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Jacek Dziubański · Nabila Hamda

Received: 23 September 2013 / Accepted: 12 March 2014 / Published online: 28 August 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract This paper is perhaps the first attempt at a study of the Hardy space H1

in the rational Dunkl setting. Following Uchiyama’s approach, we characterize H1

atomically and by means of the heat maximal operator. We also obtain a Fourier
multiplier theorem for H1. These results are proved here in the one-dimensional case
and in the product case.
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1 Introduction

Dunkl theory is a far reaching generalization of Euclidean Fourier analysis which
includes most special functions related to root systems, such as spherical functions
on Riemannian symmetric spaces. It started in the late 1980s with Dunkl’s seminal
article [7] and developed extensively afterwards. We refer to the lecture notes [18] for
the rational Dunkl theory, to the lecture notes [15] for the trigonometric Dunkl theory,
and to the books [4,11] for the generalized quantum theories.

The theory of classical real Hardy spaces in R
n originates from the study of holo-

morphic functions of one variable in the upper half-plane. We refer the reader to the
original works of Stein and Weiss [22], Burkholder et al. [3], and Fefferman and
Stein [9]. An important contribution to this theory lies in the atomic decomposition
introduced by Coifman [5] and extended to spaces of homogeneous type by Coifman
and Weiss [6] (see also [12]). More information can be found in the book [21] and
references therein.

This paper deals with the real Hardy space H1 in the rational Dunkl setting, where
the underlying space is of homogeneous type in the sense of Coifman and Weiss. In
such a setting, the theory of Hardy spaces goes back to the 1970s [6,12]. Here we
follow Uchiyama’s approach [25], and we characterize the Hardy space H1 in two
ways, by means of the heat maximal operator and atomically. The first characteri-
zation, which requires precise heat kernel estimates, has led us to a seemingly new
observation, namely that the heat kernel has a rather slow decay in certain directions
and is in particular not Gaussian in the present setting (see Remark 2.4). The second
characterization is used to prove a Fourier multiplier theorem for H1.

Throughout the paper, we shall restrict our considerations to the one-dimensional
case and to the product case. This restriction is due to our present lack of knowledge in
general about the behavior of the Dunkl kernel on the one hand and about generalized
translations on the other hand.

Let us introduce some notation and state our main results. On R
n we consider the

Dunkl operators

Dj f (x)= ∂

∂x j
f (x)+ k j

x j

[
f (x)− f (σ j x)

]
( j=1, 2, . . . , n)

associated with the reflections

σ j (x1, x2, . . . , x j , . . . , xn) = (x1, x2, . . . ,−x j , . . . , xn) (1.1)

and the multiplicities k j ≥ 0. Their joint eigenfunctions constitute the Dunkl kernel

E(x, y) =
∏ n

j=1
Ek j (x j , y j ) , (1.2)
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where

Ek(x, y) = �
(
k + 1

2

)

�(k) �
( 1
2

)
∫ +1

−1
du (1− u)k−1 (1+ u)k e x y u

= e x y �(2k + 1)

�(k) �(k + 1)

∫ 1

0
dv v k−1 (1− v)k e−2x yv

︸ ︷︷ ︸
1F 1(k ;2k+1 ;−2 x y)

(1.3)

(see for instance [18, p. 107, Example 2.1]). Here 1F1(a ; b; z) is the confluent hyper-
geometric function which is also known as the Kummer function and denoted by
M(a, b, z). Notice that E(x, y) = e 〈x,y〉 if all multiplicities k j vanish.

Let us first define the Hardy space H1 by means of the heat maximal operator. The
Dunkl Laplacian

L f (x)=
∑ n

j=1
D 2

j f (x)=
∑ n

j=1

{(
∂

∂ x j

)2

f (x)+2k j
x j

∂

∂ x j
f (x)− k j

x2j

[
f (x)− f (σ j x)

]
}

is the infinitesimal generator of the heat semigroup

e t L (t>0),

which acts by linear self-adjoint operators on L2(Rn, dμ) and by linear contractions
on L p(Rn, dμ), for every 1≤ p ≤ ∞, where

dμ(x) = dμ1(x1) · · · dμn(xn) = |x1|2k1 · · · |xn|2kn dx1 · · · dxn . (1.4)

The heat semigroup consists of integral operators

e tL f (x) =
∫

Rn
dμ(y) h t (x, y) f (y)

associated with the heat kernel

h t (x, y) = c−1
k t−

N
2 e− |x|2+|y|2

4 t E
(

x√
2t

,
y√
2t

)
, (1.5)

see, e.g., [17], where

N = n +
∑ n

j=1
2 k j (1.6)

is the homogeneous dimension and

ck = 2
N
2

∫

Rn
dμ(x) e− |x|2

2 = 2N
∏ n

j=1
�

(
k j + 1

2

)
.
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From this point of view, theHardy space H1
max consists of all functions f ∈ L1(Rn, dμ)

whose maximal heat transform

h∗ f (x) = sup t>0

∣∣∣∣

∫

Rn
dμ(y) h t (x, y) f (y)

∣∣∣∣ (1.7)

belongs to L1(Rn, dμ) and the norm is given by

‖ f ‖H1
max

= ‖h∗ f ‖L1(dμ) .

Let us turn next to the atomic definition of the Hardy space H1. Notice that R
n ,

equipped with the Euclidean distance d (x, y) = |x−y| and with the measure μ, is
a space of homogeneous type in the sense of Coifman and Weiss (see Appendix 1).
Recall that an atom is a measurable function a : R

n → C such that

• a is supported in a ball B,
• ‖a‖L∞ � μ(B)−1 ,

•
∫

Rn
dμ(x) a(x) = 0.

By definition, the atomic Hardy space H1
atom consists of all functions f ∈ L1(Rn, dμ)

that can be written as f =∑� λ� a� , where the a�’s are atoms, the λ�’s are complex
numbers such that

∑
� |λ�|<+∞, and the norm is given by

‖ f ‖H1
atom

= inf
∑

�
|λ�| ,

where the infimum is taken over all atomic decompositions of f .
Our first main result is the following theorem.

Theorem 1.8 The spaces H1
max and H1

atom coincide and their norms are equivalent,
i.e., there exists a constant C>0 such that

C−1 ‖ f ‖H1
max

≤ ‖ f ‖H1
atom

≤ C ‖ f ‖H1
max

.

The Fourier transform in the Dunkl setting is given by

F f (ξ) = c−1
k

∫

Rn
dμ(x) f (x) E(x,−i ξ ) . (1.9)

It is an isometric isomorphism of L2(Rn, dμ) onto itself and the inversion formula
reads

f (x) = F 2 f (−x) .

Notice that, if all multiplicities k j vanish, then (1.9) boils down to the classical Fourier
transform

f̂ (ξ) = (2π)−
n
2

∫

Rn
dx f (x) e− i 〈x,ξ 〉 .
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Our second main result is the following Hörmander type multiplier theorem (see
[10] for the original multiplier theorem on L p spaces).

Theorem 1.10 Let χ = χ(ξ) be a smooth radial function on R
n such that

χ(ξ) =
{
1 if |ξ |∈[ 12 , 2

]
,

0 if |ξ | /∈( 14 , 4
)
.

If a function m =m(ξ) on R
n satisfies

M = sup t>0 ‖χ m(t . )‖
W N/2+ε

2
< +∞

for some ε>0 , then the multiplier operator

Tm f = F−1{m (F f )}

is bounded on the Hardy space H1 and

‖ Tm ‖H1→H1 � M .

Here W σ
2 (Rn) denotes the classical L2 Sobolev space on R

n , whose norm is given
by

‖g‖
W σ

2
=
{∫

Rn
dx (1+|x|2)σ | ĝ(x)|2

}1/2
.

Notice that the multiplier m is continuous and bounded, as N
2 + ε > n

2 .
Our paper is organized as follows. Section 2 is devoted to the heat kernel in dimen-

sion 1. There we analyze its behavior thoroughly, and we remove a small part of it, in
order to get Gaussian estimates similar to those in the Euclidean setting. These results
are extended to the product case in Sect. 3. Section 4 is devoted to the proof of Theorem
1.8 and Sect. 5 to the proof of Theorem 1.10. Section 1 consists of three appendices.
Appendix 1 contains information about the measure of balls, which is used throughout
the paper. Appendices 2 and 3 are devoted to so-called folklore results in connection
with Uchiyama’s theorem, which have been used for instance in [8].

This paper results from two independent research projects, which were carried out
by the first and third authors and by the second and fourth authors, respectively, and
which have been merged into a joint article.

2 Heat Kernel Estimates in Dimension 1

Consider first the one-dimensional Dunkl kernel E(x, y) = Ek(x, y). As the case
k = 0 is trivial, we may assume that k > 0.

Lemma 2.1 (a) E(x, y) is a holomorphic function of (x, y)∈C
2.
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(b) E(x, y) > 0 for every x, y∈R.
(c) E(x, y) has the following symmetry and rescaling properties :

{
E(x, y) = E(y, x) ∀ x, y∈C,

E(λx, y) = E(x, λ y) ∀ λ, x, y∈C.

