
Statistical Papers
https://doi.org/10.1007/s00362-024-01549-x

REGULAR ART ICLE

Testing practical relevance of treatment effects

Andrea Ongaro1 · Sonia Migliorati1 · Roberto Ascari1 ·
Enrico Ripamonti2

Received: 10 September 2023 / Revised: 30 January 2024
© The Author(s) 2024

Abstract
Traditionally, common testing problems are formalized in terms of a precise null
hypothesis representing an idealized situation such as absence of a certain “treatment
effect”. However, in most applications the real purpose of the analysis is to assess
evidence in favor of a practically relevant effect, rather than simply determining its
presence/absence. This discrepancy leads to erroneous inferential conclusions, espe-
cially in case of moderate or large sample size. In particular, statistical significance, as
commonly evaluated on the basis of a precise hypothesis low p value, bears little or no
information on practical significance. This paper presents an innovative approach to
the problem of testing the practical relevance of effects. This relies upon the proposal
of a general method for modifying standard tests by making them suitable to deal with
appropriate interval null hypotheses containing all practically irrelevant effect sizes.
In addition, when it is difficult to specify exactly which effect sizes are irrelevant we
provide the researcher with a benchmark value. Acceptance/rejection can be estab-
lished purely by deciding on the (ir)relevance of this value. We illustrate our proposal
in the context of many important testing setups, and we apply the proposed methods
to two case studies in clinical medicine. First, we consider data on the evaluation of
systolic blood pressure in a sample of adult participants at risk for nutritional deficit.
Second, we focus on a study of the effects of remdesivir on patients hospitalized with
COVID-19.
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1 Introduction

1.1 Motivation

In applications, many research questions regarding a putative treatment effect are com-
monly formulated in terms of a null hypothesis such as “the treatment is ineffective”,
or “the average difference between two competing treatments is null”. Formally, this
implies comparing hypotheses of the type H∗

0 : θ = θ0 vs H∗
1 : θ �= θ0, i.e., a setting

which is known as precise hypothesis testing (Sellke et al. 2001). One of the major
problems of this approach, especially in the new era of electronic records and large
databases, is that, with standard statistical procedures, even a very small, practically
irrelevant departure from the precise null hypothesis can be detected, due to the large
sample size. This problem may also emerge with datasets with a moderate number
of observations, and casts serious doubts on the usefulness of precise null hypothesis
testing, since, by suitably enlarging the sample size, rejection of the null hypothesis
may always be attained. In other words, statistical significance, as traditionally evalu-
ated by a precise low p value, bears little or no information on practical significance.
As a simple example of this fact, consider making inference on the mean μ of a nor-
mal distribution with known variance, under random sampling. In Fig. 1 (left panel)
standard confidence intervals for μ are plotted, keeping fixed the p value (p∗ = 0.01)
for the precise null hypothesis H∗

0 : μ = μ0 and varying n.
It is manifest that the same p value may convey completely different information on

μ, ranging from large intervals far from μ0 (evidence of substantial effects) to narrow
intervals very close to it (negligible effects).

Indeed, under the minimal requirement that the test is consistent, the p value con-
verges to zero as n goes to infinity for any θ �= θ0, so that low p values only imply
strong evidence against absolutely no effect. The discrepancy between statistical and
practical significance is well-known in many applied fields as well as in the general

Fig. 1 Left panel: 95% level confidence intervals for varying n with p∗ = 0.01, μ0 = 0, σ = 1, and
positive sample mean. The two curves correspond to lower and upper bounds, the dashed lines are drawn
for n = 10, n = 30, n = 100, and n = 1000. Right panel: p∗ as a function of δst = √

nδ/σ having fixed
the true (interval hypothesis) p value at 0.05
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statistical one: “finding p < 0.05 often tells the reader only what the investigator
already knows, that great effort was put forward to obtain a large enough sample to
compensate for the high noise level and/or modest effect size” (Krantz 1999). This is
also one of the issues inherent to the use and interpretation of p values, which have
been discussed in the American Statistical Association statement (Wasserstein and
Lazar 2016) and in the following debate (Wasserstein et al. 2019; Wellek 2017). The
fifth principle of this statement says that “a p value, or statistical significance, does
not measure the size of an effect or the importance of a result". While some of the
problems of p values highlighted by this debate are of an intrinsic nature, many oth-
ers are due, in our opinion, to widespread uncritical adherence to statistical rituals
and misapplications (Gigerenzer 2018). In particular, a main cause of the latter comes
from the common inappropriate use of precise null hypotheses testing, more than from
intrinsic deficiencies of the p value as discussed above.

In general, it is not easy to find cases where a precise null hypothesis is exactly
true; for instance, two different drugs can hardly have an identical effect, even if they
are equivalent from a clinical point of view. Thus, very often the real objective of the
analysis is to assess whether the effect size is large enough to be of any practical or
substantial significance. In these terms, the problem can be re-formulated as:

H0 : |θ − θ0| ≤ δ vs H1 : |θ − θ0| > δ, δ > 0. (1)

The interval null hypothesis expressed in (1) includes all practically irrelevant depar-
tures from the precise null hypothesis, the use of the latter being in general justified
only if it provides an accurate approximation of the real interval hypothesis (see the
discussion in Berger and Delampady (1987)). As argued above, this is not often the
case in the increasingly common contexts of moderate or large datasets. To illus-
trate this, consider the following simple but representative example. Given a random
sample from a normal distribution with unknown mean μ and known variance σ 2,
suppose that the true null hypothesis is H0 : |μ − μ0| ≤ δ. The validity of the precise
hypothesis approximation can be established by fixing the true (interval hypothesis)
p value, say at 0.05, and plotting the precise p value p∗ as n increases. Figure1 (right
panel) shows this plot with δst = √

nδ/σ on the x-axis as both p values depend on
n, δ, σ only through δst . Remarkably, p∗ can be considered approximately correct
(less than 10% error) only if δst is very small (less than 0.1–0.2), roughly 50% error
being obtained for δst about 0.5. Indeed, p∗ can be proven to decay exponentially
fast as δst diverges, for fixed true p value. For example, for a departure as small as
δ/σ = 0.05, the approximation is accurate only for n ≤ 25; for δ/σ = 0.2, typically
considered small in many fields (see e.g. Cohen 1988) even when n = 1 a 10% error
is obtained, n = 6 already producing a 50% error.

The above discussion has implications also on the reproducibility crisis (Ioannidis
2005), which is a cornerstone of reliable scientific methodology. Although this crisis
certainly stems from many different factors, it seems clear that the uncritical adoption
of the precise null hypothesis formulation sharpens the problem, as it allows to declare
significant an experimental result even when the real effect is negligible leading to an
excessive number of false positives.

123



A. Ongaro et al.

1.2 Practical significance in contemporary scientific thinking

The distinction between statistical and practical significance dates back to the 1930s
(Berkson 1938, 1942; Wald 1939). It has been the object of animated debates on the
usefulness of significance testing in several applied fields, such asmedicine, behavioral
and social sciences, biology, economics, and ecology (Altman 2004; Cohen 1994,
1988; Greenland et al. 2016; Harlow et al. 2013; Krantz 1999; Lecoutre et al. 2001;
Nickerson 2000; Sterne and Smith 2001; Thompson 2006; Wasserstein and Lazar
2016; Ziliak andMcCloskey 2008; Zhou et al. 2020). It has been argued that statistical
significance would be irrelevant for the assessment of practical significance because it
is “neither necessary nor sufficient for a finding to be economically important” (Ziliak
and McCloskey 2004). In this line, the severity of the erroneous consequences of
the standard (precise null hypothesis) application of significance testing is stressed
as being “a major impediment to the advance of scientific knowledge” (Fidler et al.
2004; Schmidt and Hunter 2013). As a consequence, a total ban on hypothesis testing
has been advocated by some authors (Trafimow and Marks 2015), and only effect
sizes would be reckoned as meaningful. In our opinion, a relevant number of these
objections stem from the adoption of p values coming from precise null hypotheses
more than from the concept of p value per se.

