Legendre case, when the triple has only two degrees of
freedom, it is far easier to derive and solve recurrences on exponent displacements.

Schwarz’s classification of algebraic 2F1’s also includes a dihedral class (class I)
and a related ‘cyclic’ class (unnumbered but called class O here). Legendre functions
lie in class I when the order μ is a half-odd-integer, and in class O when the degree ν

is an integer. We obtain explicit formulas for the Legendre (and Ferrers) functions in
the respective families, of the first and second kinds. The simplest dihedral example
is

P
1
2+m

− 1
2+α

(cos θ) =
√

2

π
m!

× (sin θ)−1/2
{
imeiαθ P(α,−α)

m (i cot θ)
}

α,+ , θ ∈ (0, π), (1.4)

wherem = 0, 1, 2, . . ., and α ∈ C is arbitrary. Here, P(α,−α)
m is the Jacobi polynomial

of degree m, and {·}α,+ signifies the even part under α �→ −α.
When m = 0, this becomes a trigonometric version of a well-known algebraic

formula [11, 3.6(12)], and when α = 1
2 , it expresses P

1
2+m
0 in terms of the mth

Chebyshev polynomial of the third kind. But the general Jacobi representation (1.4) is
new. There is a significant literature on ‘dihedral polynomials’ appearing in dihedrally
symmetric 2F1’s [29,38], and Vidūnas has shown they can be expressed as terminating
Appell series [38]. Focusing on the Legendre case, when two of the three exponent
differences are equal, leads to such simpler formulas as (1.4), for both the dihedral
and cyclic families.

Constructing bilateral Ferrers series of the form (1.2) is facilitated by the explicit
formulas derived below for the Legendre and Ferrers functions in the several families.
But the functions {Pμ0+m

ν0+n (z = cos θ)}, (n,m) ∈ Z
2, and the corresponding spherical

harmonics {Yμ0+m
ν0+n (θ, φ)}, do not fit into conventional SO(3)-based harmonic analysis

unless (ν0, μ0) = (0, 0), when the latter are the usual surface harmonics on S2 =
SO(3)/SO(2). In the octahedral and tetrahedral families (and also the dihedral and
cyclic, if ν0 resp.μ0 is rational), it is nonetheless the case that each spherical harmonic
can be viewed as a finite-valued function on S2. This is due both to ν0, μ0 being rational
and to the algebraicity of Pμ0+m

ν0+n (z) in its argument z, as seen in (1.3).
To begin to relate the present results to harmonic analysis, we interpret in Lie-

theoretic terms the recurrences satisfied by any family {Pμ0+m
ν0+n (z)} or {Yμ0+m

ν0+n (θ, φ)},
(n,m) ∈ Z

2, which are based on first-order differential operators that perform ladder
operations. It is well known that for any (ν0, μ0), there is an infinite-dimensional
representation of the Lie algebra so(3,R) on the span of {Yμ0+m

ν0 (z)}m∈Z. (In the
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case when (ν0, μ0) ∈ Z≥ × Z, this includes as an irreducible constituent the familiar
(2ν0 + 1)-dimensional representation carried by the span of Y−ν0

ν0 , . . . ,Y ν0
ν0 .) There

is also a representation of so(2, 1) on the span of {Yμ0
ν0+n(z)}n∈Z. The real algebras

so(3,R), so(2, 1) are real forms of the complex Lie algebra so(3,C).
As we explain, these ‘order’ and ‘degree’ algebras generate over C a 10-

dimensional, rank-2 complex Lie algebra isomorphic to so(5,C), which for any
(ν0, μ0), acts differentially on the family {rν0+nYμ0+m

ν0+n (θ, φ)}, (n,m) ∈ Z
2, of gen-

eralized solid harmonics on R
3. The root system of so(5,C), of type B2, comprises

the eight displacement vectors Δ(ν,μ) = (0,±1), (±1, 0), (±1,±1), which yield
four ladders on (ν, μ), and for each ladder, there are differential operators for raising
and lowering, a differential recurrence satisfied by Pμ

ν (z = cos θ), and a three-term
nondifferential recurrence. The ones coming from the roots (±1,±1), such as the
‘diagonal’ recurrences

√
1 − z2 Pμ+1

ν±1 (z) + [±(2ν + 1)(1 − z2) + 2μ
]
Pμ

ν (z)

+ [
(ν + 1

2 ) ± (μ − 1
2 )
] [

(ν + 1
2 ) ± (μ − 3

2 )
]√

1 − z2 Pμ−1
ν∓1 (z) = 0, (1.5)

may be given here for the first time. (In this identity, P may be replaced by Q.)
Connections between associated Legendre/Ferrers functions, or spherical har-

monics, and the complex Lie algebra so(5,C) [or its real forms so(3, 2), so(4, 1),
and so(5,R)] are known to exist. (See [27] and [28, Chaps. 3,4], and [4,9] in
the physics literature, and also [19] for hyperspherical extensions.) But most work
has focused on functions of integral degree and order. The octahedral, tetrahe-
dral, dihedral, and cyclic families yield explicit infinite-dimensional representations
of so(5,C) and its real forms, which are carried by finite-valued solid harmonics
on R

3. When (ν0, μ0) = ( 12 ,
1
2 ) or (0, 0), the representation of so(3, 2) turns out

to include a known skew-Hermitian one, of the Dirac singleton type (the ‘Di’ or
the ‘Rac’ one, respectively). But in general, these Lie algebra representations are
new, non-skew-Hermitian ones, which do not integrate to unitary representations of
the corresponding Lie group. It is shown below that any of these representations of
so(5,C) [or any of its real forms], carried by a harmonic family {rν0+nYμ0+m

ν0+n (θ, φ)},
(n,m) ∈ Z

2, is of a distinguished kind, in the sense that it assigns special values to
the two Casimir invariants of the algebra, these values being independent of (ν0, μ0);
cf. [4,19].

This paper is structured as follows. In Sect. 2, facts on Legendre/Ferrers functions
that will be needed are reviewed. In Sect. 3, the key results on the octahedral func-
tions rmn are stated, and explicit formulas for octahedral Legendre/Ferrers functions
are derived. These are extended to the tetrahedral families in Sects. 4 and 5. In Sect. 6,
the results in Sect. 3 are proved. In Sect. 7, Love–Hunter biorthogonality is related to
Sturm–Liouville biorthogonality. In Sect. 8, formulas for Legendre/Ferrers functions
in the cyclic and dihedral families are derived, and Love–Hunter expansions in dihe-
dral Ferrers functions are briefly explored. In Sect. 9, recurrences on the degree and
order, valid for any (ν0, μ0), are derived, and are given a Lie-theoretic interpretation:
so(5,C) and its real forms are introduced, and their representations carried by solid
harmonics are examined.
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2 Preliminaries

The (associated) Legendre equation is the second-order differential equation

d

dz

[
(1 − z2)

dp

dz

]
+
[
ν(ν + 1) − μ2

1 − z2

]
p = 0 (2.1)

on the complex z-plane. For there to be single-valued solutions, the plane is cut along
the real axis either from −∞ to 1 (the Legendre choice), or from −∞ to −1 and from
1 to +∞ (the Ferrers choice). The respective solution spaces have Pμ

ν (z), Qμ
ν (z) and

Pμ
ν (z),Qμ

ν (z) as bases, except in degenerate cases indicated below.
At fixed real μ, Eq. (2.1) can be viewed as a singular Sturm–Liouville equation on

the real Ferrers domain [−1, 1], the endpoints of which are of Weyl’s ‘limit circle’
type if μ ∈ (−1, 1). (See [13].) In this case, all solutions p = p(z) lie in L2[−1, 1],
irrespective of ν, but the same is not true when μ /∈ (−1, 1), which is why such
orthogonality relations as (1.1) can only be obtained ifμ ∈ (−1, 1), or more generally
if Reμ ∈ (−1, 1).

Further light on endpoint behavior is shed by Frobenius theory. Equation (2.1) has
regular singular points at z = −1, 1 and ∞, with respective characteristic exponents
expressed in terms of the degree ν and order μ as +μ/2,−μ/2; +μ/2,−μ/2; and
−ν, ν + 1. The exponent differences are μ,μ, 2ν + 1. The functions Pμ

ν ,Pμ
ν are

Frobenius solutions associated with the exponent −μ/2 at z = 1, and the second
Legendre function Qμ

ν is associated with the exponent ν + 1 at z = ∞. (The second
Ferrers function Qμ

ν is a combination of two Frobenius solutions.) These functions are
defined to be analytic (or rather meromorphic) in ν, μ [30], the Legendre functions
having the normalizations

Pμ
ν (z) ∼ 2μ/2

Γ (1 − μ)
(z − 1)−μ/2, z → 1, (2.2a)

Q̂μ
ν (z) ∼

√
π

2ν+1

Γ (ν + μ + 1)

Γ (ν + 3/2)
z−ν−1, z → ∞, (2.2b)

by convention [11, Chap. III]. The notation Q̂μ
ν := e−μπ iQμ

ν will be used henceforth;
it removes an awkward eμπ i factor.

The formulas (2.2a), (2.2b) apply if the gammas are finite, the asymptotics when
they are not are given in [31]. One such degenerate case is when μ = 1, 2, . . .. Then,
Pμ

−μ, . . . , Pμ
μ−1 ≡ 0. A familiar example is when the degree is a nonnegative integer n.

Then, Pm
n ,Pmn ≡ 0 if the order is an integer m > n, though not if m < −n. Another

degenerate case is when ν + μ is a negative integer. If so, Q̂μ
ν is undefined, as (2.2b)

suggests, except when ν = − 3
2 ,− 5

2 , . . .. Then, Q̂
ν+1
ν , . . . , Q̂−(ν+1)

ν are defined.
The Ferrers functions are related to the Legendre ones on their common domains,

which are the upper and lower half-planes ±Im z > 0, by

Pμ
ν = e±μπ i/2Pμ

ν , (2.3a)

Qμ
ν = e∓μπ i/2 Q̂μ

ν ± i (π/2) e±μπ i/2Pμ
ν . (2.3b)
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Thus Pμ
ν ,Pμ

ν are related by analytic continuation, up to phase. Going from Pμ
ν to Pμ

ν

typically involves replacing a factor (z−1)−μ/2 by (1− z)−μ/2; for instance, P−1
1 (z),

P−1
1 (z) are 1

2

√
z2 − 1, 1

2

√
1 − z2. Also, owing to (2.3b), Qμ

ν is undefined if and only

if Q̂μ
ν is.

Equation (2.1) is invariant under ν �→ −ν − 1, μ �→ −μ, and z �→ −z, so that in
nondegenerate cases, the Legendre and Ferrers functions with ν replaced by −ν − 1,
μ by −μ, and/or z by −z, can be expressed as combinations of any two (at most)
of Pμ

ν , Q̂μ
ν ,Pμ

ν ,Qμ
ν . Some ‘connection’ formulas of this type, which will be needed

below, are Pμ
−ν−1 = Pμ

ν , Pμ
−ν−1 = Pμ

ν ,

Q̂−μ
ν / Γ (ν − μ + 1) = Q̂μ

ν / Γ (ν + μ + 1), (2.4)

the P → Q̂ reduction

Pμ
ν = sec(νπ) Γ (ν − μ + 1)−1Γ (−μ − ν)−1

(
Q̂−μ

−ν−1 − Q̂−μ
ν

)
, (2.5)

the Q̂ → P reduction

(2/π)Q̂μ
ν = csc(μπ) Pμ

ν − csc(μπ)
Γ (ν + μ + 1)

Γ (ν − μ + 1)
P−μ

ν , (2.6)

and the Q → P reduction

(2/π)Qμ
ν = cot(μπ)Pμ

ν − csc(μπ)
Γ (ν + μ + 1)

Γ (ν − μ + 1)
P−μ

ν . (2.7)

(See [11].) It follows from (2.7) that if μ = 1
2 ,

3
2 , . . ., then Qμ

−μ, . . . ,Qμ
μ−1 ≡ 0.

The functions Pμ
ν , Q̂μ

ν are known to have the hypergeometric representations

Pμ
ν (z) = 1

Γ (1 − μ)

(
z + 1

z − 1

)μ/2

2F1

(
−ν, ν + 1; 1 − μ; 1 − z

2

)
(2.8a)

= 2μ

Γ (1 − μ)

zν+μ

(z2 − 1)μ/2 2F1

(
−ν

2
− μ

2
, −ν

2
− μ

2
+ 1

2
; 1 − μ; 1 − 1

z2

)
,

(2.8b)

Q̂μ
ν (z) =

√
π

2ν+1

Γ (ν + μ + 1)

Γ (ν + 3/2)

(z + 1)μ/2

(z − 1)μ/2+ν+1

× 2F1

(
ν + 1, ν + μ + 1; 2ν + 2; 2

1 − z

)
(2.8c)

=
√

π

2ν+1

Γ (ν + μ + 1)

Γ (ν + 3/2)

(z2 − 1)μ/2

zν+μ+1

× 2F1

(
ν

2
+ μ

2
+ 1

2
,
ν

2
+ μ

2
+ 1; ν + 3

2
; 1

z2

)
. (2.8d)
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(For Pμ
ν , replace z − 1 in the prefactor on the right of (2.8a) by 1 − z; the

alternative expressions (2.8b), (2.8d) come from (2.8a), (2.8c) by quadratic hyper-
geometric transformations.) Here, 2F1(a, b; c; x) is the Gauss function with param-
eters a, b; c, defined (on the disk |x | < 1, at least) by the Maclaurin series∑∞

k=0[(a)k(b)k/(c)k(1)k] xk . In this and below, the notation (d)k is used for the rising
factorial, i.e.,

(d)k :=,

{
(d) . . . (d + k − 1), k ≥ 0,[
(d − k′) . . . (d − 1)

]−1
, k = −k′ ≤ 0.

(The unusual second half of this definition, which extends the meaning of (d)k to
negative k so that (d)k = [

(d + k)−k
]−1 for all k ∈ Z, will be needed below.) If in

any 2F1(a, b; c; x) in (2.8), the denominator parameter c is a nonpositive integer, and
there is an apparent division by zero, the taking of a limit is to be understood.

The Gauss equation satisfied by 2F1(a, b; c; x) has the three singular points
x = 0, 1,∞, with respective exponent differences 1 − c, c − a − b, b − a. Tak-
ing into account either of (2.8a), (2.8c), one sees that this triple is consistent with the
exponent differencesμ,μ, 2ν+1 at the singular points z = 1,−1,∞ of the Legendre
equation (2.1). Schwarz’s results on algebraicity were originally phrased in terms of
the Gauss equation, its solutions such as 2F1, and the (unordered, unsigned) triple
1 − c, c − a − b, b − a, but they extend to the Legendre equation, its solutions, and
the triple μ,μ, 2ν + 1.

3 Octahedral Formulas (Schwarz Class V)

This section and Sects. 4 and 5 derive parametric formulas for Legendre and Ferrers
functions that are either octahedral or tetrahedral (two types). The formulas involve the
octahedral polynomials, or functions, {rmn (u)}n,m∈Z. Section 3.1 defines these rational
functions and states several results, the proofs of which are deferred to Sect. 6.

3.1 Indexed Functions and Polynomials

Definition 3.1 For n,m ∈ Z, the rational functions rmn = rmn (u) and their ‘conjugates’
rmn = rmn (u) are defined implicitly by

2F1

(− 1
24 − m

2 − n
2 , 11

24 − m
2 − n

2
3
4 − m

∣∣∣∣ R(u)

)

= [
(1 + u)(1 − 34u + u2)

]−1/12−m−n
rmn (u),

2F1

( 5
24 + m

2 − n
2 , 17

24 + m
2 − n

2
5
4 + m

∣∣∣∣ R(u)

)

= [
(1 + u)(1 − 34u + u2)

]5/12+m−n
(1 − u)−1−4m rmn (u),
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which hold on a neighborhood of u = 0. Here,

R(u) := −108 u(1 − u)4[
(1 + u)(1 − 34u + u2)

]2 = 1 − (1 + 14u + u2)3[
(1 + u)(1 − 34u + u2)

]2 ,

:= −108
pv(u)

pe(u)2
= 1 − pf(u)3

pe(u)2
,

where pv, pe, pf are the polynomials u(1−u)4, (1+u)(1−34u+u2), 1+14u+u2,
which satisfy p2e − p3f + 108 pv = 0. Equivalently,

R = T (3 + T )2

(1 + 3T )2
= 1 − (1 − T )3

(1 + 3T )2
, (3.1)

where T = T (u) := −12u/(1 + u)2.
[For later use, note that (3.1) is familiar from trigonometry as a ‘triple-angle’ formula:
R = tanh2 ξ if T = tanh2(ξ/3); R = coth2 ξ if T = coth2(ξ/3); and R = − tan2 θ

if T = − tan2(θ/3).]

