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Abstract
Estimating the mean of a population is a recurrent topic in statistics because of its
multiple applications. If previous data is available, or the distribution of the deviation
between the measurements and the mean is known, it is possible to perform such
estimation by using L-statistics, whose optimal linear coefficients, typically referred
to as weights, are derived from a minimization of the mean squared error. However,
such optimal weights can only manage sample sizes equal to the one used to derive
them, while in real-world scenarios this size might slightly change. Therefore, this
paper proposes a method to overcome such a limitation and derive approximations
of flexible-dimensional optimal weights. To do so, a parametric family of functions
based on extreme value reductions and amplifications is proposed to be adjusted to the
cumulative optimal weights of a given sample from a symmetric distribution. Then,
the application of Yager’s method to derive weights for ordered weighted average
(OWA) operators allows computing the approximate optimal weights for sample sizes
close to the original one. This method is justified from the theoretical point of view by
proving a convergence result regarding the cumulative weights obtained for different
sample sizes. Finally, the practical performance of the theoretical results is shown for
several classical symmetric distributions.
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1 Introduction

The study of the population mean of a random variable is a central problem in Statis-
tics (Rohatgi and Saleh 2015). Several methods for its estimation have been developed,
some of them focused on the use of the order statistics (Lloyd 1952). In particular, the
use of linear combinations of them, known as L-statistics, has been deeply studied in
the specialized literature (Gao et al. 2021; Kumar et al. 2020).

In some approaches, the weights (coefficients) of such a linear combination are
computed by integrating a weight-generating function h : [0, 1] → R (Hosking
1998). In particular, for a sample size n, the k-th weight is computed as:

wk =
∫ k

n

k−1
n

h(t)dt ∀ k = 1, 2, ..., n.

Afterwards, given a random sample �X of a random variable X , the L-statistic is
computed as L( �X , �w) = ∑n

k=1 wk X(k), where X(k) is the k − th lower value in the
random sample �X . A similar approach, usually calledYager’smethod to derive ordered
weighted averaging (OWA)weights (Yager 1993; García-Zamora et al. 2022), consists
of considering an increasing bijection g : [0, 1] → [0, 1] and computing theseweights
as

wk = g

(
k

n

)
− g

(
k − 1

n

)
, ∀ k = 1, 2, ..., n.

From the mean estimation point of view, the weights which minimize the mean
squared error (MSE) are especially interesting. Even though, these MSE-minimizing
weights may be computed if the distribution belongs to a scale-location family or there
are some available data, the resulting weights are only defined for a particular sample
size. Nevertheless, in real-world problems, the sample size may change and there-
fore the so-computed optimal weights are no longer applicable. The most prominent
example is the case of censored samples (Almongy et al. 2021; Alzeley et al. 2021;
Narisetty and Koenker 2022), which appear naturally in survival analysis (Klein and
Moeschberger 2003), missing observations (Little and Rubin 2019) or the changing
sampling frequency thatmay appear in signal analysis (Baraniuk 2015). Consequently,
in order to face real-world scenarios, it is essential to provide a method that allows the
sample size to be modified.

In this sense, given a distribution, it would be convenient to be able to find a certain
generating function g, as the one used in Yager’s method (1993), to derive a weighting
vector of the required size. However, given a distribution, it is not easy, in general,
to find such a function g to generate the optimal weights, in the sense of minimizing
the MSE in mean estimation. Only some distributions, such as the Gaussian and the
Uniform distributions, have a simple pattern for the optimal weights that allows their
computation fromagenerating function.Consequently,we raise the following research
questions:

– How to define optimal-weights generating functions for symmetric distributions?
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– How to compute flexible-dimensional L-statistics for the mean estimation of clas-
sical symmetric distributions?

Therefore, in this paper, we aim to define a methodology that permits estimating
the mean of a symmetric distribution through L-statistics by allowing flexible sample
sizes. To do so, we first prove several theoretical results related to the theory of order
statistics (David and Nagaraja 2004), then we propose a family of functions for fitting
the optimal cumulative weights and finally, we study the behavior of the resulting
estimator by numerical procedures.

As main theoretical results, we study, under certain assumptions, the convergence
of the optimal weights when the sample size of a random sample of a symmetric
distribution tends to infinity. In addition, we show the convergence to the real value of
the resulting estimator. Afterward, to define a method to fit the optimal weights, we
introduce a parametric family of functions which is defined as a linear combination of
extreme valued reductions (EVRs) and extreme value amplifications (EVAs) (García-
Zamora 2021, 2022). The simulation results show that such a family presents a good
performance when computing the weights for many classical symmetric distributions.
Finally, for these classical distributions, such a parametric family is used to derive a
flexible-dimensional L-statistic for the mean estimation of the respective distribution.
The resulting estimator has a similar behavior as the optimal one for close sample sizes
and outperforms significantly the sample mean. Consequently, the presented method
provides good estimations for closer sample sizes even if no information about the
optimal weights is known.

This method can be used in two different scenarios. In the first one, the expression
of the underlying distribution is known, but it is complicated to derive the optimal
weights analytically. This is a common situation since the distributions of L-statistics
are usually hard to handle (seeChapter 6 inDavid andNagaraja (2004)). By simulation,
it is possible to compute a good approximation of the optimal weights. However, it is
necessary to perform such a simulation for each sample size and, for big sample sizes,
the computational time can be unfeasible. In this regard, the results and the method
provided in this paper allow obtaining an approximation to derive the optimal weights
in a simple way for different sample sizes, especially for big ones.

In the second one, a quantity of interest is supposed to be independently measured
when it is perturbed by an additive symmetric noise with a mean of 0. For each of the
values of this quantity, severalmeasures aremade. Ifwehave adataset inwhichwehave
different true values of the quantity and their associated measurements, it is possible
to fit an L-statistic that minimizes the MSE in the dataset. Then, the constructed L-
statistic can be applied to new data to obtain estimations of the quantity of interest.
However, if the sample size changes, the fitted weights are no longer valid, since they
were computed for a fixed length. In this sense, for small variations of sample sizes,
the proposed method allows obtaining new weights that will lead to an estimator with
a small MSE and defined with the correct dimension.

Although the conditions of the theoretical result may be difficult to check for an
arbitrary distribution, the presented method is illustrated for several classical symmet-
ric distributions, showing good behavior.
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The remainder of the paper is organized as follows. In Sect. 2 we present the basic
definitions and results regarding mean estimation, L-statistics, and EVRs/EVAs func-
tions. The expression for the optimal weights and their convergence are studied in
Sect. 3. The flexible-dimensional L-statistic for mean estimation of symmetric distri-
butions is defined in Sects. 5 and 4, giving several examples of its good performance
for classical distributions. The conclusions are discussed in Sect. 6.