(d) For every y∈C, x 
→ E(x, y) is an eigenfunction of the Dunkl operator

D f (x) = f ′(x) + k

x
{ f (x)− f (−x)}

and of the Dunkl Laplacian

L f (x) = D2 f (x) = f ′′(x) + 2k

x
f ′(x) − k

x2
{ f (x)− f (−x)} .

More precisely,

Dx E(x, y) = y E(x, y) and Lx E(x, y) = y 2 E(x, y) .

(e) As x y → 0 ,

E(x, y) = 1 + O (|x y |) .

(f) As x y → +∞,

E(x, y) = 2k �(k + 1
2 )√

π
ex y (x y)−k

{
1− k2

2

1

x y
+ O

(
1

x2y2

)}
.

(g) As x y → −∞,

E(x, y) = 2k−1k �(k + 1
2 )√

π
e−x y (−x y)−k−1

{
1+ k2 − 1

2

1

x y
+ O

(
1

x2y2

)}
.

Proof The first four properties are known to hold in general. In dimension 1, they can
also be deduced from the explicit expression (1.3), as can (e). As already observed
in [20, Section 2] (see also [18, Example 5.1]), the asymptotics of E(x, y) at infinity
follow from the asymptotics of the confluent hypergeometric function which read, let
us say for 0 < a < b ,

1F1(a ; b; z) ∼ �(b)

�(a)
e z z a−b

+∞∑

�=0

(1 − a)� (b − a)�

� ! z−�

as z → +∞ and
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1F1(a ; b; z) ∼ �(b)

�(b − a)
|z|−a

+∞∑

�=0

(a)� (a − b + 1)�
� ! |z|−�

as z → −∞ (see for instance [1, (13.5.1)] or [14, (13.7.2)]). ��

Consider next the one-dimensional heat kernel

h t (x, y) = c−1
k t−k− 1

2 e− x2+ y2

4 t E

(
x√
2t

,
y√
2t

)
(2.2)

= c−1
k t−k− 1

2 e− (x−y)2

4 t 1F1

(
k ; 2k +1;− x y

t

)
,

where ck = 22k+1 �
(
k+ 1

2

)
.

Proposition 2.3 (a) h t (x, y) is a C∞ function of (t, x, y)∈(0,+∞)×R
2.

(b) h t (x, y) > 0 for every t>0 and x, y∈R.
(c) h t (x, y) has the following symmetry and rescaling properties :

{
h t (x, y) = h t (y, x) ∀ x, y∈R,

hλ2t (λx, λ y) = |λ|−2k−1 h t (x, y) ∀ λ∈R
∗, ∀ t>0, ∀ x, y∈R.

(d) h t (x, y) satisfies the heat equation

{
∂ t h t (x, y) = Ly h t (x, y),

lim t↘0 h t (x, y) |y|2k dy = δx (y).

(e) The heat kernel has the following global behavior :

h t (x, y) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t−k− 1
2 e− x2+ y2

4 t if |x y |≤ t ,

t− 1
2 (x y)−k e− (x−y)2

4 t if x y ≥ t ,

t
1
2 (−x y)−k−1 e− (x+y)2

4 t if − x y ≥ t ,

and the following asymptotics :

h t (x, y)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c−1
k t−k− 1

2 e− x2+ y2

4 t

{
1+ O

( |x y|
t

)}
if x y

t → 0,

1
2
√

π
e− (x−y)2

4 t t− 1
2 (x y)−k

{
1− k2 t

x y + O
(

t2

x2y2

)}
if x y

t →+∞,

k
2
√

π
e− (x+y)2

4 t t
1
2 (−x y)−k−1

{
1+ O

(
− t

x y

)}
if x y

t →−∞.
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(f) The following gradient estimates hold for the heat kernel :

∣∣∣
∣

∂

∂y
h t (x, y)

∣∣∣
∣

�

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t−k− 3
2 (|x |+|y|) e− x2+ y2

4 t if |x y |≤ t ,
{
t− 3

2 |x−y |+ t− 1
2 |y|−1

}
(x y)−k e− (x−y)2

4 t if x y ≥ t ,
{
t− 1

2 |x+y |+ t
1
2 (|x |−1+|y|−1)

}
(−x y)−k−1 e− (x+y)2

4 t if − x y ≥ t .

Proof The first five properties follow from the expression (2.2) and from Lemma 2.1.
Let us turn to the proof of (f). By differentiating (2.2) with respect to y and by using
the well-known formula

d

dz
1F1(a ; b; z) = a

b
1F1(a+1; b+1; z)

(see for instance [1, (13.4.8)] or [14, (13.3.15)]), we get

∂

∂y
h t (x, y) = c−1

k t−k− 1
2 e− (x− y)2

4 t

{
x − y

2 t
1F1(k ; 2k +1;− x y

t
)

− k

2k + 1

x

t
1F1

(
k +1; 2k + 2;− x y

t

)}
.

We conclude by using again the behavior of the confluent hypergeometric function. ��
Remark 2.4 It follows from Proposition 2.3(e) and Appendix 1 that

h t (x, x) � μ
(
B
(
x,

√
t
))−1 and h t (x,−x) � μ

(
B
(
x,

√
t
))−1 t

t + x2

for every t > 0 and x ∈ R. Observe in particular that the heat kernel has no global
Gaussian behavior and decays rather slowly in certain directions. This phenomenon
is even more striking in the product case (3.1), where

h t (x, y) � μ
(
B
(
x,

√
t
))−1 t

t + |x − y|2

if t>0, x∈R
n , and y = (−x1, x2, . . . , xn).

Let us introduce a variant of the heat kernel with a Gaussian behavior. Given two
smooth bump functions χ1 and χ2 on R such that

⎧
⎪⎨

⎪⎩

0 ≤ χ1≤1,

χ1=1 on
[−1,+ 1

2

]
,

suppχ1⊂[−2,+ 2
3

]
,

and

⎧
⎪⎨

⎪⎩

0 ≤ χ2≤1,

χ2=1 on
[
0,+ 1

2

]
,

suppχ2 ⊂ [−1,+1] ,
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consider the smooth cutoff function

χt (x, y) =
{

χ1
( x+y

x

)
χ2

(
t
x2

)
if x �=0 ,

0 if x=0 ,

and the truncated heat kernel

Ht (x, y) = {1− χt (x, y)} h t (x, y), ∀ t>0, ∀ x, y∈R.

Remark 2.5 The truncated heat kernel Ht (x, y) inherits the following properties of
the heat kernel h t (x, y) :

(a) Smoothness : Ht (x, y) is a C∞ function of (t, x, y)∈(0,+∞)×R
2.

(b) Nonnegativity : Ht (x, y) ≥ 0 for every t>0 and x, y∈R.
(c) Rescaling : Hλ2t (λx, λ y) = |λ|−2k−1Ht (x, y) for every λ ∈ R

∗, t > 0, and
x, y∈R.

(d) Approximation of identity : lim t↘0 Ht (x, y) |y|2k dy = δx (y) for every
x, y∈R.

Theorem 2.6 The following estimates hold for the truncated heat kernel Ht (x, y).

(a) On-diagonal estimate :

Ht (x, x) � μ
(
B
(
x,

√
t
))−1 ∀ t>0, ∀ x ∈R.

(b) Off-diagonal Gaussian estimate :

0 ≤ Ht (x, y) � μ
(
B
(
x,

√
t
))−1

e− (x−y)2

c t ∀ t>0, ∀ x, y∈R.

(c) Gradient estimate :

∣∣∣∣
∂

∂y
Ht (x, y)

∣∣∣∣ � t−
1
2 μ
(
B
(
x,

√
t
))−1

e− (x−y)2

c t ∀ t>0, ∀ x, y∈R.

(d) Lipschitz estimates :

|Ht (x, y)− Ht (x, y ′)| � μ
(
B
(
x,

√
t
))−1 | y− y ′|√

t
∀ t>0, ∀ x, y, y ′∈R,

with the following improvement, if | y−y ′| ≤ 1
2 |x−y | :

|Ht (x, y)− Ht (x, y ′)| � μ
(
B
(
x,

√
t
))−1

e− (x−y)2

c t
| y− y ′|√

t
.
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Here c denotes somepositive constant and the ballmeasure has the following behavior,
according to Appendix 1 :

μ
(
B
(
x,

√
t
)) �

{
t k+ 1

2 if |x | ≤√
t ,

|x |2k√t if |x | ≥√
t .

Proof As far as (a), (b), (c) are concerned, the case x = 0 follows immediately from
the previous heat kernel estimates. Thus we may assume that x �= 0 and reduce
furthermore to x = 1 by rescaling. (a) is immediate:

Ht (1, 1) = h t (1, 1) �
{

t− 1
2 if t ≤1

t−k− 1
2 if t ≥1

}

� μ
(
B
(
1,

√
t
))−1

.

Let us next prove (b) (Fig. 1).

