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Abstract This paper extends previous work on approximation of loops to the case of
special orthogonal groups SO(N), N ≥ 3. We prove that the best approximation of an
SO(N) loop Q(t) belonging to a Hölder class Lipα , α > 1, by a polynomial SO(N)

loop of degree ≤n is of order O(n−α+ε) for n ≥ k, where k = k(Q) is determined
by topological properties of the loop and ε > 0 is arbitrarily small. The convergence
rate is therefore ε-close to the optimal achievable rate of approximation. The con-
struction of polynomial loops involves higher-order splitting methods for the matrix
exponential. A novelty in this work is the factorization technique for SO(N) loops
which incorporates the loops’ topological aspects.

Keywords Nonlinearly constrained trigonometric approximation · Jackson-type
inequality · Polynomial loops · Lie groups · Higher-order exponential splitting

Mathematics Subject Classification (2000) 41A29 · 41A17 · 42A10 · 22E67

1 Introduction

We regard loops as continuous periodic paths from R to a Lie group, thus identifying
their domain with the one-dimensional torus T.

Periodic functions with values in Lie groups can be studied in the framework of
infinite-dimensional Lie groups, where they form a class of loop groups. The book
of Presley and Segal [10] is a classical reference on the topic of loop groups. In par-
ticular, the authors established the density of a subgroup of polynomial loops in the
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loop group C∞(T → G), where G is any compact semi-simple Lie group G. The
qualitative aspect of loop approximation is also embodied in the theory of orthogonal
wavelet constructions [13], when polyphase symbols are parameterized by SU(2)-
valued Laurent polynomials [4, 5]. The quantitative approximation of elements of a
loop group depending on their smoothness is an interesting theoretical question which
also has practical merit. For example, the asymptotic rate of trigonometric approx-
imation of SU(2)-valued functions is the key to constructing and operating optical
FIR filter architectures for polarization mode dispersion compensation in optical fi-
bres [9].

Here we continue the study of asymptotic properties of trigonometric approxima-
tion of loops initiated in [7, 8]. The motivation for this work is mainly theoretical.
However, the techniques illustrated below are constructive, which is essential for po-
tential practical applications.

Let SO(N) denote the Lie group of orthogonal N × N matrices with determinant
one. We consider the space of continuous loops Q(t) ∈ C(T → SO(N)). Polynomial
loops Qn(t) ∈ Πn(T → SO(N)) are defined as corresponding matrix functions with
entries from the set of trigonometric polynomials of degree ≤n,

Πn(T → R) :=
{

pn(t) =
n∑

k=0

ak coskt +
n∑

k=1

bk sinkt, ak, bk ∈ R

}
. (1)

The main result of the paper is the following Jackson-type estimate for the Hölder
classes Lipα(T → SO(N)) of loops:

Theorem 1 Let Q(t) ∈ Lipα(T → SO(N)), with N ≥ 3 and α > 1. For any ε > 0,
there exists a sequence of polynomial loops Qn(t) ∈ Πn(T → SO(N)) of degree ≤ n

such that

‖Q − Qn‖C ≤ C(n + 1)−α+ε, n ≥ k,

where k := k(Q) ≥ 0 is an integer determined by topological properties of Q, and
C := C(α,N,Q,ε, k) > 0 is a constant.

In a previous paper [7] we proved that the approximation of an SU(N)-loop be-
longing to a Hölder–Zygmund class Lipα , α > 1/2, by a polynomial SU(N)-loop of
degree ≤n is of order O(n−α/(1+α)) as n → ∞. This approximation rate was sig-
nificantly improved when employing higher-order splitting methods [8], at least for
α > 1. In short, the approach to the problem was as follows: by suitable factorization,
the problem was reduced to studying U(t) = eX(t), where X(t) ∈ Lipα(T → su(N));
X(t) was approximated componentwise by linear methods, and then a splitting
method for the exponential map was applied to obtain a polynomial SU(N)-valued
loop.

In this work we explore loop approximation in conjunction with special orthogo-
nal groups SO(N)—the real counterpart of special unitary groups SU(N). In estab-
lishing the convergence rate, we follow the steps outlined above. However, the real
nature of the current problem poses new challenges. For example, we used a gener-
alization of complex Givens rotations for the factorization and reduced the problem
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to essentially the case of SU(2) loops. In the real setting, the Givens rotation blocks
are essentially the elements of SO(2) ∼= S1, and the only periodic functions with
values in the one-dimensional sphere which can be approximated by trigonometric
polynomial loops are trigonometric polynomial loops themselves, which makes the
approximation question irrelevant. Another obstacle which calls for different meth-
ods is the fact that the SO(N) loop space is not connected. It is natural to aim to
reduce the problem to the case of Lie algebra loops, for which we can apply the re-
sults of classical approximation theory for linear spaces. This was a routine step in
the algorithm in [7], since the loop space C(T → SU(N)) is connected. In the real
setting, there exist SO(N) loops which cannot be contracted to a point, hence the
exponential representation is not always feasible. A cornerstone of this work is the
factorization algorithm for the elements of Lipα(T → SO(N)), N ≥ 3 which intrin-
sically deals with the nonconnectivity constraint. The algorithm originates from the
generalized polar decomposition for matrices induced by involutive automorphisms
on Lie groups [15]. Eventually, the problem is reduced to studying the loops in the
exponential form, exp(X(t)), where X(t) ∈ Lipα(T → so(N)).

The paper is structured as follows. In Sect. 2 we outline the background theory and
present some auxiliary results which are easily deduced from classical approximation
theory and matrix analysis. Section 3 is dedicated to the construction of a special basis
for polynomial loops Xn ∈ Πn(T → so(N)). The representation of Xn(t) as a linear
combination of the basis elements taken in a particular order is a working tool for the
proof of the main result of the paper. Technical details of the factorization algorithm
for loops are presented in Sect. 4. In Sect. 5 we briefly mention some of the facts from
splitting methods for the matrix exponential relevant to our theory. The main result
of the paper is proved in Sect. 6, followed by some remarks and conclusion (Sect. 7).

2 Definitions and Auxiliary Results

We will make use of the theory of matrix Lie groups and Lie algebras. Therefore,
familiarity with the main concepts is expected. The reader can refer, for example, to
[1] for the extensive treatment of these concepts.

Let G ⊂ F, where F = R
N2

or C
N2

, denote a finite-dimensional matrix Lie group
with the Lie algebra g, and let C(T → M) denote a space of continuous maps from
the torus T to M, where M is either G or g. We call the elements of this space loops,
which geometrically corresponds to closed curves in M. A point-wise composition
in G defines a group operation in the corresponding space C(T → G), and the nat-
ural choice of topology is the topology of uniform convergence with respect to the
Frobenius norm ‖ · ‖F (i.e., Euclidean norm in F) or the spectral norm ‖ · ‖2 (i.e., the
operator norm for linear maps induced by the Euclidean norm in R

N , (CN )). One can
impose C(T → G) with the manifold structure using the exponential map

exp : C(T → g) → C(T → G).

