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Abstract
The paper contains the comparative analysis of the efficiency of different qunatile esti-
mators for various distributions. Additionally, we show strong consistency of different
quantile estimators and we study the Bahadur representation for each of the quantile
estimators, when the sample is taken from NA, ϕ, ρ∗, ρ-mixing population.

Keywords Quantile · Estimator · Bahadur representation · Dependent mixing
random variables

1 Introduction

Let {Xn, n ≥ 1} be a sequence of identically distributed random variables defined on
a fixed probability space (�,F ,P) with a distribution function F . The p-th quantile
of F is defined as

Qp = inf{x : F(x) ≥ p},
where 0 < p < 1.

Quantiles play an important role in finance, modeling and statistics. In practical
applications, quantile estimators are fundamental, which was noticed quite early, e.g.
at the paper Galton (1889).

In the literature, there are numerous quantiles estimators. Some quantile estima-
tors were developed for specific distributions, whereas others were designed to be
"distribution-free" (in other words—nonparametric estimators), with no assumption
about the population density function.
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Let (X(1), X(2), ..., X(n)) be the ordered sample of (X1, ..., Xn) and �x� denotes
an integer part of x . Dielman et al. (1994) presented eight different nonparametric
estimators of a quantile:

• Weighted average at X(�np+0.5�)

E1 = (0.5 + �np + 0.5� − np)X(�np+0.5�)
+(0.5 − �np + 0.5� + np)X(�np+0.5�+1),

where 0.5 ≤ np ≤ (n − 0.5).

Remark 1 It follows from the condition 0.5 ≤ np ≤ (n − 0.5) that n ≥
max

{
0.5

1 − p
,
1

2p

}
.

• Weighted average at X(�np�)

E2 = (1 − (np − �np�))X(�np�) + (np − �np�)X(�np�+1).

• Lower empirical cumulative distribution function (CDF) value

E3 = X(�np�).

• Upper empirical cumulative distribution function (CDF) value

E4 = X(�np�+1).

• Observation numbered closest to np

E5 =
{
X(�np�), if np − �np� < 0.5
X(�np�+1), if np − �np� ≥ 0.5

.

• Empirical cumulative distribution function (CDF)

E6 =
{
X(�np�), if np − �np� = 0
X(�np�+1), if np − �np� > 0

.

• Weighted average at X(�(n+1)p�)

E7 = (1 − ((n + 1)p − �(n + 1)p�))X(�(n+1)p�)
+((n + 1)p − �(n + 1)p�)X(�(n+1)p�+1).

• Empirical cumulative distribution function (CDF) with averaging

E8 =
{ X(�np�)+X(�np�+1)

2 , if np − �np� = 0
X(�np�+1), if np − �np� > 0

.
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The most common estimator studied in many papers is E4. Bahadur (1966) first
established an elegant representation for a sample quantile in terms of the empirical
distribution function based on independent and identically distributed samples.

Let Fn(x) = 1

n

n∑
i=1

I [Xi ≤ x], x ∈ R, n ≥ 1 be the empirical distribution function

for the sample (X1, X2, . . . , Xn).

Theorem 1 (Bahadur (1966)) Let 0 < p < 1 and {Xn, n ≥ 1} be a sequence of
independent identically distributed random variables with the distribution function
F. Assume that F has at least two derivatives at some neighborhood of Q p and
F ′(Qp) = f (Qp) > 0. Then

E4 = Qp − Fn(Qp) − p

f (Qp)
+ O

(
n− 3

4 log n
)

a.s. (1)

In next years, many researchers have studied the Bahadur representation for sample
quantiles for dependent sequences. This is very important problem for practical appli-
cations, because in practice we often deal with samples with different dependency
structures. Sen (1972); Babu and Singh (1978); Yoshihara (1995); Yang et al. (2019)
andWu et al. (2021) obtained the Bahadur represenation for ϕ-mixing sequences, Sun
(2006); Wang et al. (2011) and Zhang et al. (2014) got the Bahadur representation for
α-mixing sequences and Xing and Yang (2019) for ψ-mixing sequences. For nega-
tively dependent structures Ling (2008); Xing and Yang (2011) and Xu et al. (2013)
considered this problem for negatively associated (NA) sequences and Li et al. (2011)
studied it for negatively orthant dependent (NOD) random variables.

Below, we present the definitions of four types of dependence of random variables
that will be considered in this work.