• Case 1. Assume that |y|≤ t .
◦ Subcase 1.1. Assume that t is bounded above, say t ≤ 1

2 . Then

Ht (1, y) ≤ h t (1, y) � t−k− 1
2 e− 1+y2

4 t = t−
1
2 e− (1−y)2

8 t t−k e− 1+y2

8 t e− y
4 t

is bounded above by

μ
(
B
(
1,

√
t
))−1

e− (1−y)2

8 t

as t
1
2 � μ(B(1,

√
t )), t−k � e

1
8 t ≤ e

1+y2

8 t , and e
y
4 t � 1.

◦ Subcase 1.2. Assume that t is bounded below, say t ≥ 1
2 . Then

Ht (1, y) ≤ h t (1, y) � t−k− 1
2 e− 1+y2

4 t = t−k− 1
2 e− (1−y)2

4 t e− y
2 t

−1
y

0−1/2

t

−2

2

1/2

1/2

Fig. 1 Cases and subcases considered in the proof of Theorem 2.6(b)
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with t k+ 1
2 � μ(B(1,

√
t )) and e

y
2 t � 1.

• Case 2. Assume that y is close to −x =−1, say −2 ≤ y ≤− 1
2 .

◦ Subcase 2.1. If t ≤ 1
2 (≤− y ), then

Ht (1, y) = 0 .

◦ Subcase 2.2. If t is bounded below, say t ≥ 1
2 , we argue as in Subcase 1.2.

• Case 3. Assume that y ≥ t .
◦ Subcase 3.1. Assume that t is bounded below, say ( y≥)t≥ 1

2 . Then

Ht (1, y) ≤ h t (1, y) � t−
1
2 y−k e− (1−y)2

4 t ≤ t−k− 1
2 e− (1−y)2

4 t

with t k+ 1
2 � μ(B(1,

√
t )).

◦ Subcase 3.2. Assume that y ≥ 1
2 ≥ t . Then

Ht (1, y) ≤ h t (1, y) � t−
1
2 y−k e− (1−y)2

4 t � t−
1
2 e− (1−y)2

4 t

with t
1
2 � μ(B(1,

√
t )).

◦ Subcase 3.3. Assume that t ≤ y ≤ 1
2 . Then

Ht (1, y) ≤ h t (1, y) � t−
1
2 y−k e− (1−y)2

4 t

is bounded above by

μ
(
B
(
1,

√
t
))−1

e− (1−y)2

8 t

as t
1
2 � μ(B(1,

√
t )) and y−k ≤ t−k � e

1
32 t ≤ e

(1−y)2

8 t .
• Case 4. Assume that y ≤ −t (< 0) and that y stays away from −1, say y /∈
(−2,− 1

2

)
. Notice that (1+y)2≥ (1− y)2

9 if and only if y /∈(−2,− 1
2

)
.

◦ Subcase 4.1. Assume that 2 ≤ t ≤− y . Then

Ht (1, y) ≤ h t (1, y) � t
1
2 (− y)−k−1 e− (1+y)2

4 t ≤ t−k− 1
2 e− (1−y)2

36 t

with t k+ 1
2 � μ(B(1,

√
t )).

◦ Subcase 4.2. Assume that t ≤ 2 ≤− y . Then

Ht (1, y) ≤ h t (1, y) � t
1
2 (− y)−k−1 e− (1+y)2

4 t � t−
1
2 e− (1−y)2

36 t

with t
1
2 � μ(B(1,

√
t )).
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◦ Subcase 4.3. Assume that t ≤− y ≤ 1
2 . Then

Ht (1, y) ≤ h t (1, y) � t
1
2 (− y)−k−1 e− (1+y)2

4 t ≤ t−k− 1
2 e− (1+y)2

8 t e− (1−y)2

72 t

is bounded above by

μ(B(1,
√
t ))−1 e− (1−y)2

72 t

as t
1
2 � μ(B(1,

√
t )) and t−k � e

1
32 t ≤ e

(1+y)2

8 t .

The proof of (c) follows the same pattern. To begin with, observe that the derivative

∂
∂y

{
1−χ1(1+ y) χ2(t)

︸ ︷︷ ︸
χ t (1, y)

} = −χ ′
1(1+ y) χ2(t)

of the cut-off is bounded and vanishes unless y ∈ (−3,−2) ∪ (− 1
2 , 0

)
and

t ≤ 1. According to the subcases 1.1, 4.2, and 4.3 above, the contribution of
∂
∂y {1−χt (1, y)} h t (1, y) to ∂

∂y Ht (1, y) is bounded by

μ
(
B
(
1,

√
t
))−1

e− (1−y)2

c t ≤ t−
1
2 μ
(
B
(
1,

√
t
))−1

e− (1−y)2

c t .

Thus it remains to estimate the contribution of {1−χt (1, y)} ∂
∂y h t (1, y).

• Case 1. Assume that |y|≤ t .
◦ Subcase 1.1. Assume that t ≤ 1

2 . Then

{1−χt (1, y)}
∣∣∣∣

∂

∂y
h t (1, y)

∣∣∣∣ � t−k− 3
2 (1+|y|) e− 1+y2

4 t

�

bounded
︷ ︸︸ ︷

t−k− 1
2 e− 1+y2

8 t e− y
4 t t−1e− (1−y)2

8 t

� t−
1
2 μ
(
B
(
1,

√
t
))−1

e− (1−y)2

8 t .

◦ Subcase 1.2. Assume that t ≥ 1
2 . Then

{1−χt (1, y)}
∣∣∣
∣

∂

∂y
h t (1, y)

∣∣∣
∣ � t−k− 3

2 (1+|y|) e− 1+y2

4 t

� t−k−1e− (1−y)2

8 t

bounded
︷ ︸︸ ︷
(
1 + y2

t

)1
2

e− 1+y2

8 t e− y
4 t

� t−
1
2 μ
(
B
(
1,

√
t
))−1

e− (1−y)2

8 t .
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• Case 2. Assume that −2 ≤ y ≤− 1
2 .

◦ Subcase 2.1. If t ≤ 1
2 (≤− y ), then

{1−χt (1, y)} ∂

∂y
h t (1, y) = 0 .

◦ Subcase 2.2. If t is bounded below, say t ≥ 1
2 , we argue as in Subcase 1.2.

• Case 3. Assume that y ≥ t .
◦ Subcase 3.1. Assume that ( y≥)t≥ 1

2 . Then

{1−χt (1, y)}
∣
∣∣∣

∂

∂y
h t (1, y)

∣
∣∣∣ �

{
t−

3
2 |1−y |+ t−

1
2 y−1

}
y−k e− (1−y)2

4 t

� t−k−1 e− (1−y)2

8 t

{
1+ |1 − y |√

t
e− (1−y)2

8 t

}

︸ ︷︷ ︸
bounded

� t−
1
2 μ
(
B
(
1,

√
t
))−1

e− (1−y)2

8 t .

◦ Subcase 3.2. Assume that y ≥ 1
2 ≥ t . Then

{1−χt (1, y)}
∣∣
∣∣

∂

∂y
h t (1, y)

∣∣
∣∣ �

{
t−

3
2 |1−y |+ t−

1
2 y−1

}
y−k e− (1−y)2

4 t

� t−1 e− (1−y)2

8 t

{√
t + |1 − y|√

t
e− (1−y)2

8 t

}

︸ ︷︷ ︸
bounded

� t−
1
2 μ
(
B
(
1,

√
t
))−1

e− (1−y)2

8 t .

◦ Subcase 3.3. Assume that t ≤ y ≤ 1
2 . Then

{1−χt (1, y)}
∣∣∣
∣

∂

∂y
h t (1, y)

∣∣∣
∣ �

{
t−

3
2 |1−y |+ t−

1
2 y−1

}
y−k e− (1−y)2

4 t

� t−1 e− (1−y)2

8 t t−k− 1
2 e− 1

32 t

︸ ︷︷ ︸
bounded

� t−
1
2 μ
(
B
(
1,

√
t
))−1

e− (1−y)2

8 t .

• Case 4. Assume that y ≤ −t (< 0) and that y /∈ (−2,− 1
2

)
. Recall that (1+ y)2 ≥

(1− y)2

9 if and only if y /∈(−2,− 1
2

)
.
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◦ Subcase 4.1. Assume that 2 ≤ t ≤− y . Then

{1−χt (1, y)}
∣∣∣∣

∂

∂y
h t (1, y)

∣∣∣∣ �
{
t−

1
2 |1+y |+ t

1
2
1 + |y|

|y|
}

|y|−k−1 e− (1+y)2

4 t

� t−k−1 e− (1+y)2

8 t
|1 + y|√

t
e− (1+y)2

8 t

︸ ︷︷ ︸
bounded

� t−
1
2 μ
(
B
(
1,

√
t
))−1

e− (1−y)2

72 t .

◦ Subcase 4.2. Assume that t ≤ 2 ≤− y . Then

{1−χt (1, y)}
∣∣∣∣

∂

∂y
h t (1, y)

∣∣∣∣ �
{
t−

1
2 |1+y |+ t

1
2
1 + |y|

|y|
}

|y|−k−1 e− (1+y)2

4 t

� t−1 e− (1+y)2

8 t

{ |1 + y|√
t

e− (1+y)2

8 t +√
t

}

︸ ︷︷ ︸
bounded

� t−
1
2 μ
(
B
(
1,

√
t
))−1

e− (1−y)2

72 t .