Group multiplication and inversion are smooth, and so C(T → G) is an infinite di-
mensional Lie group. Similar reasoning holds for the classes of maps of a finite degree
of differentiability k ≥ 0, Ck(T → M).
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We will measure distances between the elements of C(T → M) by setting

distC(Q1,Q2) := ‖Q1 − Q2‖C := max
t∈T

∥∥Q1(t) − Q2(t)
∥∥

2.

We drop the subscript in the norm whenever it does not matter which one we use.
Throughout this paper we are concerned with the Hölder classes Lipα(T → M) ⊂

C(T → M), α > 0 of loops, defined by the finiteness of the semi-norm

|Q|Lipα
:= sup

h>0
h−α

∥∥Q(· + h) − Q(·)∥∥
C
, 0 < α < 1,

and by recursion for α > 1, requiring Q(t) ∈ Ck(T → M) and setting

|Q|Lipα
:= ∣∣Q(k)

∣∣
Lipα−k

,

where k is the largest integer k < α. Obviously, Ck(T → M) ⊂ Lipα(T → M). We
further let

‖Q‖Lipα
:= ‖Q‖C + |Q|Lipα

.

Note that for the matrix groups considered in this paper, the Hölder classes of loops
form groups, i.e., the Lipα property is preserved under multiplication. This fact will
be used without further mention.

We are particularly interested in G-valued trigonometric polynomials, also re-
ferred to as polynomial loops. For a real matrix Lie group G, a polynomial loop
Pn(t) ∈ Πn(T → G) is a G-valued periodic function with entries from the space of
trigonometric polynomials (see (1)). Lie group polynomial loops form a nonlinear
space, whereas an analogously defined space of polynomial loops Πn(T → g) in the
corresponding algebra is obviously linear. For example, for Xn(t) ∈ Πn(T → so(3)),

Xn(t) =
⎛
⎝ 0 −cn(t) bn(t)

cn(t) 0 −an(t)

−bn(t) an(t) 0

⎞
⎠ ,

and an(t), bn(t), cn(t) ∈ Πn(T → R). It is easy to see that in general, if Xn(t) ∈
Πn(T → so(N)), the exponential of Xn(t) is not a polynomial loop. However, we
can decompose Xn(t) into a linear combination of polynomial loops, each of which
is mapped by the exponential map into a polynomial loop in the group. This aspect
will be explored in detail in the next section.

The next two lemmas follow from applying classical theory of univariate trigono-
metric approximation for Lipα classes [3].

Lemma 1 Let X(t) ∈ Lipα(T → so(N)), N ≥ 3, α > 0. Then there exists Xn(t) ∈
Πn(T → so(N)) such that

‖X − Xn‖C ≤ Cα(n + 1)−α|X|Lipα
, n ≥ 0

and

‖Xn‖Lipα
≤ Cα|X|Lipα

, n ≥ 0.
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Lemma 2 Let f (t) ∼ ∑
k∈Z

ckz
k ∈ Lipα(T → C), α > 0. Then

‖f − Snf ‖C ≤ Cα

ln(n + 2)

(n + 1)α
|f |Lipα

, Snf (t) =
∑
|k|≤n

ckz
k, n ≥ 0,

and

|cn| ≤ Cα

1

(n + 1)α
‖f ‖Lipα

, n ≥ 0. (2)

Our strategy is to use factorization techniques and splitting methods for the
matrix exponential to obtain similar approximation estimates for arbitrary loops
Q(t) ∈ Lipα(T → SO(N)).

We conclude this section by presenting the following simple but very useful
lemma, which will be applied frequently in the proof of the main result of the ar-
ticle:

Lemma 3 For any Qk(t), Q̃k(t) ∈ C(T → SO(N)), k = 1, . . . ,K , we have∥∥∥∥∥
K∏

k=1

Q̃k −
K∏

k=1

Qk

∥∥∥∥∥
C

≤
K∑

k=1

∥∥Q̃k − Qk

∥∥
C
.

Proof By definition of ‖ · ‖C , we have ‖Q‖C = 1 for arbitrary Q(t) ∈ C(T →
SO(N)), and ‖∏

k Xk‖C ≤ ∏
k ‖Xk‖C for arbitrary Xk(t) ∈ C(T → GL(N)). Thus,∥∥∥∥∥

K∏
k=1

Q̃k −
K∏

k=1

Qk

∥∥∥∥∥
C

≤
∥∥∥∥∥(

Q̃1 − Q1
) K∏

k=2

Q̃k

∥∥∥∥∥
C

+
∥∥∥∥∥Q1

(
K∏

k=2

Q̃k −
K∏

k=2

Qk

)∥∥∥∥∥
C

≤ ∥∥Q̃1 − Q1
∥∥

C
+

∥∥∥∥∥
K∏

k=2

Q̃k −
K∏

k=2

Qk

∥∥∥∥∥
C

. . .

≤
K∑

k=1

∥∥Q̃k − Qk

∥∥
C
.

�

3 Basis for Polynomial so(N) Loops

Let {ei} denote the canonical basis in R
N , and introduce

Eij := eie
T
j − ej e

T
i , i = 1, . . . ,N − 1, j = i + 1, . . . ,N.

The matrix Ei,j has 1 at the entry (i, j) and −1 at the entry (j, i), and the remaining
entries are equal to 0. By definition, {Eij } spans the Lie algebra so(N), which is a
linear space isomorphic to R

N(N−1)/2. It is easy to see that a basis for the space of
polynomial loops Πn(T → R

N(N−1)/2) induces a basis for Πn(T → so(N)) under
the same isomorphism.
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Next we provide a construction for the following argument: a linear space of poly-
nomial loops Πn(T → R

m), m ≥ 2, possesses a basis over R consisting of m(2n+ 1)

elements.
For m = 2 we choose the following vectors to be the basis vectors:

bT
1,k(t) = (coskt, sin kt), bT

3,k(t) = (− coskt, sin kt), k = 0, . . . , n,

bT
2,k(t) = (sin kt, − coskt), bT

4,k(t) = (sin kt, coskt), k = 1, . . . , n.