Other scholars suggest that the presence of a relevant effect can be claimed only
when a sufficiently low precise null hypothesis p value p∗ is obtained together with
a sufficiently large estimated effect size (Janosky 2008; Kirk 2007). Alternatively,
calibration rules of thumb for the p value have been posited to account for the influence
of sample size. For instance, Zellner (1971) reports a widespread adjustment of the
significance level, “from say 0.05 to 0.03 and to lower values as the sample size
grows”. A radical modification of the p value has been proposed by Good (1984)
who recommends a sort of empirical standardization of the p value with respect to a
standard sample (of size 100), by replacing it with the minimum between the p value
itself multiplied by

√
n/10, and 0.5. These proposals have an intuitive appeal, but they

do not seem to provide a general and sound framework.
More recently, a group of researchers (Benjamin et al. 2018; Johnson 2013) sug-

gested lowering the threshold for statistical significance from 0.05 to 0.005 (see also
Ioannidis 2018; Lakens et al. 2018). This suggestion is aimed at improving the repro-
ducibility of scientific research, and it is justified on the basis of the Bayes factor
and the false discovery rate implied by various p value thresholds. However, these
quantities are derived in specific types of testing contexts, and they heavily rely on the
assumption of a precise null hypothesis, implicitly considered as an adequate approx-
imation of the correct interval hypothesis. Therefore, the new suggested threshold for
statistical significance is not entitled in general to address relevance of effect sizes.
Any given such a threshold, however low, may carry completely diverse implications
in terms of effect sizes, depending on the context (see also Betensky 2019). Indeed,
Benjamin et al. (2018) acknowledge the importance of a deeper focus on effect sizes,
but fail to reach a consensus on how to address the problem.

The idea of re-formulating the precise hypothesis testing problem in terms of inter-
val hypotheses has been originally proposed by Hodges and Lehmann (1954): “we
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reject as soon as there is statistically significant evidence that the departure from H0
[precise null] is practically significant” (p. 262).

Wellek, in his book on tests for equivalence (Wellek 2010), devotes chapter 11
to propose a methodology for interval null hypotheses. This methodology is based
on the observation that the interval testing problem can be formally viewed as the
dual problem to the equivalence testing setup. In particular, conditions are provided
under which tests for practical relevance can be constructed starting from tests for
equivalence. Although surely interesting, such an approach turns out to be applicable
only in a limited number of settings. We shall discuss in detail Wellek’s proposal and
its relation with our approach at the end of Sect. 2.5.

Betensky (2019) recognizes the importance of adopting interval null hypotheses
as well. However, her proposal is developed in the context of one-sided testing with
known threshold δ, relative to the normal mean (with known variance) testing setup.
Two-sided interval null hypotheses (1) have been explicitly considered by Blume et al.
(2018, 2019), who introduce a completely new type of p value. This is based on the
length of the intersection of a confidence interval for the parameter of interest with
the null hypothesis, where the threshold δ is assumed known. While interesting, this
proposal has a different aim, namely to also assess whether the null hypothesis is
supported by data and whether data are conclusive or not. When interpreted from a
classical testing perspective (i.e., as a measure of evidence against the null hypothesis)
Blume et al.’s proposal is often rather conservative. This is a consequence of the fact
that the rejection of the null is obtained only when the considered intersection is empty
(see discussion in Sect. 3.2).

1.3 Aims

While issues concerning precise null hypotheses are widely acknowledged in the
literature, and advocacy of interval or more ad hoc formulated hypotheses is also
present, to the best of our knowledge the problem of determining a general and widely
applicable approach to interval null hypotheses testing is still open. This may stem
from two main obstacles. The first has a statistical nature, and it is represented by
the challenge of deriving interpretable and simple tests for this type of hypotheses
(especially in the presence of nuisance parameters). From a practical point of view,
the second difficulty consists in specifying exactly the critical threshold δ.

The main purpose of this paper is to address these two issues. Concerning the
first one, only tests for precise null hypotheses (“precise null tests” here onwards)
are currently available and implemented in widespread statistical packages. In this
respect, we propose a fairly general (frequentist) approach founded upon the modi-
fication of precise null tests, which covers many common situations, including null
hypotheses concerning several parameters, and accommodates for the presence of
nuisance parameters. The general idea underlying our approach goes as follows. Let
us write the rejection region of the precise null test as {T ≥ k} for a given statistic
T . Typically, under the interval null hypothesis, the size of the precise null test may
be excessively large, even equal to one, for any fixed threshold k. Indeed, often the
distribution of T does not depend on the nuisance parameter only under the precise
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null hypothesis, and T may become very large or even diverge under the interval
null hypothesis (as it happens even in the simple normal mean testing problem with
unknown variance, see Example 2 in Sect. 4). In this case an α level test can be derived
by letting the threshold k depend on the nuisance parameter, which needs then to be
estimated, thus obtaining a data-dependent threshold. In particular, we propose two
different types of thresholds, one based on a point estimate and another on an inter-
val estimate of the nuisance parameter. Besides these estimates, their implementation
only requires standard available test statistics or p values. In the literature, several
methods to deal with nuisance parameters have been proposed, such as higher-order
approximations of likelihood-based statistics leading to asymptotic similarity (Sev-
erini 2000) or Bayesian techniques that remove the nuisance parameter by integrating
it with respect to a suitable (prior or posterior) distribution (Bayarri and Berger 2000).
However, these procedures are often quite intricate to implement and interpret.

As for the choice of δ, in our opinion this is essentially a context-dependent decision
requiring problem-specific expert knowledge, regardless of the statistical method used
in the analysis. In some settings, reference values are available (e.g. see Cohen 1988;
Rahlfs and Zimmermann 2019; Wellek 2010, chapter 1), but no general automatic
rules are applicable. Indeed, an exact quantification of δ may be often challenging.

To effectively address this crucial issuewedevelop a procedure aimed atminimizing
the information on δ that the expert has to possess to reach a conclusion with a certain
level of evidence. More precisely, we provide a benchmark value for the effect which
the expert is simply asked to decide whether it is practically significant or not.

The rest of the paper is organized as follows. In Sect. 2 a general testing framework
is introduced. In addition, two new ad hoc designed tests are proposed (Sects. 2.3
and 2.4) together with their properties. In Sect. 3 a benchmark addressing the prob-
lem of choosing the critical threshold δ is devised, and the relationship between our
approach and confidence interval-based proposals is discussed. Section4 is devoted
to the application of our methodology to some important testing cases, including the
general normal linear model and asymptotic normal tests. Two real data case studies
in clinical medicine are investigated in Sect. 5, while some conclusions are given in
Sect. 6. Finally, proofs of all propositions and theorems can be found in the Appendix,
and the results of a simulation study as well as the R code to implement the proposed
procedures in the normal case are reported in the Supporting Information (SI).

2 Tests for practical significance of effects

2.1 A general framework

Many common testing problems can be formalized in the following general setting. Let
X be a random vector from a distribution indexed by θ = (η,ψ) (θ ∈ � = � × �),
where η is the parameter of interest, and ψ is the nuisance parameter. Consider the
general problem of testing the precise hypothesis specified by h ≤ dim(�) arbitrary
equality constraints on η, i.e., H∗

0 : {θ : g1(η) = 0, . . . , gh(η) = 0} versus the
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alternative H∗
1 = H

∗
0. Let T be the test statistic to be used to assess H∗

0 , with large
values of T providing evidence against the null hypothesis.

Suppose that the following conditions hold:

1. The (possibly asymptotic) distribution of T depends on θ only through (λ(η),ψ),
where λ ≡ λ(η) : � → [0, ∞) is a measure of divergence from H∗

0 . For each
fixed ψ ∈ �, the distribution function of T , denoted by Gλ,ψ (t), is stochastically
increasing with respect to λ.

2. The precise null hypothesis H∗
0 is equivalent to λ(η) = 0.

3. For each fixed λ and ψ , Gλ,ψ (t) is increasing and continuous in t , and, for fixed t
and ψ , it is decreasing (from condition 1) and continuous with respect to λ, with
limit zero as λ goes to infinity.