◦ Subcase 4.3. Assume that t ≤− y ≤ 1
2 . Then

χt (1, y)

∣∣∣∣
∂

∂y
h t (1, y)

∣∣∣∣ �
{
t−

1
2 |1+y |+ t

1
2
1 + |y|

|y|
}

|y|−k−1 e− (1+y)2

4 t

� t−1 e− (1+y)2

8 t t−k− 1
2 e− 1

32 t

︸ ︷︷ ︸
bounded

� t−
1
2 μ
(
B
(
1,

√
t
))−1

e− (1−y)2

72 t .

Finally, (d) is an immediate consequence of (c). For every y ′′∈[ y, y ′ ], we have indeed

e− (x−y ′′)2
c t ≤ 1 .

Moreover, if | y−y ′|≤ 1
2 |x−y |, then |x−y ′′| ≥ |x−y |−| y−y ′′| ≥ |x−y |−| y−y ′| ≥

1
2 |x−y |, hence

e− (x−y ′′)2
c t ≤ e− (x−y)2

4c t .

��
Remark 2.7 Contrarily to h t (x, y), Ht (x, y) is not symmetric in the space variables
x, y . Nevertheless, according to the following result, we may replace μ(B(x,

√
t ))

by μ(B(y,
√
t )) in the estimates (b), (c) and in the second estimate (d).
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Lemma 2.8 For every ε>0 , there exists C>0 such that

μ
(
B
(
x,

√
t
))

μ
(
B
(
y,

√
t
)) ≤ C e ε

(x−y)2

t , ∀ x, y∈R, ∀ t>0.

Proof By rescaling (see Appendix 1), we can reduce to the case t =1. The estimate

μ(B(x, 1))

μ(B(y, 1))
� eε(x−y)2

is obvious if x and y are bounded or if |x |/|y| is bounded from above. In the remaining
case, let us say, when |x |≥1+2|y|, we have |x | ≤ |x−y|+|y| ≤ |x−y|+ 1

2 |x |, hence
|x | ≤ 2 |x−y|. Furthermore, as |x−y| ≥ |x |−|y| ≥ 1, we have |x | ≤ 2 (x−y)2. Thus

μ(B(x, 1))

μ(B(y, 1))
� μ(B(x, 1)) � (|x |+1)2k � e

ε
2 |x | � e ε(x−y)2 .

��

The next proposition, whichwill be used in the proof of Theorem 1.8, shows that the
truncated heat kernel Ht (x, y) captures the main features of the heat kernel h t (x, y).

Proposition 2.9 The maximal operator

Q∗ f (x) = sup t>0

∣
∣∣∣

∫

R

dμ(y) Qt (x, y) f (y)

∣
∣∣∣ ,

associated with the error

Qt (x, y) = h t (x, y)− Ht (x, y) = χt (x, y) h t (x, y) ≥ 0 ,

is bounded from L1(R, dμ) into itself.

Proof It suffices to check that

sup y∈R

∫

R

dμ(x) sup t>0 Qt (x, y) < +∞ .

The case y = 0 is trivial, as χt (x, 0) and hence Qt (x, 0) vanish, for every t >0 and
x ∈ R. Consider next the case y ∈ R

∗, which reduces to y = 1 by rescaling. Then
χt (x, 1) and Qt (x, 1) vanish, unless t < 9 and −3< x <− 1

3 , and in this range (see
Proposition 2.3)

h t (x, 1) � t
1
2 e− (x+1)2

4 t
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is bounded. Hence

∫

R

dμ(x) sup t>0 Qt (x, 1) �
∫ − 1

3

−3
dx sup0<t<9 h t (x, 1) < +∞ .

��

3 Heat Kernel Estimates in the Product Case

According to (1.5) and (1.2), the heat kernel in the product case splits up into one-
dimensional heat kernels:

h t (x, y) =
∏ n

j=1
h( j)
t (x j , y j ) . (3.1)

By expanding

h( j)
t (x j , y j ) = {1−χ t (x j , y j )} h( j)

t (x j , y j )︸ ︷︷ ︸
H ( j)

t (x j , y j )

+ χ t (x j , y j ) h
( j)
t (x j , y j )︸ ︷︷ ︸

Q( j)
t (x j , y j )

,

we get

h t (x, y) = H t (x, y) + Pt (x, y).

Here

H t (x, y) =
∏ n

j=1
H ( j)

t (x j , y j )

and Pt (x, y) is the sum of all possible products

P̃t (x, y) =
∏ n

j=1
p( j)
t (x j , y j ) ,

where each factor p( j)
t (x j , y j ) is equal to H ( j)

t (x j , y j ) or Q( j)
t (x j , y j ), and at least

one factor p( j)
t (x j , y j ) is equal to Q( j)

t (x j , y j ). Notice the rescaling property

hλ2t (λx, λy) = |λ|−N h t (x, y) ∀ λ∈R
∗, ∀ t>0, ∀ x, y∈R

n,

and similarly for the other product kernels. The following estimates follow from the
one-dimensional case (see Theorem 2.6 and Remark 2.7).

Theorem 3.2 (a) On-diagonal estimate :

H t (x, x) � μ
(
B
(
x,

√
t
))−1

, ∀ t>0, ∀ x∈R
n .
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(b) Off-diagonal Gaussian estimate :

0 ≤ H t (x, y) � max
{
μ
(
B
(
x,

√
t
))

, μ
(
B
(
y,

√
t
))}−1

e− |x−y |2
c t

for every t>0 and for every x, y∈R
n.

(c) Gradient estimate :

|∇y H t (x, y)| � t−
1
2 max

{
μ
(
B
(
x,

√
t
))

, μ
(
B
(
y,

√
t
))}−1

e− |x−y |2
c t

for every t>0 and x, y∈R
n.

(d) Lipschitz estimates :

|H t (x, y)− H t (x, y ′)| � μ
(
B
(
x,

√
t
))−1 |y − y ′|√

t
,

for every t > 0 and x, y, y ′∈ R
n, with the following improvement, if |y−y ′| ≤

1
2 |x−y| :

|H t (x, y)− H t (x, y ′)|� max
{
μ
(
B
(
x,

√
t
))

, μ
(
B
(
y,

√
t
))}−1

e− |x−y |2
c t

|y − y ′|√
t

.

Let us turn to the analog of Proposition 2.9 in the product case.

Proposition 3.3 The maximal operator

P∗ f (x) = sup t>0

∣∣∣∣

∫

Rn
dμ(y) Pt (x, y) f (y)

∣∣∣∣

is bounded from L1(Rn, dμ) into itself.

Proof We will show again that

sup y∈Rn

∫

Rn
dμ(x) sup t>0 Pt (x, y) < +∞ ,

but the proof will be more involved in the product case than in the one-dimensional
case. Let us begin with some observations. First of all, by using the symmetries

H ( j)
t (x j , y j ) = H ( j)

t (−x j ,−y j ) and Q( j)
t (x j , y j ) = Q( j)

t (−x j ,−y j )

and by interchanging variables, we may reduce to products of the form

P̃t (x, y) = Q(1)
t (x1, y1) · · · Q(n ′)

t (xn ′, yn ′)
︸ ︷︷ ︸

Q ′
t (x ′,y ′)

H (n ′+1)
t (xn ′+1, yn ′+1) · · · H (n)

t (xn, yn)︸ ︷︷ ︸
H ′′

t (x ′′,y ′′)

,
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where 1 ≤ n ′ ≤ n and 0 ≤ y1 ≤ · · · ≤ yn ′ . Next we may assume that, for every
1≤ j ≤ n ′,

y j > 0 , −3 y j < x j <− 1

3
y j and x2j > t ,

because otherwise χ t (x j , y j ) and hence Q( j)
t (x j , y j ) vanish. By rescaling, we may

reduce to the case y1 = 1. Consequently, t is bounded by x 2
1 < 9 y 21 = 9 and each

factor Q( j)
t (x j , y j ) is bounded by

t
1
2 (−x j y j )

−k j−1 e− (x j+ y j )
2

4 t 1I (−3 y j ,− 1
3 y j

)(x j ) � t
1
2 y

−2k j−2
j 1I (−3 y j ,− 1

3 y j
)(x j ) .

Thus, on the one hand, the integral

I ′(y ′) =
∫

Rn′dμ
′(x ′) sup t>0 t

− n′
2 Q ′

t (x
′, y ′)

�
∫ − 1

3

−3
dμ1(x1) y

−2k2−2
2

∫ − 1
3 y2

−3 y2
dμ2(x2) · · · y

−2kn′−2
n ′

∫ − 1
3 yn ′

−3 yn ′
dμn ′(xn ′)

is bounded, uniformly in y ′. On the other hand, let us prove the uniform boundedness
of

I ′′(y ′′) =
∫

Rn′′dμ
′′(x ′′) sup0<t<9 t

n′
2 H ′′

t (x
′′, y ′′) ,

when n ′′ = n− n ′ >0. For this purpose, let us deduce from the Gaussian estimate

H ′′
t

(
x ′′, y ′′) � μ ′′(B

(
y ′′,

√
t
))−1

e− |x ′′−y ′′ |2
c t

that

sup0<t<9 t
n′
2 H ′′

t

(
x ′′, y ′′) �

∣∣x ′′− y ′′∣∣ μ ′′(B
(
y ′′,
∣∣x ′′− y ′′∣∣ ))−1

e− |x ′′−y ′′ |2
18 c .