For vn(t) ∈ Πn(T → R
2), vn(t) = (αn(t), βn(t))

T , consider

αn(t) =
n∑

k=0

ak coskt +
n∑

k=1

bk sin kt, α̃n(t) =
n∑

k=1

bk coskt − ak sinkt,

βn(t) =
n∑

k=0

ck coskt +
n∑

k=1

dk sin kt, β̃n(t) =
n∑

k=1

dk coskt − ck sin kt,

where the polynomials on the right-hand side are the corresponding conjugate series
(see [3]), and ak, bk, ck, dk ∈ R. Then obviously

(
αn(t)

βn(t)

)
=

(
αn(t)+β̃n(t)

2
βn(t)−α̃n(t)

2

)
+

(
αn(t)−β̃n(t)

2
βn(t)+α̃n(t)

2

)
,

and it is easy to verify that

(
αn(t)+β̃n(t)

2
β̃n(t)−αn(t)

2

)
= γ0 + 1

2

n∑
k=1

(ak + dk)b1,k(t) + 1

2

n∑
k=1

(bk − ck)b2,k(t),

(
αn(t)−β̃n(t)

2
β̃n(t)+αn(t)

2

)
= γ0 + 1

2

n∑
k=1

(dk − ak)b3,k(t) + 1

2

n∑
k=1

(bk + ck)b4,k(t),

where γ0 = (a0/2, c0/2) is a scalar vector. The basis property follows from above,
since vn(t) is an arbitrary polynomial loop.

When m = 3, the basis for Πn(T → R
3) consists of the vectors

bT
1,k(t) = (coskt, sin kt,0), bT

2,k(t) = (sin kt,− coskt,0),

bT
3,k(t) = (coskt,0, sinkt), bT

4,k(t) = (sin kt,0,− coskt),

bT
5,k(t) = (0, coskt, sin kt), bT

6,k(t) = (0, sin kt,− coskt),

where k = 0, . . . , n for b1,k, b3,k, b5,k , and k = 1, . . . , n for b2,k, b4,k, b6,k . The proof
for this is analogous to the case m = 2, i.e., an arbitrary polynomial loop vn(t) ∈
Πn(T → R

3) is decomposed into a sum of vector-functions with entries represented
as linear combinations of the entries of the original loop and their conjugates. From
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this representation one can deduce the coefficients cl,k ∈ R, such that

vn(t) =
3∑

l′=1

(
n∑

k=0

c2l′−1,kb2l′−1,k(t) +
n∑

k=1

c2l′,kb2l′,k(t)

)
.

It remains to note that for m > 3, we can decompose the space Πn(T → R
m)

into a direct sum of spaces of dimension 2 and 3. Therefore, any basis element is
essentially one of the elements in the systems given above for m = 2 and m = 3
(under the corresponding projection map), and it is easy to see that there are in total
m(2n + 1) basis elements.

Let Bn = {Bl,k} denote the basis over R for the space Πn(T → so(N)) consisting
of N(N − 1)(2n + 1)/2 elements as follows from above. Intuitively, up to ± sign
before each of the summands, the basis elements can be parameterized as follows:

B2l′−1,k(t) = cosktEλμ + sinktEξη, k = 0, . . . , n,

B2l′,k(t) = sin ktEλμ − cosktEξη, k = 1, . . . , n,
(3)

for some λ ≤ ξ ≤ μ ≤ η and l′ = 1, . . . ,N(N − 1)/2. The dependence of the para-
meters λ,μ, ξ, η on l′ is determined by the choice of the isomorphism map between
Πn(T → R

N(N−1)/2) and Πn(T → so(N)). Furthermore, observe that for an N ×N

matrix, there are at most N(N − 1)/2 submatrices of rank 2. Hence, there exists
an isomorphism from Πn(T → R

N(N−1)/2) to Πn(T → so(N)) such that any basis
polynomial loop is a rank 2 matrix. With respect to the notation in (3), this means
that two out of four parameters λ,μ, ξ, η are always equal. Let us consider the case
when λ = ξ . Then we can write

B2l′−1,k(t) = cosktEλμ + sinktEλη = coskt
(
eλe

T
μ − eμeT

λ

) + sin kt
(
eλe

T
η − eηe

T
λ

)
= eλx

T
k (t) − xk(t)e

T
λ , (4)

where xT
k (t) = (. . . , coskt, . . . , sinkt, . . .) is a vector-valued function which has only

two nonzero coordinates, coskt and sinkt , at positions μ and η, respectively. An anal-
ogous formula can be derived for B2l′,k(t). From now on we will always assume the
representation (4). The following lemma establishes some of the important properties
of the basis Bn:

Lemma 4 For any basis element Bl,k and for any c ∈ R,

ecBl,k = I + sin cBl,k + (1 − cos c)B2
l,k, l = 1, . . . ,N(N − 1), (5)

which is a polynomial loop in SO(N). Furthermore,

J∏
j=1

e
cj Bl,kj

(t) ∈ Π2n

(
T → SO(N)

)
, l = 1, . . . ,N(N − 1), (6)

for any product of this form with 0 < k1 ≤ · · · ≤ kJ ≤ n.
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Proof For simplicity, in what follows we only consider

B1,k(t) = e1x
T
k (t) − xk(t)e

T
1 ,

where e1 is the first canonical basis vector in R
N and xT

k (t) = (0, coskt, sin kt,0, . . .).

For any other Bl,k the same reasoning holds, which easily follows from (4).
Further, let c ∈ R, and note that ‖xk(t)‖ = 1 for any t ∈ T, where ‖ · ‖ denotes the

Euclidean norm. By applying the power-series formula for matrix exponential, we
obtain

exp
(
cB1,k(t)

) = I + sin‖cxk‖
‖cxk‖

(
ce1x

T
k − cxT

k e1

)

+ 1 − cos‖cxk‖
‖cxk‖2

(−‖cxk‖2e1e
T
1 − c2xkx

T
k

)
= I + sin cB1,k(t) + (1 − cos c)B2

1,k(t),

and the property (5) follows.
In order to establish the property (6), it is enough to verify that

∏J
j=1 B1,kj

(t) is
a polynomial loop of degree at most 2n, for 0 < k1 ≤ · · · ≤ kJ ≤ n, J > 0. Here we
allow nonstrict inequalities among kj s to include the case when we have factors of
the basis elements to the second power. Note that

B1,kj
B1,ki

= −e1
(
xT

j xi

)
eT

1 − xjx
T
i ,

where for simplicity we let xT
s (t) = (0, coskst, sin kst, 0, . . .), s = i, j . Inductively,

we deduce for even J = 2J ′,

J∏
j=1

B1,kj
=

2J ′∏
j=1

(
e1x

T
j − xj e

T
1

) = (−1)J
′
(

e1

(
J ′∏

j=1

xT
2j−1x2j

)
eT

1 +
J ′∏

j=1

x2j−1x
T
2j

)

= (−1)J
′
((

J ′∏
j=1

xT
2j−1x2j

)
e1e

T
1 +

(
J ′−1∏
j=1

xT
2j x2j+1

)
x1x

T
2J ′

)
.