It is clear from the definition that rmn , rmn are analytic at u = 0, at which they equal
unity, though it is not obvious that they are rational in u. But it is easily checked that
the Gauss equations satisfied by the two 2F1(x) functions have respective exponent
differences (at the singular points x = 0, 1,∞) equal to ( 14 ,

1
3 ,

1
2 ) + (m, n, 0) and

(− 1
4 ,

1
3 ,

1
2 ) + (−m, n, 0). These triples lie in Schwarz’s octahedral class IV, so each

2F1(x) must be an algebraic function of x . The definition implicitly asserts that if
these algebraic 2F1’s are parametrized by the degree-6 rational function x = R(u),
the resulting dependences on u will be captured by certain rational rmn = rmn (u),
rmn = rmn (u). In the terminology of [29], these are octahedral functions of u.

Theorem 3.1 (i) For n,m ≥ 0, rmn (u) is a polynomial of degree 3n + 2m in u, to be
called the octahedral polynomial indexed by (n,m) ∈ Z

2≥. Its coefficient of u0 is
unity and its coefficient of u3n+2m is

dmn := (−)m+n 33m

(
5
12

)
m−n

( 13
12

)
m+n( 1

4

)
m

(
5
4

)
m

. (3.2)

(ii) For unrestricted (n,m) ∈ Z
2, rmn (u) is a rational function that equals unity

at u = 0 and is asymptotic to dmn u
3n+2m as u → ∞.

(iii) The conjugate function rmn is related to rmn by

rmn (u) = (
dmn
)−1

u3n+2mrmn (1/u),

so that if n,m ≥ 0, rmn is a reversed version of the polynomial rmn , scaled to
equal unity at u = 0.
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The functional form of the octahedral functions that are not polynomials, which are
indexed by (n,m) ∈ Z

2 \ Z2≥, is not complicated.

Theorem 3.2 For any n,m ≥ 0,

rmn (u) = Π3n+2m(u),

r−m−1
n (u) = (1 − u)−3−4m Π1+3n+2m(u),

rm−n−1(u) = (1 + 14u + u2)−2−3n Π1+3n+2m(u),

r−m−1
−n−1 (u) = (1 − u)−3−4m (1 + 14u + u2)−2−3n Π2+3n+2m(u),

where on each line, Πk(u) signifies a polynomial of degree k in u, with its coefficient
of u0 equalling unity and its coefficient of uk coming from the preceding theorem.

On their indices n,m, the rmn satisfy both differential recurrences and three-term
nondifferential recurrences. The former are given in Sect. 6 (see Theorem 6.1), and
the latter are as follows.

Theorem 3.3 The octahedral functions rmn = rmn (u), indexed by (n,m) ∈ Z
2, satisfy

second-order (i.e., three-term) recurrences on m and n; namely,

(4m − 3)(4m + 1) rm+1
n − (4m − 3)(4m + 1) pe(u) rmn

− 3(12m − 12n − 7)(12m + 12n + 1) pv(u) rm−1
n = 0,

(12n − 12m + 7) rmn+1 − 8(3n + 1) pe(u) rmn

+ (12n + 12m + 1) p3f (u) rmn−1 = 0,

where pv, pe, pf are the polynomials in u, satisfying p2e − p3f +108 pv = 0, that were
introduced in Definition 3.1. Moreover, they satisfy

3(4m − 3)(4m + 1) rm+1
n+1 − (4m − 3)

[
(12m + 12n + 7)p3f (u) − 4(3n + 1)p2e (u)

]
rmn

+ 9(12m + 12n + 1)(12m + 12n − 11) pv(u) p3f (u) rm−1
n−1 = 0,

3(4m − 3)(4m + 1) p3f (u) rm+1
n−1 − (4m − 3)

[
(12m − 12n − 1)p3f (u) + 4(3n + 1)p2e (u)

]
rmn

+ 9(12m − 12n − 7)(12m − 12n − 19) pv(u) rm−1
n+1 = 0,

which are second-order ‘diagonal’ recurrences.

From thefirst two recurrences in this theorem, one can compute rmn for anyn,m ∈ Z,
if one begins with r00 , r10 , r

0
1 , which are low-degree polynomials in u computable ‘by

hand.’ In fact,

r00 (u) = 1, r10 (u) = 1 − 26u − 39u2, r01 (u) = 1 − 39u − 195
7 u2 + 13

7 u
3,

r11 (u) = 1 + 175u − 150u2 + 3550u3 + 325u4 + 195u5. (3.3)

By specializing to u = 1 (at which pv, pe, pf equal 0,−64, 36), one can prove by
induction that rmn (1) = (−64)m+n ifm ≥ 0. Examples of octahedral functions that are
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not polynomials because theyhave at least onenegative index, illustratingTheorem3.2,
are

r−1
0 (u) = (1 − u)−3 (1 + 1

7u),

r0−1(u) = (1 + 14u + u2)−2 (1 − 5u),

r−1
−1 (u) = (1 − u)−3 (1 + 14u + u2)−2

(
1 + 2u − 1

11u
2
)

. (3.4)

These also follow from the recurrences of Theorem 3.3.
The recurrences are nonclassical, not least because they are bilateral: they extend to

n,m < 0. It is shown in Sect. 6 that for n,m ≥ 0, the degree-(3n + 2m) polynomials
rmn in u are (generalized) Heun polynomials, rather than hypergeometric ones; they
are not orthogonal polynomials in the conventional sense. A useful third-order (i.e.,
four-term) recurrence on k for the coefficients {ak}3n+2m

k=0 of rmn is given in Theorem6.4.
An important degenerate case is worth noting: the case n = 0. For anym ≥ 0, there

are hypergeometric representations in 2F1 for the degree-2m octahedral polynomials
rm0 and rm0 ; namely,

rm0 (u) = 2F1

(−2m, − 1
4 − 3m

3
4 − m

∣∣∣∣ u
)

, rm0 (u) = 2F1

(−2m, 1
4 − m

5
4 + m

∣∣∣∣ u
)

.

These follow by a sextic hypergeometric transformation of the 2F1’s in Definition 1,
as well as by the methods of Sect. 6. The first can also be deduced from the n = 0 case
of the recurrence on m in Theorem 3.3. These representations extend to m ∈ Z.

3.2 Explicit Formulas

The following two theorems (Theorems 3.4 and 3.5) give trigonometrically
parametrized formulas for the Legendre/Ferrers functions Pμ

ν ,Pμ
ν when (ν, μ) equals

(− 1
6 ,

1
4 ) + (n,m) and (− 1

6 ,− 1
4 ) + (n,−m), with (n,m) ∈ Z

2. The triple of expo-
nent differences (μ,μ, 2ν + 1) is respectively equal to ( 14 ,

1
4 ,

2
3 ) + (m,m, 2n) and

(− 1
4 ,− 1

4 ,
2
3 ) + (−m,−m, 2n), both lying in Schwarz’s octahedral class V. An inter-

esting application of these formulas to the evaluation of certain Mehler–Dirichlet
integrals appears in Theorem 3.6.

Let hyperbolic-trigonometric functions A±, positive on (0,∞), be defined by

A± = A±(ξ) := ± cosh(ξ/3) +
√

sinh ξ

3 sinh(ξ/3)

= ± cosh(ξ/3) +
√
4 cosh2(ξ/3) − 1

3
, (3.5)

so that A+A−(ξ) = 1
3 sinh

2(ξ/3). This choice is motivated by Definition 3.1: if
R = R(u) and T = T (u) = −12u/(1+ u)2 are alternatively parametrized as tanh2 ξ
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and tanh2(ξ/3), respectively, it is not difficult to verify that the three polynomials in u
that appear in Definition 3.1 will have the ξ -parametrizations

pv = u(1 − u)4 = − 16
27 A−6+ sinh2 ξ, (3.6a)

pe = (1 + u)(1 − 34u + u2) = 8 A−3+ cosh ξ, (3.6b)

pf = 1 + 14u + u2 = 4 A−2+ . (3.6c)

Moreover, and more fundamentally, u = −A−/A+.
Also in this section, let r̂mn signify rmn /dmn , so that when n,m ≥ 0, r̂mn is a scaled ver-

sion of the octahedral polynomial rmn , with its leading rather than its trailing coefficient
equal to unity. Equivalently, r̂mn (u) = u3n+2m rmn (1/u).

Theorem 3.4 The formulas

P
1
4+m

− 1
6+n

(cosh ξ) =
[
2−2m−3n Γ

( 3
4 − m

)−1
]

× (sinh ξ)−1/4−m A1/4+3m+3n
+ rmn (−A−/A+),

P
− 1

4−m

− 1
6+n

(cosh ξ) =
[
(−)n2−2m−3n 33/4+3m Γ

(
5
4 + m

)−1
]

× (sinh ξ)−1/4−m A1/4+3m+3n
− r̂mn (−A+/A−)

hold for (n,m) ∈ Z
2 and ξ ∈ (0,∞).

[Note that as ξ increases from0 to∞, the argumentu = −A−/A+ of thefirst rmn ,which
satisfies T (u) = tanh2(ξ/3) and R(u) = tanh2 ξ , decreases from 0 to −(2 − √

3)2

≈ −0.07, which is a root of pf(u) = 1 + 14u + u2.]

Proof These formulas follow from the hypergeometric representation (2.8b) of Pμ
ν =

Pμ
ν (z), together with the implicit definitions of rmn , rmn (see Definition 3.1).
If z = cosh ξ , the argument 1 − 1/z2 of the right-hand 2F1 in (2.8b) will equal

tanh2 ξ . This is why it is natural to parametrize Definition 3.1 by letting R = R(u)

equal tanh2 ξ , with the just-described consequences. In deriving the formulas, one
needs the representation (3.6b), and for the second formula, the definition (3.2) of
dmn . ��

In the following, the circular-trigonometric functions B±, positive on (0, π), are
defined by

B± = B±(θ) := cos(θ/3) ±
√

sin θ

3 sin(θ/3)

= cos(θ/3) ±
√
4 cos2(θ/3) − 1

3
,

so that B+B−(θ) = 1
3 sin

2(θ/3).
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Theorem 3.5 The formulas

P
1
4+m

− 1
6+n

(cos θ) =
[
2−2m−3n Γ

( 3
4 − m

)−1
]

× (sin θ)−1/4−mB1/4+3m+3n
+ rmn (B−/B+),

P
− 1

4−m

− 1
6+n

(cos θ) =
[
2−2m−3n 33/4+3m Γ

(
5
4 + m

)−1
]

× (sin θ)−1/4−mB1/4+3m+3n
− r̂mn (B+/B−)

hold for (n,m) ∈ Z
2 and θ ∈ (0, π).

[Note that as θ increases from 0 to π , the argument u = B−/B+ of the first rmn , which
satisfies T (u) = − tan2(θ/3) and R(u) = − tan2 θ , increases from 0 to 1.]

Proof The proof is accomplished by analytic continuation of Theorem 3.4, or in effect,
by letting ξ = iθ . ��

Because Pμ
ν = Pμ

−ν−1 andP
μ
ν = Pμ

−ν−1, Theorems 3.4 and 3.5 also supply formulas

for P
1
4+m

− 5
6−n

, P
− 1

4−m

− 5
6−n

and P
1
4+m

− 5
6−n

,P
− 1

4−m

− 5
6−n

. By exploiting the Q̂ → P and Q → P

reductions (2.6) and (2.7), one easily obtains additional formulas, for Q̂
1
4+m

− 1
6+n

, Q̂
− 1

4−m

− 1
6+n

,

Q̂
1
4+m

− 5
6−n

, Q̂
− 1

4−m

− 5
6−n

and Q
1
4+m

− 1
6+n

,Q
− 1

4−m

− 1
6+n

,Q
1
4+m

− 5
6−n

,Q
− 1

4−m

− 5
6−n

.

Theorems 3.4 and 3.5 permit certain Mehler–Dirichlet integrals to be evaluated in
closed form. For example, consider [11, 3.7(8) and 3.7(27)]

Pμ
ν (cosh ξ) =

√
2

π

(sinh ξ)μ

Γ
( 1
2 − μ

)
∫ ξ

0

cosh
[(

ν + 1
2

)
t
]

(cosh ξ − cosh t)μ+ 1
2

dt, (3.7)

Pμ
ν (cos θ) =

√
2

π

(sin θ)μ

Γ
( 1
2 − μ

)
∫ θ

0

cos
[(

ν + 1
2

)
φ
]

(cosφ − cos θ)μ+ 1
2

dφ, (3.8)

which hold when Reμ < 1
2 for ξ ∈ (0,∞) and θ ∈ (0, π). These integral represen-

tations of the Legendre and Ferrers functions of the first kind are classical [16,22].

Theorem 3.6 The formulas

∫ ξ

0

cosh
[( 1

3 + n
)
t
]

(cosh ξ − cosh t)
1
4−m

dt = (−1)nKm
n A1/4+3m+3n

− r̂mn (−A+/A−),

∫ θ

0

cos
[( 1

3 + n
)
φ
]

(cosφ − cos θ)
1
4−m

dφ = Km
n B1/4+3m+3n

− r̂mn (B+/B−),
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with

Km
n =

√
π

2
2−2m−3n 33/4+3m Γ

( 3
4 + m

)
Γ
(
5
4 + m

)

hold when m is a nonnegative integer and n an integer, for ξ ∈ (0,∞) and θ ∈ (0, π).

Proof Substitute the second formulas of Theorems 3.4 and 3.5 into the (ν, μ) =
(− 1

6 + n,− 1
4 − m) specializations of (3.7) and (3.8). ��

4 Tetrahedral Formulas (Schwarz Class II)

The following theorem gives trigonometrically parametrized formulas for the sec-
ond Legendre function Q̂μ

ν when (ν, μ) = (− 3
4 ,− 1

3 ) + (−m,−n) and (− 1
4 ,− 1

3 ) +
(m,−n), with (n,m) ∈ Z

2. The triple of exponent differences, (μ,μ, 2ν + 1),
is respectively equal to (− 1

3 ,− 1
3 ,− 1

2 ) + (−n,−n,−2m) and (− 1
3 ,− 1

3 ,
1
2 ) +

(−n,−n, 2m), both lying in Schwarz’s tetrahedral class II. The hyperbolic-
trigonometric functions A± = A±(ξ) on (0,∞) are defined as in (3.5).

Theorem 4.1 The formulas

(2/π)Q̂
− 1

3−n

− 3
4−m

(coth ξ) =
[
211/4−2m−3n 3−3/8 ( 1

4

)
m

( 13
12

)−1
m+n Γ ( 43 )

−1
]

× (sinh ξ)1/4−m
[
−(−)n

√√
3 + 1 A1/4+3m+3n

+ rmn (−A−/A+)

]
,

(2/π)Q̂
− 1

3−n

− 1
4+m

(coth ξ) =
[
211/4−2m−3n 3−3/8 ( 1

4

)
m

( 13
12

)−1
m+n Γ ( 43 )

−1
]

× (sinh ξ)1/4−m
[
+(−)m

√√
3 − 1 A1/4+3m+3n

− rmn (−A+/A−)

]

hold for (n,m) ∈ Z
2 and ξ ∈ (0,∞).

Proof Combine Whipple’s Q̂ → P transformation [11, 3.3(13)],

Q̂μ
ν (coth ξ) = √

π/2Γ (ν + μ + 1) (sinh ξ)1/2 P
−ν− 1

2

−μ− 1
2
(cosh ξ), (4.1)

with the results in Theorem 3.4. The symmetrical forms of the right-hand prefactors
are obtained with the aid of the gamma-function identities

√√
3 + 1 = π1/2 21/4 3−3/8 Γ (1/12) Γ (1/4)−1 Γ (1/3)−1

= π−3/2 2−3/4 33/8 Γ (11/12) Γ (1/4) Γ (1/3),
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√√
3 − 1 = π−1/2 2−1/4 31/8 Γ (5/12) Γ (1/4)−1 Γ (1/3)

= π−1/2 2−1/4 3−1/8 Γ (7/12) Γ (1/4) Γ (1/3)−1

of Vidūnas [37]. ��
Because Q̂μ

ν , Q̂−μ
ν are proportional to each other (see (2.4)), Theorem 4.1 also sup-

plies formulas for Q̂
1
3+n

− 3
4−m

, Q̂
1
3+n

− 1
4+m

. Moreover, it leads to the following two theorems.

