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Abstract
We derive an equation system for finding Maximum Likelihood Estimators (MLEs)
for the parameters of a p-dimensional t-distribution with ν degrees of freedom, tp,ν ,
and use the MLEs for testing covariance structures for the tp,ν-distributed population.
The likelihood ratio test (LRT), Rao score test (RST) and Wald test (WT) statistics
are derived under the general null-hypothesis H0 : � = �0, using a matrix derivative
technique.Here the p× p-matrix� is a dispersion/scale parameter. Convergence to the
asymptotic chi-square distribution under the null hypothesis is examined in extensive
simulation experiments. Also the convergence to the chi-square distribution is studied
empirically in the situation when the MLEs of a tp,ν-distribution are changed to the
corresponding estimators for a normal population. Type I errors and the power of the
tests are also examined by simulation. In the simulation study the RST behaved more
adequately than all remaining statistics in the situation when the dimensionality p was
growing.

Keywords Multivariate t-distribution · Covariance structure testing · Likelihood
ratio test · Rao score test · Wald test

Mathematics Subject Classification 62H10 · 62H15 · 62F03 · 62F05

1 Introduction

Classical multivariate statistics is based on a normally distributed population. In prac-
tice the normality assumption is often violated andmore general classes of distributions
are of interest. Continuous elliptical distributions and skew-elliptical distributions are
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usually the first choices for data modeling. The multivariate t-distribution, tp,ν , is of
special interest because of two important properties—tail dependence and a heavier
tail area than that of the normal distribution. When the number of degrees of freedom
ν tends to infinity, the tp,ν-distribution converges to the normal distribution with the
same parameters. Thus, we have a direct generalization of the normal population. A
wide range of applications where a multivariate tp,ν-distribution has been used can
be found in (Kotz and Nadarajah 2004, Ch. 12), for instance. Among many recent
reports we refer to Osorio et al. (2023) for applications in meteorology, Finegold and
Drton (2011) for gene analysis, and Kan and Zhou (2017) and Galea et al. (2020) for
economic and financial applications. For risk estimation in portfolio theory, a multi-
variate t-distribution is specially advocated in Lauprete et al. (2002) with reference to
the t-copula.

Before applying specific methods of multivariate analysis it is important to exam-
ine first the structure of the covariance matrix �. Further analyses will be much
simpler if one can take into account a specific covariance structure. Traditionally, tests
have been developed for simple structures testing � = Ip, sphericity � = σ 2Ip,
uncorrelatedness � = � with � diagonal, and intraclass correlation structure
� = σ 2[(1 − ρ)Ip + ρ1p1′

p], where 1′ = (1, 1, . . . , 1) is a p-dimensional row
vector of ones and Ip is the p × p identity matrix. In more complex situations, e.g.
when analysing spatial-temporal data, the Kronecker product structure is present (Sri-
vastava et al. 2008, 2009; Filipiak and Klein 2017, for example). When the population
distribution is elliptical, the covariance matrix is a product of a univariate multiplier
characterizing the distribution and a scale matrix, denoted also by �. We shall derive
test statistics for the parameter � under the null hypothesis � = �0, where �0 can
be specified.

Probably the most commonly used test is the likelihood ratio test (LRT) under the
assumption of normality of the population (Anderson 2003; Bilodeau and Brenner
1999, for example). A profound study of basic LRTs concerning covariance structures
under normality is presented in Muirhead (2005, Ch. 8). However, it is known that
when the number of parameters to be tested is large, the LRT will almost always reject
the null hypothesis. In order to overcome this problem, corrections to the test have been
made so that it can be used in a high-dimensional setup as well; see Bai et al. (2009),
for example. In practice the uncorrected test is still used. In Kollo et al. (2016) it is
shown that instead of the LRT or Wald test (WT), the more consistent Rao score test
(RST) should be used to test a particular covariance structure under normality. In this
paper we examine these three tests for a multivariate tp,ν-distributed population. Since
one of our goals is to investigate possible differences inmaximum likelihood estimates
(MLEs) between t-distributed and normal populations, we focus on cases where the
number of degrees of freedom, ν, is known and as small as possible. Our second goal
is to examine the speed of convergence of the considered test statistics when ν is
growing and to study the power of the tests (by simulations), the assumption of fixed
ν allows us to speed up the simulations, especially for higher values of dimension and
sample size. Nevertheless, the formulas for test statistics under unknown ν will be also
presented, together with their distributions compared to the respective distributions
under known ν.
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In Sect. 2 notation and required notions are explained. For fixed ν in Sect. 3 we
derive equations for finding MLEs and present, in Proposition 1, the LRT statistic. In
Sect. 4 we find a score vector and information matrix for a tp,ν-distributed population,
and in Proposition 2 the RST statistic is presented using trace functions. In Sect. 5
the WT statistic is derived and presented in Proposition 3. A modification, WT∗, of
the Wald statistic is also introduced. In Sect. 6 convergence to the limiting chi-square
distribution is examined in simulation experiments for all test statistics. Convergence
is also examined in the situation when the MLEs of a tp,ν-distribution are replaced
by their approximations—the MLEs of the corresponding normal population. In the
simulation studies, empirical type I errors and powers of the tests are also calculated.
Assuming unknown ν in Sect. 7 we present relevant test statistics and we show, that
their distributions are similar to the distributions of test statistics derived in Sects. 3–5.
Finally we summarize the results in Sect. 8.

2 Notation and notions

Derivations in this paper utilize a matrix technique based on vectorization, Kronecker
product, and matrix derivative. For deeper insight into this technique the interested
reader is referred to Magnus and Neudecker (2019), Harville (1997), or Kollo and von
Rosen (2005). The following properties of “vec” operator, which transforms a matrix
into a vector by stacking the columns one under the other, are frequently used:

vec (ABC) = (C′ ⊗ A)vecB,

vec ′AvecB = tr(A′B),

vec (ab′) = b ⊗ a,

where “tr” denotes the trace operator. Matrices are denoted with capital letters and
vectors with lowercase letters in bold.

Later we shall use matrix derivatives repeatedly, and the definition of Neudecker
(1969) is applied.

Definition 1 Let the elements of Y ∈ R
r×s be functions of X ∈ R

p×q with non-
constant and functionally independent elements xi j . The matrix dY

dX ∈ R
rs×pq is

called the matrix derivative ofY byX in a set A if the partial derivatives ∂ ykl
∂xi j

exist and
are continuous in A, and

dY
dX

= d

dvec ′X
⊗ vecY

where

d

dvec ′X
=
(

∂

∂x11
, . . . ,

∂

∂xp1
,

∂

∂x12
, . . . ,

∂

∂xp2
, . . . ,

∂

∂x1q
, . . . ,

∂

∂xpq

)

and vec (·) is the vectorization operator.
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Definition of the derivative with respect to matrix X of a scalar, vector and matrix
function, can be also found in a recent paper by Liu et al. (2023), where an insightful
overview of matrix-oriented results and their applications in statistics are presented.