Observe that xT
j (t)xi(t) = cos(kj − ki)t . Therefore,

J∏
j=1

B1,kj
(t) = (−1)J

′
J ′∏

j=1

cos(k2j − k2j−1)t e1e
T
1

+ (−1)J
′
J ′−1∏
j=1

cos(k2j+1 − k2j )t x1x
T
2J ′ .

The degree of the first component is obviously less than the degree of the second
component. If we denote the degree of the second component by m, then 0 < m =∑J ′−1

j=1 (k2j+1 − k2j ) + k1 + kJ ≤ kJ−1 + kJ < 2n.
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For odd J = 2J ′ + 1,

J∏
j=1

B1,kj
(t)

= (−1)J
′
((

J ′∏
j=1

xT
2j−1x2j

)
e1e

T
1 +

(
J ′−1∏
j=1

xT
2j x2j+1

)
x1x

T
2J ′

)

× (
e1x

T
2J ′+1 − x2J ′+1e

T
1

)

= (−1)J
′
((

J ′∏
j=1

xT
2j−1x2j

)
e1x

T
2J ′+1 −

(
J ′∏

j=1

xT
2j x2j+1

)
x1e

T
1

)

= (−1)J
′

J ′∏
j=1

cos(k2j − k2j−1)t e1x
T
2J ′+1 + (−1)J

′
J ′∏

j=1

cos(k2j+1 − k2j )t x1e
T
1 .

Similarly, 0 < m′ = ∑J ′
j=1(k2j − k2j−1) + k2J ′+1 ≤ kJ−1 − k1 + kJ < 2n and 0 <

m′′ = ∑J ′
j=1(k2j+1 − k2j ) + k1 ≤ kJ ≤ n. Consequently, the degree of the above

polynomial loop is m = max{m′,m′′} < 2n. This concludes the proof of the lemma. �

4 Factorization of SO(N) Loops

Recall that the fundamental group π1(SO(N)), N ≥ 3, which is a group of homo-
topy classes of loops in SO(N), is isomorphic to Z2 (see [11] for details). The fact
that the fundamental group π1(SO(N)) is nontrivial also means that SO(N) is not
simply connected. An immediate consequence is that the corresponding loop group
C(T → SO(N)) is not (path) connected (in general the notions connected and path
connected are distinct, but it can be shown that they are equivalent for manifolds).
Consequently, C(T → SO(N)) has two connected components. The connected com-
ponent containing the identity element of the group is referred to as the identity or
principal component (a unique open connected subgroup of C(T → SO(N))).

In order to use the tools represented in the previous section, we would like to fac-
torize an arbitrary loop into essentially a product of the exponentials of the algebra
loops. Any element in the principal component can be represented as a product of
exponentials of the algebra loops using, for example, a simple homotopy argument
(cf. [8]). As the group theory suggests, any connected component of a group is a
coset of the identity component. Hence, any loop in the second connected component
in C(T → SO(N)) can be decomposed into a product of a “bad” (i.e., which cannot
be contracted to a point) loop and a “good” loop. If we choose the “bad” loop to be
a polynomial loop, the “good” loop can be dealt with using again the homotopy ar-
gument. However, this approach is not constructive and initially requires analysis on
the topology of a loop, which is cumbersome even for the N = 3 case. Instead, we
propose a uniform factorization algorithm for elements of C(T → SO(N)), N ≥ 3,
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which constructively deals with the nonconnectivity constraint whenever necessary.
The central idea is to “slice” the loops which are the exponentials of so(N) loops,
such that the remaining loop is essentially an SO(N − 1) loop. The algorithm stops
when the 2 × 2 block is reached. Since by construction the last multiple has only
two eigenvalues which are not identically one for all t ∈ T, it can be identified with
the element of the first nontrivial loop group (from the point of view of polynomial
loop approximation), which is an SO(3) loop. Topological properties of the last factor
define the topological properties of the initial loop. However, the analysis is straight-
forward due to its simple form. Finally, we decompose the last factor into the product
of a polynomial loop and an exponential of the corresponding algebra loop. Remark-
ably, the loops in the decomposition carry the same smoothness properties as the
original loop.

Theorem 2 For any Q(t) ∈ Lipα(T → SO(N)), N ≥ 3, α > 1/2,

Q(t) =
(

N−2∏
j=1

Q0,j e
Xj (t)

)
P̂k(t)e

�(t)Φ̂ , (7)

where Q0,j are constant orthogonal matrices, some of which are the identity matrices

Xj(t) ∈ Lipα

(
T → so(N)

)
, j = 1, . . . ,N − 2, (8)

and

‖Xj‖Lipα
≤ C(α,N,Q)‖Q‖Lipα

, j = 1, . . . ,N − 2.

The loop (
∏N−2

j=1 e−Xj (t)QT
0,j )Q(t) is isomorphic to a function from T to T. For k

denoting the winding number of this function,

P̂k(t) =
(

IN−3 0T

0 Pk(t)

)
, Pk(t) =

⎛
⎝1 0 0

0 coskt − sinkt

0 sinkt coskt

⎞
⎠ , (9)

where Is denotes the s × s identity matrix. Finally,

Φ̂ =
(

ON−3 0T

0 Φ

)
, Φ =

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ ,

where Os denotes the s × s zero matrix, and �(t) ∈ Lipα(T → R).

Proof of Theorem 2 The proof of the theorem comprises several auxiliary results.

Lemma 5 Let Q(t) ∈ Lipα(T → SO(N)), α > 1/(N − 1) and N ≥ 3. Then

Q(t) = Q0 exp
(
X(t)

)
P(t), (10)
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where X(t) and P(t) satisfy the same Lipschitz condition as Q(t) with norms gov-
erned by constants depending on Q(t), and Q0 is a scalar matrix. In particular,

X(t) =

⎛
⎜⎜⎜⎝

0 −x2(t) . . . −xN(t)

x2(t) 0 . . . 0
...

... . . .
...

xN(t) 0 . . . 0

⎞
⎟⎟⎟⎠ = x(t)eT

1 − e1x(t)T , (11)

where x : T → R
N is the vector-valued function with the first coordinate x1(t) ≡ 0

and the vector e1 is the first canonical basis vector in R
N . The coordinates of the

vector-valued function x(t) can be found from the first column vector of the matrix
Q̃

1
(t) := QT

0 Q(t) via the following formulas:

‖x(t)‖ = arccos Q̃11(t),

(12)

xk(t) = ‖x(t)‖
sin‖x(t)‖Q̃k1(t) for k = 2, . . . ,N,

and the scalar matrix Q0 can be chosen to ensure that the above formulas are well-
defined, i.e., |Q̃11(t)| ≤ ε < 1 for any t ∈ T and some small ε > 0. Finally,

P(t) = exp
(−X(t)

)
Q(t) =

(
1 0
0 P̃ (t)

)
,

where P̃ (t) ∈ Lipα

(
T → SO(N − 1)

)
. (13)

Proof As was mentioned in the introduction, this factorization originates from the
generalized polar decomposition for the matrix exponential induced by an involutive
automorphism acting on the group (cf. [15]). In particular, the authors proposed a
so-called “peel-down” approach, for which a particular automorphism is chosen such
that when applied consecutively, every factor belongs to the subgroup of lower di-
mension. Based on their results, we assume that there exists a decomposition such
as (10), where the matrix P(t) is essentially an SO(N − 1) loop and X(t) is a rank 2
matrix (11). We then derive each of the factors by algebraic manipulations.