While the third point represents a technical condition aimed at proving the regularity
of solutions, items 1–2 ensure that the hypothesis of practical non-significance can be
properly formulated as H0 : {θ : λ(η) ≤ δ}, (δ ≥ 0), provided λ(η) can be interpreted
as a suitable measure of departure from the precise null H∗

0 . Hereafter we will only
consider continuous distributions, although themethod could be easily extended (either
exactly or asymptotically) to the case of discrete distributions. Many common testing
setups (e.g., ANOVA, contingency tables, goodness of fit and regression) together
with the corresponding test distributions, such as normal, Student’s t , Chi-square, and
Fisher’s F fit the above conditions, with λ being proportional to the distributions’
non-centrality parameter. Typically, in this framework, the sample size enters the non-
centrality parameters through an increasing function (going to ∞ as n → ∞), which
multiplies the parameter λ(η). This implies that, for any fixed η such that λ(η) > 0,
as n increases, the distribution of T diverges and the precise null hypothesis p value
p∗ converges in distribution to 0.

In the following subsections, we propose and comment on three suitable tests
dealing with this framework considering δ as a known quantity.

2.2 The standard interval test (SIT)

When the distribution of the precise null test statistic T does not depend on the nui-
sance parameter (including the case where the nuisance parameter ψ is not present),
conditions 1–3 expressed in the previous section guarantee that the form of the precise
null test is also suitable for the interval null H0 : λ(η) ≤ δ. Hereafter we will refer to
this test as the Standard Interval Test (SIT), namely the precise null test for the interval
modification. Such a test is in agreementwith the standard theory of one-sided hypothe-
ses, but conditions 1–3 are weaker than usual conditions on monotone likelihood ratio
(Lehmann and Romano 2006). Specifically, let pλ(k) = Pλ(T ≥ k) = 1− Gλ(k). As
the distribution of T is stochastically increasing with respect to λ, the size of the test
{T ≥ k} under the interval null hypothesis is given by

sup
λ≤δ

pλ(k) = pδ(k). (2)

123



A. Ongaro et al.

In light of the conditions imposed on Gλ(t), it is always possible to determine a size α

rejection region {T ≥ kα(δ)} by deriving the threshold kα(δ) as solution of pδ(k) = α.
Suppose now that the distribution of T depends on the nuisance parameter ψ . This

is often the case, because, typically, T has a distribution (approximately) independent
of ψ only under the precise null hypothesis. Define pλ,ψ (k) = Pλ,ψ (T ≥ k). Then
the SIT {T ≥ k} for H0 has size

p̂δ(k) = sup
λ≤δ,ψ∈�

pλ,ψ (k) = sup
ψ∈�

pδ,ψ (k), (3)

which, however, may not assume all size values in [0, 1] since, in general, it is not
strictly monotone and continuous, as shown even in the simple normal mean testing
problem (see Example 2 in Sect. 4). Indeed, the function p̂δ(k) only possesses the
following regularity properties:

Proposition 1 Under the conditions 1–3, the function p̂δ(k) is non-increasing in k and
right continuous.

To derive the conditions for the existence of the SIT with reasonable size values,
it is convenient to express the SIT as an intersection–union test. Let us write the null
hypothesis as union of the ψ known hypotheses: H0 = ⋃

ψ H0ψ , where H0ψ = {η :
λ(η) ≤ δ} × {ψ}. Let Rψ,α = {T ≥ kα(δ,ψ)} be a size α rejection region for H0ψ ,
i.e. such that pδ,ψ (kα(δ,ψ)) = α. An intersection–union test has rejection region
RIU T = ⋂

ψ∈� Rψ,α . Equivalence of SIT and intersection–union test is given in the
following proposition.

Proposition 2 A size α SIT exists iff RIU T = {T ≥ supψ∈�kα(δ,ψ)} = { p̂δ(T ) ≤ α}
has size α. In this case, supψ∈� kα(δ,ψ) = min{k : p̂δ(k) = α}.
Existence of size α intersection–union test (and therefore SIT) is guaranteed under the
following conditions:

Proposition 3 (i) If supψ∈� kα(δ,ψ) = kα(δ,ψα) for some ψα and α, then RIU T has
size α. (ii) If for some ψ ′ ∈ �, supψ∈� pδ,ψ (k) = pδ,ψ ′(k) ∀k, then RIU T has size
α, for any α. Moreover, (ii) is verified iff (i) is true for any α, with ψα not depending
on α.

Besides giving conditions on the existence of the SIT, the intersection–union test
formulation also shows that the SIT may not have a satisfactory behavior even when
it exists. In fact, the distribution of the SIT under the interval null hypothesis is often
highly dependent onψ , causing large fluctuations in the threshold kα(δ,ψ). It follows
that, if supψ∈� kα(δ,ψ) is attained at very unlikely values of ψ , then the threshold
implied by the SIT may be excessively large, leading to a very conservative test.

In the following, we introduce two new classes of tests that modify the SIT by
allowing the threshold to take into account only values of ψ that are reasonable in the
light of data.

2.3 The plug-in test (PIT)

A first obvious choice is to directly plug-in a point estimate of ψ in the threshold:
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Definition 1 Let ψ̂ be a point estimate of ψ . Then the plug-in test (PIT) rejection
region is {T ≥ kα(δ, ψ̂)}.
This leads to an extremely simplified method, which has the advantage of being easy
to implement and interpret. However, in general, it is difficult to derive the exact
size of this test, although, under suitable regularity conditions, it can be expected
to be asymptotically equal to α. Heuristically, this happens because, as the sample
size increases, Pλ,ψ (T ≥ kα(δ, ψ̂)) will typically have the same limit as Pλ,ψ (T ≥
kα(δ,ψ)), which is smaller or equal to α for any λ ≤ δ. Thus, if the above convergence
holds, the PIT is asymptotically similar, i.e. it has asymptotic size α on the boundary
λ = δ, for any given ψ (Robins et al. 2000).

2.4 The confidence interval test (CIT)

A more refined class of tests with data-dependent threshold stems from the need to
account for the uncertainty in estimating ψ . This can be accomplished by letting ψ

vary within a confidence interval, thus leading to a confidence interval test (CIT).

Definition 2 Let�C I be a 1−γ level confidence interval forψ . Then the CIT rejection
region is {T ≥ k̃α(δ)}, where k̃α(δ) = supψ∈�C I

kα(δ,ψ).

The CIT provides reasonable solutions also when the SIT is not suitable (e.g., when its
size can take only the values 0 or 1), and it avoids the possibility of infinite thresholds
under very mild conditions of continuity of kα(δ,ψ) in ψ and of compactness of the
confidence interval.

Asymptotically, the behavior of the CIT is similar to that of the PIT, since, typically,
the confidence interval �C I shrinks to ψ̂ . The task of deriving the exact size of the
CIT is challenging even in simple contexts. Nevertheless, a completely general upper
bound, holding far beyond the present framework, can be obtained from the following
result.

Theorem 1 Let X be a random vector of observations from a distribution indexed by
θ = (η,ψ), and let �0 be an arbitrary null hypothesis. Define �0ψ = �

ψ
0 × {ψ},

where �
ψ
0 = {η : (η,ψ) ∈ �0}, so that �0 = ⋃

ψ �0ψ . For any given known
ψ and α ∈ (0, 1), let Rψ,α be an arbitrary α level rejection region for �0ψ , i.e.
supθ∈�0ψ

Pθ (Rψ,α) ≤ α. Furthermore, let �C I be a 1 − γ level confidence interval
for ψ under the null hypothesis; that is, Pθ (�C I ⊇ ψ) ≥ 1−γ , ∀θ ∈ �0. Then, the test
with rejection region R = ⋂

ψ∈�C I
Rψ,α has level α+γ , i.e. supθ∈�0

Pθ (R) ≤ α+γ .