From the basic properties of the matrix derivative (Magnus and Neudecker 2019)
we obtain the differentiation rule for a composite function:

when Z = Z(Y), Y = Y(X) then
dZ
dX

= dZ
dY

dY
dX

,

and the derivatives of the determinant and the inverse of a square matrix X:

d|X|
dX

= |X|vec ′(X−1)′ and
dX−1

dX
= −(X−1)′ ⊗ X−1,

where | · | denotes the determinant.
Note that for the symmetric matrix X = X′ : p × p, the derivative is computed

with respect to the vectorized lower triangle ofX, denoted by vechX, instead of vecX,
which results in rs × p(p + 1)/2 matrix. To avoid misunderstandings, the derivative
with respect to vechX we denote by adding superscript to X, i.e., dY

dX� = dvecY
dvech ′X .

Then, using the chain rule described above,

dY
dX�

= dvecY
dvec ′X

· dvecX
dvech ′X

= dvecY
dvec ′X

· Dp,

whereDp : p2 × 1
2 p(p+1) is a duplication matrix that transforms vechA into vecA,

i.e.,

DpvechA = vecA;

cf. Magnus and Neudecker (1986), Filipiak et al. (2016).
Let x be a continuous random vector with distribution Px(θ) and density function

fx(x, θ), where θ is a vector of unknown parameters.

Definition 2 The score vector of a random vector x is given by the matrix derivative

u(x, θ) =
(

d

dθ
ln f (x, θ)

)′
.

Definition 3 The information matrix of a random vector x is the covariance matrix of
the score vector u(x, θ):

I(x, θ) = D(u(x, θ)) = E(u(x, θ)u′(x, θ)).

Let X = (x1, . . . , xn) denote a random sample from the distribution Px(θ). Then

the log-likelihood function of the sample is given by �(θ,X) =
n∑

i=1
ln f (xi , θ) and the
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score function of the sample by u(X, θ) =
n∑

i=1
u(xi , θ). The information matrix of the

sample is given by I(X, θ) = n · I(x, θ).

Definition 4 Let a random p-vector y be normally distributed, y ∼ Np(0,�), and let
Z2 ∼ χ2

ν be independent of y. Then

x =
√

ν

Z
y + μ

is multivariate tp,ν-distributed with parameters μ and �, i.e., x ∼ tp,ν(μ,�).

Remark 1 When μ = 0 and instead of � we have a correlation matrix R as the
parameter of the normal distribution, i.e., Np(0,R), we obtain in the univariate case
a standard t-distribution. From Definition 4 we obtain a member of the location-scale
family of the univariate t-distribution.

The density function of x ∼ tp,ν(μ,�) is given by

fν(x,μ,�) = cp|�|− 1
2
[
1 + 1

ν
(x − μ)′�−1(x − μ)

]− ν+p
2 , (1)

where cp = 	((ν+p)/2)
(πν)p/2	(ν/2)

(cf. Kotz and Nadarajah 2004, Ch. 5), and the first two
moments of x are

Ex = μ,

Dx = ν
ν−2�, ν > 2;

cf. (Muirhead 2005, p. 48).
Recall that for ν → ∞ the multivariate tp,ν-distribution tends to the multivariate

normal distribution, for which obviously

Ex = μ, Dx = �,

and the maximum likelihood estimators (MLEs) of μ and � are

μ̂ = 1
n

n∑
i=1

xi = 1
nX1n = x,

�̂ = 1
n

n∑
i=1

(xi − x)(xi − x)′ = 1
nX(In − 1

n 1n1
′
n)X

′ = S

(2)

withX = (x1, . . . , xn) being a sample from Np(μ,�) and 1n being an n-dimensional
vector of ones.

It is worth noting that the results presented in Sects. 3–6 are obtained under the
assumption of ν to be known, while in Sect. 7 ν is assumed to be unknown.
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3 Likelihood ratio test

For testing the hypothesis

{
H0 : θ = θ0

H1 : θ 
= θ0
(3)

the LRT statistic in logarithmic form is

LRT(X, θ0) = −2 ln

(
L(θ0,X)

maxθ L(θ,X)

)
= −2[ln L(θ0,X) − ln L (̂θ,X)]

= −2[�(θ0,X) − �(̂θ ,X)],

whereX = (x1, . . . , xn) is a random sample from Px(θ), θ = (θ1, . . . , θr )
′ is a vector

of unknown parameters, θ̂ is the MLE of θ , and L(θ0,X) and L (̂θ,X) (�(θ0,X) and
�(̂θ ,X)) are the likelihood (log-likelihood) functions of the vector of parameters under
the null and alternative hypotheses respectively. When the sample size n → ∞ and
H0 holds, the distribution of LRT(X, θ) converges to χ2

r .
Assume now that θ = (θr−k, θk)

′, where θr−k is the set of (r −k) fixed parameters
under the null hypothesis, i.e., H0 : θr−k = θ0. Then the LRT in logarithmic form
has the representation

LRT(X, θ0) = −2 ln

(
maxθk L(θ0,X)

maxθ L(θ,X)

)

= −2[�((θ0, θ̂k)′,X)) − �(̂θ,X)],

where θ̂k is the MLE of k non-fixed parameters under the null hypothesis. The distri-
bution of LRT(X, θ0) converges to χ2

r−k when the sample size n → ∞ and H0 holds;
c.f. (Rao 1973, §6e).

Let x ∼ tp,ν(μ,�), with μ = (μ1, . . . , μp)
′, the scale parameter � > 0 : p × p

and let θ = (μ′, vech ′�)′. Due to (1), the likelihood function L(θ,X) is

L(θ ,X) = (cp)
n|�|− n

2

n∏
i=1

[
1 + 1

ν
(xi − μ)′�−1(xi − μ)

]− ν+p
2 ,

and the log-likelihood function can be presented as

�(θ ,X) = n ln cp − n
2 ln |�| − ν+p

2

n∑
i=1

ln
[
1 + 1

ν
(xi − μ)′�−1(xi − μ)

]
. (4)
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Differentiating (4) with respect to μ and � gives the following partial derivatives:

∂�

∂μ
= ν+p

ν

n∑
i=1

(xi − μ)′�−1

1 + 1
ν
(xi − μ)′�−1(xi − μ)

,

∂�

∂�
=

{
− n

2 vec
′�−1 + v+p

2v ,

n∑
i=1

(xi − μ)′ ⊗ (xi − μ)′

1 + 1
ν
(xi − μ)′�−1(xi − μ)

�−1 ⊗ �−1

}
Dp

(5)

with Dp being the respective duplication matrix. Thus, to obtain MLEs of μ and �,
we have to solve the following system of equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ =
n∑

i=1

xi
ti

/ n∑
i=1

1

ti

� = ν + p

nν

n∑
i=1

(xi − μ)(xi − μ)′

ti

with ti = 1+ 1
ν
(xi − μ)′�−1(xi − μ). Noting that ti depends on μ and �, the above

system of equations can be solved numerically in the following way:

• fix starting values μ(0) and �(0),
• for k = 1, 2, . . . , update the following system

t (k−1)
i = 1 + 1

ν
(xi − μ(k−1))′

(
�(k−1)

)−1
(xi − μ(k−1)), i = 1, . . . , n

μ(k) =
n∑

i=1

xi

t (k−1)
i

/ n∑
i=1

1

t (k−1)
i

�(k) = ν + p

nν

n∑
i=1

(xi − μ(k))(xi − μ(k))′

t (k−1)
i

(6)

until the convergence criterion is satisfied.