Let us assume for now that the absolute value of the leading diagonal coefficient
of the loop Q(t) stays away from 1, so Q0 can be set to be the identity matrix. The
following closed formula holds for X(t):

exp(X) = I + sin‖x‖
‖x‖

(
xeT

1 − e1x
T
) + 1 − cos‖x‖

‖x‖2

(−‖x‖2e1e
T
1 − xxT

)
. (14)

The proof follows immediately by the definition of the matrix exponential applied
to any matrix of the form (11). Further, assuming P̃ (t) has the form (13), the first
column of the matrix Q is determined by the equation,

Q
1
= Qe1 = exp(X)e1.
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Using (14) we obtain

Q
1
= cos‖x‖e1 + sin‖x‖

‖x‖ x.

The formulas (12) follow from this equality. The matrix P(t) is then obtained by
computing P(t) = exp(−X(t))Q(t).

It remains to consider the case when Q11(t) passes through 1 and/or −1 for some
t ∈ T. Let Q

1
(t) be the first column of the matrix Q(t), which is a Lipα(T → SN−1)

loop in the unit sphere SN−1 ⊂ R
N . The existence of the matrix Q0 such that the

leading coefficient of QT
0 Q(t) does not pass through ±1 is equivalent to the statement

that the set

Γ = {
Q

0,1
∈ SN−1 : QT

0,1
· Q

1
(t) �= ±1 for any t ∈ T

}
is nonempty. For this it is sufficient to prove that the complement Γ c = SN−1 \ Γ ,
which is in fact the union of the curves Q

1
and −Q

1
, has zero surface measure. The

loop Q
1
(t) ∈ Lipα(T → SN−1) can be covered by n spherical caps

C(r, q
m
) := {

Q ∈ SN−1 : ‖Q − q
m
‖ ≤ r

}
, m = 1, . . . , n,

with r ≤ Cn−α and q
m

= Q
1
(2πm/n). The measure of each cap is bounded by

CrN−1 for r → 0. Therefore, the curve is contained in the union of the caps with total
measure ≤ CnrN−1 ≤ C′n1−(N−1)α , which is zero for n → ∞ when α > 1/(N − 1).
The union of two sets of measure zero is again a set of measure zero. The remaining
columns of Q0 should be chosen such that the matrix becomes orthogonal with de-
terminant one. It can easily be done, for example, by taking arbitrary unit vectors and
then applying the Gram–Schmidt process.

The proof of the Lipα property for the factors follows from the fact that the trans-
formations from Q(t) to X(t) and P(t) are diffeomorphisms. Since the transforma-
tions are nonlinear, the constants in general depend on Q. �

Let us apply the above lemma to Q(t) ∈ Lipα(T → SO(3)):

Q(t) = Q0 exp
(
X(t)

)
P(t), P (t) =

⎛
⎝1 0 0

0 a(t) −b(t)

0 b(t) a(t)

⎞
⎠ , (15)

where a2(t)+ b2(t) = 1 for any t ∈ T and the constant matrix Q0 can be the identity.
Note that P(t) is isomorphic to a loop λ(t) := a(t) + ib(t) ∈ Lipα(T → T), and one
can construct a function �(t) ∈ Lipα([0,2π] → R) such that a(t) = cos�(t) and
b(t) = sin�(t). We are interested in the winding number W(λ) for the function λ

(cf. [2]). It is easy to see that if �(2π) = �(0), the winding number W(λ) is zero. In
this case we can write

P(t) = exp
(
�(t)Φ

)
, Φ =

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ , (16)
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and �(t)Φ ∈ Lipα(T → so(3)). The second case is when �(2π) = �(0) + 2πk for
some k ∈ Z, k �= 0, which corresponds to W(λ) = k. Then the loop P(t) cannot be
represented as an exponential of a loop in the corresponding algebra. However, let

Pk(t) :=
⎛
⎝1 0 0

0 coskt − sinkt

0 sin kt coskt

⎞
⎠ . (17)

Then the product P T
k (t)P (t) is equal to⎛
⎝1 0 0

0 cos(�(t) − kt) − sin(�(t) − kt)

0 sin(�(t) − kt) cos(�(t) − kt)

⎞
⎠ . (18)

We define �̂(t) := �(t) − kt . Note that �̂(t) ∈ Lipα(T → R), and hence we can
write (18) in the exponential form as in (16). For simplicity, we further refer to k as
the winding number of the loop P(t) in (15).

From the topological point of view, if the degree k is even, Pk(t) and e�̂(t)Φ be-
long to the identity component of the loop group Lipα(T → SO(3)), and so does their

product. For odd k, the product Pk(t)e
�̂(t)Φ belongs to the second connected compo-

nent, and it illustrates the fact that this connected component is a coset of the identity
component. To summarize, we have established the following result:

Lemma 6 For any Q(t) ∈ Lipα(T → SO(3)), α > 1/2,

Q(t) = Q0e
X(t)Pk(t)e

�(t)Φ, (19)

where Q0 ∈ SO(3) can also be the identity, and X(t) ∈ Lipα(T → so(3)) is found us-
ing (11), (12). The absolute value of the winding number k of the loop e−X(t)QT

0 Q(t)

(which is isomorphic to a loop λ(t) ∈ Lipα(T → T)) determines the degree of
the polynomial loop Pk(t) given by (17). Note that for k = 0, Pk(t) ≡ I . Further,
�(t) ∈ Lipα(T → R) is determined from the equation

P T
k (t)e−X(t)QT

0 Q(t) = e�(t)Φ,

where Φ ∈ so(3) is the same as in (16).