2 Preliminaries

In this section, the basic concepts needed to understand the contribution are recalled.
We start with some elementary notions about mean estimation, then L-statistics are
defined, and, finally, we introduce extreme value reductions and amplifications as a
tool for generating the weights of L-statistics.

2.1 Mean estimation and L-statistics

Let us start by stating some definitions of estimation from a probabilistic approach,
following (Rohatgi and Saleh 2015) as the main reference. Let us assume a quantity of
interest associated with a continuous random variable X , with cumulative distribution
function F(t), density function f (t) and quantile function F−1(t). Additionally, the
support of the random variable is defined as S = {t ∈ R : f (t) > 0}.

It is common to have an expression for the density and cumulative distribution
function of X depending on some unknown parameters. Denoting the set of possible
values for the unknown parameters θ as �, an estimator of θ is a function from the
random sample to � that does not depend on the value of θ .

In this paper we will consider the population’s mean estimation, focusing on effi-
ciency, which is related to the MSE, defined as MSE(T , θ) = E

[
(T − θ)2

]
, where

E[·] denotes the expectation operator.

Definition 1 Let X1, . . . , Xn be a sequence of iid random variables with density func-
tion fθ depending on the unknown parameter θ ∈ � and T1, T2 two estimators of θ .
It is said that T1 is more efficient than T2 if MSE(T1) ≤ MSE(T2) for any θ ∈ � and
exists θ0 ∈ � such that MSE(T1) < MSE(T2).

Below, we introduce the concept of an L-statistic. They are based on the order
statistics, which are the ordered values (from the smallest to the greatest) of a sequence
X1, . . . , Xn of iid random variables. They are denoted as X(1), . . . , X(n).

Linear combinations of the latter statistics are defined using a weight vector �w of, in
general, real numbers. Conceptually, we are sorting the random sample, multiplying
the elements by the weights and then adding the results.

Definition 2 Let �X = X1, . . . , Xn be a sequence of random variables and �w a weight-
ing real vector. Then, the L-statistics is defined as L( �X , �w) =∑n

k=1 wk X(k).

L-statistics and order statistics are widely use in estimation. We address some of
the foundational papers (Lloyd 1952; Sarhan 1954, 1955a, b) and also some examples
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of the relevancy of the topic nowadays (Ahsanullah and Alzaatreh 2018; Dytso et al.
2019; Gao et al. 2021; Hassan and Abd-Allah 2018; Kumar et al. 2020).

2.2 The EVR-OWA operator

This section provides a brief introduction to EVR-OWAoperators, i.e., OWAoperators
(Yager 1993, 1996) based on EVRs (García-Zamora et al. 2022), which are essential
to provide ordered aggregations whose weights are positive, symmetric, and prioritize
the intermediate information.

OWA operators are a family of aggregation functions (Beliakov et al. 2016) which
were proposed to ensure that the importance of the aggregated values depends on their
position with respect to the median value (Yager 1993). Formally:

Definition 3 (Yager 1993) Letw ∈ [0, 1]n be a weighting vector such that∑m
i=1 wi =

1. The OWA Operator �w : [0, 1]n → [0, 1] associated to w is defined by:

�w(�x) =
n∑

k=1

wk xσ(k) ∀ �x ∈ [0, 1]n,

where σ is a permutation of the n-tuple (1, 2, ..., n) such that xσ(1) ≥ xσ(2) ≥ · · · ≥
xσ(n).

OWA operators generalize other aggregation functions (Beliakov et al. 2016). For
example, the weighting vector w = ( 1n , 1

n , ..., 1
n ) ∈ [0, 1]n , produces the arithmetic

mean, whereas the vectors w = (1, 0, ..., 0) ∈ [0, 1]n and w = (0, ..., 0, 1) ∈ [0, 1]n
produce the maximum and the minimum operators, respectively.

It should be highlighted that OWA operators decreasingly order the elements to be
aggregated, while L-statistics are defined through an increasing order. However, when
symmetric distributions are considered (which will lead to symmetric weights), these
two approaches are equivalent.

To derive weights for OWA operators, Yager (1996) proposed the use of regu-
lar increasing monotonous quantifiers (RIMQs) (Zadeh 1983), i.e., functions Q :
[0, 1] → [0, 1] such that Q(0) = 0, Q(1) = 1, and Q(x) ≤ Q(y) ∀ x, y ∈ [0, 1]
such that x ≤ y. For such a RIMQ, the weights for an OWA operator to fuse n ∈ N

values are computed as follows:

wk = Q

(
k

n

)
− Q

(
k − 1

n

)
for k = 1, 2, ..., n.

A widely-extended choice for such RIMQ (Palomares et al. 2014; Herrera-Viedma
et al. 2002) is the linear RIMQ defined as Qα,β : [0, 1] → [0, 1], 0 ≤ α < β ≤ 1
defined by:

Qα,β(x) =
⎧⎨
⎩

0 0 ≤ x < α
x−α
β−α

α ≤ x ≤ β

1 x ≥ β

.
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Fig. 1 Sketch of an EVR and an EVA

Even though, it could seem that changing the values of α and β provides a flexible
method to derive weights, the use of the linear RIMQ presents several drawbacks
such as unrealistic aggregations that ignore too much information or biased results
(García-Zamora et al. 2022).

The EVR-OWA operator was proposed as a mechanism to guarantee non-biased
aggregations that take into account all the available information (García-Zamora et al.
2022). The EVR-OWA operator assumes that the RIMQ is given as an EVR:

Definition 4 (García-Zamora et al. 2021) Let D̂ : [0, 1] → [0, 1] be a function satis-
fying:

1. D̂ is an automorphism in the interval [0, 1],
2. D̂ is a function of class C1,
3. D̂ satisfies D̂(x) = 1 − D̂(1 − x) ∀ x ∈ [0, 1],
4. D̂′(0) < 1 and D̂′(1) < 1,
5. D̂ is convex in a neighborhood of 0 and concave in a neighborhood of 1,

then D̂ will be called extreme values reduction (EVR) in the interval [0, 1].
These EVRs remap the values of the interval [0, 1] such that the distance between

the most extreme points is reduced (García-Zamora et al. 2021) (see Fig. 1). In the
same way, the notion of EVA was also introduced as a function that amplifies the
distance between the extreme values of the interval [0, 1]:
Definition 5 (García-Zamora et al. 2021) Let D : [0, 1] → [0, 1] be a function satis-
fying:

1. D is an automorphism on the interval [0, 1],
2. D is a function of class C1,
3. D satisfies D(x) = 1 − D(1 − x) ∀ x ∈ [0, 1],
4. D′(0) > 1 and D′(1) > 1,
5. D is concave in a neighborhood of 0 and convex in a neighborhood of 1,

then D will be called extreme values amplification (EVA) in the interval [0, 1].
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Consequently, the EVR-OWA operator was defined as an OWA operator whose
weights were computed by using an EVR as RIMQ (García-Zamora et al. 2022):

Definition 6 (García-Zamora et al. 2022) Let D̂ be an extreme values reduction and
consider n ∈ N. Then, the family W = {w1, w2, ..., wn}, where

wk = D̂

(
k

n

)
− D̂

(
k − 1

n

)
∀ k ∈ {1, 2, ..., n},

receives the name of order n weights associated with the EVR D̂, and the OWA
operator �D̂ defined using these weights is called EVR-OWA operator.