In our considerations the algorithm stops when ||μ(k) −μ(k−1)|| ≤ 10−6 and ||�(k) −
�(k−1)||2F ≤ 10−6, where || · ||F denotes the Frobenius norm. To the best of our
knowledge there are no recommendations regarding the choice of starting point. In
our research we choose μ = 0 and � = Ip. Throughout the paper we denote the
solutions obtained by μ̂ and �̂.

Remark 2 In applications with missing data the system of Eq. (5) is solved using the
EM algorithm; cf. Liu and Rubin (1995), McLachlan and Krishnan (1997), Finegold
and Drton (2011). The procedure for solving (6) coincides with the EM algorithm.

In order to determine the LRT statistic to test

{
H0 : � = �0
H1 : � 
= �0

(7)
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when no constraints are imposed on μ, it is necessary to compute the MLE of μ under
H0, which will be denoted by μ̂0. Using the same approach as above, μ̂0 is obtained
as the solution of

μ0 =
n∑

i=1

xi
ti0

/ n∑
i=1

1

ti0
,

where ti0 = 1 + 1
ν
(xi − μ0)

′�−1
0 (xi − μ0). Applying the same algorithm as before,

for a fixed �0 we choose a starting value μ(0), and then, for k = 1, 2, . . . , we solve
the system

⎧⎪⎨
⎪⎩
t (k−1)
i0 = 1 + 1

ν
(xi − μ(k−1))′�−1

0 (xi − μ(k−1)), i = 1, . . . , n

μ
(k)
0 =

n∑
i=1

xi

t (k−1)
i0

/ n∑
i=1

1

t (k−1)
i0

(8)

until the stopping rule holds.
The LRT statistic for testing (7) when no constraints are imposed on μ has the

following form:

LRT(X,�0) = −2 ln

⎡
⎣( |�̂|

|�0|
)n/2 n∏

i=1

(
1 + 1

ν
(xi − μ̂0)

′�−1
0 (xi − μ̂0)

1 + 1
ν
(xi − μ̂)′�̂−1

(xi − μ̂)

)−(ν+p)/2
⎤
⎦ ,

where μ̂ and �̂ are the numerically determined MLEs of μ and � (solutions of (6))
and μ̂0 is the solution of (8).

Due to Kollo and Valge (2020, formula (12.3)), their Proposition 12.1 should be
rewritten as follows.

Proposition 1 The LRT statistic for testing (7) when no constraints are imposed on μ

is given by

LRT(X,�0)

= −n
[
ln |�̂| − ln |�0|

]
+(ν + p)

×
n∑

i=1

{
ln
[
1 + 1

ν
(xi − μ̂0)

′�−1
0 (xi − μ̂0)

]
− ln

[
1 + 1

ν
(xi − μ̂)′�̂−1

(xi − μ̂)
]}

,

where X = (x1, . . . , xn) is a random sample from tp,ν(μ,�), ν > 2 is known, μ̂, �̂

are the solutions of (6), and μ̂0 is the solution of (8).
When n → ∞ andH0 holds, the distribution ofLRT(X,�0) tends to the chi-square

distribution with p(p + 1)/2 degrees of freedom.

Note that the convergence to the chi-square distribution follows from e.g. Wilks
(1938).
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Remark 3 The LRT statistic in Proposition 1 contains elements of the form

(ν + p) ln
(
1 + ui

ν

)
,

where ui stands for (xi − x)′�−1
0 (xi − x) or/and (xi − x)′�̂−1

(xi − x).
Then, if ν → ∞, using the l’Hôpital rule we obtain

lim
ν→∞(ν + p) ln

(
1 + ui

ν

) = lim
ν→∞

ln
(
1 + ui

ν

)
1

ν+p

= lim
ν→∞

ui (ν + p)2

ν(ν + ui )
= ui .

This means that the LRT converges to

−n
[
ln |�̂| − ln |�0|

] +
n∑

i=1
(xi − x)′

(
�−1

0 − �̂
−1
)

(xi − x)

= −n ln |�̂�−1
0 | + tr

[(
�−1

0 − �̂
−1
) n∑
i=1

(xi − x)′(xi − x)
]

.

From the definition of S given in (2) we have

LRT → −n
[
ln |S�−1

0 | + tr
(
S�−1

0

)
− p

]
,

which is the LRT statistic for testing (7) under normality; cf. Kollo et al. (2016).

4 Rao score test

The RST statistic is a function of the score vector and the Fisher information matrix.

Definition 5 The RST statistic for testing hypothesis (3) is of the form

RST(X, θ0) = u′(X, θ0)I(X, θ0)
−1u(X, θ0),

whereX = (x1, . . . , xn) is a randomsample from Px(θ),u(X, θ0) is the score function,
I(X, θ0) is the information matrix, and θ = (θ1, . . . , θr )

′.

Following Rao (1948), when the sample size n → ∞ and H0 holds, the distribution
of RST(X, θ0) converges to χ2

r .
Assume now that θ = (θr−k, θk)

′, where θr−k is the set of (r −k) fixed parameters
under the null hypothesis, i.e., H0 : θr−k = θ0. Then the RST has the representation

RST(X, θ0) = u′
1(X, θ0, θ̂k)I

−1
1.2(X, θ0, θ̂k)u1(X, θ0, θ̂k), (9)

where the score vector u′(X, θ0, θk) has been divided into two parts, related
to partial derivatives of �(θ,X) with respect to θr−k (= u1(X, θ0, θk)) and θk
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(= u2(X, θ0, θk)), I1.2(X, θ0, θk) is the Schur complement of I22 in the Fisher infor-
mation matrix I(X, θ0, θk) = (Ii j ) i, j = 1, 2, i.e., I1.2 = I11 − I12I

−1
22 I21, and where

θ̂k is the MLE of k non-fixed parameters under the null hypothesis; cf. Rao (2005).
Moreover, when under the null hypothesis there are k parameters not fixed, the sample
size n → ∞ and H0 holds, the distribution of RST(X, θ) tends to χ2

r−k ; cf. (Rao 1973,
Sect. 6e).

In our case θ = (μ′, vech ′�)′ and the (p + p(p+1)
2 )-dimensional score vector of

partial derivatives has the form

u(X,μ,�) = (u1(X,μ,�), u2(X,μ,�))′ =
(

∂�(μ,�,X)

∂μ
,

∂�(μ,�,X)

∂��

)′
.