In general, we can repeatedly factorize the loops P(t) in (13) until we obtain
the loop isomorphic to an SO(3) loop, for which we apply Lemma 6. The lower
bound on α follows from Lemma 5, since 1/2 is the largest value, obtained at the last
factorization step. This establishes the proof of Theorem 2. �

5 Facts from Splitting Methods

Here we briefly outline the idea of splitting methods. It is well known that the ex-
ponential eλ(A1+···+Am), where {Ak} ∈ so(N), can be approximated by the split-
ting formula F({λAj }j=1,...,m) = eλA1 · · · eλAm of order one, i.e., eλ(A1+···+Am) =
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F({λAj }j=1,...,m) + O(λ2). Furthermore, the error estimate is

∥∥eλ(A1+···+Am) − F
({λAj }j=1,...,m

)∥∥
2 ≤ λ2

2

m−1∑
k=1

∥∥∥∥∥
[
Ak,

m∑
j=k+1

Aj

]∥∥∥∥∥
2

. (20)

A second-order approximation can be achieved using, for example, a symmetric split-
ting formula

S
({λAj }j=1,...,m

) = e(λ/2)A1 · · · e(λ/2)Am−1eλAme(λ/2)Am−1 · · · e(λ/2)A1 ,

and the magnitude of the error for this splitting in the case of skew-symmetric matri-
ces can be estimated as follows:∥∥eλ

∑m
k=1 Ak − S

({λAj }j=1,...,m

)∥∥
2 ≤ λ3�(A1, . . . ,Am), (21)

where �(A1, . . . ,Am) = ∑m−1
k=1 �2(Ak,Ak+1 + · · · + Am), and

�2(X,Y ) = 1

12

{∥∥[[X,Y ], Y ]∥∥
2 + 1

2

∥∥[[X,Y ],X]∥∥
2

}
.

The bounds (20), (21) were established in [12, 14]. Similar bounds also hold in the
general setting when {Ak} are noncommuting operators in a Banach space. Let fj (λ),
j = 1, . . . , r be first, second or in general kth-order approximants for the original
exponential operator eλ(A1+···+Am). Then a splitting formula of order s can be given
in the form

Fs

({λAj }j=1,...,m

) = f1
({τ1λAj }j=1,...,m

) · · ·fr

({τrλAj }j=1,...,m

)
, (22)

where the parameters τj are determined by the requirement

eλ(A1+···+Am) = Fs

({λAj }j=1,...,m

) + O
(
λs+1).

For example, if r is even, and f2j ({λAj }j=1,...,m) = f −1
j ({−λAj }j=1,...,m), where

fj = F is the standard first-order splitting mentioned above, we obtain the well-
known symmetric Yoshida–Suzuki splitting formula (see [6] for an overview), for
which the parameters pj can be determined via a straightforward recursive procedure.
The idea of Yoshida and Suzuki was as follows: splitting methods of order 2(s′ + 1)

can be constructed from a given method of order 2s′ via the formula

S2(s′+1)

({Aj }j=1,...,m

)
= S2s′

({as′Aj }j=1,...,m

)
S2s′

({bs′Aj }j=1,...,m

)
S2s′

({as′Aj }j=1,...,m

)
,

if one chooses the constants

as′ = (
2 − 21/(2s′+1)

)−1
, bs′ = −21/(2s′+1)

(
2 − 21/(2s′+1)

)−1
.

In theory, Yoshida–Suzuki splitting can be of arbitrarily high order. The practical
constraint is however that the number of stages increases exponentially (let fj = S,
then r = 3s′−1 for the method of order 2s′).
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Many other symmetric and nonsymmetric decompositions can be obtained
from (22). Generally, finding the parameters pj is a challenging task, which involves
computation of higher-order terms of the Baker–Campbell–Hausdorf formula [6]. In
principle, for the same order s, the number of states r varies. For our purposes we
assume that r is a fixed function of s.

For any of these methods to be applicable to our theory, we would like to know the
magnitude of the error term eλ(A1+···+Am) −Fs({λAj }j=1,...,m). The following lemma
gives a rough estimate of the accuracy of an arbitrary splitting method. We formulate
it in conjunction with special orthogonal groups only for convenience, since similar
results hold in a general setting.

Lemma 7 For Aj ∈ so(N), j = 1, . . . ,m, and 0 < λ < λmax, let

Fs

({λAj }j=1,...,m

) =
r∏

i=1

eτi1λA1 · · · eτimλAm

be an order s splitting formula. Then

∥∥eλ(A1+···+Am) − Fs

({λAj }j=1,...,m

)∥∥
2 ≤ Csλ

s+1(‖A1‖2 + · · · + ‖Am‖2
)s+1

,

where Cs > 0 depends on the order s, λmax, and
∑m

j=1 ‖A‖2.

Proof Obviously,∥∥eλ(A1+···+Am) − Fs

({λAj }j=1,...,m

)∥∥
2 = ∥∥e−λ(A1+···+Am)Fs

({λAj }j=1,...,m

) − I
∥∥

2.

If we consider the Taylor series expansion for the exponential functions in the ex-
pression on the right, we obtain the matrix power series in terms of λAj , where all
the terms involving λk , k ≤ s, should cancel out due to the choice of the parameters
{τij }i=1,...,r;j=1,...,m. Further, we would like to make use of the so-called projection
operator Ψs , which in the case of scalar functions f (t) = ∑∞

k=0 αkt
k is defined as fol-

lows: Ψs(f (t)) := ∑∞
k=s+1 αkt

k . This operator can be applied to matrix power series
in a straightforward way. Therefore,∥∥e−λ(A1+···+Am)Fs

({λAj }j=1,...,m

) − I
∥∥

2

= ∥∥Ψs

(
e−λ(A1+···+Am)Fs

({λAj }j=1,...,m

))∥∥
2.

Next observe that∥∥Ψs

(
e−λ(A1+···+Am)Fs

({λAj }j=1,...,m

))∥∥
2 ≤ Ψs

(
e
|λ|(∑m

k=1 ‖Ak‖(1+∑r
j=1 |τjk |)))

≤ Cs |λ|s+1(‖A1‖2 + · · · + ‖Am‖2
)s+1

,

where the first inequality follows from repeatedly applying the triangle inequality to
the matrix power series, and the second is the crude estimate of the corresponding
Taylor series by its leading term. From here the statement of the lemma follows. �
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So far we were neither able to derive nor could we find in the literature an error
bound for a splitting formula of order greater than two, where the participating factors
were involved in commutator relations similar to those in (20), (21).

6 Proof of Theorem 1

We are finally ready to prove the main result of this paper. Note that the constants in
the estimates below in general depend on Q, α, N , s, and k, but they are independent
of other parameters, in particular, of the final degree n of the polynomial loop Qn.

Recall that an arbitrary loop Q(t) ∈ Lipα(T → SO(N)), N ≥ 3, α > 1/2, can be
factorized as follows:

Q(t) =
(

N−2∏
j=1

Q0,j e
Xj (t)

)
P̂k(t)e

XN−1(t).

The polynomial loop P̂k(t) is defined according to (9), and we assigned XN−1(t) :=
�(t)Φ̂ to keep the notation uniform (�(t) and Φ̂ are defined in Theorem 2). The
approximation can be carried out factor by factor. In more detail, suppose we have
constructed the polynomial loops Pj (t) of degree ≤ n in SO(N) such that

∥∥eXj (t) − Pj (t)
∥∥

C
≤ ε, j = 1, . . . ,N − 1.