The use of EVRs to derive OWAweights ensure symmetric aggregations that do not
neglect the extreme information and prioritize the intermediate values (García-Zamora
et al. 2022).

3 Optimal L-statistics for mean estimation

This section is devoted to analyzing the optimal L-statistic which minimizes the mean
squared error (MSE) when estimating the mean of a distribution.

Consider a quantity of interest μ ∈ R and assume that several measures of this
quantity, perturbed by a symmetric noise, are given. The result is a sequence of random
variables X1, . . . , Xn in which all the variables are independent, symmetric, and with
mean μ ∈ R.

Let us denote the random vector consisting of the order statistics of the random

sample as �Z = (X(1), . . . , X(n)

)
and consider its covariance matrix � = Var

[ �Z
]
and

the vector �	 = E
[ �Z
]

− μ�1, the mean drift from μ of the components of �Z .
Since the L-statistics L

( �X , �w
)
is a linear combination of the order statistics, the

MSE to estimate μ has the following expression:

E

[(
μ − L

( �X , �w
))2] = �w′ (� + �	 �	′) �w.

Thus, using the latter expression, the optimal weights can be computed by solving
an optimization problem. Its resolution it is immediate using Lagrange’s multipliers
procedure, therefore we omit the proof.

Proposition 1 Let X1, . . . , Xn be a random sample in which all the variables have
mean μ. Then, the weighting vector �w (verifying that

∑n
i=1 wi = 1, i = 1, 2, ..., n)

which minimize E

[(
μ − L

( �X , �w
))2]

is

�w =
(
� + �	 �	′

)−1 �1
�1′
(
� + �	 �	′

)−1 �1
.
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Fig. 2 Cumulative optimal weights for the Logistic (left) and Hyperbolic secant (right) distributions for
n ∈ {18, 19, 20, 21, 22}

Remark 1 We want to remark that the resulting weights may be negative. Notice also
that if the noise is multiplied by a scalar quantity, � and �	 �	′ are multiplied by the
square of the quantity, thus the optimal weights remain the same.

The optimal weights basically depend on the noise distribution and the sample size,
since they characterize the order statistics of the sample. Since our aim is to construct
a flexible-dimensional method, we have to explore the relation of the weights for the
same distribution with different sample sizes. However, comparing two vectors of
different lengths is not straightforward. Therefore, inspired by the EVR-OWA theory
to derive weights (García-Zamora et al. 2022), given a weighting vector �w ∈ R

n of
dimension n, its cumulative weight function W : {0, 1

n , . . . , n−1
n , 1

} → R is defined

as W
( k
n

) =∑k
i=1 wi ∀ k = 1, 2, ..., n and W (0) = 0.

In the following, we will denote the optimal cumulative weight function for a fixed
distribution and a sample size n asW (n). The graphical representation of the cumulative
weights for some classical distributions suggests a sort of convergence. For instance,
when working with the Hyperbolic secant or the Logistic distribution and sample
sizes close to 20, the behavior of the cumulative weights seems to be distributed in a
common line (see Fig. 2).

4 Convergence of optimal cumulative weights

As illustrated in Fig. 2, the cumulativeweights for different sample sizes seem to fit to a
common function defined on the unit interval. This section is devoted to showing that,
under certain conditions on a symmetric distribution, the optimal cumulative weights
converge to a function defined on the interval [0, 1]. This convergence is based on the
convergence of order statistics. The following lemmacombines the results of (Stephens
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1990), which gives a more convenient definition of the sequence, and (Stigler 1969),
in which the uniform convergence part is proved.

Lemma 1 (Stephens 1990; Stigler 1969) Let X1, . . . , Xn be a sequence of iid random
variables with density function f and cumulative distribution function F such that
f is continuous and strictly positive in F−1(0, 1) and there exists ε > 0 for which
limx→∞ |x |ε [1 − F(x) + F(−x)] = 0. Then, for any δ > 0:

lim
n→∞(n + 2)Cov

(
X(nq), X(np)

) = (1 − p)q

f
(
F−1(p)

)
f
(
F−1(q)

) ,

uniformly for p, q ∈ [δ, 1 − δ] such that p ≤ q.

As a consequence, the inverse of this covariance matrix, when n goes to infinity,
can be approximated as �−1 ∼ (n + 1)(n + 2)DQD (Stephens 1990), where D is a

diagonal matrix satisfying that Di,i = f
(
F−1( i

n+1 )
)
for any i ∈ {1, . . . , n} and Q

is a tridiagonal matrix:

Q =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 . . .

−1 2 −1 0 0 . . .

0 −1 2 −1 0 . . .

0 0 −1 2 −1 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

The formula �−1 ∼ (n + 1)(n + 2)DQD is interesting, but we need a formal
result regarding this convergence. In particular, if we suppose a fast convergence of
nCov

(
X(nq), X(np)

)
f
(
F−1(p)

)
f
(
F−1(q)

)
uniformly on (0, 1), we have that the

convergence of the elements of �−1 is uniform, and moreover, eliminating some of
the first elements we obtain a dominated sequence. Let us introduce first an useful
lemma:

Lemma 2 (Hager 1989) (Woodbury matrix identity) Let A, B two matrices such that
A and A−B are invertible. Then:

(A − B)−1 = A−1 + A−1B(A − B)−1,

(A − B)−1 =
∞∑
k=0

(
A−1B

)k
A−1.

The next proposition establishes the convergence of the inverse of the covariance
matrix of the order statistics.

Proposition 2 Let X1, . . . , Xn be a sequence of iid random variables with density
function f (x) and cumulative distribution F(x) such that f (x) is bounded and strictly
positive on F−1(0, 1). Suppose that:

lim
n→∞ k(n)(n + 1)2

(
(n + 2) f

(
F−1 (p)

)
f
(
F−1 (q)

)
�np,nq − p(1 − q)

)
= 0,
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uniformly for p, q ∈ (0, 1) such that p ≤ q for a sequence k(n) such that k(n) → ∞.
Then, for any ε > 0 exists m ∈ N such that for any m ≤ n ∈ N we have that:

∣∣∣∣ 1

(n + 1)(n + 2)

(
�−1

)
i, j

− (DQD)i, j

∣∣∣∣ < ε

k(n)
,

for any i, j ∈ {1, . . . , n}, being Q and D the matrices defined after Lemma 1.