(10)

The components of the score vector are given by (5). Expressions for the elements of
the (p+ p(p+1)/2)×(p+ p(p+1)/2) Fisher informationmatrix of a tp,ν-distributed
random vector can be computed using the formulae from Mitchell (1989), which in
the matrix representation have the form

I(X,μ,�) =(
(ν+p)n
ν+p+2�

−1 0
0 n

2(ν+p+2)D
′
p

[
(ν + p)(�−1 ⊗ �−1) − vec�−1vec ′�−1

]
Dp

)
.

(11)

By inserting the MLE of μ under the null hypothesis, μ̂0, and �0 into the score vector
(10) and information matrix (11), it can be seen that since there are no restrictions on
μ in the hypothesis (7), it is enough to take into account the second component of the
score vector and the lower diagonal entry of the Fisher information matrix.

Proposition 2 The RST statistic for testing (7) when no constraints are imposed on μ

is given by

RST(X,�0) = n(ν+p+2)
2ν(ν+p)

{
ν · tr[(V�−1

0 )2] + tr2(V�−1
0 )

}

with

V = V(X,�0) = �0 − ν+p
nν

n∑
i=1

(xi − μ̂0)(xi − μ̂0)
′

1 + 1
ν
(xi − μ̂0)

′�−1
0 (xi − μ̂0)

, (12)

where X = (x1, . . . , xn) is a sample from tν,p(μ,�), ν > 2 is known, and μ̂0 is the
solution of (8).

When n → ∞ andH0 holds, the distribution ofRST(X,�0) tends to the chi-square
distribution with p(p + 1)/2 degrees of freedom.
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Proof Since there are no restrictions on μ in (7), to determine the form of the RST we
use (9), with the role of fixed/non-fixed parameters interchanged, i.e.,

RST(X,�0) = u′
2(X, μ̂,�0)I

−1
2.1(X, μ̂,�0)u2(X, μ̂,�0).

From (11) it follows that I2.1(X, μ̂,�0) reduces to I22(X, μ̂,�0).
Due to the second equality of (5)

u2(X, μ̂, �0) = − n
2

[
vec�−1

0 − ν+p
nν

(�−1
0 ⊗ �−1

0 )

n∑
i=1

(xi − μ̂) ⊗ (xi − μ̂)

1 + 1
ν
(xi − μ̂)′�−1

0 (xi − μ̂)

]
Dp.

Using the properties of the vec-operator we can rewrite the above as

u2(X, μ̂, �0) = − n
2

[
(�−1

0 ⊗ �−1
0 )

(
vec�0 − ν+p

nν

n∑
i=1

vec ((xi − μ̂)(xi − μ̂)′)
1 + 1

ν
(xi − μ̂)′�−1

0 (xi − μ̂)

)]
Dp,

and, using the expression for V from (12) we obtain

u2(X, μ̂0,�0) = − n
2 (�−1

0 ⊗ �−1
0 )vecV · Dp. (13)

Observe now that the diagonal block I22 of (11) can be represented as

I22(�0) = n
2(ν+p+2)D

′
p(�

−1
0 ⊗ �−1

0 )

× [
(ν + p)(�0 ⊗ �0) − vec�0vec ′�0

]
(�−1

0 ⊗ �−1
0 )Dp,

and since the duplication matrix Dp is of full rank, I−1
22 can be expressed using the

Moore-Penrose inverse D+
p

I−1
22 (�0) = 2(ν+p+2)

n D+
p (�0 ⊗ �0)

× [
(ν + p)(�0 ⊗ �0) − vec�0vec ′�0

]−1
(�0 ⊗ �0)D+′

p .

The inverse matrix in square brackets we obtain using the inverse binomial theorem,
i.e., assuming that all included inverses exist,

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1;

cf. (Kollo and von Rosen 2005, p. 75). Setting A = (ν + p)(�0 ⊗ �0), B = vec�0,
C = −1 and D = vec ′�0, we have

[
(ν + p)(�0 ⊗ �0) − vec�0vec ′�0

]−1

= 1
ν+p (�−1

0 ⊗ �−1
0 )

− 1
(ν+p)2

(�−1
0 ⊗ �−1

0 )vec�0
[
vec ′�0

1
ν+p (�−1

0 ⊗ �−1
0 )vec�0 − 1

]−1

×vec ′�0(�
−1
0 ⊗ �−1

0 ),
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and since the sum in the square brackets on right-hand side equals p
ν+p − 1 we have

[
(ν + p)(�0 ⊗ �0) − vec�0vec

′�0
]−1 = 1

ν+p

(
(�−1

0 ⊗ �−1
0 ) + 1

ν
vec�−1

0 vec ′�−1
0

)
.

Hence

I−1
22 (�0) = 2(ν+p+2)

n(ν+p)

×D+
p (�0 ⊗ �0)

[(
�−1

0 ⊗ �−1
0

)
+ 1

ν
vec�−1

0 vec ′�−1
0

]
(�0 ⊗ �0)D+′

p

= 2(ν+p+2)
nν(ν+p) D+

p

[
ν(�0 ⊗ �0) + vec�0vec

′�0
]
D+′

p . (14)

Combining (13) and (14),

RST(X,�0) = u′
2(μ̂0,�0)I

−1
22 (�0)u2(μ̂0,�0)

= n(ν + p + 2)

2ν(ν + p)
vec ′V(�−1

0 ⊗ �−1
0 )DpD+

p

× [
ν(�0 ⊗ �0) + vec�0vec

′�0
]
D+′

p D′
p(�

−1
0 ⊗ �−1

0 )vecV.

From (Magnus and Neudecker 1986, formula (54)) it is known that DpD+
p = Np,

where Np = 1
2 (Ip2 +Kp,p) withKp,p being the commutation matrix, i.e., the matrix

for which Kp,pvecA = vecA′. Thus, for a symmetric matrix V we have NpvecV =
vecV. Moreover, since (�−1

0 ⊗ �−1
0 )Np = Np(�

−1
0 ⊗ �−1

0 ), we obtain

RST(X, �0) = n(ν+p+2)
2ν(ν+p) vec ′V

[
ν(�−1

0 ⊗ �−1
0 ) + vec�−1

0 vec ′�−1
0

]
vecV

= n(ν+p+2)
2ν(ν+p)

[
ν · vec ′(�−1

0 V�−1
0 )vecV + vec ′Vvec�−1

0 vec ′�−1
0 vecV

]
.

Finally, again using the relation between the vec-operator and the trace function, we
obtain

RST(X,�0) = n(ν+p+2)
2ν(ν+p)

{
ν · tr[(V�−1

0 )2] + tr2(V�−1
0 )

}
.

The limiting distribution follows from e.g. Rao (2005). �
Note that if ν → ∞, the μ̂0 becomes the average from the observations, x, and

V = �0 − 1
nXQnX′ = �0 − S,

where S = �̂ under normality. Thus, the formula for RST reduces to the formula for
RST under normality

RST → n
2 tr

[
(Ip − S�−1

0 )2
]
;

cf. Kollo et al. (2016).
Finally wemention that the RST statistic can also be determined using the formulae

stated in Sutradhar (1993), where Neyman’s score test (Neyman (1959)) for testing
covariance structure when n is large and μ and ν are unknown is proposed.
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5 Wald test statistic

The WT statistic is a function of the MLE and the Fisher information matrix.