Theorem 4.2 The formulas

P
− 1

3−n

− 3
4−m

(coth ξ) =
[
(−)n25/4−2m−3n 3−3/8 ( 1

4

)
m

( 13
12

)−1
m+n Γ ( 43 )

−1
]

× (sinh ξ)1/4−m
[
(−)n

√√
3 − 1 A1/4+3m+3n

+ rmn (−A−/A+)

− (−)m
√√

3 + 1 A1/4+3m+3n
− rmn (−A+/A−)

]
,

P
1
3+n

− 3
4−m

(coth ξ) =
[
(−)n2−1/4−2m−3n 3−3/8 ( 1

4

)
m

(
5
12

)−1

m−n
Γ ( 23 )

−1
]

× (sinh ξ)1/4−m
[
(−)n

√√
3 + 1 A1/4+3m+3n

+ rmn (−A−/A+)

+ (−)m
√√

3 − 1 A1/4+3m+3n
− rmn (−A+/A−)

]

hold for (n,m) ∈ Z
2 and ξ ∈ (0,∞).

Proof Combine the P → Q̂ reduction (2.5) with the results in Theorem 4.1. ��

Because Pμ
ν = Pμ

−ν−1, Theorem 4.2 also supplies formulas for P
− 1

3−n

− 1
4+m

, P
1
3+n

− 1
4+m

.

In Theorem 4.3, the hyperbolic-trigonometric functionsC±, positive on (−∞,∞),
are defined by

C± = C±(ξ) := ± sinh(ξ/3) +
√

cosh ξ

3 cosh(ξ/3)

= ± sinh(ξ/3) +
√
4 sinh2(ξ/3) + 1

3
,

so that C+C−(ξ) = 1
3 cosh

2(ξ/3).

Theorem 4.3 The formulas

P
− 1

3−n

− 3
4−m

(tanh ξ) =
[
25/4−2m−3n 3−3/8 ( 1

4

)
m

( 13
12

)−1
m+n Γ ( 43 )

−1
]

× (cosh ξ)1/4−m
[
−(−)n

√√
3 − 1 C1/4+3m+3n

+ rmn (−C−/C+)
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+ (−)m
√√

3 + 1 C1/4+3m+3n
− rmn (−C+/C−)

]
,

P
1
3+n

− 3
4−m

(tanh ξ) =
[
(−)n2−1/4−2m−3n 3−3/8 ( 1

4

)
m

(
5
12

)−1

m−n
Γ ( 23 )

−1
]

× (cosh ξ)1/4−m
[
(−)n

√√
3 + 1 C1/4+3m+3n

+ rmn (−C−/C+)

+ (−)m
√√

3 − 1 C1/4+3m+3n
− rmn (−C+/C−)

]

hold for (n,m) ∈ Z
2 and ξ ∈ (−∞,∞).

[Note that as ξ decreases from ∞ to −∞, the argument u = −C−/C+ of the
first rmn , which satisfies T (u) = coth2(ξ/3) and R(u) = coth2 ξ , decreases from 0 to
−(2 + √

3)2 ≈ −14.0, which is a root of pf(u) = 1 + 14u + u2.]

Proof The proof is accomplished by analytic continuation of the results in Theo-
rem 4.2, or in effect, by replacing ξ by ξ + iπ/2. ��

Because Pμ
ν = Pμ

−ν−1, Theorem 4.3 also supplies formulas for P
− 1

3−n

− 1
4+m

,P
1
3+n

− 1
4+m

.

By exploiting the Q → P reduction (2.7), one easily obtains additional formulas, for

Q
− 1

3−n

− 3
4−m

,Q
1
3+n

− 3
4−m

,Q
− 1

3−n

− 1
4+m

,Q
1
3+n

− 1
4+m

.

5 Tetrahedral Formulas (Schwarz Class III)

The following theorems give parametrized formulas for the Legendre/Ferrers func-
tions Pμ

ν , Q̂μ
ν ,Pμ

ν when (ν, μ) = (− 1
6 ,− 1

3 ) + (n,−n) and (− 5
6 ,

1
3 ) + (−n, n), with

n ∈ Z. The triple of exponent differences, (μ,μ, 2ν + 1), is respectively equal to
(− 1

3 ,− 1
3 ,

2
3 ) + (−n,−n, 2n) and ( 13 ,

1
3 ,− 2

3 ) + (n, n,−2n), both lying in Schwarz’s
tetrahedral class III.

Theorem 5.1 The formulas

P
− 1

3−n

− 1
6+n

(√
1 − e−2ξ

) = 2− 1
3−n(1 − e−2ξ )−1/4

P
− 1

3−n

− 3
4

(coth ξ),

P
1
3+n

− 5
6−n

(√
1 − e−2ξ

) = 2
1
3+n(1 − e−2ξ )−1/4

P
1
3+n

− 3
4

(coth ξ),

where expressions for the right-hand Legendre functions are provided by Theorem 4.2,
hold for n ∈ Z and ξ ∈ (0,∞).

Theorem 5.2 The formulas

P
− 1

3−n

− 1
6+n

(√
1 + e−2ξ

) = 2− 1
3−n(1 + e−2ξ )−1/4 P

− 1
3−n

− 3
4

(tanh ξ),

P
1
3+n

− 5
6−n

(√
1 + e−2ξ

) = 2
1
3+n(1 + e−2ξ )−1/4 P

1
3+n

− 3
4

(tanh ξ),
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where expressions for the right-hand Ferrers functions are provided by Theorem 4.3,
hold for n ∈ Z and ξ ∈ (−∞,∞).

Theorem 5.3 The formulas

(2/π)Q̂
− 1

3−n

− 1
6+n

(√
1 + e2ξ

) = 2− 1
3−n(1 + e2ξ

)−1/4 √
2 P

− 1
3−n

− 3
4

(− tanh ξ),

(2/π)Q̂
1
3+n

− 5
6−n

(√
1 + e2ξ

) = 2
1
3+n(1 + e2ξ

)−1/4 √
2 P

1
3+n

− 3
4

(− tanh ξ),

where expressions for the right-hand Ferrers functions are provided by Theorem 4.3,
hold for n ∈ Z and ξ ∈ (−∞,∞).

Because Pμ
ν = Pμ

−ν−1 and Pμ
ν = Pμ

−ν−1, Theorems 5.1 and 5.2 also supply for-

mulas for P
− 1

3−n

− 5
6−n

, P
1
3+n

− 1
6+n

,P
− 1

3−n

− 5
6−n

,P
1
3+n

− 1
6+n

. And because Q̂μ
ν , Q̂−μ

ν are proportional

to each other (see (2.4)), Theorem 5.3 also supplies formulas for Q̂
1
3+n

− 1
6+n

, Q̂
− 1

3−n

− 5
6−n

.

By exploiting the Q → P reduction (2.7), one easily obtains additional formulas, for

Q
− 1

3−n

− 1
6+n

,Q
1
3+n

− 5
6−n

,Q
− 1

3−n

− 5
6−n

,Q
1
3+n

− 1
6+n

.

The formulas in Theorems 5.1, 5.2, and 5.3 are straightforward reparametrizations
of the α = 1

3 + n and α = − 1
3 − n cases of the identities

P−α

− 1
4
(cosh ξ) = 2α

√
sech(ξ/2) P−α

α− 1
2
(sech(ξ/2)) ,

P−α

− 1
4
(cos θ) = 2α

√
sec(θ/2) P−α

α− 1
2
(sec(θ/2)) ,

√
2 P−α

− 1
4
(− cos θ) = 2α

√
sec(θ/2) (2/π)Q̂−α

α− 1
2
(sec(θ/2)) ,

which hold when ξ ∈ (0,∞) and θ ∈ (0, π). These appear as identities I4(i), I4(i i),
and I4(i i) in [23] and are really quadratic hypergeometric transformations in disguise.

6 Proofs of Results in Sect. 3.1

The octahedral and tetrahedral formulas in Sects. 3.2, 4, and 5 followed from the the-
orems in Sect. 3.1 on the octahedral functions rmn = rmn (u), which were stated without
proof. The present section provides proofs, in some cases sketched, and obtains a few
additional results. These are Theorem 6.1 (on the differential equation and differential
recurrences satisfied by rmn ), and Theorems 6.2, 6.3, and 6.4 (on the interpretation
of rmn when n,m ≥ 0 as a hypergeometric, Heun, or generalized Heun polynomial).
This section also reveals the origin of the degree-6 rational function x = R(u) in
Definition 3.1.

Consider a Riemann sphere P1
s , parametrized by s and identified by stereographic

projection with the complex s-plane. (As usual, s = 0 is at the bottom and s = ∞
is at the top; points with |s| = 1 are taken to lie on the equator.) Let a regular
octahedron (a Platonic solid) be inscribed in the sphere, with its six vertices v1, . . . , v6
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at s = 0,±1,±i,∞, i.e., at the five roots of qv(s) := s(1 − s4) and at s = ∞. By
some trigonometry [33, chap. VII], one can show that the twelve edge-midpoints
e1, . . . , e12 of the octahedron, radially projected onto the sphere, are located at s =
(±1 ± i)/

√
2 and s = √±1 (±1 ± √

2), which are the roots of qe := (1 + s4)
(1− 34s4 + s8) = 1− 33s4 − 33s8 + s12. Similarly, its eight face-centers f1, . . . f8,
when radially projected, are located at s = (±1 ± i)(1 ± √

3)/2, which are the roots
of qf(s) := 1 + 14s4 + s8. The polynomials qv, qe, qf are (relative) invariants of the
symmetry group of the octahedron, which is an order-24 subgroup of the group of
rotations of the Riemann s-sphere.

The well-known octahedral equation states that q2e −q3f +108 q4v = 0. The validity
of this identity (a syzygy, in the language of invariant theory) suggests considering the
degree-24 rational function R̃ = R̃(s) equal to 1 − q3f /q

2
e ; i.e.,

R̃(s) := −108 [s(1 − s4)]4[
(1 + s4)(1 − 34s4 + s8)

]2 = 1 − (1 + 14s4 + s8)3[
(1 + s4)(1 − 34s4 + s8)

]2 .

On the s-sphere, R̃(s) equals 0, 1,∞ at (respectively) the vertices, the face-centers,
and the edge-midpoints. It is an absolute invariant of the symmetry group of the
octahedron. (Its derivative d R̃(s)/ds can be written as −432 q3vq

2
f /q

3
e but is only a

relative invariant.) The covering P
1
s → P

1
x given by x = R̃(s) is ramified above

x = 0, 1,∞, and its ramification structure can be written as (6)4 = (8)3 = (12)2:
each of the six points above s = 0 (i.e., the vertices) appears with multiplicity 4, etc.

Following and extending Schwarz [33,35], consider the effect of lifting the Gauss
hypergeometric equation satisfied by 2F1

(− 1
24 − m

2 − n
2 , 11

24 − m
2 − n

2 ; 3
4 − m; x),

the 2F1(x) appearing in Definition 3.1, from the x-sphere to the s-sphere, along x =
R̃(s). It should be recalled that the Gauss equation satisfied by f (x) = 2F1(a, b; c; x)
is the Fuchsian differential equation (Dx := d/dx)

D2
x f +

[
c

x
+ a + b − c + 1

x − 1

]
Dx f +

[
ab

x(x − 1)

]
f = 0, (6.1)

which has characteristic exponents {0, 1 − c}, {0, c − a − b}, {a, b} at its singular
points x = 0, 1,∞, with (unsigned) exponent differences 1−c; c−a−b; b−a. (The
function 2F1(a, b; c; x) is the Frobenius solution associated with the zero exponent
at x = 0.) The effects of the ramified lifting by x = R̃(s) are conveniently expressed
in the classical notation of Riemann P-symbols, which display the exponents at each
singular point [33,39]. For the 2F1 of Definition 3.1, one can write

2F1
(
x = R̃(s)

)
= P

⎧⎨
⎩

0 1 ∞ x = R̃(s)
0 0 − 1

24 − m
2 − n

2
1
4 + m 1

3 + n 11
24 − m

2 − n
2

⎫⎬
⎭ (6.2a)

= P

⎧⎨
⎩

v1, . . . , v6 f1, . . . , f8 e1, . . . , e12 s
0 0 − 1

12 − m − n
1 + 4m 1 + 3n 11

12 − m − n

⎫⎬
⎭ , (6.2b)

123



Constr Approx (2018) 48:235–281 253

because any pair of characteristic exponents at a point x = x0 beneath a ramification
point s = s0 of order k is multiplied by k when lifted. This function of s satisfies a
differential equation on the s-sphere with the indicated singular points and exponents.

If Lg = 0 is any Fuchsian differential equation on the s-sphere, the modified
equation L′g′ = 0 obtained by the change of dependent variable g′ = (1 − s/s0)αg
has its exponents at s = s0 shifted upward by α, and those at s = ∞ shifted downward
by the same. As an application of this, one deduces from (6.2b) that

f̃ (s) = [qe(s)]
1
12+m+n

2F1
(
x = R̃(s)

)
(6.3a)

= P

⎧⎨
⎩

v1, . . . , v5 f1, . . . , f8 e1, . . . , e12 ∞ s
0 0 0 −1 − 12m − 12n

1 + 4m 1 + 3n 1 −8m − 12n

⎫⎬
⎭ (6.3b)

= P

⎧⎨
⎩

v1, . . . , v5 f1, . . . , f8 ∞ s
0 0 −1 − 12m − 12n

1 + 4m 1 + 3n −8m − 12n

⎫⎬
⎭ , (6.3c)

because e1, . . . , e12 are the roots of qe, and v6 = ∞. The left-hand function f̃ = f̃ (s),
which by examination is r̃mn (s) := rmn (u = s4), will be the solution of a ‘lifted and
shifted’ differential equation on the s-sphere, with the indicated exponents. After the
shifting, the edge-midpoints e1, . . . , e12 cease being singular points, because the new
exponents at each are 0, 1, which are those of an ordinary point.

It is straightforward if tedious to compute the differential equation satisfied by
f̃ = r̃mn (s) := rmn (u = s4) explicitly, by applying to the appropriate Gauss equation of
the form (6.1) the changes of variable that perform (i) the lifting along s �→ x = R̃(s),

and (ii) the multiplication by [qe(s)] 1
12+m+n . One finds that f̃ satisfies L̃m

n f̃ = 0,
where

L̃m
n = D2

s −
[
4m

5s4 − 1

s(s4 − 1)
+ 3n

8s7 + 56s3

s8 + 14s4 + 1

]
Ds

+ 4(12m + 12n + 1)
s3
[
(2m + 3n)(s8 + 14s4 + 1) − 12n (3s4 + 1)

]
s(s4 − 1)(s8 + 14s4 + 1)

.

(6.4)

That the singular points of this operator are the roots v1, . . . , v5 of qv (plus v6 = ∞),
and the roots f1, . . . , f8 of qf , is clear, as is the fact that their exponents are as shown
in the P-symbol (6.3c). The degenerate case n = m = 0 is especially interesting.
As one expects from the P-symbol, the operator L̃0

0 is simply the Laplacian D2
s , the

kernel of which is spanned by 1, s. For f̃ = f̃ (s) = rmn (s4), it is easy to rule out any
admixture of the latter solution by examining Definition 3.1, and because r00 (u) equals
unity at u = 0, the base octahedral function r00 must be identically equal to unity.

Because r00 ≡ 1, it follows from Definition 3.1 that the hypergeometric function
appearing in the definition of rmn when n = m = 0, which is 2F1

(− 1
24 ,

11
24 ; 3

4 | x),
must be algebraic in its argument x . This is essentially the 1873 result of Schwarz [35],
the proof of which was later restated in a P-symbol form by Poole [33]. However, it
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is not trivial to extend this result on r00 to a constructive proof that rmn = rmn (u) is a
rational function of u for each (n,m) ∈ Z

2. This is because the differential equation
L̃m
n f̃ = 0, as one sees from (6.4), is far more complicated than D2

s f̃ = 0 (Laplace’s
equation) when (n,m) �= (0, 0). A constructive proof is best based on contiguity
relations between adjacent (n,m), i.e., recurrences in the spirit of Gauss, derived as
follows.