Proof Let us set ε > 0. Using the uniform limit of the hyphotesis, for any ε0 > 0,
there exists m ∈ N such that for any m ≤ n ∈ N we have:

k(n)(n + 1)2
∣∣∣∣(n + 2) f

(
F−1

(
i

n + 1

))
f

(
F−1

(
j

n + 1

))
�i, j

− 1

n + 1

(
Q−1

)
i, j

∣∣∣∣ < ε0,

where 1 ≤ i ≤ j ≤ n. Then, since f (x) is strictly positive in F−1(0, 1) the latter
expression is equivalent to:

∣∣∣∣(n + 2)(n + 1)�i, j −
(
(DQD)−1

)
i, j

∣∣∣∣
<

ε0

f
(
F−1

(
i

n+1

))
f
(
F−1

(
j

n+1

))
(n + 1)k(n)

.

Therefore, we can write (n + 2)(n + 1)� = (DQD)−1 − ε1X , with ε1 =
ε0

f
(
F−1

(
i

n+1

))
f
(
F−1

(
j

n+1

))
k(n)

and
∣∣Xi, j

∣∣ < 1 for any i, j ∈ {1, . . . , n}. Using the

Woodbury matrix identity:

1

(n + 2)(n + 1)
�−1 =

(
(DQD)−1 − ε1X

)−1

=
∞∑
k=0

(DQDε1X)k DQD = DQD +
∞∑
k=1

(DQDε1X)k DQD.

If we apply the infinite norm (the maximum over the sum of all the row sums) and
denote M = max f (x) ( f is bounded), we obtain the following inequality for the
second term in the previous sum:

∣∣∣∣∣
∣∣∣∣∣

∞∑
k=1

(FQFε1X)k DQD

∣∣∣∣∣
∣∣∣∣∣
∞

≤
∞∑
k=1

||D||2(k+1)||Q||k+1||X ||kεk1

≤ 4M2
∞∑
k=1

(
4nM2ε1

)k
.

123



Flexible-dimensional L-statistic for mean estimation...

Now, set ε0 = min{ε,1}
32(max{M,1})2 . Therefore, we have:

ε1 ≤ min{ε, 1}
32(n + 1)k(n) (max{M, 1})4

∣∣∣∣∣
∣∣∣∣∣

∞∑
k=1

(FQFε1X)k (FQF)

∣∣∣∣∣
∣∣∣∣∣
∞

≤ 4M2

min{ε,1}
16k(n)(max{M,1})2

1 − min{ε,1}
16k(n)(max{M,1})2

≤
ε

4k(n)

1 − 1
16

= 4

15k(n)
ε <

ε

k(n)
.

Since the absolute value of any element of a matrix is less than or equal to the
infinite norm of the matrix, we have that, for any ε > 0 there exists m ∈ N such that
for any m ≤ n ∈ N:

∣∣∣∣ 1

(n + 1)(n + 2)

(
�−1

)
i, j

− (DQD)i, j

∣∣∣∣ < ε

k(n)
,

for any i, j ∈ {1, . . . , n}. ��
In Proposition 2, we have done two important assumptions that must be discussed.

The first one is the convergence of the presented sequence. We know that, according
to Lemma 1, the difference must converge to 0, but including the factor k(n)(n +
1)2 implies a requirement for faster convergence. The second one is the uniform
convergence rate. Using Lemma 1, the uniform convergence on any closed interval
contained in (0, 1) is guaranteed, but not on (0, 1) itself.

The following theorem states the convergence of the cumulative weights (denoted
as
(
W (n), n ∈ N

)
) when the distribution is fixed and some requirements are fulfilled.

More precisely, fast convergence and uniform convergence of the order statistics are
needed, as well as some properties of the density function.

Theorem 1 Let X1, . . . , Xn be a sequence of symmetric iid random variables with
support S, density function f and cumulative distribution F, such that f is bounded,
continuous, with second derivative on S and strictly positive on F−1(0, 1). Suppose
that:

– Exists a sequence k(n) such that k(n)

n3
→ ∞ satisfying that for any p, q ∈

(0, 1), p ≤ q:

lim
n→∞ k(n)(n + 1)2

(
(n + 2) f

(
F−1 (p)

)
f
(
F−1 (q)

)
�np,nq − p(1 − q)

)
= 0,

uniformly.
– The integral

∫ 1

0
f
(
F−1(x)

)( d2

dx2
f
(
F−1(x)

))
dx,
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is finite.
– The limit

lim
x→inf S

f (x)

F(x)

(
2 f (x) − f

((
F−1(2F(x)

)))
,

is not oscillatory.

Then, the sequence of optimal cumulative weights
(
W (n), n ∈ N

)
satisfy W (n)(0) =

0, W (n)(1) = 1 for any n ∈ N and for any q ∈ (0, 1)∩Q with irreducible fraction a
b :

lim
n→∞ W (nb) (q) =

L + ∫ q0 f
(
F−1(x)

) ( d2

dx2
f
(
F−1(x)

))
dx

2L + ∫ 10 f
(
F−1(x)

) ( d2

dx2
f
(
F−1(x)

))
dx

,

if limx→inf S
f (x)
F(x)

(
2 f (x) − f

((
F−1(2F(x)

))) = L is finite and lim
n→∞ W (nb) (q) =

0.5 otherwise.

Proof If X is symmetric, then the matrix � is persymmetric (see Golub and Van Loan
1996), since E[X(i), X( j)] = E[X(n+1−i), X(n+1− j)] for any i, j ∈ {1, . . . , n}. Thus,
since the inverse of a persymmetric matrix is persymmetric (Golub and Van Loan
1996), �−1 is also persymmetric. Then, the weights that minimize the variance,

which are, similarly as in Proposition 1, �w = �−1�1
�1�−1�1 satisfy wi = wn+1−i for

any i ∈ {1, . . . , n}. Also, since X is symmetric, we have 	i = −	n+1−i for any
i ∈ {1, . . . , n}, which implies �w′	 = 0. Thus, in the symmetric case minimizing the
variance and minimizing the MSE is equivalent. Therefore, we just need to compute

�w = �−1�1
�1�−1�1 for minimizing the MSE.

Notice that we can express

W (n)

(
k

n + 1

)
=
∑k

i=1
∑n

j=1

(
�−1

)
i, j∑n

i=1
∑n

j=1

(
�−1

)
i, j

.

For clarity, let us denote �(n)−1 the inverse of the covariance matrix of the order
statistics of dimension n. Let us consider the sequence:

W (nb) (q) =
∑na

i=1
∑nb

j=1

(
�(nb)−1

)
i, j∑nb

i=1
∑nb

j=1

(
�(nb)−1

)
i, j

.