Definition 6 The WT statistic for testing hypothesis (3) is given by

WT(X, θ0) = (̂θ − θ0)
′I(X, θ̂)(̂θ − θ0),

where θ = (θ1, . . . , θr )
′, θ̂ is the MLE of θ and X is a random sample from a Pθ -

distributed population.

When sample size n → ∞ and H0 holds then, similarly to the previous cases, the
distribution ofWT(X, θ0) converges to χ2

r ; cf. Wald (1943). As in the case of the RST,
if the restrictions in the null hypothesis are imposed only on r − k parameters, the WT
can be represented as

WT(X, θ0) = (̂θr−k − θ0)
′I1.2(X, θ̂)(̂θr−k − θ0), (15)

where θ̂r−k is the MLE of θr−k under the alternative and I1.2(X, θ̂) is the Schur
complement of I22 in the information matrix I(X, θ̂); cf. Rao (2005). When the null
hypothesis H0 : θr−k = θ0 holds, the distribution of the WT statistic converges to
χ2
r−k .
Let us rewrite the hypothesis (7) in equivalent form as

{
H0 : vech� = vech�0,

H1 : vech� 
= vech�0,
(16)

since the vector of unknown parameters consists of μ and vech�. Then the following
proposition for the WT statistic can be formulated.

Proposition 3 The WT statistic for testing (7) when no constraints are imposed on μ

is given by

WT(X,�0) = n
2(ν+p+2)

{
(ν + p) · tr

[(
Ip − �0�̂

−1
)2] − tr2

(
Ip − �0�̂

−1
)}

,

where X = (x1, . . . , xn) is a sample from tν,p(μ,�), ν > 2 is known, and �̂ is the
solution of (5).

When n → ∞ andH0 holds, the distribution ofWT(X,�0) tends to the chi-square
distribution with p(p + 1)/2 degrees of freedom.

Proof For testing (16), due to (15) the WT statistic can be expressed as

WT(X,�0) = vech ′(�̂ − �0)I22(�̂)vech (�̂ − �0)
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since I2.1(X, μ̂, �̂) = I22(�̂) is the lower diagonal block of the Fisher information
matrix in (11) with � replaced by its MLE, that is

I22(�̂) = n
2(ν+p+2)D

′
p

[
(ν + p)(�̂

−1 ⊗ �̂
−1

) − vec �̂
−1

vec ′�̂−1
]
Dp.

We obtain

WT(X,�0) = n
2(ν+p+2)vech

′(�̂ − �0)D′
p

×
[
(ν + p)(�̂

−1 ⊗ �̂
−1

) − vec �̂
−1

vec ′�̂−1
]
Dpvech (�̂ − �0),

and since D′
pvech (�̂ − �0) = vec (�̂ − �0) (cf. Magnus and Neudecker 1986,

formula (49)) we obtain

WT(X,�0) = n
2(ν+p+2)vec

′(�̂ − �0)

×
[
(ν + p)(�̂

−1 ⊗ �̂
−1

) − vec �̂
−1

vec ′�̂−1
]
vec (�̂ − �0)

= n
2(ν+p+2)

[
vec ′(�̂ − �0)(ν + p)(�̂

−1 ⊗ �̂
−1

)vec (�̂ − �0)

− vec ′(�̂ − �0)vec �̂
−1

vec ′�̂−1
vec (�̂ − �0)

]
= n(ν+p)

2(ν+p+2)vec
′(�̂ − �0)vec (�̂

−1
(�̂ − �0)�̂

−1
)

− n
2(ν+p+2)vec

′(�̂ − �0)vec �̂
−1

vec ′�̂−1
vec (�̂ − �0).

Using the relation between the vec-operator and the trace function, we obtain

WT(X,�0) = n(ν+p)
2(ν+p+2) tr

{[
(�̂ − �0)�̂

−1
]2} − n

2(ν+p+2) tr
2
[
(�̂ − �0)�̂

−1
]
.

which is the same as stated in the proposition. The limiting distribution follows from
e.g. Rao (2005). �

Note that when ν → ∞, �̂ tends to the MLE of � under normality, S, and WT
converges to the corresponding expression of the WT statistic under normality

WT(X,�0) → n
2 tr

[(
Ip − �0S−1

)2] ;

cf. Kollo et al. (2016).
In addition, let us consider the test statistic WT∗ associated with WT in such a way

that in the information matrix in Definition 6, θ̂ is replaced by θ0. Then, using the
same arguments as in the proof of Proposition 3, we obtain

WT∗(X,�0) = n
2(ν+p+2)

{
(ν + p) · tr

[(
Ip − �̂�−1

0

)2] − tr2
(
Ip − �̂�−1

0

)}
,

which is simply WT with the roles of �̂ and �0 exchanged. In Sect. 6 we show using
Monte Carlo simulations that under the null hypothesis and increasing sample size
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(n → ∞), the distribution ofWT∗ tends to the chi-square distribution with p(p+1)/2
degrees of freedom.

Finally note that when ν → ∞, i.e., when the multivariate t-distribution converges
to multivariate normal, WT∗ becomes the RST.

6 Simulations

In the simulation studies we examine the convergence to the asymptotic chi-square
distributions of the test statistics given in Propositions 1–3 as well as theWT∗ statistic.
We are interested in several problems:

1. How does the speed of convergence depend on the number of degrees of freedom
ν and the sample size n?

2. How does the behavior of the statistics change when ν is growing?
3. What happens when we replace the MLEs of the tp,ν(μ,�)-distribution by the

corresponding MLEs of the normal distribution Np(μ,�)? From a practical point
of view it is important to know whether we need to calculate MLEs numerically
forμ and� for a tp,ν(μ,�)-distribution or whether we can just plug in the sample
mean x and the sample covariance matrix S instead.

4. Which of the derived statistics, LRT, RST, WT or WT∗, behaves best and can be
recommended for use in data analysis?

5. What is the empirical type I error of the considered statistics?
6. Is it possible to indicate the test statistic with the highest power?

Note that a linear transformation of a multivariate tp,ν-distributed vector, �−1/2
0 x,

where �
−1/2
0 �

−1/2
0 = �−1

0 is a known nonsingular positive definite (p.d.) matrix, is
still multivariate tp,ν-distributedwith the same number of degrees of freedom, location

parameter �
−1/2
0 μ and scale matrix �

−1/2
0 ��

−1/2
0 ; cf. Kotz and Nadarajah (2004).