First, simplify the lifting along the covering s �→ x , i.e., along the degree-24 map
x = R̃(s). Each octahedral function r̃mn (s) turns out to ‘factor through’ u = s4, so it
suffices to lift the Gauss hypergeometric equation from the x-sphereP1

x to the u-sphere
P
1
u , along the degree-6 map x = R(u) of Definition 3.1; i.e.,

R(u) := −108
pv(u)

pe(u)2
= 1 − pf(u)3

pe(u)2
,

where

pv(u) = qv(s)
4 = u(1 − u)4

pe(u) = qe(s) = (1 + u)(1 − 34u + u2)

pf(u) = qf(s) = 1 + 14u + u2.

Replacing the lifted variable s by u = s4 quotients out an order-4 cyclic group of
rotations of the s-sphere (and hence of the octahedron), about the axis passing through
its north and south poles.

The syzygy becomes p2e − p3f +108 pv = 0. The roots u = 0, 1 of pv, and u = ∞,
correspond to the south-pole vertex, the four equatorial ones, and the north-pole one.
The three roots u = (3 + 2

√
2)2,−1, (3 − 2

√
2)2 of pe correspond to the four edge-

midpoints in the northern hemisphere, the four on the equator, and the four to the
south. The two roots u = −(2 ± √

3)2 of p2f correspond to the four face-centers in
the north and the four in the south. The covering P

1
u → P

1
x is still ramified above

x = 0, 1,∞, but its ramification structure is 1 + 4 + 1 = (2)3 = (3)2.
Taking the multiplicities in this ramification structure into account, one finds that if

the 2F1 of Definition 3.1 is lifted along x = R(u) rather than x = R̃(s), the P-symbol
identity (6.3) is replaced by

rmn (u) = [pe(u)]
1
12+m+n

2F1 (x = R(u)) (6.5a)

= P

⎧⎨
⎩

0 1 −(2 ± √
3)2 ∞ u

0 0 0 − 1
4 − 3m − 3n

1
4 + m 1 + 4m 1 + 3n −2m − 3n

⎫⎬
⎭ . (6.5b)

This P-symbol has five singular points (at most; fewer if n = 0 or m = 0). By
the preceding explanation, the points u = 0, 1,∞ represent 1, 4, 1 vertices of the
octahedron, and each of u = −(2 ± √

3)2 represents a cycle of four face-centers.
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Theorem 6.1 The octahedral function rmn = rmn (u) satisfies the Fuchsian differential
equation Lm

n r
m
n = 0, where

Lm
n = D2

u +
[
3/4 − m

u
+ −4m

u − 1
+ −3n(2u + 14)

u2 + 14u + 1

]
Du

+ (1 + 12m + 12n)
(2m + 3n)(u2 + 14u + 1) − 12n(3u + 1)

4 u(u − 1)(u2 + 14u + 1)
,

the P-symbol of which appears in Eq. (6.5b). The function rmn is the Frobenius solution
associated with the zero characteristic exponent of the singular point u = 0. It satisfies
eight differential recurrences of the form

K rm+Δm
n+Δn = p(−σv+εv)/4

v p−σe+εe
e p−σf+εf

f (4u3/4)
d

du

[
pσv/4
v pσe

e pσf
f · rmn

]
,

in which Δ(n,m) = (0,±1), (±1, 0) and (±1,±1). For each recurrence, the expo-
nents σv, σe, σf , the exponents εv, εe, εf , and the prefactor K are listed in Table 1.

Proof The differential equation comes by applying to the appropriate Gauss equation
of the form (6.1) the changes of variable that perform (i) the lifting along u �→ x =
R(u), and (ii) the multiplication by [pe(u)]

1
12+m+n . Or, one can merely substitute

u = s4 into the equation L̃m
n r̃

m
n = 0, with L̃m

n as in (6.4).
The differential recurrences of Jacobi, which shift the parameters a, b, c of the

function 2F1(a, b; c; x) by integers, are well known. (See [11, 2.8(20)–2.8(27)].) And
if Δ(n,m) = (±1,±1), the 2F1(R(u)) in the definition of rmn (u) has its parame-
ters shifted by integers. (See Definition 3.1.) By some calculus, one can change the
independent variable in the relevant differential recurrences of Jacobi from x = R(u)

to u, thereby obtaining the final four recurrences in Table 1 (the diagonal ones). The
change uses the fact that u3/4 dR/du equals −108 p3/4v p2f /p

3
e , and the details are

straightforward.
The first four recurrences in the table, with Δ(n,m) = (0,±1), (±1, 0), come a

bit less easily, because they shift the 2F1 parameters in Definition 3.1 by half-integers
rather than integers. But by examination, Definition 3.1 is equivalent to

2F1

(− 1
12 − m − n, 1

4 − m
1
2 − 2m

∣∣∣∣ S(t)

)
= (1 + 6t − 3t2)1/4−3m−3n rmn (−3t2), (6.6)

where

S(t) := 36 t (1 + 3t2)2

(1 + 6t − 3t2)3
= 1 −

(
1 − 6t − 3t2

1 + 6t − 3t2

)3

.

This follows by a quadratic hypergeometric transformation, u being related to t by
u = −3t2, and R to S by R = S2/(S− 2)2. When Δ(n,m) = (0,±1) or (±1, 0), the
parameters of the 2F1 in (6.6) are shifted by integers, and the same technique can be
applied. ��

123



256 Constr Approx (2018) 48:235–281

Table 1 Parameters for the differential recurrences of Theorem 6.1

Δ(n,m) σv, σe, σf εv, εe, εf K

(0, +1) −1 − 4m, 0, 5
8 + 3

2m − 3
2 n 1, 0, 1 −(1 + 4m)

(0, −1) 0, 0, − 1
8 − 3

2m − 3
2 n −3, 0, 1 3(1+12m+12n)(7−12m+12n)

4m−3

(+1, 0) 7
6 − 2m + 2n, 0,−1 − 3n 1, 0, 1 1

6 (7 − 12m + 12n)

(−1, 0) − 1
6 − 2m − 2n, 0, 0 1, 0, −2 − 1

6 (1 + 12m + 12n)

(+1,+1) −1 − 4m, 13
12 + m + n,−1 − 3n 1, 1, 1 −(1 + 4m)

(−1,−1) 0,− 1
12 − m − n, 0 −3, 1, −2 3(1+12m+12n)(−11+12m+12n)

4m−3

(−1,+1) −1 − 4m, 5
12 + m − n, 0 1, 1, −2 −(1 + 4m)

(+1,−1) 0, 7
12 − m + n,−1 − 3n −3, 1, 1 3(−7+12m−12n)(−19+12m−12n)

4m−3

The four three-term nondifferential recurrences in Theorem 3.3 follow by a familiar
elimination procedure from the differential recurrences of Theorem 6.1, taken in pairs.
They are analogous to the contiguity relations (or ‘contiguous function relations’) of
Gauss, for 2F1,which followby elimination from the differential recurrences of Jacobi,
though Gauss did not derive them in this way.

The explicit formulas for the functions rmn with small n,m given in Sect. 3.1 (see
Eqs. (3.3),(3.4)) also follow from the differential recurrences of Theorem 6.1.

Theorem 6.2 For any m ∈ Z, the octahedral function rm0 has the hypergeometric
representation

rm0 (u) = 2F1
(−2m,− 1

4 − 3m; 3
4 − m

∣∣ u). (6.7)

Thus when m ≥ 0, rm0 is a degree-2m hypergeometric polynomial.
Moreover, for any n,m ≥ 0, rmn is a polynomial of degree 3n + 2m.

Proof When n = 0, Lm
n f = 0 loses two singular points and degenerates to a Gauss

hypergeometric equation of the form (6.1), with independent variable u and parameters
a = −2m, b = − 1

4 −3m, c = 3
4 −m. Hence rm0 (u) has the claimed representation, and

ifm ≥ 0, is a degree-2m polynomial in u. It follows by induction from the differential
recurrence with Δ(n,m) = (+1, 0) that rmn (u) is a polynomial in u for all n ≥ 0.
It must be of degree 3n + 2m, because in the P-symbol of Lm

n [see (6.5b)], the only
characteristic exponent at u = ∞ that is a (nonpositive) integer is −2m − 3n. ��

The statement of this theorem includes additional claims thatweremade in Sect. 3.1.
The following related theorem mentions the Heun function Hn(a, q;α, β, γ, δ | z),
for the definitionofwhich see [34]. This is aFrobenius solution (at z = 0) of a canonical
Fuchsian differential equation that has four singular points, namely z = 0, 1, a,∞, and
an ‘accessory’ parameter q that unlike α, β, γ, δ, does not affect their characteristic
exponents. It has a convergent expansion

∑∞
k=0 hkz

k , where the {hk}∞k=0 satisfy a
second-order recurrence with coefficients quadratic in k.
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Theorem 6.3 For any n ∈ Z, the octahedral function r0n has the Heun representation

r0n (u) = Hn

((
2+√

3
2−√

3

)2
,
9(2+√

3)2 n(12n+1)
4 ; −3n,− 1

4 − 3n; 3
4 ,−3n; −(2 + √

3)2u

)

and the equivalent expansion
∑∞

k=0 aku
k, where {ak}∞k=0 satisfy the second-order

recurrence

(k + 1)(4k + 3) ak+1 + [14k(4k − 12n − 1) + 9n(12n + 1)] ak
+ (k − 3n − 1)(4k − 12n − 5) ak−1 = 0, (6.8)

with a0 = 1, a−1 = 0. Thus when n ≥ 0, r0n is a degree-3n Heun polynomial.

Proof If m = 0, the u = 1 singular point of Lm
n drops out, i.e., becomes ordinary,

and

L0
n = D2

u +
[
3/4

u
+ −3n(2u + 14)

u2 + 14u + 1

]
Du + 3n(1 + 12n)

4

u + 3

u(u2 + 14u + 1)
.

The substitution z = −(2 + √
3)2u reduces L0

n f = 0 to the standard Heun equa-
tion [34], with the stated values of a, q;α, β, γ, δ. The recurrence (6.8), based on a
second-order difference operator, comes by substituting f = r0n = ∑∞

k=0 aku
k into

L0
n f = 0. ��
For general (n,m) ∈ Z

2, Lm
n f = 0 has five singular points. The theory of such

generalized Heun equations is underdeveloped at present, but the coefficients of their
series solutions are known to satisfy third-order (i.e., four-term) recurrences.

Theorem 6.4 For any (n,m) ∈ Z
2, the octahedral function rmn has the expansion

rmn (u) = ∑∞
k=0 aku

k, where {ak}∞k=0 satisfy the third-order recurrence

(k + 1)(4k − 4m + 3) ak+1

+ [k(52k − 36m − 168n − 13) − (2m − 9n)(12m + 12n + 1)] ak
− [(k − 1)(52k − 276m − 144n − 65) + 2(14m + 3n)(12m + 12n + 1)] ak−1

− (k − 2m − 3n − 2)(4k − 12m − 12n − 9) ak−2 = 0, (6.9)

with a0 = 1, a−1 = 0, a−2 = 0. Thus when n,m ≥ 0, rmn (u) is a degree-(3n + 2m)

generalized Heun polynomial.

Proof The recurrence comes by substituting f = rmn = ∑∞
k=0 aku

k into Lm
n f = 0. ��

It can be shown that if m = 0, the third-order (i.e., generalized Heun) difference
operator in (6.9) has the second-order (i.e., Heun) difference operator in (6.8) as a right
factor, and if n = 0, it has a first-order (i.e., hypergeometric) difference operator as a
right factor, which is why the representation in Theorem 6.2 exists. The coefficients
of all these difference operators are quadratic in k.
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As stated in Theorem 3.2, it is not merely the case that when n,m ≥ 0, the rational
function rmn = rmn (u) is a polynomial of degree 3n + 2m. In each quadrant of the
(n,m)-plane, it is the quotient of a polynomial of known degree (the numerator) by
a known polynomial (the denominator). To obtain the formulas in Theorem 3.2 that
refer to quadrants other than the first, reason as follows. Consider the second formula:
it says that if n,m ≥ 0, r−m−1

n (u) equals a polynomial of degree 1+3n+2m, divided
by (1 − u)3+4m . This is proved by induction on n, the base case (n = 0) being

r−m−1
0 (u) = (1 − u)−3−4m

2F1
(−1 − 2m,− 1

4 − m; 3
4 − m

∣∣ u), (6.10)

which comes from (6.7) by Euler’s transformation of 2F1. The inductive step uses
the differential recurrence with Δ(n,m) = (+1, 0), as in the proof of Theorem 6.2.
In the same way, the third and fourth formulas follow from the Δ(n,m) = (−1, 0)
recurrence.

One sees from the four formulas in Theorem 3.2 that irrespective of quadrant,
rmn ∼ const × u3n+2m , which partially confirms the claims of Theorem 3.1(i,ii). A
consequence of this asymptotic behavior is that besides being the Frobenius solution
associated with the exponent 0 at u = 0, rmn is the Frobenius solution associated with
the exponent −2m − 3n at u = ∞, which appeared in the P-symbol (6.5b).

Theorem 3.1 states specifically that rmn ∼ dmn × u3n+2m , with dmn defined in (3.2).
This too is proved by induction. The base case (n = 0) has sub-casesm ≥ 0 andm ≤ 0,
which follow by elementary manipulations from (6.7) and (6.10), respectively. The
inductions toward n ≥ 0 and n ≤ 0 come from the differential recurrences with
Δ(n,m) = (±1, 0), the u → ∞ asymptotics of which yield expressions for dmn±1/d

m
n .

As one can check, these two expression agree with what (3.2) predicts.
The only claim in Sect. 3.1 remaining to be proved is Theorem 3.1(iii): the

statement that the conjugate function rmn = rmn (u) is related to rmn = rmn (u) by
rmn (u) ∝ u3n+2m rmn (1/u), or equivalently rmn (u) ∝ u3n+2m rmn (1/u). (The constant
of proportionality comes from rmn (0) equalling unity.)

Just as one derives the differential equation Lm
n r

m
n = 0 of Theorem 6.1 by ‘lift-

ing and shifting,’ one can derive an equation L
m
n r

m
n = 0 on the u-sphere from the

definition of rmn given in Definition 3.1, and a further equation satisfied by rmn (u) :=
u3n+2m rmn (1/u). The latter turns out to be Lm

n r
m
n = 0, i.e., to be identical to the equa-

tion of Theorem 6.1. But rmn = rmn (u), analytic at u = 0, is the Frobenius solution
associated with the exponent 0 at u = 0 of L

m
n r

m
n = 0. Hence, rmn is the Frobenius

solution associated with the exponent −2m − 3n at u = ∞ of Lm
n r

m
n = 0. But as was

noted three paragraphs ago, this is rmn ; so rmn ∝ rmn , and Theorem 3.1(iii) follows.

7 Biorthogonality of Octahedral Functions

The octahedral functions rmn = rmn (u), which are polynomials if n,m ≥ 0, satisfy
recurrences, such as the three-term ones of Theorem 3.3, that are quite unlike the ones
satisfied by the classical orthogonal polynomials. But at least if m = 0,−1, it can
be shown that the family {rmn }m∈Z displays orthogonality on the u-interval [0, 1], or
rather a form of biorthogonality.
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The biorthogonality is best expressed in terms of the lifted functions r̃mn (s) :=
rmn (u = s4) of the last section, the full domain of which is the Riemann s-sphere in
which the defining octahedron is inscribed. These are solutions of L̃m

n f̃ = 0, where
the operator L̃m

n was defined in (6.4). By inspection, it has the simpler representation

L̃m
n =

(
q2mv q3n/2

f

)
D2
s

(
q2mv q3n/2

f

)−1+
{
[−2m(1+2m)]

qf
q2v

+ [144n(2 + 3n)]
q2v
q2f

}
,

(7.1)
where qv(s) = s(1 − s4) and qf(s) = 1 + 14s4 + s8 are the usual polynomials that
equal zero at the five finite vertices and the eight face-centers of the octahedron.