We remark that no assumptions are made on the null hypothesis, on the ψ known
Rψ,α tests, or on the confidence interval, including dependence of its distribution on
η and stochastic relation with the test.

Theorem 1 applies to the CIT by choosing �0 = {λ(η) ≤ δ} and Rψ,α =
{T ≥ kα(δ,ψ)}. It follows that an α level CIT can be obtained by rejecting if
{T ≥ k̃α−γ (δ) = supψ∈�C I

kα−γ (δ,ψ)}, (γ < α). Small values of γ , as compared
with the relevant α values, are recommended to improve the approximation of the
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attained size of the CIT. Thanks to the generality of Theorem 1, ad hoc criteria to con-
struct the confidence interval for ψ can be adopted to improve the test performance.
In particular, by choosing �C I such as to minimize k̃α−γ (δ), it is possible to obtain
a larger rejection region which will increase the power of the test without changing
its level. For example, whenever kα−γ (δ,ψ) is monotone in ψ , this can be attained
through a one-sided confidence interval.

Finally, when a size α SIT exists, a lower bound for the size of the CIT can be
obtained:

Proposition 4 Suppose a size α SIT exists, i.e. supλ≤δ,ψ∈� pλ,ψ (k) = α for some α

where pλ,ψ (k) = Pλ,ψ (T ≥ k), and let �C I be an arbitrary confidence interval for
ψ . Then, the rejection region {T ≥ supψ∈�C I

kα(δ,ψ)} has size not smaller than α.

Proposition 4 ensures that the size of the CIT with rejection region {T ≥ k̃α−γ (δ)}
belongs to the interval [α−γ, α], γ < α, thus being known tomost practical purposes.

A procedure similar to the CIT was put forth by Berger and Boos (1994) but in
the context of precise null hypotheses. The extension to interval null hypotheses is
substantial because the complexity of handling nuisance parameters is usually much
higher in this case. Moreover, the intersection–union test formulation adopted here
enables a clearer comparison between SIT and CIT properties, leading to a tight lower
bound for the size of the latter.

2.5 Remarks

The actual implementation of the SIT, PIT, and CIT is relatively straightforward, and
it is best obtained by deriving, for any given H0 : λ ≤ δ, the corresponding p value, i.e.
the minimum significance level leading to rejection. For the CIT, this value is given

by supψ∈�C I
pδ,ψ (t)+ γ as

{
T ≥ k̃α−γ (δ)

}
= {

supψ∈�C I
pδ,ψ (t) + γ ≤ α

}
, where

we recall that pδ,ψ (t) = Pδ,ψ (T ≥ t). Analogously, for the PIT we obtain p
δ,ψ̂

(t),

and for the SIT, when applicable, pδ(t) or p̂δ(t) if ψ is present (see formulas (2) and
(3)). Such values essentially coincide with the tail probability of the test statistic T ,
P

δ,ψ̇
(T ≥ t), computed under a suitable value ψ̇ of the nuisance parameter ψ . This

probability can be often computed either numerically or by simulations.
The SIT and the PIT can be viewed as (extreme) cases within the CIT class, cor-

responding to γ = 0 and γ = 1, respectively. As a general rule, the CIT is more
conservative than the PIT, because the confidence interval �C I usually includes ψ̂ ,
and the PIT is also more liberal than the SIT.

It can be expected that the power of the CITmay be sensitive to the choice of γ . The
impact of γ can be best seen by writing the rejection region of the CIT as mentioned
above, i.e.,

{
supψ∈�C I

pδ,ψ (t) + γ ≤ α
}
. As supψ∈�C I

pδ,ψ (t) is decreasing in γ , the
overall effect of a change in γ on the sum {supψ∈�C I

pδ,ψ (t)+γ } is unpredictable and
likely to be context-dependent. Therefore, we think that it is not possible to provide
general guidelines to fix γ . However, one can expect that when a short confidence
interval is available for ψ , higher values of γ can be resorted to as supψ∈�C I

pδ,ψ (t)
is less affected by γ . In any case, we recommend to base the choice of γ on a sensitivity
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analysis performed via simulation.We carried out this sensitivity analysis in the normal
mean testing problem (see Example 2 in Sect. 4 and Sect. 3 of the SI).

Moreover, both the PIT and the CIT can incorporate external information on ψ

(possibly available from other studies). Specifically, the bounds for the size of the CIT
still apply, because no assumptions are made on the confidence interval to be used for
ψ .

We can now compare our approach with the one proposed by Wellek (2010). In
chapter 11 of his book on testing equivalence, the author considers the problem of
testing the practical relevance of effects. He starts by noticing that the latter prob-
lem can be formally viewed as dual to equivalence testing, i.e., the two problems are
essentially the same once the roles of the null and the alternative hypotheses are inter-
changed. It follows that a general procedure to construct tests for practical relevance
can be derived by a simple transformation of unbiased tests of level (1 − α) for the
equivalence problem. When the distributions of the relevant test statistics T depend
(exactly or asymptotically) on one parameter only, Wellek shows that (uniformly most
powerful) unbiased tests are obtained if the distribution of T is strictly totally positive
of order 3. The latter is a concept of dominance stronger than likelihood ratio mono-
tonicity, and therefore than our definition of stochastic dominance (see condition 1
of Sect. 2.1). In this case, solutions provided by Wellek’s procedure coincide with the
solutions suggested by our approach, but our method applies to more general contexts.
When the distribution of the test statistics T also depends on nuisance parameters, the
author essentially proposes to eliminate these parameters by conditioning on sufficient
statistics. This is a convenient procedure in general but it is of limited utility in the
equivalence context since a solution is guaranteed when the distribution of T belongs
to an exponential family and a test is performed on a natural parameter. For exam-
ple, the procedure cannot be applied in the simple normal mean testing problem with
unknown variance (see Example 2 of Sect. 4).

In essence, our approach is based on the strict conceptual similarity between interval
null hypotheses and traditional (two-sided) precise hypotheses testing, whereas the
dual relation between interval null hypotheses and equivalence testing appears to be a
more formal one. A further substantial difference with Wellek’s approach is the way
we deal with nuisance parameters, which are eliminated by point or interval estimation
instead of conditioning.

3 Specification of the threshold ı

3.1 A benchmark for the effect size

As remarked in Sect. 1.3, the identification of the threshold δ, which determines the
practical relevance/irrelevance of effect sizes, is context-dependent and has to be based
on subject-specific experts’ evaluation. In some cases reference values for δ are avail-
able (e.g., see Cohen 1988; Rahlfs and Zimmermann 2019). In this respect, notice
that, although referring to testing setups different from ours (namely non-inferiority
trials and equivalence testing), considerations developed by the EMA (European
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Medicines Agency 2005) and by Wellek (2010) on the choice of the threshold may be
useful in our setup as well.

However, in general, it may be difficult to exactly specify δ, only partial information
being available. Typically, some high values of effect sizes can be definitely identified
as relevant, some other low values as irrelevant, while there is uncertainty about the
classification of some in-between values. This means that the value of δ is only known
to belong to some interval. It is therefore important to verify when a statistically
sound decision can be taken in these cases of partial information. This led us to look
for the minimum information on δ needed to conclude (SIT, PIT, or CIT acceptance
or rejection) at a given level α, which is equivalent to determining the values of δ

for which the test would accept/reject in the light of data. This information is given
by the benchmark δ′

α , defined as the largest departure δ to be rejected at level α.
Thus, the required minimal information simply consists in assessing whether all the
plausible values of δ elicited by the experts are smaller or larger than the benchmark δ′

α .
Specifically, statistical evidence of practical significance (at level α) can be claimed by
the expert iff the plausible values of δ lie above δ′

α , or equivalently if it can be argued
that δ′

α is a substantial effect. Absence of evidence can be drawn if δ′
α is considered

an irrelevant effect. Otherwise, i.e., if δ′
α cannot be classified as either relevant or

irrelevant, no decision can be made at level α based on the expert’s knowledge.
Interestingly, the benchmark δ′

α admits a further important inferential interpretation
as a lower bound for the effectλ. Therefore, δ′

α can be viewed as an estimatedminimum
effect, that is the researcher can be confident at 1− α level that the real effect λ of the
treatment is larger than δ′

α . Formally, by extending the definition of δ′
α setting it equal

to zero when p∗ > α, the following proposition holds.