Such a transformation allows us to simplify the null hypothesis and test H0 : � = Ip
instead of H0 : � = �0. Thus, without loss of generality, in the simulation study we
use the simplest possible values of the parameters, μ = 0 and � = Ip. We fix the
dimension to p = 3, 9, the sample size to n = 10, 25, 50, and the number of degrees
of freedom to ν = 3, 10; however, for p = 9 we increase the smallest sample size to
n = 12, to avoid possible ill-conditioned matrices which may appear in the algorithm
and cause perturbation of the empirical distribution of the test statistics. The number
of simulation runs is 10,000. The results are obtained using Mathematica software.

6.1 Convergence of test statistics to the limiting distribution

In the first row of Figs. 1, 2 and 3 we can see the empirical null distribution of LRT,
RST, WT and WT∗ and the limiting χ2 distribution for 3-dimensional data generated
from a multivariate t-distribution with ν = 3 degrees of freedom, and, respectively,
sample sizes n = 10, 25, 50. We can see that the distribution of RST best matches
the limiting distribution, while the fit of LRT and WT∗ is somewhat worse, especially
when the 95th quantiles are compared; cf. Table 1. In addition it can be observed
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Fig. 1 Empirical null distributions of LRT, RST, WT and WT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = p = 3, n = 10, with limiting χ2

6

Fig. 2 Empirical null distributions of LRT, RST, WT and WT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = p = 3, n = 25, with limiting χ2

6

that the convergence of the distribution of WT is the slowest, and even for n = 50
the 95th quantile is far from the corresponding chi-square quantile. It should also be
noted that the quantile values ofWT statistics are much higher than the values of other
test statistics. This fact can be observed in the graphs as well as in Table 1. The same
conclusions can be drawn from Figs. 4, 5 and 6, where respective distributions for
ν = 10 are presented.

Since the MLEs under a tp,ν-distribution are not available in explicit form, we also
performed simulations of the distributions of all four test statistics when the MLEs
are replaced by MLEs of μ and � coming from the normal distribution Np(μ,�). If
the solutions of (5), μ̂ and �̂, are replaced by x and S, respectively, these modified
test statistics will be denoted accordingly by MLRT, MRST, MWT and MWT∗. The
empirical null distributions of these modified test statistics are presented in the second
rows of Figs. 1, 2 and 3 for ν = 3, and Figs. 4, 5 and 6 for ν = 10. In all these
figures and in Table 1 we see that in all considered cases the MRST distribution does
not differ significantly from the distribution of the original RST. Moreover, for larger
ν the differences are almost not perceptible. This phenomenon does not hold in the
case of MLRT, as increasing sample size destroys the convergence to the chi-square
distribution (higher sample size causes a shift to the left). Surprisingly,with (M)WT the
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Fig. 3 Empirical null distributions of LRT, RST, WT and WT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = p = 3, n = 50, with limiting χ2

6

Fig. 4 Empirical null distributions of LRT, RST, WT and WT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = 10, p = 3, n = 10, with limiting χ2

6

convergence improved inmost of the cases, while the opposite occurredwith (M)WT∗.
Observe, however, that for increasing ν the convergence of the distributions ofmodified
test statistics improves compared with ν = 3, since the tp,ν-distribution is closer to
normal. The discrepancy between normal and tp,ν distributions can be measured by,
for example, negentropy (cf. Osorio et al. (2023)), which for fixed degrees of freedom
can be calculated as

H(p, ν) = p
2 (1 + ln(2π)) + ln Kp(ν) − ν+p

2 (ψ(
ν+p
2 ) − ψ(ν

2 )),

where Kp(ν) = ((ν − 2)π)(−p/2)	((ν + p)/2)/	(ν/2) and ψ(z) is the digamma
function. It can be seen in Fig. 13 that for ν = 10 and p = 3 the negentropy is already
very low, around 0.041, while for p = 9 it is around 0.20.

Figures 7, 8, 9, 10, 11 and 12 present the empirical null distributions of the consid-
ered statistics for p = 9 with the limiting χ2

45-distribution. In addition, in Table 2 the
95th empirical quantiles of the respective distributions are given. It can be seen that
the null distribution of RST still matches well the limiting distribution even for very
small sample sizes. The convergence of the remaining distributions is now slower, and
larger differences between them can be observed; in this case LRT outperforms WT∗,
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Fig. 5 Empirical null distributions of LRT, RST, WT and WT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = 10, p = 3, n = 25, with limiting χ2

6

Fig. 6 Empirical null distributions of LRT, RST, WT and WT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = 10, p = 3, n = 50, with limiting χ2

6

and the values of WT are huge, especially for small sample sizes. The conclusions
concerning modified versions of the test statistics are the same as in the case p = 3;
still, the MRST distribution outperforms all other modified test statistics.

Summing up, we can formulate the following conclusions:

• for LRT, RST, WT and WT∗:

– the convergence of RST to the limiting chi-square distribution is quicker than
with the remaining test statistics; moreover, the distribution of WT does not fit
to the limiting distribution, even for large sample size;

– usually there is no significant difference between the empirical distributions
of all four test statistics for ν = 3 and ν = 10;

• for MLRT, MRST, MWT and MWT∗:

– except for MRST, the distributions of the modified test statistics do not fit well
to the theoretical chi-square distribution; moreover, for MLRT and MWT the
fit becomesworsewith increasing sample size, andMWT∗ produces extremely
high values, especially for small numbers of degrees of freedom;

– comparing MWT and WT, it seems that the replacement of the original MLEs
by the MLEs of parameters of a normal distribution improves the fit of the test
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Table 1 The 95th quantiles of the empirical null distributions of LRT, RST, WT, WT∗ and their modified
versions for ν = 3, 10, p = 3 and n = 10, 25, 50, as well as the 95th quantile of χ2

6

n ν = 3 ν = 10
10 25 50 10 25 50

LRT 15.765 13.687 13.306 15.904 13.691 13.028

RST 12.237 12.375 12.505 12.628 12.286 12.366

WT 326.196 47.805 26.413 252.731 44.842 25.315

WT∗ 34.047 19.930 16.216 18.895 15.013 13.605

MLRT 16.387 8.504 0.162 15.773 12.804 10.945

MRST 18.411 15.315 14.298 13.389 12.568 12.470

MWT 107.431 14.156 15.982 190.128 28.136 14.427

MWT∗ 638.37 1023.15 1726.11 29.733 31.761 34.652

χ2
6 12.592 12.592 12.592 12.592 12.592 12.592

Fig. 7 Empirical null distributions of LRT, RST, WT and WT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = 3, p = 9, n = 12, with limiting χ2

45

Fig. 8 Empirical null distributions of LRT, RST, WT and WT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = 3, p = 9, n = 25, with limiting χ2

45
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Fig. 9 Empirical null distributions of LRT, RST, WT and WT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = 3, p = 9, n = 50, with limiting χ2

45

Fig. 10 Empirical null distributions of LRT, RST, WT andWT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = 10, p = 9, n = 12, with limiting χ2

45

Fig. 11 Empirical null distributions of LRT, RST, WT andWT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = 10, p = 9, n = 25, with limiting χ2