By (7.1), L̃m
n is conjugated by a similarity transformation to a formally self-adjoint

operator of the Schrödinger type. For any fixedm, the calculation of the eigenfunctions
q−2m
v q−3n/2

f r̃mn (s) of the latter, on the s-interval [0, 1], can be viewed as solving
a Sturm–Liouville problem. The coefficient 144n(2 + 3n) in (7.1) plays the role
of the Sturm–Liouville eigenvalue, and q2v/q

2
f that of the Sturm–Liouville weight

function.
Because the coefficient function qf/q2v diverges at the endpoints s = 0, 1, this

Sturm–Liouville problem is typically a singular one. To avoid a discussion of endpoint
classifications and boundary conditions, it is best to derive orthogonality results not
from L̃m

n , but rather from the Love–Hunter biorthogonality relation (1.1); i.e.,

∫ 1

−1
Pμ

ν (z)P−μ

ν′ (−z) dz = 0, (7.2)

which holds if μ ∈ (−1, 1) and ν, ν′ differ by a nonzero even integer. (See [21,
Appendix] for a proof.) Equation (7.2) is a relation of orthogonality between the eigen-
functions of a singular boundary value problembased on (2.1), the associatedLegendre
equation (i.e., Pμ

ν0+2n(z), n ∈ Z), and the eigenfunctions of the adjoint boundary value

problem (i.e., P−μ
ν0+2n(−z), n ∈ Z). The first problem is non-self-adjoint because the

boundary conditions that single out Pμ
ν0+2n(z), n ∈ Z, as eigenfunctions are not self-

adjoint.
However, one feature of the operator L̃m

n must be mentioned. If f̃ = f̃ (s) solves
L̃m
n f̃ = 0, then so does (1 − s)1+12m+12n f̃ ((1 + s)/(1 − s)). This claim can be

verified by a lengthy computation, but its correctness is indicated by the P-symbol
of L̃m

n , which appeared in (6.3c). The map s �→ (1+ s)/(1− s) is a 90◦ rotation of the
s-sphere, and hence of the inscribed octahedron, around the axis through the equatorial
vertices s = ±i. This rotation takes vertices to vertices, edges to edges, and faces to
faces. The subsequent multiplication by (1 − s)1+12m+12n shifts the characteristic
exponents at the most affected vertices (s = 1,∞) to the values they had before the
rotation.

Theorem 7.1 For m = 0 and m = −1, the lifted family {r̃mn (s) := rmn (s4)}n∈Z is
biorthogonal on the s-interval [0, 1] in the following sense: the inner product integral
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∫ 1

0

[
q−2m
v q−3n/2

f (s) · r̃mn (s)
]

×
[
q−2m
v q−3n′/2

f (s) · (1 − s)1+12m+12n r̃mn′

(
1 + s

1 − s

)]
q2v
q2f

(s) ds

equals zero if n, n′ differ by a nonzero even integer.

Proof Substitute the m = 0,−1 cases of the formulas for P
±( 14+m)

− 1
6+n

(cos θ) in Theo-

rem 3.5 into (7.2) and change the variable of integration from z = cos θ to u = B−/B+
and then to s = u1/4. The involution z �→ −z corresponds to s �→ (1− s)/(1+ s). ��

This biorthogonality theorem is formulated so as to indicate its close connection
to Sturm–Liouville theory: evaluating the integral over 0 < s < 1 computes the
inner product of the two square-bracketed factors in the integrand, which come from
Pμ

ν (z) and P−μ

ν′ (−z), with respect to the weight function q2v/q
2
f . The two factors are

eigenfunctions of adjoint Sturm–Liouville problems on 0 < s < 1 (i.e., ones with
adjoint boundary conditions), with different eigenvalues.

Theorem 7.1 cannot be extended to general m ∈ Z, because the integral diverges
unless m = 0 or m = −1, owing to rapid growth of one or the other of the bracketed
factors at each of the endpoints s = 0, 1. This divergence follows readily from the
results on rmn given in Theorems 3.1 and 3.2. Alternatively, the divergence arises
from the Ferrers function Pμ

ν not lying in L2[−1, 1] when μ is nonintegral, unless
Reμ ∈ (−1, 1).

The formulas for the tetrahedral Ferrers functions P
±( 13+n)

− 3
4−m

given in Theorem 4.3

(casesm = 0,−1) can also be substituted usefully into the Love–Hunter relation (7.2).
But the resulting statement of biorthogonality is more complicated than Theorem 7.1
and is not given here.

8 Cyclic and Dihedral Formulas (Schwarz Classes O and I)

This section derives parametric formulas for Legendre and Ferrers functions that are
cyclic or dihedral. The formulas involve the Jacobi polynomials P(α,β)

n and are unre-
lated to the octahedral and tetrahedral ones inSects. 3, 4, and5.They are of independent
interest, and subsume formulas that have previously appeared in the literature.

As used here, ‘cyclic’ and ‘dihedral’ have extended meanings. The terms arise as
follows. The associated Legendre equation (2.1) has (μ,μ, 2ν + 1) as its (unordered,
unsigned) triple of characteristic exponent differences. By the results of Schwarz on
the algebraicity of hypergeometric functions, this differential equation will have only
algebraic solutions if (ν + 1

2 , μ) lies in (± 1
2 ,± 1

2k )+Z
2 or (± 1

2k ,± 1
2 )+Z

2, for some
positive integer k. These restrictions cause the equation to lie in Schwarz’s cyclic
class (labelled O here), resp. his dihedral class I. The terms refer to the projective
monodromy group of the equation, which is a (finite) subgroup of PSL(2,R).

However, the formulas derived below are more general, in that they allow k to be
arbitrary: they are formulas for continuously parametrized families of Legendre and
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Ferrers functions, which are generically transcendental rather than algebraic. Because
of this, we call a Legendre or Ferrers function cyclic, resp. dihedral, if (ν + 1

2 , μ) lies
in (± 1

2 , ∗) +Z
2, resp. (∗,± 1

2 ) +Z
2, the asterisk denoting an unspecified value. That

is, the degree ν should be an integer or the order μ a half-odd-integer, respectively.
Explicit formulas in terms of Jacobi polynomials are derived in Sect. 8.1, and how

dihedral Ferrers functions can be used for expansion purposes is explained in Sect. 8.2.

8.1 Explicit Formulas

The Jacobi polynomials P(α,β)
n (z) are well known [11, Sect. 10.8]. They have the

hypergeometric and Rodrigues representations

P(α,β)
n (z) = (α + 1)n

n! 2F1

(−n, n + α + β + 1
α + 1

∣∣∣ 1 − z

2

)
(8.1a)

= (−1)n

2nn! (1 − z)−α(1 + z)−β dn

dzn
[
(1 − z)α+n(1 + z)β+n] (8.1b)

and are orthogonal on [−1, 1] with respect to the weight function (1 − x)α(1 + x)β ,
if α, β > −1 and the weight function is integrable.

Legendre and Ferrers functions that are cyclic (i.e., of integer degree) are easily
expressed in terms of Jacobi polynomials.

Theorem 8.1 The formulas

Pμ

− 1
2±(n+ 1

2 )
(z) = n!

Γ (n − μ + 1)

(
z + 1

z − 1

)μ/2

P(−μ,μ)
n (z),

Pμ

− 1
2±(n+ 1

2 )
(cosh ξ) = n!

Γ (n − μ + 1)
[coth(ξ/2)]μ P(−μ,μ)

n (cosh ξ)

holdwhenn is a nonnegative integer, for z ∈ (1,∞)and ξ ∈ (0,∞). (In the degenerate
case when μ − n is a positive integer, Pμ

− 1
2±(n+ 1

2 )
≡ 0.)

Proof Compare the representations (2.8a) and (8.1a). ��
Theorem 8.2 The formulas

Pμ

− 1
2±(n+ 1

2 )
(z) = n!

Γ (n − μ + 1)

(
1 + z

1 − z

)μ/2

P(−μ,μ)
n (z),

Pμ

− 1
2±(n+ 1

2 )
(cos θ) = n!

Γ (n − μ + 1)
[cot(θ/2)]μ P(−μ,μ)

n (cos θ)

hold when n is a nonnegative integer, for z ∈ (−1, 1), ξ ∈ (−∞,∞), and θ ∈ (0, π).
(In the degenerate case when μ − n is a positive integer, Pμ

− 1
2±(n+ 1

2 )
≡ 0.)
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Proof The proof is accomplished by analytic continuation of Theorem 8.1, or in effect,
by letting ξ = iθ . ��

By exploiting the Q̂ → P and Q → P reductions (2.6) and (2.7), one can derive
additional formulas from Theorems 8.1 and 8.2, for Q̂μ

− 1
2±(n+ 1

2 )
and Qμ

− 1
2±(n+ 1

2 )

respectively. However, the coefficients in (2.6) and (2.7) diverge when μ ∈ Z.
Hence, following this approach to formulas for Q̂m

− 1
2±(n+ 1

2 )
,Qm

− 1
2±(n+ 1

2 )
, when n is a

nonnegative integer and m an integer, requires the taking of a limit. In the commonly
encountered case when −n ≤ m ≤ n (but not otherwise), the resulting expressions
turn out to be logarithmic. Such expressions can be computed in other ways [11,
Sect. 3.6.1]. Perhaps the best method is to express Q̂m

− 1
2±(n+ 1

2 )
in terms of a 2F1 by

using (2.8d), and then use known formulas for logarithmic 2F1’s [5].
Legendre and Ferrers functions that are dihedral (i.e., are of half-odd-integer order)

are the subject of the following theorems. For conciseness, a special notation is used:
[A|B]± signifies A, resp. B, in the +, resp. − case, and {C}α,±, where C depends
on α, signifies the even or odd part of C under α �→ −α, i.e., 1

2 [C(α) ± C(−α)].
Theorem 8.3 The formulas

Q̂
±( 12+m)

− 1
2+α

(z) =
√

π

2
m!

[
1
∣∣∣ 1

(α − m)2m+1

]
±

× (z2 − 1)−1/4 (z +
√
z2 − 1

)−α
P(α,−α)
m

(
z√

z2 − 1

)
,

Q̂
±( 12+m)

− 1
2+α

(cosh ξ) =
√

π

2
m!

[
1
∣∣∣ 1

(α − m)2m+1

]
±

× (sinh ξ)−1/2 e−αξ P(α,−α)
m (coth ξ)

hold when m is a nonnegative integer, for z ∈ (1,∞) and ξ ∈ (0,∞).

Proof Combine Whipple’s Q̂ → P transformation [11, 3.3(13)], which appeared as
Eq. (4.1), with the results in Theorem 8.1, and write m for n, and −α for μ. ��

In these formulas, the proportionality of Q̂
±( 12+m)

− 1
2+α

to eachother is expected; cf. (2.4).

Also, the division in the ‘minus’ case by

(α − m)2m+1 = (α − m) . . . (α + m),

which equals zero ifα = −m, . . . ,m, is not unexpected. Aswas noted in Sect. 2, Q̂μ
ν is

undefined if ν + μ is a negative integer, except when ν = − 3
2 ,− 5

2 , . . ., in which case

Q̂ν+1
ν , . . . , Q̂−(ν+1)

ν are defined. This implies that for m = 0, 1, 2, . . ., Q̂
+( 12+m)

− 1
2+α

is

defined for all α, and that Q̂
−( 12+m)

− 1
2+α

is undefined if and only if α = −m, . . . ,m.

123



Constr Approx (2018) 48:235–281 263

Theorem 8.4 The formulas

P
±( 12+m)

− 1
2+α

(z) =
√

2

π
m!

[
(−1)m

∣∣∣ (−1)m+1

(α − m)2m+1

]
±

× (z2 − 1)−1/4
{(

z +
√
z2 − 1

)−α
P(α,−α)
m

(
z√

z2 − 1

)}
α,±

,

P
±( 12+m)

− 1
2+α

(cosh ξ) =
√

2

π
m!

[
(−1)m

∣∣∣ (−1)m+1

(α − m)2m+1

]
±

× (sinh ξ)−1/2
{
e−αξ P(α,−α)

m (coth ξ)
}

α,±

hold when m is a nonnegative integer, for z ∈ (1,∞), and ξ ∈ (0,∞), it being
understood in the ‘minus’ case that when α = −m, . . . ,m and there is an apparent
division by zero, each right-hand side requires the taking of a limit.

Proof Combine the P → Q̂ reduction (2.5) with the results in Theorem 8.3. ��
Theorem 8.5 The formulas

P
±( 12+m)

− 1
2+α

(cos θ) =
√

2

π
m!

[
im
∣∣∣ i−m−1

(α − m)2m+1

]
±

× (sin θ)−1/2
{
eiαθ P(α,−α)

m (i cot θ)
}

α,± ,

Q
±( 12+m)

− 1
2+α

(cos θ) =
√

π

2
m!

[
im+1

∣∣∣ i−m

(α − m)2m+1

]
±

× (sin θ)−1/2
{
eiαθ P(α,−α)

m (i cot θ)
}

α,∓

hold whenm is a nonnegative integer, for θ ∈ (0, π). In the sub-cases α = −m, . . . ,m
of the ‘minus’ case, the apparent division by zero in the first formula is handled by
interpreting its right-hand side in a limiting sense, but the division by zero in the
second formula causes both its sides to be undefined.

Proof The first formula follows by analytic continuation of the latter formula in The-
orem 8.4, in effect, by letting ξ = −iθ . The second formula then follows from the
Q → P reduction (2.7), after some algebraic manipulations. ��

As was noted in Sect. 2, Qμ
ν is undefined if and only if Q̂μ

ν is. It was also noted that
if μ = 1

2 ,
3
2 , . . ., then Qμ

−μ, . . . ,Qμ
μ−1 ≡ 0. It follows that in the ‘plus’ case of the

second formula of the theorem, the right-hand sidemust equal zero ifα = −m, . . . ,m.
This yields the interesting Jacobi-polynomial identity

eiαθ P(α,−α)
m (i cot θ) = e−iαθ P(−α,α)

m (i cot θ),

which holds for m = 0, 1, 2, . . ., when α = 0, 1, . . . ,m.
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8.2 Dihedral Ferrers Functions and Love–Hunter Expansions

In this subsection, we show that an expansion in dihedral Ferrers functions can be, in
effect, an expansion in Chebyshev polynomials (of the fourth kind), and as an appli-
cation, we show that the result of [32] on the convergence of Love–Hunter expansions
can be slightly extended.

The first formula on dihedral Ferrers functions in Theorem 8.5 specializes when
m = 0 to the known pair of formulas [31, Sect. 14.5]

P
− 1

2

− 1
2+α

(cos θ) =
√

2

π

sin(αθ)

α
√
sin θ

, P
1
2

− 1
2+α

(cos θ) =
√

2

π

cos(αθ)√
sin θ

. (8.2)

These hold for θ ∈ (0, π), the α = 0 case of the former requiring the taking of a limit.
Love–Hunter biorthogonality, i.e., the orthogonality of the functions Pμ

ν (z) and
P−μ

ν (−z) in L2[−1, 1] when (i) Reμ ∈ (−1, 1) and (ii) ν, ν′ differ by an even integer
and are not half-odd-integers, specializes when μ = − 1

2 and z = cos θ to

∫ π

0
P

− 1
2

ν (cos θ)P
1
2
ν′(− cos θ) sin θ dθ = 0,

and thus to ∫ π

0
sin(αθ) cos[α′(π − θ)] dθ = 0, (8.3)

which holds if α, α′ differ by an even integer. (By continuity, the restriction to α, α′
that are not integers can be dropped.) The orthogonality in (8.3) is not well known.

A Love–Hunter expansion of an ‘arbitrary’ function f = f (z) on −1 < z < 1 is
a bilateral expansion of f in the Ferrers functions Pμ

ν0+2n , of the form (1.2), in which
the coefficients {cn}n∈Z are computed as inner products; i.e.,

c(α)
n =

∫ 1
−1 P

−μ
ν0+2n(−z) f (z) dz∫ 1

−1 P
−μ
ν0+2n(−z)Pμ

ν0+2n(z) dz
.

Existing results on the convergenceof such expansions [20,21] require that |Reμ| < 1
2 ,

or in the real case, μ ∈ (− 1
2 ,

1
2 ).

It is of interest to examine whether convergence results can also be obtained in the
boundary cases μ = ± 1

2 . To treat the case when (ν0, μ) = (− 1
2 + α,− 1

2 ), define the
indexed (n ∈ Z) and continuously parametrized (α ∈ R) functions

ψ(α)
n (θ) = sin[(2n + α)θ ]√

sin θ
, χ(α)

n (θ) = cos[(2n + α)(π − θ)]√
sin θ

on 0 < θ < π , which are biorthogonal with respect to the weight function sin θ . (They

differ only in normalization from P
− 1

2

− 1
2+α+2n

and P
1
2

− 1
2+α+2n

.) In terms of the first, one

has a formal μ = − 1
2 Love–Hunter expansion
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f (cos θ) =
∞∑

n=−∞
c(α)
n ψ(α)

n (θ),

where

c(α)
n =

∫ π

0 χ
(α)
n (θ) f (cos(θ)) sin θ dθ∫ π

0 χ
(α)
n (θ) ψ

(α)
n (θ) sin θ dθ

.