We can divide the numerator and denominator by (nb+ 1)(nb+ 2) and then apply
Proposition 2. Firstly, we can express the limit of the numerator as:

lim
n→∞

⎛
⎝ na∑

i=1

nb∑
j=1

(DQD)i, j +
⎛
⎝ na∑

i=1

nb∑
j=1

(
�(nb)−1

)
i, j

(nb + 1)(nb + 2)
− (DQD)i, j

⎞
⎠
⎞
⎠ .
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Secondly, applying Proposition 2, exists m ∈ N such that for any m ≤ n ∈ N and
the absolute value of the second term can be bounded as follows:

∣∣∣∣∣∣
na∑
i=1

nb∑
j=1

(
�(nb)−1

)
i, j

(nb + 1)(nb + 2)
− (DQD)i, j

∣∣∣∣∣∣ ≤
na∑
i=1

nb∑
j=1

ε

k(n)
= abεn2

k(n)
.

Let us suppose that this term is negligible in the limit compared to the other terms.
With this assumption:

lim
n→∞

na∑
i=1

nb∑
j=1

(DQD)i, j

= lim
n→∞ f

(
F−1

(
1

n + 1

))(
2 f

(
F−1

(
1

n + 1

))
− f

(
F−1

(
2

n + 1

)))

+
na∑
i=2

f

(
F−1

(
i

n + 1

))(
2 f

(
F−1

(
i

n + 1

))
− f

(
F−1

(
2

n + 1

))

− f

(
F−1

(
i − 1

n + 1

)))
.

The limit of the latter line can be expressed in terms of an integral, that is convergent
by hypothesis, and the second derivative of f , which is finite:

lim
n→∞

na∑
i=2

f

(
F−1

(
i

n + 1

))(
2 f

(
F−1

(
i

n + 1

))
− f

(
F−1

(
i + 1

n + 1

))

− f

(
F−1

(
i − 1

n + 1

)))

= lim
n→∞

1

n

na∑
i=2

f

(
F−1

(
i

n + 1

))⎛
⎝ 2 f

(
F−1

(
i

n+1

))
− f

(
F−1

(
i+1
n+1

))
− f

(
F−1

(
i−1
n+1

))

1/n2

⎞
⎠ 1

n

= lim
n→∞

1

n

∫ q

0
f
(
F−1 (x)

)( d2

dx2
f
(
F−1 (x)

))
dx .

Applying the same process to the denominator, we reach the following expression:

lim
n→∞ W (nb) (q) = lim

n→∞
f
(
F−1

(
1

n+1

)) (
2 f
(
F−1

(
1

n+1

))
− f

(
F−1

(
2

n+1

)))
+

2 f
(
F−1

(
1

n+1

)) (
2 f
(
F−1

(
1

n+1

))
− f

(
F−1

(
2

n+1

)))

+ 1
n

∫ q
0 f

(
F−1(x)

) ( d2

dx2
f
(
F−1(x)

))
dx

1
n

∫ 1
0 f

(
F−1(x)

) ( d2

dx2
f
(
F−1(x)

))
dx

,
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where we have used f
(
F−1

(
1

n+1

))
= f

(
F−1

(
n

n+1

))
and f

(
F−1

(
2

n+1

))
=

f
(
F−1

(
n−1
n+1

))
, as a consequence of the symmetry of the distribution. Thus, if:

lim
n→∞ n f

(
F−1

(
1

n

))(
2 f

(
F−1

(
1

n

))
− f

(
F−1

(
2

n

)))

= lim
x→inf S

f (x)

F(x)

(
2 f (x) − f

((
F−1(2F(x)

)))
= L,

wehave thefirst case of the statementwewant to proof. If the limit diverges, the integral
terms are negligible and we have 0.5 as the limit. Notice that we have assumed that
the latter limit cannot be oscillatory.

In order to end the proof only remains to prove that the term bounded by abεn2
k(n)

is negligible with respect to the other terms in the denominator. Notice that we can
express the integral, integrating by parts:

∫ 1

0
f
(
F−1(x)

)( d2

dx2
f
(
F−1(x)

))
dx

= lim
q→0

f
(
F−1(q)

)( d

dx
f
(
F−1(q)

))

− lim
q→1

f
(
F−1(q)

)( d

dx
f
(
F−1(q)

))
−
∫ 1

0

(
d

dx
f
(
F−1(x)

))2
dx .

Applying the symmetry of the distribution, the first and the second terms (with sign)
equal the same value. If the latter expression is different from 0, then we have that
the term by abεn2

k(n)
is negligible with respect to the integral divided by n. Otherwise,

one case is being f ′(x) = 0. Then, f (x) is constant and strictly positive. But then
L �= 0 (moreover, the associated limit diverges), thus the term abεn2

k(n)
is also negli-

gible. The other case is f ′(x) �= 0, and then the latter expression is 0 if and only if
limx→inf S f (x) �= 0 and in this case we also have that the associated limit with L
diverges. ��

The previous result only makes sense for the rational numbers on [0, 1]. How-
ever, we can extend the limit function to the unit interval numbers straightforwardly
considering its continuous extension when it is available.

Theorem 1 also allows us to expect a smaller difference between the fitting function
and the exact solution when the sample size increases. This is very important since,
in general, it is not easy to derive the explicit expression of the latter limit, since the
integrals can be hard to compute. We can see this in the case of the hyperbolic secant
distribution, see 1. This example will be used later to analyze the difference between
the fitting function and the limit function.

Example 1 Consider the distribution of a random variable defined as Y = μ + λX ,
μ, λ ∈ R with X having hyperbolic secant distribution. Then, f (x) = 1

2 sech
(

π
2 x
)
,
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F(x) = 2
π
arctan

(
e

π
2 x
)
and F−1(x) = 2

π
ln
(
tan
(

π
2 x
))
. The limit L equals 0:

lim
x→−∞

πsech
(

π
2 x
)

4 arctan
(
e

π
2 x
)
⎛
⎝sech (π

2
x
)

−
tan
(
2arctan

(
e

π
2 x
))

tan2
(
2arctan

(
e

π
2 x
))

+ 1

⎞
⎠ = 0,

since the first fraction converges and the second term tends to 0. Then,

d2

dx2
1

2
sech

(
ln
(
tan
(π

2
x
)))

= d

dx

π

2
cos(πx) = −π2

2
sin(πx),

and therefore the integral term in Theorem 1 is the following:

∫ x

0
−π4

4
sech

(
ln
(
tan
(π

2
t
)))

sin(π t) = π

4
(1 − cos(πx)).

It is concluded that the limit function is g(x) = 1
2 (1 − cos(πx)).

We end this section by stating the asymptotic convergence of the estimators build
with the limits of the optimal cumulative weights to the real value of the mean.