Proposition 5 In the no nuisance parameter case, the inversion of the tests {T ≥ k}
for H0(δ) : λ ≤ δ gives rise to the 1 − α confidence interval [ δ′

α,+∞) for λ.

Proposition 5 can be extended to the nuisance parameter case under mild regularity
conditions ensuring the existence of δ′

α . In particular, in both the PIT and the CIT
case, the dependence of the threshold on suitable estimates of ψ does not affect the
inversion procedure that is performed for given data.

From a computational perspective, δ′
α is most easily derived by viewing the p

values for the interval null hypothesis as a function of δ. This function, which we
call significance curve, can be shown to be increasing and continuous in δ under
mild assumptions. It follows that δ′

α is the δ value making the curve equal to α. The
significance curve can also be interpreted as a sort of power function of the SIT
Pδ,ψ (T ≥ t) with threshold equal to t , computed under a suitable value of ψ , if it is
present.

The significance curve, by providing the degree of evidence against all possible
specifications of the interval null hypothesis, contains complete inferential information
on the effect λ. In particular, as a consequence of Proposition 5, any α level lower
or upper confidence interval bound for λ can be calculated, and, consequently, any
two-sided confidence interval as well.

Figure2 shows the significance curve relative to the SIT in the normal mean case
with known variance as a function of δst = √

nδ/σ .
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Fig. 2 SIT significance curve
with t = 3 (p∗ = 0.0027) as a
function of δst = √

nδ/σ

Here, for instance, δ′
α = 1.36σ/

√
n when α = 0.05. In particular, we can notice

that when n increases, a precise p value of p∗ = 0.0027 (obtained by setting δ = 0) is
not evidence of practical significance for any given δ. The value t = 3 was chosen for
illustrative purposes being the smallest integer ensuring strong evidence against the
precise null hypothesis. Smaller values of t would lead to an even more severe lack of
evidence of practical significance.

Section 3 of the SI reports the R code allowing the drawing of the significance
curves and the computation of the benchmark δ′

α for the normal mean testing problem
with known (SIT) and unknown (PIT and CIT) variance.

Proposals related to that of significance curve already appeared in the statistical
literature (Birnbaum 1961; Barndorff-Nielsen and Cox 1994; Fraser 1991), although
in different contexts. It is alsoworthmentioning the strictly related notion of confidence
distributions (Schweder and Hjort 2002; Xie and Singh 2013).

3.2 Relationship with confidence-interval based approaches

It may be argued that practical significance can be detected simply on the basis of
confidence intervals, by showing that a (1−α) –usually two-sided– confidence interval
for the parameter of interest η only contains practically significant values, i.e., there is
no intersection between the null hypothesis and the confidence interval. For instance,
in Examples 1 and 2 of Sect. 4 (normal mean testing problem), once a two-sided 0.95
confidence interval for η = μ is built, practical significance may be claimed whenever
it contains only values outside H0 : λ(μ) = |μ − μ0| ≤ δ.

Though intuitively reasonable, this procedure does not provide in general a correct
quantification of the Type I error probability, even when δ is known exactly. Indeed,
it is typically conservative. Suppose that an arbitrary (1− α) confidence set C(X) for
a parameter θ is used to test an arbitrary null hypothesis H0 on θ . If one rejects when
{H0 ∩ C(X) = ∅}, then the Type I error probability is Pθ {H0 ∩ C(X) = ∅} ≤ Pθ {θ /∈
C(X)} = α for any θ ∈ H0. For an arbitrary confidence set the equality only holds
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when H0 is precise (corresponding to the commonly used relationship between tests
and confidence intervals). For example, consider the normal mean testing case for the
interval hypothesis H0 : |μ − μ0| ≤ δ (known variance). The Type I error probability
of this procedure (implemented via standard two-sided interval forμ) can be shown to
be at most α/2+�(−z1−α/2−2

√
nδ/σ ),� denoting the standard normal distribution

function. This is very close to α/2 in most practical cases with moderate or large n.
In general, to obtain a procedure with an exact size α via a confidence interval-

based approach to testing, specifically designed types of confidence intervals must
be used. In our setting, assuming that a one-sided null hypothesis on the departure
λ is appropriate (i.e., H0(δ) : λ(η) ≤ δ), the only suitable corresponding confidence
interval is a one-sided interval [q(X),∞), q(X) being thus a lower bound for λ(η).

As shown in Proposition 5, the critical benchmark δ′
α corresponds exactly to this

lower bound obtained from our proposed tests.
Typically, the one-sided interval for λ does not coincide with commonly used inter-

vals for the parameter of interest η. For example, in the normal case, one-sided intervals
for λ(μ) = |μ−μ0| imply intervals of the form (−∞, μ0 −q(X)]∪ [μ0 +q(X),∞)

for μ.

4 Illustrative examples

Example 1 normal distribution with known variance. Let X be a vector of i.i.d. obser-
vations from a normal distribution with unknownmeanμ and known variance σ 2, and
suppose a researcher wishes to test the hypothesis that μ is not substantially different
from μ0. The standard practice is to test the precise null hypothesis: H∗

0 : μ = μ0 vs
H∗
1 : μ �= μ0 by rejecting H∗

0 for high values of T = √
n|X̄ − μ0|/σ and to report

the p value p∗ = Pμ0(T ≥ t) = 2(1 − �(t)). Here X̄ is the sample mean and t the
observed value of T .

Consider now the corresponding interval hypothesis H0 : |μ−μ0| ≤ δ. This case is
easily seen to fulfill the general framework of Sect. 2.1. In particular, T is stochastically
increasing in λ(μ) = |μ − μ0|. Thus, given the absence of nuisance parameters, the
SIT exists, and the threshold kα(δ) can be obtained by numerically solving the equation
pδ(k) = 2 − [�(k − δst ) + �(k + δst )] = α with δst = √

nδ/σ . The benchmark δ′
α

can be computed by equating the significance curve to α (i.e., solving pδ(t) = α with
respect to δ, see Fig. 2).

Example 2 normal distribution with unknown variance. Let us consider the normal
distribution testing of Example 1, but with unknown variance σ 2 (nuisance parame-
ter). For the precise hypothesis H∗

0 : μ = μ0, the precise null test is the usual t-test
with rejection region R∗ = {T ≥ tn−1;α∗/2}, where T = √

n|X̄ − μ0|/S, S2 is the
sample (unbiased) variance, and tν;β is the β quantile of a Student’s t-distribution,
with ν degrees of freedom (df). The distribution of T is continuous and stochastically
increasing in

√
n |μ − μ0| /σ , diverging when the latter goes to infinity. Thus, condi-

tions 1–3 of Sect. 2.1 are satisfied if one chooses λ(μ) = |μ − μ0|. As a consequence,
the threshold kα(δ, σ 2) and the function pδ,σ 2(k) are continuous and decreasing in σ 2.
In this context, the SIT {T ≥ k} cannot be used. The conditions of Proposition 3 are
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not satisfied because the supremum of kα(δ, σ 2) and pδ,σ 2(k) are attained at σ 2 = 0,
which is outside the parameter space. Indeed, as T diverges to infinity when σ 2 → 0,
the SIT size is equal to 1 for any k ≥ 0.

For known σ 2, a size α threshold kα(δ, σ 2) can be determined numerically by
solving the equation:

pδ,σ 2(k) = Pδ,σ 2(T ≥ k)

= 1 − Vn−1,
√

nδ/σ (k) + Vn−1,
√

nδ/σ (−k) = α,

where Vν,ncp is the noncentral Student’s t-distribution function with ν df and
noncentrality parameter ncp.