45
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Fig. 12 Empirical null distributions of LRT, RST, WT andWT∗ (first row) as well as MLRT, MRST, MWT
and MWT∗ (second row) for ν = 10, p = 9, n = 50, with limiting χ2

45

Table 2 The 95th quantiles of the empirical null distributions of LRT, RST, WT, WT∗ and their modified
versions for ν = 3, 10, p = 9 and n = 12, 25, 50, as well as the 95th quantile of χ2

45

n ν = 3 ν = 10
12 25 50 12 25 50

LRT 105.860 74.447 67.421 106.792 74.341 67.4085

RST 64.248 62.924 61.935 65.957 63.972 62.970

WT 473,798.000 869.174 217.420 283,888.906 802.834 211.011

WT∗ 524.012 120.539 87.755 142.372 88.657 74.438

MLRT 119.623 64.084 33.104 107.356 71.728 61.248

MRST 99.923 79.304 70.872 69.336 65.649 63.805

MWT 223589.647 404.04 95.171 266970.342 615.176 146.551

MWT∗ 6064.220 8552.336 11713.578 174.415 167.833 162.319

χ2
45 61.656 61.656 61.656 61.656 61.656 61.656

Fig. 13 Values of negentropy function between normal and t-distribution for p = 3 and p = 9
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Table 3 The empirical Type I error for LRT, RST, WT andWT∗ for ν = 3, 10, p = 3, 9 and various values
of n

n ν = 3 ν = 10
LRT RST WT WT∗ LRT RST WT WT∗

p = 3

10 0.125 0.045 0.612 0.188 0.128 0.051 0.623 0.108

25 0.072 0.047 0.337 0.124 0.074 0.045 0.351 0.079

50 0.063 0.048 0.219 0.095 0.058 0.046 0.210 0.064

100 0.056 0.049 0.137 0.078 0.054 0.048 0.136 0.059

500 0.051 0.050 0.070 0.055 0.053 0.053 0.069 0.058

p = 9

12 0.771 0.071 0.971 0.672 0.780 0.083 0.981 0.405

25 0.244 0.061 0.966 0.337 0.253 0.067 0.985 0.221

50 0.118 0.053 0.791 0.223 0.117 0.062 0.831 0.142

100 0.080 0.053 0.512 0.146 0.076 0.051 0.541 0.091

500 0.055 0.050 0.142 0.076 0.057 0.051 0.142 0.062

statistic distribution to the theoretical chi-square; this is not the case for the
remaining pairs of statistics.

It is also worth noting that similar conclusions were reached by Kollo et al. (2016),
wheremultivariate normality of the distributionof the observationmatrixwas assumed,
i.e., the convergence of RST to the limiting chi-square distribution is quicker than with
LRT and WT.

6.2 Type I error

In this section we start with a comparison of the convergence of the empirical Type
I errors to the nominal significance level α = 0.05. To reject the true null hypothesis
we used the quantiles of the limiting chi-square distribution. The results are given in
Table 3.

We can observe that the empirical Type I errors converge to the nominal significance
level with increasing sample size for all statistics; however, the convergence of RST
is very quick and, even for small sample size, the Type I error is close to 0.05. We
may also notice that in this comparison LRT usually outperforms WT∗, except for
small sample sizes, especially when ν = 10 and p is growing. Finally, note that the
convergence of the type I error of the WT statistic is extremely slow, and even a
sample size of n = 500 is not enough to reach the nominal significance level. This
behavior follows from the poor convergence of the distribution of WT to the limiting
distribution, which was indicated in Sect. 6.1.
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6.3 Power comparison

In this section we use a Monte Carlo simulation study to examine the behavior of the
power functions of RST, LRT, WT and WT∗ with respect to the discrepancy between
the null and alternative hypotheses in (7), and with respect to the sample size. As a
measure of discrepancy between two distributions with different covariance matrices,
we use Stein’s loss function (cf. Stein (1956)) in the form

ζ(�,�0) = tr
(
�−1�0

)
− ln

∣∣∣�−1�0

∣∣∣ − p,

where� is the scale matrix under the alternative hypothesis and�0 is the scale matrix
under the null hypothesis. Since for the simulations we assumed �0 = Ip in (7), the
above function reduces to

ζ(�) = tr�−1 − ln |�−1| − p. (17)

Observing that Stein’s loss function is not upper bounded, we use as a discrepancy
measure η(�) = 1− 1/(1− ζ(�)), to restrict the possible discrepancy to the interval
[0,1).

In power comparison we first set the parameters of the experiment as p = 3,
ν = 3, 10 and n = 10, 25, 50. We generate 100 p.d. matrices �, for which the
discrepancies η(�) are computed. Note, that since η(�) is a function of�−1, and since
obviously �−1

0 = �0 is diagonal matrix, we randomly choose tridiagonal Toeplitz
matrices with positive entries on the diagonal, bigger than the off-diagonal elements,
to guarantee positive definiteness, and we obtain � by inverting generated matrices.
Then, for each � we generate 10,000 observation matrices from tp,ν(μ,�), and for
every generated matrix we test the hypothesis (7) using the quantiles of the empirical
null distribution of the relevant statistic. In all comparisons the significance level 0.05
is used. In thiswaywe obtain 100 values of the power of each test, computed as the ratio
between the number of rejected null hypotheses and the number of simulation runs
(10,000). The results are presented in Figs. 14 and 15. Since there are no significant
differences between the powers of tests when ν = 3 and ν = 10, we repeat the above
procedure for p = 9 only for ν = 3. The results for n = 12, 25, 50 are presented in
Fig. 16.

In all these graphs the power shows an upward trendwhen the discrepancy increases.
Comparing LRT and RST, slightly higher deviations between powers are noted for
RST than for LRT.A similar phenomenonwas observed byFilipiak et al. (2024),where
various discrepancy measures were studied in the context of testing separability under
doubly multivariate models. Moreover, in Fig. 17 RST has lower power than LRT,
especially for small sample sizes; nevertheless, there are still alternatives for which
the power of RST exceeds the power of LRT.

In the case of WT and WT∗ it is noted that for two equally distant matrices � the
power differs significantly, and is often below the nominal significance level, even for
large samples. This means that both tests are biased. A similar observation for testing
of independence under a block compound symmetry structure in a doubly multivariate
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Fig. 14 Empirical power of LRT, RST, WT and WT∗ for ν = 3, p = 3, n = 10, 25, 50 (in columns)

Fig. 15 Empirical power of LRT, RST, WT and WT∗ for ν = 10, p = 3, n = 10, 25, 50 (in columns)

normal model was made in Filipiak et al. (2023). It should also be mentioned that the
power of WT increases very slowly with the discrepancy, and for small sample sizes
it is below 0.5 even if the discrepancy becomes large.
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Fig. 16 Empirical power of LRT, RST, WT and WT∗ for ν = 3, p = 9, n = 12, 25, 50 (in columns)

Fig. 17 Empirical power of LRT (blue) and RST (red) for p = 3, ν = 3 (first row), p = 3, ν = 10 (second
row), p = 9, ν = 3 (third row) for various values of sample size
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7 Test statistics under unknown degrees of freedom

Following (McLachlan and Krishnan 1997, Sect. 5.8) to estimate ν in multivariate t
distribution it is enough to compute μ̂ and �̂ as the solution of (6), with ν replaced in
each step by ν(k) obtained as the solution of

�
(

ν
2

) − ln ν
2 =

= 1 + 1
n

n∑
i=1

[
ln ν(k−1)+p

ν(k−1)+δ
(k)
i

− ν(k−1)+p

ν(k−1)+δ
(k)
i

]
+ �

(
ν(k−1)+p

2

)
− ln ν(k−1)+p

2
(18)

with�(·) being digamma function and δ
(k)
i = (xi −μ(k))′�(k)−1

(xi −μ(k)). Similarly,
theMLestimator of ν under null hypothesis is simply the solution of (8)with ν replaced
by ν(k) obtained as the solution of (18).