Definition 1 (Joag-Dev and Proschan (1983)) A finite family of random variables
{Xi , 1 ≤ i ≤ n} is said to be negatively associated (NA) if for every pair of disjoint
subsets A and B of {1, 2, ..., n}, we have

Cov( f1(Xi , i ∈ A), f2(X j , j ∈ B)) ≤ 0,

wherever f1 and f2 are coordinatewise nondecreasing, provided the covariance exists.
An infinite family of random variables is said to be N A if every finite subfamily is
NA.

Many authors have investigated NA’s statistical properties. For example, Joag-Dev
and Proschan (1983) studied NA’s fundamental properties, Yang (2003) investigated
uniformly asymptotic normality of regression weighted estimator for NA samples,
Liang and Jing (2005) presented asymptotic properties of the estimation of nonpara-
metric regressionmodel based onNAsequences, Liang et al. (2006) studied asymptotic
properties of the estimation of semiparametric regression model based on a linear pro-
cess with NA innovations.
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Remark 2 Increasing functions defined on disjoint subsets of a set of NA random
variables are NA random variables.

Example 1 (Joag-Dev and Proschan (1983)) Let Z = (Z1, ..., Zk) be a vector having
a multinomial distribution, obtained by taking only one observation. Thus only one Zi

is 1 while the rest are zero. The N A property for Z trivially follows from Definition 1.
Since the general multinomial is a convolution of independent copies of Z, the closure
property (Remark 2) establishes N A in this case.

Definition 2 (Rozanov and Volkonski (1959)) A sequence of random variables
{Xn, n ≥ 1} is said to be ϕ-mixing if

ϕ(n) = sup
m≥1

sup
A∈Fm

1 ,B∈F∞
m+n ,P(A)>0

∣∣P(B|A) − P(B)
∣∣ → 0,

as n → ∞, where Fm
n = σ(Xi , n ≤ i ≤ m).

ϕ-mixing propertywas studied bymany researchers. Utev (1990) studied the central
limit theorem, Chen et al. (2009) investigated total convergence of the sequences, Yang
et al. (2012) obtained the Berry-Esseen bound. The more information on ϕ-mixing
properties one can find in Billingsley (1968) in chapter 4.

Example 2 (Wu et al. (2021)) Let {εn, n ≥ 1} be a sequence of independent and
identically distributed random variables with zero mean and a finite variance. Define

Xn =
m∑

k=0

akεn−k

for some positive integer m and constants ak , k = 0, 1, ...,m. Then {Xn, n ≥ 1} is
known as a moving average process with older m. It can be verified that {Xn, n ≥ 1}
is a ϕ-mixing process.

Definition 3 (Bradley (1992)) A sequence of random variables {Xn, n ≥ 1} is said to
be ρ∗-mixing, if

ρ∗(n) = sup
S,T⊂N,dist(S,T )≥n

{ρ(S, T )} → 0,

as n → ∞, where

ρ(S, T ) = sup
X∈L2(σ (S)),Y∈L2(σ (T ))

{ |Cov(X ,Y )|√
Var(X)Var(Y )

}
,

dist(S, T ) = min
i∈S, j∈T | j − i | and σ(S) and σ(T ) are the σ -fields generated by {Xi , i ∈

S} and {X j , j ∈ T }, respectively.
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ρ∗-mixing random variables are a well-described and repeatedly studied struc-
ture. Bradley (1992) obtained the central limit theorem, Bryc and Smolenski (1993);
Peligrad and Gut (1999); Utev and Peligrad (2003) presented the moment inequalities
and Sung (2010) analysed the complete convergance of weighted sums for ρ∗-mixing
sequences of random variables.

Remark 3 Note that increasing functions defined on a disjoint subset of a ρ∗-mixing
field {Xk, k ∈ Nd}withmixing coefficients ρ∗(s) are also ρ∗-mixingwith coefficients
not greater that ρ∗(s).

Example 3 (Wang et al. (2019)) Let {Xn, n ≥ 1} be a strictly stationary, finite-state,
irreducible and aperiodic Markov chain. Then it is a ρ∗- mixing process with ρ∗(k) =
o(e−Ck) for some C > 0.