Assume first that
∣∣x ′′− y ′′∣∣≥√

t with 0< t<9. Then, by using (6.2),

t
n′
2 H ′′

t

(
x ′′, y ′′) � t

n′
2

μ ′′(B
(
y ′′,

∣∣x ′′ − y ′′∣∣ ))

μ ′′(B
(
y ′′,

√
t
)) μ ′′(B

(
y ′′,
∣∣x ′′− y ′′∣∣ ))−1

e−|x ′′−y ′′|2
c t

�
∣∣x ′′− y ′′∣∣

(∣∣x ′′ − y ′′∣∣
√
t

)N ′′

e−|x ′′−y ′′|2
2 c t

︸ ︷︷ ︸
�1

μ ′′(B
(
y ′′,
∣∣x ′′− y ′′∣∣ ))−1

e−|x ′′−y ′′|2
18 c .
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Assume next that 0 < |x ′′− y ′′| ≤√
t (≤ 3). Then, by using (6.2) again,

t
n′
2 H ′′

t

(
x ′′, y ′′) � t

n′
2

�
( |x ′′−y ′′|√

t

)n′′

︷ ︸︸ ︷
μ ′′ (B

(
y ′′,

∣
∣x ′′ − y ′′∣∣))

μ ′′ (B
(
y ′′,

√
t
)) μ ′′ (B

(
y ′′,
∣∣x ′′− y ′′∣∣))−1

� 1
︷ ︸︸ ︷

e−|x ′′−y ′′|2
c t

� t
n′−1
2

︸︷︷︸
� 1

(∣
∣x ′′ − y ′′∣∣

√
t

)n′′−1

︸ ︷︷ ︸
� 1

∣∣x ′′− y ′′∣∣ μ ′′ (B
(
y ′′,
∣∣x ′′− y ′′∣∣))−1

e−|x ′′−y ′′|2
18 c

︸ ︷︷ ︸
� 1

.

Now that we have estimated t
n′
2 H ′′

t

(
x ′′, y ′′), let us split up the integral

I ′′(y ′′) =
∑

j∈Z
I ′′
j

(
y ′′)

according to thedecomposition R
n′′
�{0}=⊔ j∈Z

{
x ′′∈R

n′′ | 2 j− 1
2≤|x ′′−y ′′|<2 j+ 1

2

}

︸ ︷︷ ︸
� j

.

Let us show that

| I ′′
j (y

′′)| � 2−| j | .

If j ≥ 0, we have indeed

I ′′
j

(
y ′′) �

∫

� j

dμ′′ (x′′)μ ′′ (B
(
y ′′,
∣∣x ′′− y ′′∣∣))−1

︸ ︷︷ ︸
� μ ′′(B(y ′′,2 j))

−1

∣∣x ′′− y ′′∣∣ e−|x ′′−y ′′|2
18 c

︸ ︷︷ ︸
� 2− j

�
μ ′′ (� j

)

μ ′′ (B
(
y ′′, 2 j

))

︸ ︷︷ ︸
� 1

2− j ,

and, if j ≤ 0,

I ′′
j

(
y ′′) �

∫

� j

dμ′′ (x′′)μ ′′ (B
(
y ′′,
∣
∣x ′′− y ′′∣∣))−1

︸ ︷︷ ︸
� μ ′′(B(y ′′,2 j))

−1

∣
∣x ′′− y ′′∣∣
︸ ︷︷ ︸

� 2 j

e−|x ′′−y ′′|2
18 c

︸ ︷︷ ︸
� 1

�
μ ′′ (� j

)

μ ′′ (B
(
y ′′, 2 j

))

︸ ︷︷ ︸
� 1

2 j .

By summing up over j ∈Z, we obtain the uniform boundedness of I ′′ (y ′′). ��
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4 Proof of Theorem 1.8

Theorem 1.8 relies on the following result due to Uchiyama [25].

Theorem 4.1 Assume that a set X is equipped with

• a quasi-distance d̃ , i.e., a distance except that the triangular inequality is replaced
by the weaker condition

d̃ (x, y) ≤ A {d̃ (x, z) + d̃ (z, y)} ∀ x, y, z∈ X ,

• a measure μ whose values on quasi-balls satisfy

r

A
≤ μ

(
B̃ (x, r)

) ≤ r ∀ x ∈ X , ∀ r >0 ,

• a continuous kernel Kr (x, y)≥0 such that, for every r >0 and x, y, y ′∈ X,

◦ Kr (x, x) ≥ 1
A r ,

◦ Kr (x, y) ≤ r−1
(
1+ d̃ (x, y)

r

)−1−δ

,

◦ ∣
∣Kr (x, y)− Kr (x, y ′)

∣
∣ ≤ r−1

(
1+ d̃ (x, y)

r

)−1−2δ ( d̃ (y, y ′)
r

)δ
when

d̃ (y, y ′)≤ r+ d̃ (x, y)
4 A .

Here A≥1 and δ>0 . Let us introduce the following definitions :

• an atom is a measurable function a : X → C such that

a is supported in a quasi-ball B̃ , ‖a‖L∞(X, dμ) � μ(B̃)−1and
∫

X
dμ a = 0,

• the atomic Hardy space H1
atom(X, μ, d̃ ) consists of all functions f ∈ L1(X, dμ)

which can be written as

f =
∑

�
λ� a� , (4.2)

where the a�’s are atoms and the λ�’s are complex numbers such that
∑

� |λ�|<
+∞,

• the atomic norm is given by

‖ f ‖H1
atom(X,μ, d̃ ) = inf

∑

�
|λ�| , (4.3)

where the infimum is taken over all representations (4.2),
• themaximalHardy space H1

max(X, μ, Kr ) consists of all functions f ∈ L1(X, dμ)

such that

K∗ f (x) = sup r>0

∣∣∣∣

∫

X
dμ(y) Kr (x, y) f (y)

∣∣∣∣
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belongs to L1(X, dμ).

Then H1
atom(X, μ, d̃ ) coincides with H1

max(X, μ, Kr ), and (4.3) is comparable to the
maximal norm ‖K∗ f ‖L1(X, dμ).

We now adapt Uchiyama’s Theorem to our setting. For X = R
n , equipped with the

Euclidean distance d (x, y) = |x − y| and the measure (1.4), set

d̃ (x, y) = inf μ(B) ∀ x, y∈R
n,

where the infimum is taken over all closed balls B containing x and y, and

Kr (x, y) = H t (x, y), ∀ r >0, ∀ x, y∈R
n, (4.4)

where t = t (x, r) is defined by μ
(
B
(
x,

√
t
)) = r . In Appendices 2 and 3, we

check that
(
X,μ, d̃, Kr

)
satisfy the assumptions of Uchiyama’s theorem with δ = 1

N .
Actually the conditions in Theorem 4.1 are obtained up to constants, and they can be
achieved by considering suitable multiples of μ and Kr (x, y). Thus the conclusion
of Uchiyama’s theorem holds for the quasi-distance d̃ and for the maximal operator
K∗ .

On the one hand, d and d̃ define the same atomic Hardy space H1
atom , with equiv-

alent norms, as balls and quasi-balls are comparable. Let us elaborate. For every
x, y∈R

n and t>0, we have

|x − y| ≤ √
t �⇒ d̃ (x, y) ≤ r �⇒ |x − y| �

√
t ,

where r = μ
(
B
(
x,

√
t
))
. The first implication is an immediate consequence of

the definition of d̃ and the second one is obtained by combining Lemma 6.4(b) in
Appendix 2 with (6.2) in Appendix 1. Hence, there exists a constant c>0 such that

B(x,
√
t ) ⊂ B̃(x, r) ⊂ B(x, c

√
t ),

and these sets have comparable measures, according to Appendix 1.
On the other hand, the maximal operators K∗ and H∗ coincide, and they define

the same maximal Hardy space H1
max , with equivalent norms, as the heat maximal

operator h∗ (see (1.7)), according to Propositions 2.9 and 3.3. Indeed, for every
f ∈ L1(Rn, dμ), the integrals

∫

Rn
dμ(x) h∗ f (x) and

∫

Rn
dμ(x) H∗ f (x)

differ atmost by amultiple of ‖ f ‖L1(Rn , dμ),which is itself controlled by either integral
above, as h t (x, y) dμ(y) and H t (x, y) dμ(y) are approximations of the identity.