Proposition 3 In the conditions of Theorem 1, one has:

n∑
i=1

(
W

(
i

n

)
− W

(
i − 1

n

))
X(i)

L2−→ μ,

with W : [0, 1] → R defined as

W (t) =
L + ∫ t0 f

(
F−1(x)

) ( d2

dx2
f
(
F−1(x)

))
dx

2L + ∫ 10 f
(
F−1(x)

) ( d2

dx2
f
(
F−1(x)

))
dx

,

if limx→inf S
f (x)
F(x)

(
2 f (x) − f

((
F−1(2F(x)

))) = L is finite and W (0) = 0,W (1) =
1 and W (t) = 0.5 for any t ∈ (0, 1) otherwise.

Proof Since both the function W (t) and the distribution are symmetric, it is clear that
the expectation of the estimator is μ for any sample size. It remains to prove that its
variance converges to 0.

Suppose that limx→inf S
f (x)
F(x)

(
2 f (x) − f

((
F−1(2F(x)

))) = L is finite. Denote
as λ the finite quantity in the denominator of W (t). Then, using the same notation as
the previous proof, the variance can be decomposed as follows.

Var

⎛
⎝ n∑
i=1

(
W

(
i

n

)
− W

(
i − 1

n

))
X(i)

⎞
⎠
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= L2

λ
�(n)1,1 + �(n)n,n

+ L

λ

n−1∑
i=2

(
�(n)1,i + �(n)n,i + �(n)i,1 + �(n)i,n

)
⎛
⎝
∫ j

n

j−1
n

f
(
F−1(x)

)( d2

dx2
f
(
F−1(x)

))
dx

⎞
⎠

+ 1

λ

n∑
i, j=1

(∫ i
n

i−1
n

f
(
F−1(x)

)( d2

dx2
f
(
F−1(x)

))
dx

)

×
⎛
⎝
∫ j

n

j−1
n

f
(
F−1(x)

)( d2

dx2
f
(
F−1(x)

))
dx

⎞
⎠�(n)i, j .

We will prove that the limit of each of the three summands is 0.

First summand If L = 0, the first summand is 0. Suppose that L �= 0. In that case,
using the uniform convergence of the covariancematrix of the order statistics one has,

lim
n→∞

L2

λ
�(n)1,1 = L2

λ
lim
n→∞

1

n + 2

1
n

(
1 − 1

n

)
f
(
F−1

( 1
n

))2

≤ L2

λ
lim
n→∞

1

n

1
n

(
1 − 1

n

)
f
(
F−1

( 1
n

))2 = L2

λ
lim

x→inf S
F(x)

F(x)(1 − F(x))

f (x)2

≤ L2

λ
lim

x→inf S

F(x)2

f (x)2
= L2

λ
lim

x→inf S

F(x)2

f (x)2

(
2 f (x) − f

((
F−1(2F(x)

)))2
(
2 f (x) − f

((
F−1(2F(x)

)))2
= 1

λ
lim

x→inf S

(
2 f (x) − f

((
F−1(2F(x)

)))2
.

The latter limit is 0 if limx→inf S f (x) = 0, which should holds since, if not,
limx→inf S

f (x)
F(x)

(
2 f (x) − f

((
F−1(2F(x)

)))
is not finite. A similar reasoning can be

applied to limn→∞ L2

λ
�(n)n,n , thus the limit of the first summand is 0.

Second summand If L = 0, the first summand is 0. Suppose that L �= 0. Using the
inequality �(n)1,i ≤ √�(n)1,1�(n)i,i and the hyphotesis of uniform convergence of
the covariances of the order statistics, we can express

lim
n→∞

L

λ

n−1∑
i=2

�(n)1,i

(∫ j
n

j−1
n

f
(
F−1(x)

)( d2

dx2
f
(
F−1(x)

))
dx

)
≤

≤ lim
n→∞

L
√

�(n)1,1

λ

n−1∑
i=2

√
�(n)i,i

(∫ j
n

j−1
n

f
(
F−1(x)

)( d2

dx2
f
(
F−1(x)

))
dx

)

< lim
n→∞

L
√

�(n)1,1

λ

∫ 1

0

√
p(1 − p)

f
(
F−1(p)

)2 f
(
F−1(p)

)( d2

dp2
f
(
F−1(p)

))
dp

= lim
n→∞

L
√

�(n)1,1

λ

∫ 1

0

√
p(1 − p)

(
d2

dp2
f
(
F−1(p)

))
dp

≤ lim
n→∞

L
√

�(n)1,1

λ
M
∫ 1

0
f
(
F−1(p)

)( d2

dp2
f
(
F−1(p)

))
dp,

123



Flexible-dimensional L-statistic for mean estimation...

where M a constant that bounds the density function, which is bounded by hyphotesis.
Also by hyphotesis, the latter integral is finite. Then, since the first part of the product
goes to 0, as proved when working with the first summand, the limit is 0.

Third summand Changing again the covariances of the order statistics by its limits
and the sums for integrals, we obtain the following expression.

lim
n→∞

1

λ

n∑
i, j=1

(∫ i
n

i−1
n

f
(
F−1(x)

) ( d2

dx2
f
(
F−1(x)

))
dx

)(∫ j
n

j−1
n

f
(
F−1(x)

) ( d2

dx2
f
(
F−1(x)

))
dx

)
�(n)i, j

= lim
n→∞

1

λ(n + 2)

∫ 1

0

∫ 1

0

p(1 − q) f
(
F−1(p)

) ( d2

dp2
f
(
F−1(p)

))
f
(
F−1(q)

) ( d2

dq2
f
(
F−1(q)

))

f
(
F−1(p)

)
f
(
F−1(q)

) dpdq

= lim
n→∞

1

λ(n + 2)

∫ 1

0

∫ 1

0
p(1 − q)

(
d2

dp2
f
(
F−1(p)

))( d2

dq2
f
(
F−1(q)

))
dpdq ≤

≤ lim
n→∞

M2

λn

(∫ 1

0
f
(
F−1(p)

) ( d2

dp2
f
(
F−1(p)

))
dp

)2
.

The integral is convergent by the same previous arguments. Then the limit goes to
0.

It remains the case when the limit limx→inf S
f (x)
F(x)

(
2 f (x) − f

((
F−1(2F(x)

)))
diverges. In this case, we have that the estimator is just 12

(
X(n) + X(1)

)
and its variance

is 1
4

(
�(n)1,1 + �(n)1,n + �(n)n,1 + �(n)n,n

)
. Proceeding similarly as in the first

summand of the other case,

lim
n→∞

1

4
�(n)1,1 ≤ 1

4
lim

x→inf S

F(x)2

f (x)2

= 1

4
lim

x→inf S

[
F(x)2

f (x)2
1(

2 f (x) − f
((
F−1(2F(x)

)))2
] (

2 f (x) − f
((
F−1(2F(x)

)))2
.

The part between the brackets goes to 0, by the divergence of its inverse, and the
limit of the other part is finite, thus it is concluded that the limit is 0.