Therefore, the PIT can be simply obtained by replacing σ 2 with a suitable estimate,
an obvious choice being S2, which leads to the rejection region {T ≥ kα(δ, S2)}.
Equivalently (and more easily), such region can be computed as pδ,S2(t) ≤ α. The
quantity pδ,S2(t), viewed as a function of δ, is the significance curve and can be used
to derive the benchmark δ′

α .
Consider now the CIT. If we take the usual two-tailed 1−γ confidence interval for

σ 2

[
(n − 1)S2/χ2

n−1;1−γ /2, (n − 1)S2/χ2
n−1;γ /2

]
= [σ̂ 2

in f , σ̂
2
sup]

where χ2
ν,β is the β quantile of a Chi-square distribution with ν df, then an α level CIT

will be {T ≥ kα−γ (δ, σ̂ 2
in f )} or equivalently {pδ,σ̂ 2

in f
(t) + γ ≤ α}. The corresponding

significance curve is given by pδ,σ̂ 2
inf

(t)+γ . In fact, by choosing a confidence interval

that minimizes the threshold supσ 2∈C I kα(δ, σ 2), the performance of the CIT can
be improved. Since kα(δ, σ 2) is decreasing in σ 2, this is obtained via a one-sided
confidence interval for σ 2 with lower bound (n − 1)S2/χ2

n−1;1−γ
.

Both PIT and CIT can be expected to be slightly conservative in this context. This
is because large values of T are associated with large values of kα(δ, S2), being S2

negatively correlated with T and kα(δ, S2) decreasing in S2.
To investigate the behavior of the two tests we performed extensive simulations of

their Type I error probability when |μ − μ0| = δ, for various values of n (≥ 15), δ

and σ . Some representative cases are reported in the SI (Sect. 1, Tables S1, S2, and
S3) for varying δ/σ values since it can be easily seen that test distributions, when
|μ − μ0| = δ, depend on δ and σ only through their ratio. We let δ/σ vary up to
0.8, taking as reference Cohen’s classification of effect sizes as small (0.2), medium
(0.5), or high (0.8). We recall that in many important contexts the interest is in small
deviations from the precise null hypothesis.

In all simulations the type I error probability of the PIT is lower than α, being
increasing in σ , confirming its conservativeness in this example. However, the PIT
real size, obtained by analytically deriving the limit for σ → ∞, is equal to the
desired nominal level α. Simulations show that values close to α are already obtained
for moderate σ values (δ/σ ≤ 1/4 for n = 50) with improving performances as n
increases. The CIT exhibits similar behavior, but with size α − γ and a (sometimes
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substantially) lower Type I error probability, as expected. In this example, the PIT
seems preferable to the CIT. This is because, although it has size α, its type I error
probability is uniformly higher than the CIT probability. Thus, it may be expected to
attain higher power. This is confirmed by simulations (see Figs. S1–S4 of SI, Sect.
2).

For this basic and pervasive example (normal distribution with unknown variance)
an ad hoc test is present in the literature. This is obtained by combining two one-sided
t-tests of size α/2 for the two hypotheses H ′

0 : μ ≤ μ0 + δ versus μ > μ0 + δ

and H ′′
0 : μ ≥ μ0 − δ versus μ < μ0 − δ, respectively. The combined test rejects

whenever at least one of the one-sided hypotheses is rejected, and it is equivalent to
the likelihood ratio test. Its main drawback is its severe biasedness because its Type
I error probability is close to α/2, on the boundary |μ − μ0| = δ, when δ/σ is large
(see Hodges and Lehmann (1954)).

Our simulations (Sect. 1 of SI) show that the PIT outperforms the combined test
for small values of δ/σ for any considered n. For example, when n = 50 the PIT
Type I error probability is larger than the combined test Type I error probability for
δ/σ ≤ 0.6, and this holds true for even larger δ/σ values as n increases. This leads to
a uniformly higher power function of the PIT for such values of δ/σ (see figures in
Sect. 2 of SI), with a remarkable difference when δ/σ is small.

Finally, we also explored the sensitivity of the CIT to the choice of γ . Section 3 of
the SI reports the power functions for various values of γ ,α, δ/σ , and n. It emerges that
type I error probability is only slightly affected by γ . Moreover, notice that any two γ

values can be ranked according to the corresponding power function as these functions
uniformly dominate each other. Therefore, for any given δ/σ , one can identify themost
suitable choice of γ . In particular, high values of δ/σ lead to choosing higher values
of γ . This is because high values of δ/σ , implying a more precise inference on σ ,
produce shorter confidence intervals. However, values of γ with good performances
for all considered choices of δ/σ can be identified, in particular, γ = 0.01 when
α = 0.05, and γ = 0.001 when α = 0.01.

Example 3 Normal linear model. Consider the general linear model Y = Xβ + ε,
where Y is the response vector, X is a full rank n × p design matrix, β is a vector
of unknown parameters and ε is a vector of i.i.d. random errors from a N (0, σ 2).
In this setting most common testing problems can be formalized through the general
linear hypothesis H∗

0 : Cβ = c, where C is a q × p full rank matrix with q ≤
p, and c is a vector of q constants specified by the researcher. This encompasses
testing the significance of single (or groups of) regression coefficients, as well as
comparison of groups (ANOVA). The usual (most powerful invariant) test for H∗

0

rejects the hypothesis for high values of F = SSH(β̂)/(q S2)with noncentral Fisher’s
Fq,n−p,ncp distribution with q and n − p df and noncentrality parameter ncp =
SSH(β)/σ 2. Here β̂ is the maximum likelihood estimate of β, SSH(β) = (Cβ −
c)′[C(X′X)−1C′]−1(Cβ − c) and S2 = (Y − Xβ̂)/(n − p). F is continuous and
stochastically increasing in SSH(β)/σ 2. Thus, if we choose λ(β) = SSH(β)/n and
σ 2 as nuisance parameter ψ , all the conditions of our framework are met. Note that
λ(β) represents a sensible measure of departure from H∗

0 : λ(β) = 0. This is because
standard linear model theory (Rao and Toutenburg 1995) shows that nλ(β) = ||μ −

123



Testing practical relevance of treatment effects

μ0||2 whereμ = Xβ is themean level of the response variable andμ0 is the orthogonal
projection of μ onto the linear space corresponding to H∗

0 . Therefore λ(β) is the
average euclidean distance (over the n components of μ) between an arbitrary model
μ and its closest point in H∗

0 . For example, in the one-wayANOVA case with variables
Yi j ∼ N (μi , σ

2), (i = 1, . . . , m; j = 1, . . . , n) we have λ = ∑m
i=1(μi − μ̄)2/m, μ̄

being the overall mean.
The precise null test F cannot be used to test H0 : λ(β) ≤ δ because it diverges

when σ → 0, so that {F ≥ k} has size 1 for any given k ≥ 0. The PIT is
{F ≥ fq,n−p,nδ/S2;1−α}where fq,n−p,ncp;β is the β quantile of Fq,n−p,ncp. The corre-
sponding significance curve is 1− Fq,n−p,nδ/S2( f ), f being the observed value of F .
Since Fq,n−p,ncp is continuous and decreasing in ncp, the most convenient implemen-
tation of the CIT is {F ≥ fq,n−p,nδ/σ̂ 2

in f ;1−α+γ } where σ̂ 2
in f = (n − p)S2/χ2

n−p;1−γ

is the (1 − γ ) level lower bound for σ 2. Consequently, the significance curve is
1 − Fq,n−p,nδ/σ̂ 2

in f
( f ) + γ .

It can be shown (by simulation for various values of n, q, and p) that, when
λ(β) = δ, the Type I error probability is increasing in σ . The limit for σ → ∞
can be easily demonstrated to be α for the PIT and α − γ for the CIT, which are the
exact real sizes of the two tests.