In conclusion, the atomic Hardy space H1
atom associated with Euclidean balls coin-

cides with the Hardy space H1
max defined by the heat maximal operator h∗ . �
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5 Proof of Theorem 1.10

The proof of Theorem 1.10 requires someweighted estimates inDunkl analysis, which
are well-known in the Euclidean setting corresponding to k = 0 . Let us first prove a
weak analog of the Euclidean estimate

‖(1+|ξ |)σ f̂ (ξ)‖L1(d ξ) � ‖ f ‖
W σ +n/2+ε

2
.

Lemma 5.1 For every �∈N and r >0 , there is a constant C = C�,r >0 such that

sup ξ∈Rn (1+|ξ |)� |F f (ξ)| ≤ C ‖ f ‖C�

for every f ∈C�(Rn) with supp f ⊂ B(0, r).

Proof By using the Riemann–Lebesgue lemma for the Fourier transform (1.9), we get

sup ξ∈Rn (1+|ξ |)� |F f (ξ)| � sup ξ∈Rn

(
1+

∑ n

j=1
|ξ j |�

)
|F f (ξ)|

≤ ‖ f ‖L1(dμ) +
∑ n

j=1
‖D �

j f ‖L1(dμ) .

The last expression is bounded by ‖ f ‖C� as, by induction on �, supp(D �
j f )⊂ B(0, r)

and ‖D �
j f ‖L∞ � ‖ f ‖C� . ��

Corollary 5.2 For every �∈N, r >0, and ε >0 , there is a constant C = C�,r,ε >0
such that

‖(1+|ξ |)�−N/2−εF f (ξ)‖L2(dμ(ξ)) ≤ C ‖ f ‖
W �+n/2+ε

2
,

for every f ∈W �+n/2+ε
2 (Rn) with supp f ⊂ B(0, r), where N denotes the homoge-

neous dimension (1.6).

Proof This result is deduced from Lemma 5.1, by using on the left-hand side the
finiteness of the integral

∫

Rn
dμ(ξ) (1+|ξ |)−N−2ε

and on the right-hand side the Euclidean Sobolev embedding theorem. ��
Proposition 5.3 For every σ >0 , r >0, and ε >0 , there is a constant C = Cσ,r,ε >0
such that

‖(1+|ξ |)σ F f (ξ)‖L2(dμ(ξ)) ≤ C ‖ f ‖W σ +ε
2

for every f ∈W σ +ε
2 (Rn) with supp f ⊂ B(0, r).
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Proof Let χ ∈C∞
c (Rn). Following an argument due to Mauceri and Meda [13], this

result is obtained by interpolation between the L2 estimate

‖F(χ f )‖L2(dμ) = const. ‖χ f ‖L2(dμ) � ‖ f ‖L2(dx) ,

which is deduced from Plancherel’s formula, and the following estimate for � ∈ N

large, which is deduced from Corollary 5.2:

‖(1+|ξ |)�−N/2−ε ′F(χ f )(ξ)‖L2(dμ(ξ)) � ‖χ f ‖
W �+n/2+ε ′

2
� ‖ f ‖

W �+n/2+ε ′
2

.

��
By using the Cauchy–Schwarz inequality, we deduce finally the following result.

Corollary 5.4 For every σ >0 , r >0, and ε >0 , there is a constant C = Cσ,r,ε >0
such that

∫

Rn
dμ(ξ) (1+|ξ |)σ |F f (ξ)| ≤ C ‖ f ‖

W σ +N/2+ε
2

for every f ∈W σ +N/2+ε
2 (Rn) with supp f ⊂ B(0, r).

Let us next prove analogs in the Dunkl setting of the Euclidean estimates

∫

Rn
dx (1+|x|)δ | f ∗ g(x)| ≤

∫

Rn
dz (1+|z|)δ | f (z)|

∫

Rn
dy (1+|y|)δ |g(y)|

and

∫

Rn�B(y,r)
dx | f (x−y)| � r−δ ‖(1+|x|)δ f (x)‖L1(dx) .

Recall that Dunkl translations are defined via the Fourier transform (1.9) by

(τy f )(x) = c−1
k

∫

Rn
dμ(ξ)F f (ξ) E(x, i ξ ) E(y, i ξ )

(see [17,19,23,24]) and have an explicit integral representation

(τy f )(x) =
∫

Rn
dνx,y(z) f (z)

in dimension 1 (see [2,16,23]) and hence in the product case. Specifically,

dνx,y(z) = d ν (1)
x1,y1(z1) · · · dν (n)

xn ,yn(zn) ,
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where

dν
( j)
x j ,y j(z j ) =

⎧
⎪⎨

⎪⎩

ν j (x j , y j , z j ) |z j |2k j dz j if x j , y j ∈ R
∗,

dδy j(z j ) if x j = 0,

dδx j(z j ) if y j = 0,

and

ν j (x j , y j , z j ) = �(k j + 1
2 )√

π 22k j �(k j )

(x j + y j + z j )(−x j + y j + z j )(x j − y j + z j )

x j y j z j

× {(|x j |+| y j |+|z j |)(−|x j |+| y j |+|z j |)(|x j |−| y j |+|z j |)(|x j |+| y j |−|z j |)}k j−1

|x j y j z j |2k j−1

× 1I [∣∣∣|x j |−| y j |
∣
∣∣, |x j |+| y j |

] (|z j |) .

Thus νx,y is a signed measure which is supported in the product

I x,y = Ix1, y1 × · · · × Ixn , yn

of the one-dimensional sets

Ix j , y j =
{
z j ∈R |

∣∣
∣∣|x j |− |y j |

∣∣
∣∣≤ |z j | ≤ |x j |+ |y j |

}

=
[
−|x j |−|y j |,−

∣∣∣∣|x j |−|y j |
∣∣∣∣

]
∪
[∣∣∣∣|x j |−|y j |

∣∣∣∣, |x j |+|y j |
]

and which is generically given by

dνx,y(z) = ν1(x1, y1, z1) · · · νn(xn, yn, zn)︸ ︷︷ ︸
ν(x,y,z)

dμ(z) .

Moreover, it is known (see [2,16,23]) that

sup x,y∈Rn |νx,y |(Rn) < +∞ .

Lemma 5.5 For every δ ≥ 0 , L1((1+|x|)δ dμ(x)) is an algebra with respect to the
Dunkl convolution product

f ∗ g(x) =
∫

Rn
dμ(y) (τ−y f )(x) g(y).

Proof By using the symmetries

ν(x,−y, z) = ν(−z,−y,−x) = ν(z, y, x) ,
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we have

f ∗ g(x) =
∫

Rn
dμ(z) f (z)

∫

Rn
dμ(y) g(y) ν(z, y, x) .

We conclude by estimating

∫

Iz,y

dμ(x) (1+|x|)δ |ν(z, y, x)| � (1+|z|)δ (1+|y|)δ .

��
Lemma 5.6 For every δ > 0 , there is a constant C > 0 such that, for every y ∈ R

n

and r >0 ,
∫

Rn�O(y,r)
dμ(x)

∣∣(τ−y f )(x)
∣∣ ≤ C r−δ ‖ f ‖L1((1+|x|)δdμ(x)),

where

O(y, r) = {
x∈R

n | ∣∣|x j |− |y j |
∣∣≤ r, ∀ 1≤ j ≤ n

}

is the orbit of the cube Q(y, r) = ∏n
j=1 B(y j , r) under the group generated by the

reflections (1.1).

Proof As R
n
�O(y, r) is contained in the union of the sets

A j = {
x∈R

n | ∣∣|x j |− |y j |
∣∣> r

}
( j = 1, . . . , n ),

we have
∫

Rn�O(y,r)
dμ(x)

∣∣(τ−y f )(x)
∣∣ ≤

∑ n

j=1

∫

A j

dμ(x)

∫

Ix,y

dμ(z) |ν(x,−y, z)| | f (z)| .

As

|z| ≥ |z j | ≥ ∣
∣|x j |− |y j |

∣
∣ > r

when x∈ A j and z∈Ix,y , the latter expression is bounded above by

r−δ

∫

Rn
dμ(z) |z|δ | f (z)|

∫

Rn
dμ(x) |ν(x,−y, z)| .

We conclude by using the uniform estimate

∫

Rn
dμ(x) |ν(x,−y, z)| =

∫

Rn
dμ(x) |ν(z, y, x)| ≤ C .

��
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Let us turn to the proof of Theorem 1.10, which consists in estimating

‖h∗(Tm a)‖L1(dμ) � M (5.7)

for every atom a in the Hardy space H1 = H1
atom . By rescaling, it suffices to prove

(5.7) for any atom a associated with a unit ball B(z, 1). As h∗ and Tm are bounded
on L2(Rn, dμ), we have

‖h∗(Tm a)‖L1(O(z,2),dμ) � M .

Thus it remains to show that

‖h∗(Tm a)‖L1(Rn�O(z,2),dμ) � M . (5.8)

For this purpose, let us introduce a dyadic partition of unity on the Dunkl transform
side. More precisely, given a smooth radial function ψ on R

n such that

suppψ ⊂ { ξ ∈R
n | 1

2
≤ |ξ | ≤ 2 } and

∑

�∈Z
ψ(2−�ξ)2 = 1, ∀ ξ ∈R

n
�{0} ,

let us split up

e− t |ξ |2m(ξ) =
∑

�∈Z
ψ(2−�ξ) e−t |ξ |2 ψ(2−�ξ)m(ξ) .