We have proved that the mean of the estimator converges to μ and the variance
converges to 0, therefore the result holds. ��

5 Flexible-dimensional L-statistic for mean estimation of symmetric
distributions

The main result of the previous section, the numerical results shown in Fig. 2 and the
performance of the EVR-OWA operator (García-Zamora et al. 2021, 2022) to provide
symmetrically ordered aggregations, serve as inspiration for a method to construct a
flexible-dimensional L-statistic for mean estimation.

In particular, given some optimal weights, the associated cumulative weights are
fitted using a function g : [0, 1] → R. Then, if aggregating a vector with a different
dimension, the fitted function is used to generate new weights that suit the new dimen-
sion. Keeping in mind Theorem 1 and Fig. 2, it is reasonable to think that the generated
weights will be similar to the optimal weights if both dimensions are sufficiently great
and close.
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5.1 Fitting functions

Even if the limit function is known, the optimal cumulative weights can be far from it
for small sample sizes. Therefore, one of themain challenges faced by this procedure is
the correct choice of a family of functions for fitting the cumulative weights. Although
more electionsmight be done, here we consider a family of functions based on extreme
value amplifications (EVAs) (García-Zamora et al. 2021) and extreme value reductions
(EVRs) (García-Zamora et al. 2022) due to their convenient behavior when applied in
OWA aggregations (Baz et al. 2022).

In particular, the following families of functions are considered:

– Sin-based EVAs/EVRs The function sα : [0, 1] → [0, 1] defined as

sα(x) = x +
n∑

k=0

αk sin(2πkx) ∀ x ∈ [0, 1],

is an EVA if α = (α1, ..., αn) satisfy
∑n

k=1 αkk < 1
2π , αk > 0. In addition, if

α = (α1, ..., αn) satisfy
∑n

k=1 αkk > − 1
2π , αk < 0, the function sα is an EVR.

Table 1 Parameters of the fitted function to the optimal cumulative weights of the considered distributions
with a sample size n = 20

Distribution λ1 λ2 λ3 λ4 α1 α2 α3 α4 β γ

Laplace 1 0 0 0 −0.272 0.084 −0.026 0.008 – –

Hyperbolic secant 1 0 0 0 −0.157 0 0 0 – –

Student’s T 0.923 0 0.087 −0.010 − 0.069 − 0.015 −0.005 −0.004 – 0.870

G-normal s = 3 0.313 0.176 0.485 0.026 0.137 0.017 0.008 0.004 0

G-normal s = 1.5 1 0 0 0 −0.271 0.084 −0.026 0.008 – –

Beta α = β = 0.5 0 −0.070 −0.320 1.390 – – – – −1.857 13.04

Beta α = β = 2 0.046 0.352 0.159 0.443 0.208 0.087 0.051 0.034 −0.492 5.738

Logistic 0.584 0.416 0 0 −0.099 0.012 − 0.004 −0.001 1.022 –

Table 2 Mean squared error (multiplied by 10−7) between the fitted function using the cumulative weights
for n = 20 and the cumulative weights for n ∈ {10, 18, 19, 20, 21, 22, 30} for the considered distributions
Distribution n = 10 n = 18 n = 19 n = 20 n = 21 n = 22 n = 30

Laplace 746.81 17.52 6.83 2.384 12.90 25.58 309.70

Hyperbolic secant 13.469 2.870 1.280 0.304 1.656 0.988 19.303

Student’s T 9.074 2.374 4.071 1.245 1.723 2.260 14.281

G-normal s = 3 435.242 0.680 1.886 0.177 1.420 1.313 42.06

G-normal s = 1.5 991.970 40.343 21.379 3.322 9.794 32.829 249.02

Beta α = β = 0.5 4266.772 0.540 0.639 0.356 0.696 2.395 1131.223

Beta α = β = 2 551.074 9.106 1.576 0.530 1.806 6.971 248.569

Logistic 11.251 11.80 16.80 2.200 7.903 7.273 8.947
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Table 3 Mean squared error of L-estimators when considering the optimal weights, the fitted weights and
the balanced weights for sample sizes n ∈ {10, 18, 19, 20, 21, 22, 30} for the considered distributions

Distribution Weights n = 10 n = 18 n = 19 n = 20 n = 21 n = 22 n = 30

Laplace Optimal 0.1417 0.0720 0.0682 0.0652 0.0603 0.0558 0.0400

Fitted 0.1422 0.0720 0.0682 0.0652 0.0603 0.0558 0.0401

Balanced 0.1986 0.1091 0.1067 0.1011 0.0946 0.089 0.0656

Hyperbolic secant Optimal 0.0869 0.0463 0.0445 0.041 0.0408 0.0377 0.0281

Fitted 0.0869 0.0463 0.0445 0.0410 0.0408 0.0377 0.0281

Balanced 0.1010 0.0553 0.0530 0.0493 0.0485 0.0450 0.0343

Studentś T Optimal 0.1070 0.0599 0.0566 0.0527 0.0503 0.0485 0.0344

Fitted 0.1070 0.0599 0.0566 0.0527 0.0503 0.0485 0.0344

Balanced 0.1073 0.0603 0.0567 0.0528 0.0506 0.0488 0.0345

G-normal s = 3 (×10−1) Optimal 0.3454 0.1905 0.1831 0.1685 0.1584 0.1506 0.1139

Fitted 0.3455 0.1905 0.1831 0.1685 0.1584 0.1506 0.1139

Balanced 0.3730 0.2094 0.1995 0.1867 0.1724 0.1669 0.1268

G-normal s = 1.5 Optimal 5.4916 2.7737 2.6216 2.4403 2.3005 2.2196 1.5294

Fitted 5.7613 2.8039 2.6418 2.4585 2.3036 2.2265 1.5665

Balanced 12.0481 6.7415 6.4255 6.1515 5.8014 5.5608 4.0393

Beta α = β = 0.5 (×10−2) Optimal 0.1926 0.0294 0.0243 0.0193 0.0182 0.0137 0.0049

Fitted 0.1982 0.0294 0.0244 0.0193 0.0182 0.0137 0.0052

Balanced 1.2537 0.7083 0.6566 0.6329 0.5902 0.5664 0.4134

Beta α = β = 0.5 (×10−2) Optimal 0.3857 0.1939 0.1844 0.1748 0.1683 0.1559 0.1077

Fitted 0.3859 0.1939 0.1844 0.1748 0.1683 0.1559 0.1078

Balanced 0.4896 0.2742 0.2584 0.2509 0.2437 0.2291 0.1681

Logistic Optimal 0.3116 0.1710 0.1594 0.1507 0.1431 0.1405 0.0990

Fitted 0.3117 0.1710 0.1594 0.1507 0.1431 0.1406 0.0990

Balanced 0.3341 0.1836 0.1727 0.1630 0.1542 0.1523 0.1076

– Grade 3 polynomials The function p3β : [0, 1] → [0, 1], defined as

p3β(x) = (1 − β)x + 3βx2 − 2βx3 ∀ x ∈ [0, 1],

is an EVR for β ∈]0, 1] and an EVA for β ∈ [−1, 0[.
– Spline-based EVAs and EVRs The functions spγ : [0, 1] → [0, 1] defined as

spγ (x) =
{

1
2 − 1

2 (1 − 2x)γ 0 ≤ x < 1
2

1
2 + 1

2 (2x − 1)γ 1
2 ≤ x ≤ 1

,

are EVAs for γ > 1 and behave like EVRs for 0 < γ < 1.
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– Pseudo-constant function Finally, we include the function c : [0, 1] → [0, 1]
defined as:

c(x) =
⎧⎨
⎩

0 x = 0
1
2 0 < x < 1
1 x = 1

.