Then

P(t) :=
(

N−2∏
j=1

Q0,jPj (t)

)
P̂k(t)PN−1(t)

is a polynomial loop in Πn(T → SO(N)) of degree ≤(N − 1)n + k, (k is the degree
of the polynomial P̂k(t)), and P(t) satisfies the estimate∥∥Q(t) − P(t)

∥∥
C

≤ (N − 1)ε, (23)

which is easily obtained using Lemma 3. Therefore, we further concentrate on how
one should construct a polynomial Pj (t).

For any m > 1, we can approximate Xj(t) ∈ Lipα(T → so(N)), j = 1, . . . ,

N − 1, by an so(N)-valued polynomial loop Xj,m(t) of degree ≤ m at the optimal
rate (say, by applying the de la Vallée Poussin means componentwise), i.e.,

∥∥eXj (t) − eXj,m(t)
∥∥

C
≤ Cα

mα
|Xj |Lipα

, m > 0 (24)

(see Lemma 1), and

Xj,m(t) :=
L∑

l=1

Am,l(t) :=
L∑

l=1

m∑
k=0

cl,kBl,k(t), L = N(N − 1), (25)
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where {Bl,k(t)}l=1,...,L;k=0,...,m is the designated basis over R for the linear space of
polynomial loops Πm(T → so(N)) (see Sect. 3 for the details on the construction
of the basis). For simplicity of notation, the dependence of the coefficients cl,k in
(25) on j and m is not made explicit. Moreover, for even l the terms with k = 0 are
redundant. We group the basis elements of the same type l into Am,l(t) in order to
apply the property (6). For any l, the entries of the polynomial loop Am,l(t) are de-
rived from the entries of the initial loop Xj,m(t) by separating even and odd parts of
the trigonometric polynomials and their conjugates and taking their linear combina-
tions, analogous to the proof of the basis property for {Bl,k(t)}l=1,...,L;k=0,...,m given
in Sect. 3. The remaining effort goes into approximating exp(Xj,m(t)), for which we
will use higher-order splitting methods. Since the same approximation procedure is
carried out for each j , we henceforth drop the index j .

We define

F
({

Am,l(t)/M
}
l=1,...,L

) := e
1
M

Am,1(t)e
1
M

Am,2(t) · · · e 1
M

Am,L(t).

In conjunction with (22), we can construct

Fs

({
Am,l(t)/M

}
l=1,...,L

)
:= F

({
τ1Am,l(t)/M

}
l=1,...,L

) · · ·F ({
τrAm,l(t)/M

}
l=1,...,L

)
,

which is the order s splitting formula for e
∑L

l=1 Am,l(t)/M , i.e.,

e
∑L

l=1 Am,l(t)/M = Fs

({
Am,l(t)/M

}
l=1,...,L

) + O
(
M−(s+1)

)
,

and we assume that the appropriate conditions on the parameters τi , i = 1, . . . , r are
satisfied. We use Lemma 3 and Lemma 7 to obtain the estimate∥∥e

∑L
l=1 Am,l(t) − (

Fs

({
Am,l(t)/M

}
l=1,...,L

))M∥∥
C

= ∥∥(
e
∑L

l=1 Am,l(t)/M
)M − (

Fs

({
Am,l(t)/M

}
l=1,...,L

))M∥∥
C

≤ M
∥∥e

1
M

∑L
l=1 Am,l(t) − Fs

({
Am,l(t)/M

}
l=1,...,L

)∥∥
C

<
C

Ms
. (26)

Next we consider each of the factors F({τiAm,l(t)/M}l=1,...,L). By construction,

F
({

τiAm,l(t)/M
}
l=1,...,L

) =
L∏

l=1

e(τi/M)Am,l(t) =
L∏

l=1

e(τi/M)
∑m

k=0 cl,kBl,k(t).

Let us define

P l
({

τicl,kBl,k(t)/M
}
k=0,...,m

) :=
m∏

k=0

e(τi/M)cl,kBl,k(t).

Note that P l is already a polynomial loop in the group of degree 2m according to (6).
We again make use of the higher-order splitting formula (22), this time in conjunction
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with P l({τicl,kBl,k(t)/M}k=0,...,m),

P l
s

({
τicl,kBl,k(t)/M

}
k=0,...,m

)
= P l

({
τi1cl,kBl,k(t)/M

}
k=0,...,m

) · · ·P l
({

τircl,kBl,k(t)/M
}
k=0,...,m

)
,

which generates the polynomial loop in the group of degree ≤ 2rm. Next we apply
Lemma 7 to e(τi/M)

∑m
k=0 cl,kBl,k(t) to obtain the inequality

∥∥e(τi/M)
∑m

k=0 cl,kBl,k(t) − P l
s

({
τicl,kBl,k(t)/M

}
k=0,...,m

)∥∥
C

≤ C

Ms+1

(
m∑

k=0

|cl,k|
∥∥Bl,k(t)

∥∥
C

)s+1

. (27)

Recall that cl,k can be obtained as linear combinations of the coefficients of trigono-
metric polynomials approximating the functions from the Hölder class Lipα(T → C)

(Sect. 3), and therefore should decay with order 1/(k + 1)α (as in (2)). Hence,

m∑
k=0

|cl,k|
∥∥Bl,k(t)

∥∥
C

≤ C

m∑
k=0

(k + 1)−α ≤ C′,

where the constant C′ > 0 is independent of the number of splitting terms m if the cor-
responding series is convergent, which holds for Hölder classes of loops with α > 1.
By the same reasoning, the constant in (27) can be uniformly bounded with respect
to the number of splitting terms m. Note that the restriction on α comes from the lack
of more precise error estimates for higher-order splitting methods.

With these preparations, we can write down the final formula for the approxima-
tion of eXj (t):

Pj (t) :=
(

r∏
i=1

L∏
l=1

P l
s

({
τicl,kBl,k(t)/M

}
k=0,...,m

))M

.

Note that the degree of the polynomial Pj (t) does not exceed 2Lr2mM (or when
substituting the value of L, 2N(N − 1)r2mM , resp.). We apply Lemma 3 repeatedly
to deduce that∥∥(

Fs

({
Am,l(t)/M

}
l=1,...,L

))M − Pj (t)
∥∥

C

=
∥∥∥∥∥
(

r∏
i=1

L∏
l=1

e(τi/M)
∑m

k=0 cl,kBl,k(t)

)M

−
(

r∏
i=1

L∏
l=1

P l
s

({
τicl,kBl,k(t)/M

}
k=0,...,m

))M∥∥∥∥∥
C
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≤ MrLmax
i,l

∥∥e(τi/M)
∑m

k=0 cl,kBl,k(t) − P l
s

({
τicl,kBl,k(t)/M

}
k=0,...,m

)∥∥
C

≤ C

Ms
. (28)

Note that here the constant depends on the order of the splitting method s as well
as the number of stages of the splitting method r , which is also a function of s.
Combining this result with (26) and using the triangle inequality,

∥∥e
∑L

l=1 Am,l(t) − Pj (t)
∥∥

C
≤ ∥∥e

∑L
l=1 Am,l(t) − (

Fs

({
Am,l(t)/M

}
l=1,...,L

))M∥∥
C

+ ∥∥(
Fs

({
Am,l(t)/M

}
l=1,...,L

))M − Pj (t)
∥∥

C
≤ C

Ms
.