Set

mt,�(ξ) =
ψ t,�(ξ)

︷ ︸︸ ︷
ψ(ξ) e− t |2�ξ |2

m�(ξ)
︷ ︸︸ ︷
ψ(ξ)m(2�ξ),

ft,� = F−1(mt,�) = F−1(ψ t,�)︸ ︷︷ ︸
gt,�

∗ F−1(m�)︸ ︷︷ ︸
w�

.

Then e− t |ξ |2m(ξ) =
∑

�∈Z
mt,�(2−�ξ). Consider the convolution kernel

Ft,�(x, y) = τ−y F−1
{
mt,�(2

−� .)
}

(x) = 2N� (τ−2� y ft,�)(2
�x)

of the multiplier operator Tmt,�(2−� .).

Lemma 5.9 (a) On the one hand, for every 0≤δ<ε , we have

∫

Rn�O(z,2)
dμ(x) sup

t>0
|Ft,�(x, y)| � M 2−δ� , ∀ �∈Z, ∀ z∈R

n, ∀ y∈O(z, 1).
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(b) On the other hand,

∫

Rn
dμ(x) sup

t>0
|Ft,�(x, y)− Ft,�(x, y ′)| � M 2� |y−y ′| , ∀ �∈Z, ∀ y, y ′∈R

n .

Proof On the one hand, as

∣∣∣∂ α
ξ

(
ψ(ξ)e−t |ξ |2)

∣∣∣ ≤ Cα, ∀ t>0, ∀ ξ ∈R
n,

Lemma 5.1 yields the estimate

|gt,�(x)| ≤ Cd (1+|x|)−d , ∀ x∈R
n,

which holds for any d∈N and which is uniform in t>0 and �∈Z. On the other hand,
Corollary 5.4 yields the estimate

∫

Rn
dμ(x) (1+|x|)δ |w�(x)| � M ,

which holds uniformly in �∈Z. By resuming the proof of Lemma 5.5, we deduce that

∫

Rn
dμ(x) (1+|x|)δ sup

t>0
| ft,�(x)| � M . (5.10)

We reach our first conclusion by rescaling and by using Lemma 5.6:

∫

Rn�O(z,2)
dμ(x) sup

t>0
|Ft,�(x, y)| ≤

∫

Rn�O(y,1)
dμ(x) sup

t>0
|Ft,�(x, y)|

=
∫

Rn�O(2�y,2�)

dμ(x) sup
t>0

|(τ−2�y ft,�)(x)| � M 2−δ� .

Let us turn to the proof of (b). This time we factorize

mt,�(ξ) =
ψ̃ t,�(ξ)

︷ ︸︸ ︷
ψ(ξ) e |ξ |2 e− t |2�ξ |2

m�(ξ)
︷ ︸︸ ︷
ψ(ξ)m(2�ξ)

︸ ︷︷ ︸
m̃ t,�(ξ)

e−|ξ |2 ,

and accordingly

ft,� = F−1(mt,�) = F−1(m̃ t,�)︸ ︷︷ ︸
f̃t,�

∗ F−1(e−|ξ |2)
︸ ︷︷ ︸

h

.
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On the one hand, by resuming the proof of (5.10), we get

∫

Rn
dμ(x) sup

t>0
| f̃t,�(x)| � M .

On the other hand, h(x, y) = (τ−yh)(x) is the heat kernel at time t = 1, which satisfies

∫

Rn
dμ(x) |h(x, y)− h(x, y ′)| � |y − y ′|, ∀ y, y ′∈R

n,

according to the next lemma. After rescaling, we reach our second conclusion:

∫

Rn
dμ(x) sup

t>0
|Ft,�(x, y)− Ft,�(x, y ′)| � M 2� |y − y ′| .

��
Lemma 5.11 The following gradient estimate holds for the heat kernel:

∫

Rn
dμ(x) |∇y h t (x, y)| � t−

1
2 , ∀ t>0, ∀ y∈R

n .

Proof We can reduce to the one-dimensional case and moreover to t = 1 by rescal-
ing. It follows from our gradient estimates for the heat kernel in dimension 1 (see
Proposition 2.3) that

∣∣∣∣
∂

∂y
h1(x, y)

∣∣∣∣ � 1

1 + |x y|k e− 1
8 (|x |−|y|)2 .

• Case 1: Assume that |y| ≤ 2. Then |∂ y h1(x, y)| � e−x2/16, hence

∫ +∞

−∞
dx |x |2k

∣∣
∣∣

∂

∂y
h1(x, y)

∣∣
∣∣ � 1 .

• Case 2: Assume that |y| ≥ 2. Then |x |/|y| ≤ 1+ 1
2 ||x |− |y||, hence

|x |2k
∣∣∣
∣

∂

∂y
h1(x, y)

∣∣∣
∣ �

( |x |
|y|
)k

e− 1
8 (|x |−|y|)2

� (1+||x |− |y||)k e− 1
8 (|x |−|y|)2 � e− 1

16 (|x |−|y|)2

and

∫ +∞

−∞
dx |x |2k

∣∣∣
∣

∂

∂y
h1(x, y)

∣∣∣
∣ �

∫ +∞

0
dx e− 1

16 (x−|y|)2 �
∫ +∞

−∞
dz e− 1

16 z
2 � 1 .
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Conclusion of proof of Theorem 1.10 Let us split up and estimate

|h∗(Tm a)(x)| ≤
∑

�≥0
|h∗(Tψ(2−�.)2m a)(x)| +

∑

�<0
|h∗(Tψ(2−�.)2m a)(x)|

=
∑

�≥0
sup t>0

∣∣∣
∣

∫

B(z,1)
dμ(y) Ft,�(x, y) a(y)

∣∣∣
∣

+
∑

�<0
sup t>0

∣∣∣∣

∫

B(z,1)
dμ(y)

{
Ft,�(x, y)−Ft,�(x, z)

}
a(y)

∣∣∣∣

≤
∑

�≥0

∫

B(z,1)
dμ(y) |a(y)| sup t>0

∣∣Ft,�(x, y)
∣∣

+
∑

�<0

∫

B(z,1)
dμ(y) |a(y)| sup t>0

∣∣Ft,�(x, y)− Ft,�(x, z)
∣∣ .

Then (5.8) follows from Lemma 5.9. ��

Example 5.1 The Riesz transforms R j = Dj (−L)−1/2 in the Dunkl setting corre-
spond to the multipliers ξ j/|ξ |, up to a constant. Hence, by Theorem 1.10, they are
bounded operators on the Hardy space H1.
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Appendices

Appendix 1: Measure of Balls

Recall that k1, . . . , kn ≥ 0 and N = n +∑ n
j=1 2k j . On R

n , equipped with the
Euclidean distance, the product measure dμ(x) (see (1.4)) has the following rescaling
properties:

dμ(λx) = |λ|N dμ(x), ∀ λ∈R
∗

and

μ(B(λx, |λ|r)) = |λ|N μ(B(x, r)), ∀ x∈R
n, ∀ λ∈R

∗.
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Moreover,

μ(B(x, r)) � r n
∏ n

j=1
(|x j |+ r )2k j . (6.1)

Hence

(
R

r

)n
� μ(B(x, R ))

μ(B(x, r))
�
(
R

r

)N

, ∀ x∈R
n, ∀ R ≥ r > 0. (6.2)

In particular, μ is doubling, i.e.,

μ(B(x, 2r)) � μ(B(x, r)), ∀ x∈R
n, ∀ r > 0. (6.3)

Let us prove (6.1) and (6.2). In dimension n = 1, we have

μ(B(x, r)) =
∫ |x |+r

|x |−r
dy |y|2k .

On the one hand, if r ≤ |x |
2 , we deduce that

μ(B(x, r)) � |x |2k
∫ |x |+r

|x |−r
dy � |x |2k r .

On the other hand, if |x | ≤ 2r , we estimate from above

μ(B(x, r)) ≤
∫ 3r

−r
dy |y|2k � r 2k+1

and from below

μ(B(x, r)) ≥
∫ r

0
dy y 2k � r 2k+1 .

Thus μ(B(x, r))�(|x |+r)2k r in all cases and

μ(B(x, R))

μ(B(x, r))
�
( |x | + R

|x | + r

)2k R

r
�

⎧
⎪⎪⎨

⎪⎪⎩

( R
r

)2k+1
if |x | ≤ r ,

(
R
|x |
)2k

R
r if r ≤ |x | ≤ R ,

R
r if |x | ≥ R .

The product case follows from the one-dimensional case, since the ball B(x, r) and
the cube

Q(x, r) =
∏ n

j=1
B(x j , r)
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have comparable measures. More precisely, we have

Q
(

x,
r√
n

)
⊂ B(x, r) ⊂ Q(x, r),

with

μ

(
Q
(

x,
r√
n

))
� μ(Q(x, r)) � r n

∏ n

j=1
(|x j |+ r)2k j .