The denominator inner product equals (π/2) sin(απ) for all n, by examination; hence
the restriction α ∈ R \ Z must obviously be imposed.

This expansion is not fully satisfactory, because eachψ
(α)
n (θ) diverges as θ → π−,

though it converges to zero, asymmetrically, as θ → 0+. The underlying problem is
that if Reμ < 0, the function Pμ

ν (z) has leading behavior as z → 1− proportional
to (1 − z)−μ/2, but its leading behavior as z → (−1)+ comprises two terms: one
proportional to (1 + z)−μ/2, and one to (1 + z)+μ/2.

In order (i) to make endpoint behavior more symmetrical and less divergent, and
(ii) to study endpoint convergence, Pinsky [32] has proposed modifying Love–Hunter
expansions by treating [(1− z)/(1+ z)]μ/2 Pμ

ν (z) rather than Pμ
ν (z) as the expansion

function. By (2.8a), this amounts to replacing each Pμ
ν (z) by the 2F1 function in terms

of which it is defined, i.e., performing a hypergeometric expansion.
Adopting the suggestion of [32] when μ = − 1

2 amounts to replacing ψ
(α)
n , χ

(α)
n by

versions that are multiplied by [(1− z)/(1+ z)]−1/4, which equals cot1/2(θ/2). With
a trivial change in normalization, these are the functions

ψ̂(α)
n (θ) = sin[(2n + α)θ ]

sin(θ/2)
, χ̂ (α)

n (θ) = cos[(2n + α)(π − θ)]
sin(θ/2)

(8.4)

(n ∈ Z) on 0 < θ < π , which are biorthogonal with respect to the weight function
sin2(θ/2). Each ψ̂

(α)
n (θ) has a finite, nonzero limit as θ → 0+ and θ → π−, and as a

function of z = cos θ is proportional to

2F1

(
1

2
− α − 2n,

1

2
+ α + 2n; 3

2
; 1 − z

2

)
.

In terms of these trigonometric functions ψ̂
(α)
n (θ), one has (formally) a bilateral expan-

sion of an arbitrary function f = f (z) defined on −1 < z < 1; namely,

f (z = cos θ) = lim
N→∞

N∑
n=−N

ĉ(α)
n ψ̂(α)

n (θ) (8.5)

for all θ ∈ (0, π), where

ĉ(α)
n =

∫ π

0 χ̂
(α)
n (θ) f (cos(θ)) sin2(θ/2) dθ∫ π

0 χ̂
(α)
n (θ) ψ̂

(α)
n (θ) sin2(θ/2) dθ

. (8.6)
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The denominator in (8.6) equals (π/2) sin(απ) for all n, as before. One can clearly
restrict α from R \ Z to the interval (0, 1) without losing generality.

Theorem 8.6 If f = f (z) is piecewise continuous on −1 ≤ z ≤ 1, then in the sym-
metric case α = 1

2 , the bilateral series in (8.5)will converge as N → ∞ to f (z) at all
points of continuity, including the endpoints, and in general to [ f (z+) + f (z−)] /2.

Proof The Chebyshev polynomials Wj of the fourth kind, for j = 0, 1, 2, . . ., are
defined by [24]

Wj (cos θ) = sin
[(
j + 1

2

)
θ
]

sin
( 1
2θ
) =

j∑
m=− j

eimθ .

It follows from (8.4) that when n = 0, 1, 2, . . ., both of ψ̂
( 12 )
n (θ), χ̂

( 12 )
n (θ) equal

W2n(cos θ), and when n = −1,−2, . . ., they equal −W−2n−1(cos θ). The bilateral
expansion in (8.5) thus reduces if α = 1

2 to a unilateral expansion in the polynomi-
als Wj , j = 0, 1, 2, . . ..

The Chebyshev polynomials Tk of the first kind, for k = 0, 1, 2, . . ., are given by

Tk(cos θ) = cos(kθ).

By standard Fourier series theory, the expansion of g = g(u) in the Tk(u), when g is
piecewise continuous on−1 ≤ u ≤ 1, will converge to g at all points of continuity, and
in general to [g(u+) + g(u−)] /2. But (see [24, Sect. 5.8.2]), if one writes z = 1−2u2

(so that u = sin(θ/2) if z = cos θ ), then Wj (z) equals (−1) j u−1T2 j+1(u). Therefore
an expansion of f = f (z) in the fourth-kind Wj (z) on −1 ≤ z ≤ 1 is effectively an
expansion of g(u) = u f (1− 2u2) on −1 ≤ u ≤ 1 in the first-kind Tk(u), each even-k
term of which must vanish. The theorem follows. ��

It is useful to compare this convergence result, which refers to an expansion of f

in the Ferrers functions P
− 1

2
2n , with the pointwise convergence result of [32]. The latter

dealswith an expansion in the functions Pμ
ν0+2n , where ν0 is arbitrary andμ ∈ (− 1

2 ,
1
2 ).

However, it requires that f be piecewise smooth, not merely piecewise continuous.
As the above theorem reveals, this assumption can be relaxed, at least in the seem-

ingly difficult ‘corner’ case when (ν0, μ) = (0,− 1
2 ). Whether smoothness can also

be dropped as a hypothesis for the pointwise convergence of Love–Hunter expansions
with μ ∈ (− 1

2 ,
1
2 ), or with (ν0, μ) = (− 1

2 + α,− 1
2 ) when α �= 1

2 , remains to be
explored.

It must be mentioned that the octahedral and tetrahedral formulas of Theorems 3.5
and 4.3 facilitate the calculation of the coefficients in Love–Hunter expansions of the
form (1.2), with (ν0 + 1

2 , μ) equal to (± 1
3 ,± 1

4 ) and (± 1
4 ,± 1

3 ), respectively. Because
these values satisfy μ ∈ (− 1

2 ,
1
2 ), the convergence result of [32] applies.
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9 Ladder Operators, Lie Algebras, and Representations

In the preceding sections, explicit formulas for the Legendre and Ferrers functions
in the octahedral, tetrahedral, dihedral, and cyclic families were derived. Each such
family (in the first-kind Ferrers case) is of the form {Pμ0+m

ν0+n (z = cos θ)}, where ν0, μ0

are or may be fractional, and (n,m) ranges over Z2. In this section, the connection
between such a family and conventional SO(3)-based harmonic analysis on the sphere
S2 = SO(3)/SO(2), coordinatized by the angles (θ, ϕ), is briefly explored.

The connection goes through the corresponding family of generalized spherical
harmonics, Pμ

ν (cos θ)eiμϕ , with (ν, μ) ∈ (ν0, μ0) + Z
2. But the connection is not

as strong as one would like. If ν0, μ0 are rational but not integral, these harmonic
functions will not be single-valued on the symmetric space S2. (In the cases of interest
here, each Pμ

ν (z) in the family is algebraic in z, and they can be viewed as finite-
valued.) They may not be square-integrable, because the leading behavior of Pμ

ν (z)
as z → 1− is proportional to (1 − z)−μ/2 unless μ is a positive integer.

For these reasons, the focus is on the action of Lie algebras (of ‘infinitesimal
transformations’) on a function family of this type, specified by (ν0, μ0), rather than
the action of a Lie group such as SO(3). The space spanned by the classical spherical
harmonics Ym

n (θ, ϕ) ∝ Pmn (cos θ)eimϕ , with n ≥ 0 andm ∈ Z, admits an action of the
rotation group SO(3). The Lie algebra so(3,R) of 3×3 real skew-symmetric matrices
can be represented by differential operators on S2, with real coefficients, and acts on
the space of spherical harmonics. The resulting infinite-dimensional representation is
reducible: forn = 0, 1, 2, . . ., it includes the usual (2n+1)-dimensional representation
on the span of Y−n

n , . . . ,Yn
n . But so(3,R) is not the only Lie algebra to be considered.

A larger Lie algebra than so(3,R) acts naturally on the spherical harmonics, or
rather, on the (regular) solid harmonics rnYm

n (θ, ϕ), which satisfy Laplace’s equation
on R

3. (See [28, Sect. 3.6].) This is the 10-dimensional real Lie algebra so(4, 1) that
is generated by ‘ladder’ operators that increment and decrement the degree n, as
well as the order m. They are represented by differential operators on R

3, with real
coefficients. The real span of these operators exponentiates to the Lie group SO0(4, 1),
which contains as subgroups (i) the 3-parameter group SO(3) of rotations about the
origin, (ii) a 3-parameter Abelian group of translations ofR3, (iii) a 1-parameter group
of dilatations (linear scalings of R3), and (iv) a 3-parameter Abelian group of ‘special
conformal transformations.’ The last are quadratic rational self-maps of R3 (or rather
the real projective space RP3, because they can interchange finite and infinite points).

The preceding results, now standard, are extended below to any family of gen-
eralized solid harmonics {rνPμ

ν (cos θ)eiμϕ}, with (ν, μ) ∈ (ν0, μ0) + Z
2 for

specified ν0, μ0. In Sect. 9.1, the differential and nondifferential recurrences on ν

and μ are derived. (See Theorems 9.1 and 9.2.) In Sect. 9.2, it is shown that the ladder
operators in the differential recurrences generate a 10-dimensional real Lie algebra,
and an isomorphism from this algebra not to so(4, 1) but to so(3, 2) is exhibited. The
treatment closely follows Celeghini and del Olmo [4], but the explicit isomorphism in
Theorem 9.3 is new.

In the setting of special function identities, which typically involve real linear com-
binations of differential operators, so(3, 2) arises more naturally than does so(4, 1).
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But by a limited form of complexification, so(3, 2) can be converted to so(4, 1), and
indeed to so(5,R). These are alternative real forms of the rank-2 complex Lie algebra
so(5,C), to which they complexify, and the eight displacement vectors Δ(ν,μ) =
(0,±1), (±1, 0), (±1,±1) can be identified with the roots of so(5,C).

In Sect. 9.3, it is shown that irrespective of (ν0, μ0), the representation of so(3, 2)
[or of so(4, 1) or so(5,R)] carried by the solid harmonics rνPμ

ν (cos θ)eiμϕ with
(ν, μ) ∈ (ν0, μ0) + Z

2 is of a special type: its quadratic Casimir operator takes a
fixed value, and its quartic one vanishes. (See Theorem 9.6.) The former fact was
found in [4], but the latter is new. The representation of so(3, 2) on the solid harmon-
ics of integer degree and order, and its representation on the ones of half-odd-integer
degree and order, have irreducible constituents that are identified as the known Dirac
singleton representations of so(3, 2).

9.1 Differential and Nondifferential Recurrences

In any family {Pμ0+m
ν0+n (z)}(n,m)∈Z2 , where P can be taken as any of P,Q, P, Q̂, any three

distinct members are linearly dependent, over the field of functions that are rational
in z and

√
1 − z2 (Ferrers case) or

√
z2 − 1 (Legendre case). In particular, any three

contiguous members are so related, by a three-term ladder recurrence.
The underlying recurrences are differential ones, which generally permit any

single Pμ
ν and its derivative to generate any member contiguous to it, as a linear

combination, and by iteration, to generate any Pμ+Δμ
ν+Δν in which Δ(ν,μ) ∈ Z

2.

Theorem 9.1 The Ferrers functions Pμ
ν = Pμ

ν (z) satisfy eight differential recurrences,
divided into four ladders, i.e., ±-pairs, with Δ(ν,μ) = ±(0, 1), ±(1, 0), ±(1, 1),
and ±(1,−1). Each pair is of the form

α± Pμ+Δμ
ν+Δν = ∓z−σ±

0 +ε0(1 − z2)−σ±
1 /2+ε1/2 d

dz

[
zσ

±
0 (1 − z2)σ

±
1 /2 Pμ

ν

]
,

and for each pair, the exponents σ±
0 , σ±

1 , the exponents ε0, ε1, and the prefactor α±
are given in Table 2. The second-kind functions Qμ

ν satisfy identical recurrences.
The Legendre functions Pμ

ν , Qμ
ν [the latter unnormalized, i.e., the functions

eμπ i Q̂μ
ν ] satisfy recurrences obtained from the preceding by (i) multiplying the right-

hand side by a sign factor, equal to iε1+Δμ, and (ii) replacing 1 − z2 by z2 − 1.

Proof The four nondiagonal recurrences on the order and degree, with Δ(ν,μ) =
±(0, 1) and ±(1, 0), are classical and can be found in many reference works
[11,31,36]. They can be deduced from the differential recurrences of Jacobi, which
increment or decrement the parameters of the function 2F1(a, b; c; x). (See [11,
2.8(20)–2.8(27)].)

The final four diagonal ones, at least for Pμ
ν when ν, μ are integers, are due to

Celeghini and del Olmo [4]. Each can be derived from the nondiagonal ones by a
tedious process of elimination, but the process can be systematized as the calculation
of the commutator of two differential operators. (See Sect. 9.2, below.) ��
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Table 2 Parameters for the differential recurrences of Theorem 9.1

Δ(ν, μ) σ±
0 , σ±

1 ε0, ε1 α±

±(0, 1) 0, ∓μ 0, 1 [1, (ν + μ)(ν − μ + 1)]±
±(1, 0) 0, 1

2 ± (ν + 1
2 ) 0, 2 [ν − μ + 1, ν + μ]±

±(1, 1) 1
2 ± (ν + 1

2 ) ± μ,∓μ 1, 1 [1, (ν + μ)(ν + μ − 1)]±
±(1,−1) − 1

2 ± (ν + 1
2 ) ∓ μ, ±μ 1, 1 [(ν − μ + 1)(ν − μ + 2), 1]±

In the rightmost column, the notation [a|b]± signifies a, resp. b, in the +, resp. − case

The differential recurrences satisfied by Pμ
ν can be written in circular-trigonometric

forms that will be needed below. Substituting z = cos θ yields

α±Pμ±1
ν = [±Dθ − μ cot θ ] Pμ

ν , (9.1a)

α±Pμ
ν±1 = {±(sin θ)Dθ + [(

ν + 1
2

)± 1
2

]
cos θ

}
Pμ

ν , (9.1b)

α±Pμ±1
ν±1 = {±(cos θ)Dθ − μ csc θ + [− (

ν + 1
2

)∓ 1
2

]
sin θ

}
Pμ

ν , (9.1c)

α±Pμ∓1
ν±1 = {∓(cos θ)Dθ − μ csc θ + [+ (

ν + 1
2

)± 1
2

]
sin θ

}
Pμ

ν , (9.1d)

which are satisfied by Pμ
ν = Pμ

ν (cos θ). Here, Dθ := d/dθ , and the four prefactors α±
are listed in the last column of Table 2, in order. The recurrences (9.1c) and (9.1d) have
appeared in the literature but are not well known; the only appearances that we have
found, with ν, μ restricted to integer values, are in [1] and [17, Sect.A.2]. Equations
(9.1c) and (9.1d) imply each other because Pμ

−ν−1 = Pμ
ν for all ν, μ. That is, Pμ

ν is
unaffected by the negating of the shifted degree parameter ν + 1

2 .
The three-term ladder recurrences derived from the four pairs of differential recur-

rences are given in the following theorem. The diagonal ones, coming from the ladders
with Δ(ν,μ) = ±(1, 1) and ±(1,−1), appear to be new.

Theorem 9.2 The Ferrers functions Pμ
ν = Pμ

ν (z) satisfy second-order (i.e., three-
term) recurrences on the order μ and degree ν, namely

√
1 − z2 Pμ+1

ν + 2μz Pμ
ν + (ν + μ)(ν − μ + 1)

√
1 − z2 Pμ−1

ν = 0,

(ν − μ + 1)Pμ
ν+1 − (2ν + 1)z Pμ

ν + (ν + μ)Pμ
ν−1 = 0,

and the two diagonal recurrences

√
1 − z2 Pμ+1

ν±1 (z) + [±(2ν + 1)(1 − z2) + 2μ
]
Pμ

ν (z)

+ [
(ν + 1

2 ) ± (μ − 1
2 )
] [

(ν + 1
2 ) ± (μ − 3

2 )
]√

1 − z2 Pμ−1
ν∓1 (z) = 0.

The second-kind functions Qμ
ν satisfy identical second-order recurrences.

The Legendre functions Pμ
ν , Qμ

ν (the latter unnormalized, as above), satisfy recur-
rences obtained from the preceding by (i)multiplying each term containing a function

123



270 Constr Approx (2018) 48:235–281

of order μ + δ and a coefficient proportional to [√1 − z2]α by a sign factor, equal to
iα−δ , and (ii) replacing

√
1 − z2 by

√
z2 − 1.