Finally, using (24) and the above estimate, we obtain

∥∥eXj (t) − Pj (t)
∥∥

C
≤ ∥∥eXj (t) − eXj,m(t)

∥∥
C

+ ∥∥eXj,m(t) − Pj (t)
∥∥

C
≤ C

(
1

mα
+ 1

Ms

)
.

Therefore, substitution into (23) yields

∥∥Q(t) − P(t)
∥∥

C
≤ (N − 1)max

j

∥∥eXj (t) − Pj (t)
∥∥

C
≤ C

(
1

mα
+ 1

Ms

)
. (29)

In order for the degree of the polynomial P(t) to satisfy

2N(N − 1)2r2mM + k ≤ n, for n > k, (30)

we must choose m to be the integer part of (n − k)
s

α+s and M to be the integer part
of (2N(N − 1)2r2)−1(n − k)

α
α+s . With this notation, (29) becomes

∥∥Q(t) − P(t)
∥∥

C
≤ C

(n − k)sα/(α+s)
= C

(n − k)α−α2/(α+s)
.

Hence, ∥∥Q(t) − P(t)
∥∥

C
≤ C

nα−ε
, ε = α2/(α + s),

where the constant C now also depends on k. This establishes the claim of the theo-
rem, if for given α > 1 and ε > 0, we choose the order s of the splitting method large
enough.

7 Concluding Remarks

There are several remarks regarding Theorem 1. A shortcoming of the result is that
the constant C(α,N,Q,ε) depends on Q in a nonspecified way. In particular, it also
depends on the order of a splitting method s. However, the latter is less of a problem.
In fact, specifying a splitting method and optimizing the estimate in (29) with respect
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to s leads to sharper results about the convergence rate. It follows from (28) that the
right-hand side in (29) can be further estimated by

C(α,N,Q)

(
1

mα
+ r(s)C(s)

Ms

)
,

where C(α,N,Q), C(s) > 0 are constants depending on the listed parameters and
r(s) is the number of stages in the splitting method. Recall that r(s) = 3s′−1 for the
Yoshida–Suzuki splitting of order 2s′. We can assume that asymptotically C(s) ∼
r(s) and rewrite the expression in parenthesis as follows:

1

mα
+ R(s)

Ms
, R(s) = r2(s). (31)

We would like to minimize the above expression with respect to the parameters m,M

which satisfy the following constraint:

R(s)mM ≤ n, R(s) = r2(s). (32)

Note that the above condition is analogous to (30). Here the degree n is rescaled by
a constant depending only on N and shifted by k, which has no effect on the asymp-
totic behavior we are interested in when n → ∞. Letting m to be the integer part of

R(s)−
s+1
α+s n

s
α+s and M the integer part of R(s)−1+ s+1

α+s n
α

α+s fulfills the condition (32).
Also, (31) becomes

2

mα
= 2

nα

(
R(s)

s+1
α+s n

α
α+s

)α ≤ 2

nα

(
R(s)nα/s

)α
, α > 1.

Therefore, the problem is reduced to minimizing R(s)nα/s with respect to s. In par-
ticular, after substituting R(s) = 3s , it is easy to verify that ln(3snα/s) (and hence

3snα/s ) achieves its minimum at s =
√

α
ln 3 lnn. Then mins 3snα/s = n

C′(α)√
lnn , where

C′(α) is some constant depending on α, and hence

C(α,N,Q)

(
1

mα
+ r(s)C(s)

Ms

)
≤ C(α,N,Q)

n
C′(α)√

lnn

nα
.

Finally, we observe that (lnn)γ � n
β√
lnn � nε for any choice of the positive constants

ε,β, γ .
Another important remark is that the restriction α > 1 arises from the use of the

crude error estimate in Lemma 7. For example, a more accurate error bound for the
second-order method (21), if applied to the set {cj,kBj,k(t)}k=1,...,m, would lead to the
estimate of the right-hand side in (21) by a sum of the form

∑m
k=1(log k)2k−3α (see

Lemma 2), which is uniformly bounded for α > 1/3. In contrast, using the estimate
in Lemma 7 with s = 2 leads to the constant factor of the form (

∑m
k=1 k−α)3, and the

uniform bound exists for α > 1. Unfortunately, error estimates for splitting methods
of order greater than 2 in terms of iterated commutator relations are currently not
known. Note also that the bound α > 1/2 follows from the particular choice of the
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factorization method we used for loops. Generalizing the problem to the case of α > 0
would probably require a different approach.

In our approach we had to deal with topological properties of loops, which
led to setting the lower bound k on the degree of the polynomial loops. As we
are interested in the asymptotic behavior for n → ∞, this does not pose any
problems. From a practical point of view, large k can be undesirable. So far we
can only bridge this gap by choosing P(t) = I , which gives the trivial bound
‖Q(t) − I‖C ≤ 2.

Approximation of loops can be pursued for unit spheres SN−1 ∈ R
N , N ≥ 3.

Recall that the rotation group SO(N) acts transitively on SN−1. Consider q(t) ∈
Lipα(T → SN−1). It is possible to construct a loop Q(t) ∈ Lipα(T → SO(N)) such
that the first column of Q(t) equals q(t), i.e., Q(t)e1 = q(t). Here is the sketch of
the construction of Q(t) ∈ Lipα(T → SO(N)):

1. There exists a point v ∈ SN−1 and r > 0 such that q(t) ∩ C(v, r) = ∅ for any
t ∈ T, where C(v, r) is a spherical cap of radius r (the argument for finding v and
r is similar to that in Lemma 5).

2. Define u(t) := q(t)−v

‖q(t)−v‖ ∈ Lipα(T → SN−1), with which we associate the House-

holder matrix Hu(t) = I − u(t)u(t)T . We construct Q̃(t) ∈ Lipα(T → SO(N))

from Hu(t) by multiplying the last column by −1.
3. Q(t) := Q̃(t)V , were V ∈ SO(N) satisfies V e1 = v.

Further, we construct a sequence of Qn ∈ Πn(T → SO(N)), which approximate Q(t)

with known rate as n → ∞. It remains to observe that the first columns of Qn(t)

are trigonometric loops in Πn(T → SN−1), which approximate q(t) with the same
rate.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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