Appendix 2: Distances

The following result, which is used in Sect. 4, is certainly known among specialists.
We include nevertheless a proof for lack of reference and for the reader’s convenience.

Lemma 6.4 Let (X, d, μ) be a metric measure space such that balls have finite pos-
itive measure and satisfy the doubling property, i.e.,

∃ C>0, ∀ x ∈ X, ∀ r >0, μ(B(x, 2 r)) ≤ C μ(B(x, r)) .

Set

d̃ (x, y) = inf μ(B),

where the infimum is taken over all closed balls B containing x and y . Then

(a) d̃ is a quasi-distance,
(b) d̃ (x, y) � μ(B(x, d (x, y))) ∀ x, y∈ X,

Moreover, if the measure μ has no atoms and μ(X)= +∞, then

(c) μ(B̃(x, r)) � r , for every x ∈ X and r > 0 , where B̃(x, r) denotes the closed
quasi-ball with center x and radius r .

Proof Let us first prove (b). Set R = d (x, y). On the one hand, we have d̃ (x, y) ≤
μ(B(x, R)), as x and y belong to B(x, R). On the other hand, if x and y belong
to a ball B = B(z, r), then R ≤ 2 r , hence B(x, R) ⊂ B(z, 3r) and μ(B(x, R)) ≤
μ(B(z, 3r)) � μ(B(z, r)). By taking the infimum over all balls B containing both
x and y , we conclude that μ(B(x, R)) � d̃ (x, y). Let us next prove (a). For every
x, y, z∈ X , we have d (x, y) ≤ d (x, z)+d (z, y). Assume that r = d (x, z) ≥ d (z, y).
Then x, y∈ B(z, r). By using (b), we deduce that

d̃ (x, y) ≤ μ(B(z, r)) � d̃ (z, x) ≤ max
{
d̃ (x, z), d̃ (z, y)

} ≤ d̃ (x, z)+ d̃ (z, y) .

Let us finally prove (c). Given x ∈ X , notice that μ(B(x, r)) is an increasing càdlàg
function of r ∈(0,+∞) such that

{
μ(B(x, r)) ↘ 0 as r ↘ 0 ,

μ(B(x, r)) ↗ +∞ as r ↗ +∞ .
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Here we have used our additional assumptions. Let x ∈ X and r >0. On the one hand,
for every y∈ B̃(x, r), we have μ(B(x, d (x, y)) � d̃ (x, y) ≤ r . Hence

R = sup
{
d (x, y)| y∈ B̃(x, r)

}
< +∞ .

Let y ∈ B̃(x, r) such that d (x, y) ≥ R
2 . Then B̃(x, r) ⊂ B(x, R) ⊂ B(x, 2 d (x, y)).

Hence

μ(B̃(x, r)) ≤ μ (B(x, 2 d (x, y)) � μ(B(x, d (x, y)) � d̃ (x, y) ≤ r .

On the other hand,

T = inf {t>0 | μ(B(x, t))≥r } > 0 .

As μ(B(x, T/2)), we have d̃ (x, y)<r for every y∈ B(x, T/2), hence B(x, T/2)⊂
B̃(x, r). Consequently,

r ≤ μ(B(x, T )) � μ

(
B

(
x,

T

2

))
≤ μ(B̃(x, r)).

��

Appendix 3: Kernel bounds

Recall from Sect. 4 that the kernels Kr (x, y) and H t (x, y) are related by (4.4). In
this appendix, we check that the Gaussian estimates of H t (x, y) in Theorem 3.2 imply
the estimates of Kr (x, y) required in Uchiyama’s theorem (Theorem 4.1). This result
is certainly well known among specialists. We include nevertheless a proof for lack
of reference and for the reader’s convenience.

According to Appendices 1 and 2, we may consider the quasi-distance d̃ on R
n

associated with the Euclidean distance d (x, y) = |x − y| and the product measure
(1.4). The on-diagonal lower estimate

Kr (x, x) ≥ C1

r

is an immediate consequence of Theorem 3.2(a). For every δ>0, the upper estimate

Kr (x, y) ≤ C2

r

(
1+ d̃ (x, y)

r

)−1−δ

(6.5)

follows from Theorem 3.2(b), more precisely by combining

Kr (x, y) � r−1 e− |x−y |2
c t
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with

(
1+ d̃ (x, y)

r

)1+δ

≤
(
1+μ(B(x, |x−y|))

μ(B(x,
√
t ))

)1+δ

�
(
1+|x−y|√

t

)N(1+δ)

� e
|x−y |2

c t .

(6.6)

The main problem consists in checking the following Lipschitz estimate.

Lemma 6.7 There exists C3>0, and, for every δ>0 , there exists C4>0 such that

∣∣Kr (x, y)− Kr (x, y ′)
∣∣ ≤ C4

r

(
1+ d̃ (x, y)

r

)−1−δ (
d̃ (y, y ′)

r

) 1
N

(6.8)

if d̃ (y, y ′) ≤ C3 max {r, d̃ (x, y)}.
Proof Let us begin with some observations. First of all, (6.8) follows from (6.5), as
long as d̃ (y, y ′) � r . In this case, we have indeed

1 + d̃ (x, y)

r
� 1 + d̃ (x, y ′)

r
.

Next, notice that

{
|x − y| � √

t ⇐⇒ d̃ (x, y) � r ,

|x − y| � √
t ⇐⇒ d̃ (x, y) � r .

This follows indeed from (6.2) and the estimates

d̃ (x, y)

r
� μ(B(x, |x − y|))

μ(B(x,
√
t ))

.

Similarly, we have

|y − y ′| � |y − x| ⇐⇒ d̃ (y, y ′) � d̃ (y, x).

In particular, there exists C3>0 such that

|y − y ′| ≤ 1

2
|x − y| if d̃ (y, y ′) ≤ C3 d̃ (x, y).

Let us turn to the proof of (6.8) and assume first that d̃ (x, y) ≥ r . In this case,
|x −y| �√

t and d̃ (y, y ′) ≤ C3 d̃ (x, y), hence |y −y ′| ≤ 1
2 |x −y|. Thus, according

to Theorem 3.2(d),

|Kr (x, y)− Kr (x, y ′)| = |H t (x, y)− H t (x, y ′)|
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is bounded above by

μ
(

B
(

x,
√
t
))−1

e− |x−y |2
c t

|y − y ′|√
t

.

After substituting r = μ
(
B
(
x,

√
t
))

and estimating

(
1+ d̃ (x, y)

r

)1+δ

� e
|x−y |2
2 c t

as in (6.6), it remains to show that

|y − y ′|√
t

�
(
d̃
(
y, y ′)

r

) 1
N

e
|x−y |2
2 c t .

If |y − y ′| ≤√
t , then

d̃
(
y, y ′)

r
� μ

(
B
(
y, |y − y′|))

μ
(
B
(
x,

√
t
)) = μ

(
B
(
y, |y − y′|))

μ
(
B
(
y,

√
t
))

μ
(
B
(
y,

√
t
))

μ
(
B
(
x,

√
t
))

with

μ
(
B
(
y, |y − y′|))

μ
(
B
(
y,

√
t
)) �

( |y − y ′|√
t

)N

and

μ
(
B
(
y,

√
t
))

μ
(
B
(
x,

√
t
)) ≥ μ

(
B
(
y,

√
t
))

μ
(
B
(
y, |x − y| + √

t
)) �

( √
t

|x − y| + √
t

)N

=
(
1+ |x − y|√

t

)−N

� e− N
2

|x−y |2
c t .

If |y − y ′| ≥√
t , we argue similarly, estimating this time

μ
(
B
(
y, |y − y′|))

μ
(
B
(
y,

√
t
)) �

( |y − y ′|√
t

)n
�
( |y − y ′|√

t

)N ( |x − y|√
t

)−(N−n)

�
( |y − y ′|√

t

)N

e− N
4

|x−y |2
c t
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and

μ
(
B
(
y,

√
t
))

μ
(
B
(
x,

√
t
)) � e− N

4
|x−y |2

c t .

Assume next that d̃ (x, y)≤ r . Then |x−y| �√
t , d̃ (y, y ′) ≤ C3 r and (6.8) amounts

to

∣∣Kr (x, y)− Kr (x, y ′)
∣∣ � r−1

(
d̃ (y, y ′)

r

) 1
N

.

According to Theorem 3.2(d),

|Kr (x, y)− Kr (x, y ′)| = |H t (x, y)− H t (x, y ′)| � μ
(

B
(

x,
√
t
))−1 |y − y ′|√

t
.

As

μ
(

B
(

y,
√
t
))

� μ
(

B
(

x,
√
t
))

= r ,

we have

d̃ (y, y ′)
r

� μ
(
B
(
y, |y − y ′|))

μ
(
B
(
y,

√
t
)) .

As d̃ (y,y ′)
r ≤ C3 and

μ(B(y, |y−y ′|))
μ(B(y,

√
t ))

is bounded below by a power of |y−y ′|√
t

, we deduce

first that |y − y ′| � √
t and next that

d̃ (y, y ′)
r

�
( |y − y ′|√

t

)N

.

This concludes the proof of Lemma 6.7. ��
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