Proof Eliminate the derivative terms from the recurrences of Theorem 9.1. This is the
procedure used to derive Gauss’s three-term, nearest-neighbor ‘contiguous function
relations’ for 2F1(a, b; c; x) from Jacobi’s differential recurrences on a, b; c. ��

It was noted in Sect. 2 that if ν + μ is a negative integer, Qμ
ν and Qμ

ν are generally
undefined (though there are exceptions). The recurrences for Qμ

ν and Qμ
ν in Theorems

9.1 and 9.2 remain valid in a limiting sense even when (ν, μ) is such that one or more
of the functions involved is undefined.

9.2 Lie Algebras

The raising and lowering of the degree and order, in any doubly indexed family of
(generalized) solid harmonics

Sμ
ν = Sμ

ν (r, θ, ϕ) := rνPμ
ν (cos θ)eiμϕ, (9.2)

where (ν, μ) ∈ (ν0, μ0) + Z
2, can be performed by differential operators that do

not need to depend explicitly on (ν0, μ0) if they are allowed to involve, instead, the
derivative operators Dr , Dϕ in addition to Dθ .

Thebasic idea is due toMiller [26], and there is freedom in its implementation: either
or both of the factors rν = eν log r and eiμϕ could include an ‘i’ in its exponent, and the
Ferrers functions Pμ

ν (cos θ) could be replaced by the Legendre ones Pμ
ν (cosh ξ). With

the choices made in (9.2), Sμ
ν can be viewed as a (typically multi-valued) function

of the spherical coordinates r, θ, ϕ, which satisfies Laplace’s equation on R
3. Define

ladder operators by

J± = e±iϕ [±Dθ + i(cot θ)Dϕ

]
, (9.3a)

K± = r±1 [±(sin θ)Dθ + (cos θ)
(
r Dr + 1

2 ± 1
2

)]
, (9.3b)

R± = r±1e±iϕ [±(cos θ)Dθ + i(csc θ)Dϕ − (sin θ)
(
r Dr + 1

2 ± 1
2

)]
, (9.3c)

S± = r±1e∓iϕ [∓(cos θ)Dθ + i(csc θ)Dϕ + (sin θ)
(
r Dr + 1

2 ± 1
2

)]
. (9.3d)

Then, the differential recurrences (9.1) can be rewritten in terms of the Sμ
ν as

J± Sμ
ν = [1, (ν + μ)(ν − μ + 1)]± Sμ±1

ν , (9.4a)

K± Sμ
ν = [ν − μ + 1, ν + μ]± S

μ
ν±1, (9.4b)

R± Sμ
ν = [1, (ν + μ)(ν + μ − 1)]± S

μ±1
ν±1 , (9.4c)

S± Sμ
ν = [(ν − μ + 1)(ν − μ + 2), 1]± S

μ∓1
ν±1 . (9.4d)

For each (ν0, μ0), the solid harmonics {Sμ
ν = S

μ0+m
ν0+n }, or more accurately their real

linear span, carry a representation of J±, K±, R±, S±. Generating a Lie algebra by
working commutators out, one finds (with [A, B] signifying AB − BA)
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R± = ±[J±, K±], S± = ±[J∓, K±],

which explains why the diagonal recurrences in Theorems 9.1 and 9.2 can be most
efficiently obtained by commutator calculations, as claimed.

It is useful additionally to define ‘labeling’ or ‘maintaining’ operators J3, K3 by

J3 = −iDϕ, K3 = r Dr + 1
2 , (9.5)

so that
J3 S

μ
ν = μ Sμ

ν , K3 S
μ
ν = (

ν + 1
2

)
Sμ

ν . (9.6)

By further calculations, one finds that the real Lie algebra generated by J±, K± closes,
in the sense that it is finite-dimensional. In particular,

[J3, J±] = ±J±, [J+, J−] = 2J3,

[K3, K±] = ±K±, [K+, K−] = −2K3,

[R3, R±] = ±2R±, [R+, R−] = −4R3,

[S3, S±] = ±2S±, [S+, S−] = −4S3,

where R3 := K3 + J3 and S3 := K3 − J3. To interpret these, recall that any real linear
space with basis {X+, X−, X3}, given a Lie algebra structure by

[X3, X±] = ±X±, [X+, X−] = 2σ X3,

is isomorphic to so(3,R) if σ > 0, and to so(2, 1) (or equivalently sl(2,R)) if σ < 0.
Hence, the real Lie algebras spanned by {J+, J−, J3}, {K+, K−, K3}, {R+, R−, R3},
and {S+, S−, S3}, coming from the ladders withΔ(ν,μ) = ±(0, 1), ±(1, 0), ±(1, 1),
and±(1,−1), are isomorphic to so(3,R) (the first) and so(2, 1) (the remaining three).
The last two turn out to commute.

The real Lie algebra generated by J±, K±, of which these copies of so(3,R) and
so(2, 1) are subalgebras, is 10-dimensional and is spanned overR by J±, J3; K±, K3;
R±; S±. It of course has real structure constants. For any (ν0, μ0), its representation by
differential operators onR3, as above, is carried by the real span of the solid harmonics
S

μ0+m
ν0+n , (n,m) ∈ Z

2. This result was obtained by Celeghini and del Olmo [4], though
they confined themselves to integer ν, μ, i.e., in effect to (ν0, μ0) = (0, 0).1

To identify this 10-dimensional real algebra, it is useful to relabel its basis elements.
First, let

(P+, P−, P3) := (S+,−R−, K−), (C+,C−,C3) := (−R+, S−, K+), (9.7)

in each of which the three elements commute. The algebra can then be viewed as the
span overR of J±, J3; P±, P3;C±,C3 and K3, which will be written as D henceforth.

1 The reader of [4] should note that in Sect. 5, R± := [K±, J±] and S± := [K±, J∓] should be emended
to read R± := ∓[K±, J±] and S± := ∓[K±, J∓].
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Define

(PC±+ , PC±− , PC±
3 ) := 1

2

[
(P+, P−, P3) ± (C+,C−,C3)

]
(9.8a)

= 1
2 (∓R+ + S+, −R− ± S−, K− ± K+). (9.8b)

Also, for X = J, P,C, PC+, PC−, define the ‘skew-Cartesian’ elements

X1 := (X+ + X−)/2, X2 := (X+ − X−)/2, X3 := X3,

so that X± = X1±X2. The algebra will then be the real span of J1, J2, J3;P1,P2,P3;
C1,C2,C3; D, or equivalently of J1, J2, J3; PC

±
1 ,PC±

2 ,PC±
3 ; D.

It is readily verified that Ji commutes with PC+
i and PC−

i for i = 1, 2, 3, and that

[Ji , J j ] = {−1,+1,−1}k Jk, (9.9a)

[Ji ,PC±
j ] = {−1,+1,−1}k PC±

k , (9.9b)

[PC±
i ,PC±

j ] = ∓{−1,+1,−1}k Jk, (9.9c)

where i, j, k is any cyclic permutation of 1, 2, 3, with {a, b, c}k meaning a, b, c
when k = 1, 2, 3. Also, the 3 × 3 matrix of commutators [PC+

i ,PC−
j ] indexed by

1 ≤ i, j ≤ 3 equals diag (−D,+D,−D). Additionally,

[D, Ji ] = 0, [D,PC±
i ] = −PC∓

i , (9.10)

for i = 1, 2, 3. These identities specify the structure of the algebra.
Now, recall that the real Lie algebra so(p, q) with p + q = n has the following

defining representation. IfΓ = (gi j ) = diag (+1, . . . ,+1,−1, . . . ,−1), with q +1’s
and p −1’s, then so(p, q) comprises all real n× n matrices A for which Γ A is skew-
symmetric. There is a sign convention here, and a p ↔ q symmetry; without loss
of generality, p ≥ q will be assumed. It is sometimes useful to permute the +1’s
and −1’s.

More concretely, so(p, q) can be realized as the real span of the n×nmatricesMab,
1 ≤ a < b ≤ n, where Mab = Γ Eab − EbaΓ . In this, Eab is the n × n matrix with

a 1 in row a, column b, and zeroes elsewhere. One often extends the size-

(
n
2

)
basis

{Mab} to a ‘tensor operator,’ i.e., a skew-symmetric n × n matrix of elements (Mab),
by requiring that Mba = −Mab for 1 ≤ a, b ≤ n. The commutation relations

[Mab,Mcd ] = gadMbc + gbcMad − gacMbd − gbdMac (9.11)

are easily checked.
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Theorem 9.3 The real Lie algebra generated by J±, K± is isomorphic to so(3, 2),
an isomorphism being specified by the tensor operator

(Mab) =

⎛
⎜⎜⎜⎜⎝

0 PC−
2 −PC−

1 −PC−
3 −D

−PC−
2 0 J3 −J1 PC+

2
PC−

1 −J3 0 J2 −PC+
1

PC−
3 J1 −J2 0 −PC+

3
D −PC+

2 PC+
1 PC+

3 0

⎞
⎟⎟⎟⎟⎠ ,

with Γ = diag (+1,+1,−1,−1,−1).

Proof The proof is by inspection. ��
This so(3, 2) has the Cartan decomposition k ⊕R p, where

k = spR{J2,PC+
1 ,PC+

3 ,PC−
2 },

p = spR{J1, J3,PC+
2 ,PC−

1 ,PC−
3 , D}

are the ‘compact’ and ‘noncompact’ subspaces. (The terms refer to the Lie subgroups
of SO0(3, 2) to which they exponentiate.) Real Lie algebras isomorphic to so(4, 1)
and so(5,R) can be obtained by Weyl’s trick of redefining some or all of the basis
elements of p to include ‘i’ factors. In doing this, a slightly changed notation will be
useful. For X = J, P,C, PC+, PC−, define the ‘Cartesian’ elements

X1 := (X+ + X−)/2, X2 := −i(X+ − X−)/2, (9.12)

so that X± = X1 ± iX2 and (X1,X2,X3) = (X1, iX2, X3).

Theorem 9.4 (i) The real span of iJ1, iJ2, iJ3; P1, P2, P3;C1,C2,C3; D, or equiv-
alently of iJ1, iJ2, iJ3; PC±

1 , PC±
2 , PC±

3 ; D, is a real Lie algebra isomorphic to
so(4, 1), an isomorphism being specified by the tensor operator

(Mab) =

⎛
⎜⎜⎜⎜⎝

0 −PC−
1 −PC−

2 −PC−
3 −D

PC−
1 0 −iJ3 iJ2 −PC+

1
PC−

2 iJ3 0 −iJ1 −PC+
2

PC−
3 −iJ2 iJ1 0 −PC+

3
D PC+

1 PC+
2 PC+

3 0

⎞
⎟⎟⎟⎟⎠ ,

with Γ = diag (+1,−1,−1,−1,−1).
(ii) The real span of iJ1, iJ2, iJ3; iPC+

1 , iPC+
2 , iPC+

3 ; PC−
1 , PC−

2 , PC−
3 ; iD is a

real Lie algebra isomorphic to so(3, 2), an isomorphism being specified by the tensor
operator

(Mab) =

⎛
⎜⎜⎜⎜⎝

0 −PC−
1 −PC−

2 −PC−
3 −iD

PC−
1 0 −iJ3 iJ2 −iPC+

1
PC−

2 iJ3 0 −iJ1 −iPC+
2

PC−
3 −iJ2 iJ1 0 −iPC+

3
iD iPC+

1 iPC+
2 iPC+

3 0

⎞
⎟⎟⎟⎟⎠ ,

123



274 Constr Approx (2018) 48:235–281

with Γ = diag (+1,−1,−1,−1,+1).

Proof (i)Multiply the second row and the second column of the (Mab) in Theorem 9.3
by ‘i’, and (innocuously) interchange the second and third rows, and the second and
third columns. (ii) Continuing (or in a sense reversing), multiply the last row and the
last column by ‘i’. ��
Theorem 9.5 The real span of iJ1, iJ2, iJ3; PC+

1 , PC+
2 , PC+

3 ; iPC−
1 , iPC−

2 , i
PC−

3 ; iD is a real Lie algebra isomorphic to so(5,R), an isomorphism being specified
by the tensor operator

(Mab) =

⎛
⎜⎜⎜⎜⎝

0 −iPC−
1 −iPC−

2 −iPC−
3 −iD

iPC−
1 0 −iJ3 iJ2 −PC+

1
iPC−

2 iJ3 0 −iJ1 −PC+
2

iPC−
3 −iJ2 iJ1 0 −PC+

3
iD PC+

1 PC+
2 PC+

3 0

⎞
⎟⎟⎟⎟⎠ ,

with Γ = diag (−1,−1,−1,−1,−1).

Proof Multiply the first row and the first columnof the (Mab) in part (i) of Theorem9.4
by ‘i’. ��

With ‘i’ factors in basis elements, the so(3, 2), so(4, 1) and so(5,R) of Theorems
9.4 and 9.5 look awkward. But it follows from (9.3), (9.5), and (9.12) that each basis
element in the so(4, 1) of Theorem 9.4(i), i.e., each of iJi , Pi , Ci , and D, is realized
by a differential operator in r, θ, ϕ with real coefficients. This is not the case for the
basis elements of so(3, 2) and so(5,R).

The geometric significance of this realization of so(4, 1) is revealed by changing
from spherical coordinates (r, θ, ϕ) to Cartesian ones, (x1, x2, x3) on R

3. Using

x := (x1, x2, x3) = (r sin θ cosϕ, r sin θ sin ϕ, r cos θ),

one finds that

iJi = x j∂k − xk∂ j , i = 1, 2, 3, (9.13a)

Pi = ∂i , i = 1, 2, 3, (9.13b)

Ci = xi − (x · x)∂i + 2xi (x · ∂), i = 1, 2, 3, (9.13c)

D = x · ∂ + 1
2 , (9.13d)

where ∂i := d/dxi and i, j, k is a cyclic permutation of 1, 2, 3. That is, the iJi generate
rotations about the origin, the Pi generate translations, and D generates dilatations
(linear scalings of R3). The Ci generate special conformal transformations, which are
degree-2 rational maps of R3 (or rather RP3) to itself. The commutation relations

[Ji , J j ] = iεi jk Jk, [PC±
i , PC±

j ] = ∓iεi jk Jk,

[Ji , PC±
j ] = iεi jk PC

±
k , [PC+

i , PC−
j ] = −δi j D,

[D, Ji ] = 0, [D, PC±
i ] = −PC∓

i ,

123



Constr Approx (2018) 48:235–281 275

written in terms of PC±
i = 1

2 (Pi ± Ci ), follow either from (9.9), (9.10), from (9.11),
or from (9.13). Here, the summation convention of tensor analysis is employed. The
Levi–Cività tensor εi jk is skew-symmetric in all indices, with ε123 = +1, and δi j is
the Kronecker delta. Together with

J1 = 1

2
(J+ + J−), J2 = − i

2
(J+ − J−), D = K3, (9.14)

the formulas

PC±
1 = 1

4 (∓R+ − R− ± S+ + S−), (9.15a)

PC±
2 = − i

4 (∓R+ + R− ∓ S+ + S−), (9.15b)

PC±
3 = 1

2 (±K+ + K−), (9.15c)

express all these differential operators in terms of the original J±, K±, R±, S±; J3, K3
of (9.3), (9.5).

The ten operators in (9.13) span (over R) the Lie algebra of conformal differen-
tial operators on R

3, which is known to have an so(4, 1) structure. (See Miller [28,
Sect. 3.6].) This is the symmetry algebra of the Laplacian ∇2 on R3, which comprises
all real first-order operators L for which [L ,∇2] ∝ ∇2, i.e., for which [L ,∇2] has ∇2

as a right factor. It can be viewed as acting on any suitable space of functions on R
3,

and exponentiates to the group SO0(4, 1) of conformal transformations, realized as
flows on R3 (or RP3). But the starting point used here was their action on the span of
the generalized solid harmonics Sμ0+m

ν0+n with (n,m) ∈ Z
2, which are (multi-valued)

solutions of Laplace’s equation.
In the physics literature on conformal Lie algebras and groups, the terms ‘xi ’

in (9.13c) and ‘ 12 ’ in (9.13d) often appear as 2δxi and δ respectively, where δ is
the so-called scaling dimension; though the resulting commutation relations do not
involve δ. The value δ = 1

2 is specific to the symmetry algebra of the Laplacian.
There are many variations on the present technique of using differential recurrences

to construct real Lie algebras, realized by differential operators, that are isomor-
phic to the real forms of so(5,C). The solid harmonics S

μ
ν that were employed

here are extensions to R
3 of the (surface) spherical harmonics Pμ

ν (cos θ)eiμϕ on the
symmetric space S2 = SO(3)/SO(2). If not Ferrers but Legendre functions were
used, the starting point would be the hyperboloidal ones Pμ

ν (cosh ξ)eiμϕ , defined
using coordinates (ξ, ϕ) on the hyperboloid H2 = SO(2, 1)/SO(2), i.e., the surface
x21 +x22 −x23 +const = 0. Their extensions toR3 satisfy the (2+1)-dimensional wave
equation, rather than Laplace’s equation. (See [28, Chap. 4] and [9].) But isomorphic
algebras could be constructed.