Example 4 Standardized effect size. The departure from the precise null hypothesis
is sometimes measured in terms of standardized effects, especially when the scale of
the variables being studied does not have an intrinsic meaning. This is typically the
case in the behavioral, educational, and social sciences where, often, the measurement
scale is somewhat arbitrary, and does not have a clear-cut meaning, differently from
common biological or medical applications. For example, consider the case of the
comparison of the means μ1 and μ2 of two normal populations with equal variance
σ 2. If the measurement units are arbitrary, it may be convenient to measure the effect
by the degree of overlap of the two populations, which is a function of the standardized
effect size |μ1−μ2|

σ
(Cohen 1988; Browne 2010). Similar remarks apply to ANOVA

and linear regression testing problems, where a list of standardized effect sizes has
been proposed (Kelley 2007), or more generally to the normal linear model setup
considered in Example 3. In all of these cases the distribution of the relevant test
statistic, typically Student’s t or F, only depends monotonically on the non-centrality
parameter (SSH(β)/σ 2 in the notation of Example 3), which is an increasing function
of the standardized effect size. Thus, this problem falls into the no nuisance parameter
framework (Sect. 2.2), producing exact size-α tests and benchmark values δ′

α .

Example 5 Asymptotically normal and Chi-square tests. In complex models, often
only the asymptotic distribution of the test statistic is known. A typical case, valid in
a great variety of situations is asymptotic normality; this case can be treated within
the framework of Example 1. If η is scalar, it can be commonly shown that Zn =√

n(η̂n −η0)/σ̂n → N (0, 1), where η̂n is a suitable estimate of η, and σ̂n is a consistent
estimate of the asymptotic standard deviation of

√
n(η̂n − η0) (σ̂n/

√
n being the

usual standard error). The result proved for the normal model (σ known) can be
directly applied, provided σ is replaced by σ̂n ; this leads to the p value pδ(Zn) =
2− [�(|Zn| − √

nδ/σ̂n) + �(|Zn| + √
nδ/σ̂n)]. This p value has asymptotic uniform
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distribution with range (0, 1) on the boundary | η − η0 |= δ for any ψ , so that the test
{pδ(Zn) ≤ α} is asymptotically similar. Notice that many standard and widespread
nonparametric tests display the above asymptotic normality so that our methodology
can be applied.

In other practically relevant cases (e.g., various likelihood-based testing procedures)
the test for the precise null hypothesis (formulated as a set of equality constraints)
has asymptotic central Chi-square distribution under the null hypothesis and non-
central Chi-square distribution under (contiguous) alternatives. In this setting the non-
centrality parameter can often be interpreted in terms of relevant departure from the
precise null hypothesis, so that our methodology may be applied.

5 Two real data case studies

5.1 Low BMI as an index of risk for hyper/hypotension

While having a high body mass index (BMI) is a recognized risk factor for high blood
pressure, less is known about the effect of low or very low BMI (which may be a
proxy of nutritional or internist problems). We used data from the National Health
and Nutrition Examination Survey (NHANES), 2015–2016 (public use data release)
to investigate this issue. The original NHANES sample included 9971 individuals as
being representative of the US population. From the original sample, we selected the
subsample of adult participants aged 40+ and with BMI < 18.5 (size equal to 35).
According to the standards of the World Health Organization (WHO 1995) a person
with BMI < 18.5 is classified as underweight. In our sample 18.5 represents the 20th
percentile of the BMI distribution. Following the most recent guidelines (Whelton
et al. 2018), there are different cutoffs to classify systolic blood pressure (SBP) and
diastolic blood pressure (DBP). If SBP < 120 mm Hg and DBP < 80 mm Hg, blood
pressure is defined as normal. If SBP is in the range 120–129 and DBP < 80, blood
pressure is defined as elevated. Hypertension, stage I, is diagnosed with SBP in the
range 130–139 and DBP in the range 80–89. Higher values of SBP and of DBP lead
to hypertension, stage II. In general, hypotension is defined in case SPB < 90 or DBP
< 60 (https://www.mayoclinic.org/diseases-conditions/).

We focused on SBP andwe considered a two-sided alternative hypothesis on SBP in
individuals with low or very low BMI. In the literature, this association has been very
debated and it is unclear whether the relationship between BMI and blood pressure is
linear or not (Kaufman et al. 1997). For instance, a recent nested case–control study
described an association between low BMI and low blood pressure, and it was hypoth-
esized this combination as a possible risk factor for dementia (Wagner et al. 2018).
Another large prospective study, conducted on the UK Clinical Practice Research
Database, found an association between low BMI and high blood pressure (Emdin
et al. 2015).

We tested the precise null hypothesis H∗
0 : θ = 120 vs H∗

1 : θ �= 120. To
compare the null hypothesis and the alternative hypothesis we adopted a two-sided
t-test with unknown variance. In the subsample of 35 observations, two SBP values
were missing, hence 33 observations were included in the analysis. In this sample,
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Fig. 3 Significance curves of the
PIT (solid line) and CIT (dashed
line) tests. Dotted horizontal line
at p = 0.05 and vertical line at δ
= 10

we found an average value of SBP of 131.94 mm Hg (standard error 3.77). The t-test
(t = 3.17, p = 0.0034, 95% confidence interval = (124.26, 139.62)) led to rejection
of the precise null hypothesis. Taking a δ value of 10, which on the right side of the
alternative hypothesis seems a sensible value in light of the hypertension thresholds
reported above, we re-formulated the problem in terms of interval null hypotheses as in
(1). We then determined the PIT and the CIT as presented in Example 2. The CIT was
calculated by setting a γ value for the confidence interval of 0.001. Neither the PIT (p
= 0.324) nor the CIT (p = 0.701) led to the rejection of the null hypothesis with this
δ. This example shows that qualitatively different conclusions can be reached by re-
evaluating a statistical test after having properlymodified the precise null hypothesis by
including a range of plausibly irrelevant values (on the basis of clinical considerations
or guidelines).

Although in the normal mean problemwith unknown variance the PIT is preferable
to the CIT (see Example 2 of Sect. 4), in Fig. 3, for illustrative purposes, both the PIT
and the CIT significance curves are reported.

As already noted, the PIT is systematically less conservative than the CIT, the
difference being negligible for small δ values and more substantial for larger δ values
in the present case. This discrepancy is particularly evident in this example because
data variability leads to a large confidence interval for σ 2.

In case of uncertainty about the exact specification of δ, one may rely on the
benchmark value δ

′
α , which is 5.19 for the PIT. Thus, according to the PIT one can

reject the null hypothesis and claim statistical evidence for practical significance of
the effect only if a departure of δ = 5.19 is deemed clinically relevant.

5.2 Remdesivir and COVID-19

Spinner et al. (2020) studied the effect of remdesivir in patients hospitalized with
moderate coronavirus disease 2019 (COVID-19). To this purpose, they set up an
open-label randomized clinical trial (RCT) of patients admitted to the hospital with
confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
and moderate COVID-19 pneumonia. The RCT was multicenter, with involvement of
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Fig. 4 Significance curve for the
OR. Horizontal lines at
p = 0.05 (dashed) and
p = 0.027 (dotted)

105 hospitals in Europe, the US, and Asia. Participants were randomized to receive
remdesivir for 10 days (n = 197), for 5 days (n = 199), or to receive standard care
(n = 200). The primary outcome was clinical status at day 11, as assessed on a 7-point
ordinal scale ranging from death (score: 1) to discharged (score: 7). Proportional-odds
models (ordinal logistic regression) were used to evaluate potential differences across
treatments. Taking standard care as the reference level, results indicated a protective
effect of 5-day remdesivir therapy (Odds Ratio (OR) = 1.65(1.09, 2.48), p = 0.02),
while no significance was found when considering the effect of 10-day remdesivir
therapy (p = 0.18, Wilcoxon rank sum test, as the proportional odds assumption
was not met for this comparison). In light of these results, the authors conclude for
evidence in favor of the use of remdesivir in patients hospitalized with COVID-19,
even though they admit that “the difference was of uncertain clinical importance” (p.
1048).