Remark 2 The proof of the above statements is straightforward and follows arguments
similar to those developed in García-Zamora et al. (2021, 2022).

For the family s�α , in which the parameter �α can be a vector with possibly infinite
elements, we just consider a vector with dimension 4, �α = (α1, α2, α3, α4).

We consider a linear combination of the aforementioned families with coefficients
�λ = (λ1, λ2, λ3, λ4) in order to obtain a unique function with a better behavior. We
define the family of functions g�α,β,n,�λ : [0, 1] → R given by

g�α,β,γ,�λ(x) = λ1s�α(x) + λ2 p
3
β(x) + λ3spγ (x) + λ4c(x).

5.2 Numerical results

For eight different symmetric distributions, the optimal weights for n = 20 are com-
puted through simulation.Then, the cumulativeweights arefittedusing the latter family
of functions, with the aim to minimize the mean squared error between the points and
the fitted function. The resulting function is compared to the optimal weights for
n ∈ {18, 19, 21, 22}, the dimensional sizes closest to 20 and n ∈ {10, 30}, further
ones. The election of n = 20 is adequate for illustrating the method working on small
sample sizes, in which small differences between sample sizes are relevant. Additional
experiments with larger samples sizes have been also done, with better results as a
consequence of the convergence of Theorem 1. For too small samples, the differences
between sample sizes are relatively very large, and the behavior gets worse.

In particular, the considered distributions are the Laplace distribution, the Hyper-
bolic secant distribution, the Student’s T distribution (with 30 degrees of freedom), two
Generalized Normal (or G-normal) distributions (with parameters s = 3 and s = 1.5),
twoBeta distribution (withα = β = 0.5 andα = β = 2) and the Logistic distribution.
They are a good sample of classical and relevant distribution in theoretical and applied
problems in statistics. For a detailed review of the aforementioned distributions, we
refer to Ding (2014), Dytso et al. (2018) and Johnson et al. (1995). The uniform or the
normal distribution have not been addressed because the optimal weights are straight-
forward to compute for any sample size,

( 1
2 , 0, . . . , 0,

1
2

)
and
( 1
n , . . . , 1

n

)
(Rohatgi and

Saleh 2015).
We want to remark that the here-proposed method is not restricted to the distribu-

tions considered in this section. As guaranteed by Theorem 1, for a sufficient regular
distribution, this procedure can also be used but perhaps using a broader family of
fitting functions.
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Fig. 3 Fitted cumulative weights when n = 20 and its comparison with cumulative weights when n ∈
{10, 18, 19, 21, 22, 30} for several symmetric distributions

The resulting parameters of the fitted functions can be found in Table 1. If a coeffi-
cient of the linear combination is 0, the parameters of the associated function are not
provided.

The limit function for the Logistic distribution, derived in Example 1 equals 3x2 −
2x3, and the fitted function, using the optimal weights for n = 20, is 0.584(x −
0.099 sin(2πx −π)+0.012 sin(4πx −π)−0.004 sin(6πx −π))−0.001 sin(8πx −
π)+0.416(3.066x2 −2.044x3). Although the second summand of the fitted function
is similar to the limit function, there is a notable difference between them. For bigger
sample sizes, the fitted function will converge to the limit function, as already proved
in Theorem 1.

In Fig. 3, the fitted functions and the cumulative weights can be seen for different
values ofn, for all the considered distributions. It can be seen that thefitted function also
serves as a good approximation for the cumulative weights when n ∈ {18, 19, 21, 22},
although we have not used them to fit the function. As expected, the behavior is worse
for the cases n ∈ {10, 30}.

In addition, we have computed the mean squared error between the points and the
fitted function for all the cases. In Table 2, it can be seen that theMSE does not increase
considerably when moving from n = 20 to closer sample sizes (even in a particular
case it decreases) and it is of the order of 10−6−10−8 (notice that the values in the
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table are multiplied by 10−7) for all the cases. The MSE for the further sample sizes
increases in some cases to the order of 10−4−10−6.

The small difference between the optimal and the fitted weights should lead to a
small difference in the behavior between the obtained L-estimators. In this regard,
we have computed it for each of the cases, as well as the value for the sample mean
(balanced weights), and its Mean Squared Error by simulation. The results can be
found in Table 3.

As it can be seen, theL-estimatorswithfittedweights behave similarly to the optimal
one. Their MSE is always between the optimal, which cannot be improved, and the
sample mean, which can be seen as a naive flexible-dimensional method. Indeed, it
is almost the same for most of the considered cases. The difference is greater for the
sample sizes that are further to n = 20, since, as already seen in Table 2, the fitted
function is a better approximation for closer sample sizes.

6 Conclusion

Amethod for the definition of flexible-dimensional L-statistics for themean estimation
of symmetric distributions is provided. In particular, given some optimal weights for
a specific sample size, the cumulative optimal weights are fitted using a family of
weighting functions inspired by Extreme Value Reductions and Amplifications.

The feasibility of the method is justified using Theorem 1, which states a conver-
gence of the cumulative weights to a limiting weighting function. Given a distribution,
although checking whether the conditions of the Theorem are fulfilled is not straight-
forward, numerical results support the good performance of the method. In particular,
the method has been illustrated for different classical symmetric distributions. In con-
clusion, it can be seen that the weights constructed using the fitted function are similar
to the optimal weights when considering sample sizes near to initial sample size. In
particular, theMSE between the fitted functions and the optimal weights is of the order
10−6−10−7, illustrating the good behavior of the family of fitting functions.

Our main next objective is to apply this procedure to real data. In this scenario, we
may have data for specific sample sizes to compute the optimal weights, which can be
extended to other sample sizes with the presented method if necessary. In this regard,
we should generalize Theorem 1 for non-symmetric random variables and also give
a greater family of fitting functions to fulfill the theoretical and practical necessities
when working in a more general case. In addition, we wonder if this method could
be applied to censored samples, which in general are not equivalent to simple random
samples of variable dimension.
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