9.3 Lie Algebra Representations

In Sect. 9.2, it was shown that for any (ν0, μ0), there are representations of the real
Lie algebras so(3, 2), so(4, 1), so(5,R) that are carried by the span of the family of
(generically multi-valued) solid harmonics Sμ

ν (r, θ, ϕ), (ν, μ) ∈ (ν0, μ0)+Z
2. These
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arise from the action of the ladder operators on the Ferrers functions Pμ
ν (cos θ). Solid

harmonics are harmonic functions on R3, satisfying Laplace’s equation, and the ones
in the octahedral, tetrahedral, dihedral, and cyclic families are or can be finite-valued.

These infinite-dimensional representations are restrictions of the representation of
the common complexification so(5,C), which is carried by the (complex) span of the
family. They are generically irreducible and are also generically non-skew-Hermitian,
so that except in special cases, they do not exponentiate to unitary representations of
the corresponding Lie groups, even formally. This will now be investigated.

Each of the three real Lie algebras is of rank 2, so the center of its universal envelop-
ing algebra is generated by two elements, calledCasimir invariants, and any irreducible
representation must represent each Casimir by a constant. The analysis of such rep-
resentations resembles the unified classification of the irreducible representations of
so(2, 1) and so(3,R), the real forms of so(3,C), which is well known. (See, e.g., [8,
Chap. 3].) In this, representations are classified by the value taken by their (single)
Casimir, and by their reductions with respect to a (1-dimensional) Cartan subalgebra.
This leads to an understanding ofwhich representations are skew-Hermitian andwhich
are finite-dimensional. However, no comparable unified approach to all representa-
tions of so(3, 2), so(4, 1), and so(5,R) seems to have been published. The literature
has dealt almost exclusively with the skew-Hermitian ones. (so(3, 2) and so(4, 1) are
treated separately in [10,12] and [6], and so(4, 1) and so(5,R) are treated together
in [18].)

The starting point is the complexification so(5,C), which is generated over C by
J± and K±, the ladder operators on the order and degree. It is the complex span
of J±, K±, R±, S±; J3, K3, each of which is represented as in (9.4) and (9.6) by an
infinite matrix indexed by (ν, μ) ∈ (ν0, μ0)+Z

2. The elements J3, K3 span a Cartan
subalgebra (an Abelian subalgebra of maximal [complex] dimension, here 2), which
is represented diagonally:

J3 S
μ
ν = μ Sμ

ν , K3 S
μ
ν = (

ν + 1
2

)
Sμ

ν .

When the representation of so(5,C) is reduced with respect to this subalgebra, it splits
into an infinite direct sum of 1-dimensional representations, indexed by (ν, μ). The
corresponding real Cartan subalgebras of the so(3, 2) and so(4, 1) in Theorems 9.3
and 9.4(i) are the real spans of {J3, K3} and {iJ3, K3}. For the so(3, 2) and so(5,R) in
Theorems 9.4(ii) and 9.5, they are the real span of {iJ3, iK3}. (Recall that D := K3.)
Only for the last twowill the real Cartan subalgebra be represented by skew-Hermitian
matrices, in fact, by imaginary diagonal ones.

It is readily verified that J±, K±, R±, S±; J3, K3 can serve as a Cartan–Weyl basis
of so(5,C), their complex span. That is, when the adjoint actions of H1 := J3 and
H2 := K3 on this 10-dimensional Lie algebra are simultaneously diagonalized, the
common eigenvectors (‘root vectors’) include J±, K±, R±, S±. The associated roots
α ∈ R

2 are 2-tuples of eigenvalues, which can be identified with the displacements
Δ(ν,μ), i.e., ±(0, 1), ±(1, 0), ±(1, 1), ±(1,−1). These form the B2 root system.
One can write

[Hi , Hj ] = 0, [Hi , Eα] = αi Eα,
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where Eα is the root vector associated with root α. The commutators [Eα, Eβ ] also
prove to be consistent with the B2 root system.

TheCasimir invariants of so(5,C) and its three real forms can be computed from the
commutation relations of the Cartan–Weyl basis elements. (For instance, the Killing
form for the algebra yields a quadratic Casimir.) But it is easier to express them using
the tensor operator Mab of any of Theorems 9.3, 9.4, and 9.5. As elements of the
universal enveloping algebra, the two Casimirs, quadratic and quartic, are defined
thus [10,12]:

c2 := − 1
2MabMab,

c4 := −waw
a,

where wa = 1
8ε

abcdeMbcMde and the summation convention is employed, indices
being raised and lowered by the tensorsΓ −1 = (gab) andΓ = (gab). The Levi–Cività
tensor εabcde is skew-symmetric in all indices, with ε12345 = +1. The normalization
and sign conventions are somewhat arbitrary.

Theorem 9.6 In the representation of the universal enveloping algebra of any of the
real Lie algebras so(3, 2), so(4, 1), and so(5,R) on the span of the generalized solid
harmonics Sμ0+m

ν0+n (r, θ, ϕ), (n,m) ∈ Z
2, the Casimirs c2 and c4 are represented by

the constants − 5
4 and 0, irrespective of ν0, μ0.

Proof The proof is accomplished by the expressions for Mab, Γ given in any of
Theorems 9.3, 9.4, and 9.5, which imply that

c2 = J · J − PC+· PC+ + PC−· PC− + D2 (9.16a)

= J 23 + K 2
3 + 1

2 {J+, J−} − 1
2 {K+, K−} − 1

4 {R+, R−} − 1
4 {S+, S−}, (9.16b)

where {·, ·} is the anti-commutator. This expresses c2 in terms of J3, K3 and the root
vectors. The formula (9.16b) can be viewed as subsuming J 23 + 1

2 {J+, J−}, which is the
Casimir of the so(3,R) subalgebra spanned by {J+, J−, J3}, and K 2

3 − 1
2 {K+, K−},

which is the Casimir of the so(2, 1) subalgebra spanned by {K+, K−, K3}, and
also, the Casimirs of the remaining two so(2, 1) subalgebras. From the representa-
tions (9.4), (9.6) of J±, K±, R±, S± and J3, K3 as infinite matrices, one calculates
from (9.16b) that c2 (like J3, K3) is diagonal in (n,m), with each diagonal element
equaling − 5

4 .
For so(5,R), which is representative, the five components of wa include (i) the

scalar i J · PC+, (ii) the three components of the vector −i PC− × PC+ + DJ , and
(iii) the scalar J · PC−. These expressions, involving the scalar and vector product
of three-vectors, must be interpreted with care: any product AB of two Lie algebra
elements signifies the symmetrized product 1

2 {A, B}. But by direct computation, one
finds from (9.7), (9.8) and the infinite matrix representations (9.4), (9.6) that each
component of wa is represented by the zero matrix, even (surprisingly) without sym-
metrization. ��
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This result is plausible, if not expected. In any unitary representation of a semi-
simple Lie group G on L2(S), S being a homogeneous space G/K of rank 1, all
Casimir operators except the quadratic one must vanish. (See [3] and [15, Chap. X].)
Admittedly, the present representations of so(4, 1), by real differential operators acting
on multi-valued, non-square-integrable functions, are non-skew-Hermitian, and can-
not be exponentiated to unitary representations of SO0(4, 1) of this ‘most degenerate’
type. The value − 5

4 computed for the quadratic Casimir c2, irrespective of (ν0, μ0),
can be viewed as the value of j ( j + 1), where j is a formal ‘angular momentum’
parameter equal to − 1

2 ± i.
For each (ν0, μ0), the resulting representation of the real Lie algebra g = so(3, 2),

so(4, 1) or so(5,R), or its universal enveloping algebra U(g), on the span of the
generalized solid harmonics Sμ0+m

ν0+n , (n,m) ∈ Z
2, can be viewed linear-algebraically:

as a homomorphism ρ of real vector spaces, taking g (orU(g)) into the space of infinite
matrices indexed by (n,m). For each basis element A ∈ g, ρ(A) is determined by
(9.4), (9.6), and because the basis elements given in Theorems 9.4 and 9.5 include
‘i’ factors, the matrix elements of ρ(A) may be complex.

To show that certain of these representations are substantially the same as known
ones by infinite matrices that are skew-Hermitian, consider the effect of replacing the
family {Sμ

ν = S
μ0+m
ν0+n } by {Ŝμ

ν = Ŝ
μ0+m
ν0+n }, where the latter are ‘twisted’ by a square-root

factor:

Ŝμ
ν = Ŝμ

ν (r, θ, ϕ) :=
√

Γ (ν − μ + 1)

Γ (ν + μ + 1)
rνPμ

ν (cos θ)eiμϕ. (9.17)

That is, Ŝμ
ν = rνYμ

ν , where

Yμ
ν (θ, ϕ) =

√
Γ (ν − μ + 1)

Γ (ν + μ + 1)
Pμ

ν (cos θ)eiμϕ. (9.18)

When ν = 0, 1, 2, . . ., with μ = −ν, . . . , ν, this Yμ
ν is the classical (complex) spheri-

cal harmonic on S2, of degree ν and orderμ.2 In this case, the square root factor equals[
(ν + μ + 1)2μ

]−1/2 and is positive by convention; a discussion of how to interpret it

in other cases is deferred. At least formally, the representation of g orU(g) on {Ŝμ0+m
ν0+n }

comes from that on {Sμ0+m
ν0+n } by a diagonal similarity transformation. The formulas

J± Ŝμ
ν =

√(
ν − μ + 1

2 ∓ 1
2

) (
ν + μ + 1

2 ± 1
2

)
Ŝμ±1

ν , (9.19a)

K± Ŝμ
ν =

√(
ν − μ + 1

2 ± 1
2

) (
ν + μ + 1

2 ± 1
2

)
Ŝ

μ
ν±1, (9.19b)

R± Ŝμ
ν =

√(
ν + μ + 1

2 ± 1
2

) (
ν + μ + 1

2 ± 3
2

)
Ŝ

μ±1
ν±1 , (9.19c)

S± Ŝμ
ν =

√(
ν − μ + 1

2 ± 1
2

) (
ν − μ + 1

2 ± 3
2

)
Ŝ

μ∓1
ν±1 (9.19d)

2 The orthonormalization factor
√

(2ν + 1)/4π , appropriate for an inner product on S2, is omitted. But
this Yμ

ν automatically includes the so-called Condon–Shortley factor, owing to the definition of Pμ
ν used

here (see Sect. 2).
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and
J3 Ŝ

μ
ν = μ Ŝμ

ν , K3 Ŝ
μ
ν = (ν + 1

2 ) Ŝ
μ
ν (9.20)

now replace (9.4) and (9.6), but the actions of the elements Ji , Ki , PC
±
i , D are still

defined in terms of these by (9.14) and (9.15).

Theorem 9.7 If (ν0, μ0) = (0, 0) or
( 1
2 ,

1
2

)
, the representation ρ of g = so(3, 2)

on the span of {Ŝμ
ν = Ŝ

μ0+m
ν0+n }, (n,m) ∈ Z

2, which is obtained from (9.19),(9.20)
by identifying so(3, 2) with the real span of iJ1, iJ2, iJ3; iPC+

1 , iPC+
2 , iPC+

3 ;
PC−

1 , PC−
2 , PC−

3 ; iD as in Theorem 9.4(ii), has an irreducible constituent that

is defined on the subspace spanned by {Ŝμ
ν = Ŝ

μ0+m
ν0+n } with n = 0, 1, 2, . . . and

μ = −ν,−ν + 1 . . . , ν − 1, ν. On this subspace, every element of g is represented by
an infinite matrix that is skew-Hermitian.

Proof By (9.19), if μ = ν then J+, K−, S− give zero when acting on Ŝ
μ
ν , and if

μ = −ν then J−, K−, R− give zero. Thus ρ is reducible: it can be restricted to the
stated subspace. On this subspace, the formal similarity transformation performed by
the square root factor in (9.17) is not singular: only if ν ± μ is a negative integer will
one of the gammas be infinite. For (ν0, μ0) equal to either of (0, 0) and

( 1
2 ,

1
2

)
, the

square root factor simply equals
[
(ν + μ + 1)2μ

]−1/2.
By (9.19) and (9.20), each of ρ(J±), ρ(K±), ρ(R±), ρ(S±); ρ(J3), ρ(K3) is a real

matrix, the plus and minus versions being transposes of each other, and ρ(J3), ρ(K3)

being symmetric (and diagonal). It follows from (9.14) and (9.15) that the ρ(Ji ), the
ρ(PC+

i ), and ρ(D) are Hermitian, and the ρ(PC−
i ) are skew-Hermitian. The claim

follows. ��
Being skew-Hermitian, the two infinite-dimensional representations of so(3, 2) in

Theorem 9.7 exponentiate to (irreducible) unitary representations of the so-called anti-
de Sitter group SO0(3, 2), or its universal cover. The latter have been classified [10,12],
and the ones arising from the theorem can be identified. They are the remarkable Dirac
singleton representations, with whimsical names [7,14]: the (ν0, μ0) = ( 12 ,

1
2 ) one

is ‘Di’ and the (ν0, μ0) = (0, 0) one is ‘Rac.’ For the Dirac singletons, the Casimirs
(c2, c4) have long been known to equal (− 5

4 , 0). (See [2, Sect. III].) They are singleton
representations in the sense that if they are reduced with respect to the subalgebra
g0 = so(3,R) ⊕R so(2,R), thereby being split into representations of g0, each of
the latter that appears, does so with unit multiplicity. The ones that appear are labeled
uniquely by ν = ν0 + n, n = 0, 1, 2, . . ..

The Rac representation of so(3, 2) is realized by differential operators on R3 (with
complex coefficients), expressions for which follow immediately from (9.13). They
act on the span of the classical solid harmonics, {Ŝmn } with n = 0, 1, 2, . . . and
m = −n, . . . , n. Kyriakopoulos [19] in effect discovered that the Rac has such a
realization, before the name was coined, and extended this result to higher dimen-
sions. The Di is realized by the same operators, acting on the span of the ‘spinorial’
solid harmonics {Ŝm

n+ 1
2
} with n = 0, 1, 2, . . . and m = −n − 1

2 , . . . , n + 1
2 . The

existence of this realization seems not to be known. This is perhaps because the solid
harmonics of half-odd-integer degree and order are double-valued onR3, are typically
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non-square-integrable, and are based on the little-known dihedral Ferrers functions.
The expressions for the dihedral Ferrers functions in terms of Jacobi polynomials,
given in Theorem 8.5 above, are new.

The representations of so(3, 2) carried by the octahedral and tetrahedral families
of solid harmonics, {Sμ

ν = S
μ0+m
ν0+n } with (ν0 + 1

2 , μ0) equal to (± 1
3 ,± 1

4 ), (± 1
4 ,± 1

3 ),
and (± 1

3 ,± 1
3 ), are not skew-Hermitian, even up to diagonal equivalence. Twisting the

basis to {Ŝμ
ν = Ŝ

μ0+m
ν0+n } does not help matters, because only if ν0, μ0 are both integers

or both half-odd-integers, which without loss of generality may be taken to be 0, 0 or
1
2 ,

1
2 , does it permit the representation to be restricted to a subspace spanned by the

harmonics with ν = ν0 + n, n = 0, 1, 2, . . ., and μ = −ν,−ν + 1 . . . , ν − 1, ν.
For general (ν0, μ0), there is accordingly no restriction on the index (n,m) ∈ Z

2 of
the basis functions of the representation, and the square roots in (9.17), (9.18), (9.19)
may be square roots of negative quantities. Irrespective of what sign convention for
the square root is adopted, the resulting imaginary factors will interfere with skew-
Hermiticity, and upon integration of the representation, with unitarity. In fact, the
familiar definition of the (surface) spherical harmonic Yμ

ν = Yμ
ν (θ, ϕ) given in (9.18),

incorporating the square root factor, seems to be useful only when the degree ν and
the order μ are both integers or both half-odd-integers.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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