Our proposed methodology can be applied to quantify in an inferentially sound and
accurate manner the clinical relevance of these results. In this case the precise null
hypothesis is formulated as H∗

0 : OR = 1 vs H∗
1 : OR �= 1. Due to the intrinsic

meaning of ORs, it is not appropriate to measure departures from the null hypothesis
in terms of symmetric differences, as implied by the hypothesis H0 : |OR−1 | ≤ δ.
A more adequate formulation is H0 : 1/τ ≤OR≤ τ (τ > 1) as the quantities τ and
1/τ provide the same level of evidence in favor of either treatment. This formulation,
despite being asymmetric, can still be easily dealt with by our methodology. Indeed,
as the regression coefficient corresponding to the remdevisir therapy is the logarithm
of the OR, the above asymmetric interval hypothesis for the OR is transformed into
the standard symmetric hypothesis for the regression coefficient. Being the estimator
of the latter asymptotically normal, this case falls into the no nuisance parameter
framework (see Example 5). Thus, the benchmark can be easily obtained (see Fig. 4),
resulting in τ

′
α = 1.164 for α = 0.05. Decisions about the practical significance of the

results can be taken by purely evaluating this value. In particular, statistical evidence
(at level α = 0.05) in favor of 5-day remdesivir therapy can be claimed only if an OR
of 1.164 (or 0.86 = 1/1.164) can be judged as clinically relevant. Equivalently, from
a confidence interval perspective, the researcher can be confident at level 1 − α that
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the odds of one treatment (standard or remdesivir) is at least 16.4% greater than the
odds relative to the other treatment.

It is worth noting that a decision based on the standard 95% confidence interval (in
this case (1.09, 2.48)) allows to claim clinical efficacy only if an OR as low as 1.09
is considered practically relevant. This is an intrinsically conservative procedure. The
use of this value corresponds to a decision taken at α level 0.027, which is roughly
half the declared level. Formally, τ

′
α = 1.09 for α = 0.027 as can be visualized on the

significance curve (see Fig. 4).

6 Conclusion

In most applied problems it is worth assessing whether a certain effect is relevant or
strong enough, i.e., evaluating practical significance, rather than simply establishing
its presence/absence. In general, this cannot be provided by the precise null hypothesis
p value.

In this paper, we addressed the problem of testing the practical relevance of effects
by proposing a unifying and general framework based on interval null hypotheses
(possibly involving many parameters of interest), which have been reduced to one-
sided hypotheses on a positive scalar parameter λ(η) representing the measure of the
effect in terms of distance from the precise null hypothesis. Such a parameter is strictly
related to that indexing the distribution of a test for the precise null hypothesis, which is
classically designed to detect the size and the direction of what is generally considered
to be the most relevant departure. When nuisance parameters are present we proposed
two general modifications of precise null hypothesis tests, i.e., the CIT and the PIT.
Their implementation only requires standard available test statistics or p values and
nuisance parameters estimates. The size of CIT is generally guaranteed not to exceed
the chosen α. On the other hand, PIT is simpler to implement, but its real size needs
to be checked analytically or by simulation in each specific case.

A further problem related to interval hypotheses testing concerns the exact quan-
tification of the threshold δ adopted to formalize these hypotheses. We provided a
suitable benchmark value δ′

α , whose practical relevance can be judged by the scien-
tific community to establish whether findings are valuable. We further clarified that, if
deemed preferable, a confidence interval approach can be equivalently resorted to in
order to evaluate the practical relevance of effects. However, to guarantee appropriate
α levels, a one-sided confidence interval for the effect size must be used (leading to
the lower bound δ′

α), rather than common two-sided confidence intervals for model
parameters. Finally, we remark that our proposed methodology helps in increasing
reproducibility of scientific studies, as claims of the significance of observed findings
are allowed only when sufficiently relevant effects are likely to be present.
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Appendix

Proposition 1

Proof Let us show that p̂δ(k) is right continuous (monotonicity being obvious). Given
τ > 0,ψ∗ can be chosen such that | p̂δ(k)− pδ,ψ∗(k)| < τ/2. Then fix ε > 0 such that:
|pδ,ψ∗(k)− pδ,ψ∗(k′)| < τ/2 for any k′ ∈ (k, k + ε) by continuity of pδ,ψ . Therefore
| p̂δ(k)− p̂δ(k′)| ≤ | p̂δ(k)−pδ,ψ∗(k′)| ≤ | p̂δ(k)−pδ,ψ∗(k)|+|pδ,ψ∗(k)−pδ,ψ∗(k′)| <

τ , where the first inequality follows from the monotonicity of p̂δ(k), and because
p̂δ(k′) ≥ pδ,ψ∗(k′). ��
Proposition 2

Proof First notice that the relation RIU T = { p̂δ(T ) ≤ α} is a consequence of {T ≥
kα(δ,ψ)} = {pδ,ψ (T ) ≤ α} valid for any given ψ . Suppose now a size α SIT exists,
i.e. p̂δ(k) = α for some k, and let us prove that RIU T has sizeα (the inverse implication
being obvious). Let k̂α(δ) = min{k : p̂δ(k) = α}, whose existence is guaranteed by
right continuity of p̂δ . Then {T ≥ k̂α(δ)} implies { p̂δ(T ) ≤ pδ(k̂α(δ)) = α}, as p̂δ is
non-increasing; moreover, by definition of k̂α(δ), { p̂δ(T ) ≤ α} implies {T ≥ k̂α(δ)}.
It follows that k̂α(δ) = supψ∈� kα(δ,ψ), thus proving the result. ��
Proposition 3

Proof Under condition (i) the size of the intersection–union test is
supψ∈� pδ,ψ (kα(δ,ψα)) ≥ pδ,ψα

(kα(δ,ψα)) = α. The conclusion then follows as
the intersection–union test has always size not greater than α. Condition (ii) implies
that there exists (and it is unique) a threshold kα(δ,ψ ′) attaining sizeα for anyα.More-
over, if (ii) holds, by Proposition 2 this threshold coincides with supψ∈�(kα(δ,ψ)).
Vice versa, if (ii) holds and ψα = ψ ′ ∀α, then RIU T = {supψ∈� pδ,ψ (T ) ≤ α} is
equal to {T ≥ kα(δ,ψ ′)} = {pδ,ψ ′(T ) ≤ α}. Since this holds for any α, it must be
pδ,ψ ′(T ) = supψ∈� pδ,ψ (T ) for any T . ��
Theorem 1
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Proof Let θ ′ = (η′, ψ ′) ∈ �0, then

Pθ ′(R) = Pθ ′ [R ∩ (ψ ′ ∈ �C I )] + Pθ ′ [R ∩ (ψ ′ /∈ �C I )] ≤

≤Pθ ′

⎡

⎣
⋂

ψ∈�C I

Rψ ∩ (ψ ′ ∈ �C I )

⎤

⎦ + Pθ ′
[
ψ ′ /∈ �C I

] ≤

≤Pθ ′
[
Rψ ′ ∩ (ψ ′ ∈ �C I )

] + γ ≤ α + γ

where the second inequality follows because if ψ ′ ∈ �C I then Rψ ′ ⊇ R. ��
Proposition 4

Proof Proposition 2 implies that k ≥ supψ∈� kα(δ,ψ). It follows that

α = sup
λ≤δ,ψ∈�

pλ,ψ (k) ≤ sup
λ≤δ,ψ∈�

pλ,ψ

(

sup
ψ∈�C I

kα(δ,ψ)

)

.

��
Proposition 5

Proof Let C(t) = {λ : t < kα(λ)} be the confidence interval obtained by inverting the
size α tests A(δ) = {t : t < kα(δ)} for the family of hypotheses H0(δ) = {λ ≤ δ} vs
H1(δ) = {λ > δ}. As kα(δ) is strictly increasing in δ, C(t) = [0,+∞) if kα(0) > t ,
i.e. α < p∗. Otherwise, kα(δ′

α) = t and therefore C(t) = {λ : δ′
α < λ}. The

random variable δ′
α is continuous when constrained on the set α ≥ p∗, being a strictly

increasing function of T . Therefore the strict inequality in the definition of C(t) can
be replaced by a weak inequality without changing the level of the confidence interval.

��
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