Denoting by μ̂, �̂ and ν̂ the ML estimators under H1 and by μ̂0, and ν̂0 respective
ML estimators under H0, we can formulate the following test statistics for testing (7)
with no constraints imposed on μ:

(a)

LRT(X,�0) = n

[
p ln v̂0

ν̂
+ 2 ln

	(
ν̂+p
2 )	(

ν̂0
2 )

	(
ν̂0+p
2 )	( ν̂

2 )
+ ln |�0|

|�̂|

]

+(̂ν0 + p)
n∑

i=1

ln
[
1 + 1

ν̂0
(xi − μ̂0)

′�−1
0 (xi − μ̂0)

]

−(̂ν + p)
n∑

i=1

ln
[
1 + 1

ν̂
(xi − μ̂)′�̂−1

(xi − μ̂)
]
,

(b)

RST(X,�0) = n(̂ν0+p+2)
2̂ν0 (̂ν0+p)

{̂
ν0 · tr[(V�−1

0 )2] + tr2(V�−1
0 )

}

with

V = V(X,�0) = �0 − ν̂0+p
nν̂0

n∑
i=1

(xi − μ̂0)(xi − μ̂0)
′

1 + 1
ν̂0

(xi − μ̂0)
′�−1

0 (xi − μ̂0)
,

(c)

WT(X, �0) = n
2(̂ν+p+2)

{
(̂ν + p) · tr

[(
Ip − �0�̂

−1
)2] − tr2

(
Ip − �0�̂

−1
)}

,

(d)

WT∗(X, �0) = n
2(̂ν0+p+2)

{
(̂ν0 + p) · tr

[(
Ip − �̂�−1

0

)2] − tr2
(
Ip − �̂�−1

0

)}
,

where X = (x1, . . . , xn) is a random sample from tp,ν(μ,�), ν > 2 being unknown.
Similarly to the previous cases, due to Wilks (1938), when n → ∞ and H0 holds,

the distributions of LRT(X,�0), RST(X,�0) and WT(X,�0) tend to the chi-square
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Fig. 18 Empirical null distributions of LRT, RST, WT and WT∗ (in columns) for p = 3, n = 10, 25, 50
(in rows), along with limiting χ2

6 , under the assumption of unkonwn ν

distribution with p(p + 1)/2 degrees of freedom. The same convergence holds for
WT∗(X,�0). The distributions of the above test statistics for data generated from
t3,3(0, I3), together with limiting chi-square distribution, are presented in Fig. 18.
Comparing to corresponding distributions under known ν, similar behavior of the test
statistics can be observed.

Finally note, that all simulations have been performed using Mathematica, how-
ever, the algorithm for ML estimators of multivariate t distribution with unknown
degrees of freedom is also available in fitHeavyTail package of R.

8 Discussion and conclusions

In this paper we have determined the LRT, RST, WT and WT∗ statistics for testing
the covariance structure under the null hypothesis H0 : � = �0 for a multivariate
tp,ν-distribution. Our main interest was focused on the situation when the number of
degrees of freedom ν is as small as possible (ν > 2 to guarantee existence of the
covariance matrix) to examine possible differences between the ML estimates of the
tp,ν-distribution and the corresponding normal distribution.

In the definition of the density of the tp,ν-distribution we followed the classical
definition where� is the scale matrix (cf. Kotz and Nadarajah (2004)). In some papers
the density function of the tp,ν-distribution is defined in a different form, where �

is the covariance matrix (Sutradhar (1993), Osorio et al. (2023), for example). Note,
however, that when testing covariance structures the behavior of the test statistics
depends on the scale matrix �, and the univariate multiplier in the expression for the
covariance matrix in our definition does not influence the convergence properties of
the statistics. Note also that for a fixed number of degrees of freedom, there is no need
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to estimate ν, and thus the reparameterization η = 1/ν does not influence our results
at all, and for unknown ν we followed the EM algorithm given in McLachlan and
Krishnan (1997), where direct estimation of degrees of freedom is presented.

From the simulation studies concerning the convergence of test statistics to the
limiting distribution, we note that all four test statistics converge to the limiting chi-
square distribution; however, RST outperforms all the remaining tests. Moreover, note
that the forms of all considered test statistics for a tp,ν-distribution differ significantly
from the corresponding expressions in the case of a multivariate normal distribution.
This is caused by the different form of the likelihood function and also the different
MLEs of unknown parameters. Thus, one has to be careful with assumptions about the
population distribution when testing the structure of the covariance matrix. Neverthe-
less, apart from the difference between RST and MRST, their empirical distributions
are quite similar and close to the theoretical distribution even for small sample sizes.
Thus, even if one was mistaken with regard to the density of the observation matrix,
MRST can be seen as another test, more conservative than RST. Indeed, MRST can be
found to be a special case of Neyman’s score test statistic (Neyman 1959; Sutradhar
1993). Taking into account the quick convergence of the empirical type I error of RST
to the nominal significance level, we would recommend it to be used by practitioners,
pointing out that the power of RST does not seem to be significantly lower than the
power of LRT.

In our considerations presented in Sect. 6 we assumed a fixed number of degrees
of freedom; however, simulation studies show that increasing the degrees of freedom
does not have much influence on the speed of convergence to the limiting chi-square
distribution, or on power. This allows us to conclude that our findings remain valid
even for unknown ν.

Finally, recall that we assumed a fixed dimension of the data, p, while the sample
size tends to infinity. Studying the behavior of the test statistics under a high-
dimensional setup, when p and n both tend to infinity, may also be of interest. Note
that this problem has been addressed by many authors, usually under normality (see,
e.g. Bai and Silverstein 2004; Ledoit andWolf 2002; Srivastava 2005; Yao et al. 2015),
but some references can also be found for non-Gaussian variables (Bai et al. 2009;
Jiang 2016, for example). Usually in such cases the central limit theorem is involved
and additional assumptions related to the moments of the distributions must be taken
into account. Nevertheless, the problem of growing dimension under the multivariate
t-distribution will be the topic of future research.
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