Definition 4 (Kolmogorov and Rozanov (1960)) A sequence of random variables
{Xn, n ≥ 1} is said to be ρ-mixing if

ρ(n) = sup
k≥1,X∈L2(F k

1 ),Y∈L2(F∞
k+n)

|Cov(X ,Y )|√
Var(X)Var(Y )

→ 0,

as n → ∞, where Fm
n = σ(Xi , n ≤ i ≤ m) and L2(·) is a set of real-valued

square-integrable functions.

The ρ-mixing condition was introduced by Kolmogorov and Rozanov (1960). Shao
(1995) in his paper explored the central limit theorem, the law of large numbers and
the complete convergence of ρ-mixing sequences.

Example 4 (Peligrad (1987)) Suppose {Yk, k ≥ 1} and {Zk, k ≥ 1} are independent
random variables with the identical standard normal distribution function F and con-
sider the sequence

X (α)
k = Yk − Yk−1 + √

αZk .

Because of ρ(2) = 0, sequence {X (α)
k , k ≥ 1} is ρ-mixing with σ 2

n =
Var

( n∑
k=1

X (α)
k

)
= 2 + nα, infn

σ 2
n
n = α and E(X (α)

k )2 = 2 + α.

The following Rosenthal-type inequality will be important in further considera-
tions:

E max
1≤m≤n

∣∣∣∣
m∑

k=1

Xk

∣∣∣∣
q

≤ Cq

{ n∑
k=1

E |Xk |q +
( n∑

k=1

EX2
k

) q
2
}
, (2)

where Cq > 0, q ≥ 2, EXn = 0 and E |Xn|q < ∞ for every n ≥ 1.
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Remark 4 Inequality (2) is true for N A random variables (Shao and Su (1999)), for ρ∗-
mixing randomvariables (Peligrad andGut (1999)) and forϕ-mixing randomvariables
with some additional condition on mixing coefficients ϕ(n), n ≥ 1 (Wu et al. (2021)).

For ρ-mixing random variables, the following inequality plays the same role as (2).

Lemma 1 (Shao (1995)) Let q ≥ 2 and {Xn, n ≥ 1} be a sequence ofρ-mixing random
variables. Assume that E Xi = 0, E |Xn|q < ∞ and

∞∑
n=1

ρ
2
q (2n) < ∞.

Then there exists a positive constant K = K (q, ρ(·)) depending only on q and ρ(·)
such that for any k ≥ 0, n ≥ 1,

E max
1≤n

∣∣∣∣
k+n∑

i=k+1

Xi

∣∣∣∣
q

≤ K

{
n max
k<i≤k+n

E |Xi |q +
(
n max
k<i≤k+n

E X2
i

) q
2
}
.

The first aim of this paper is a comparative analysis of the effectiveness of each of
the estimators, depending on the distribution from which the sample is drawn. For this
purpose, in section 2 we will compare the fit of the values of the estimators presented
above obtained for samples taken from populations with different distributions to
the theoretical value. The second aim is to show the strong consistency of each of the
estimators and to study that the Bahadur representation holds for each of the estimators
when the sample is taken from a NA, ϕ, ρ∗ or ρ-mixing population.

2 Comparative analysis of estimators

In the comparative analysis of the estimators well-known probability distributions
were used:

• Normal distribution with μ = 0, σ = 4,
• Student’s t distribution with 3 degrees of freedom,
• Weibull distribution with scale λ = 1 and shape k = 5,
• Uniform distribution on the interval [0,2],
• χ2 distribution with 3 degrees of freedom,
• Exponential distribution with λ = 1.

The analysis was carried out for the sample sizes: n ∈ {50, 150, 555, 1130, 2165}
and for the different values of p ∈ {0.025, 0.5, 0.975}. Using the R software, in
each case the teoretical value of the quantile was generated. Next, samples of sizes
n ∈ {50, 150, 555, 1130, 2165} were taken and the quantile estimator was calculated.
The experiment was repeated 1000 times in each case and a mean square error (MSE)

was generated.
In the normal distribution case, the best results were obtained for the estimators

E4, E6 and E8. The estimator E1 was the only one that gave better results for small p.

123



Some practical and theoretical…

Table 1 Estimator fit quality for p = 0.025

Normal Student’s t Weibull Uniform χ2 Exponential

E1 ++ ++ +++ ++ ++ +

E2 + + + +++ +++ ++

E3 − − − +++ + ++

E4 +++ +++ +++ + − −
E5 − − − +++ + ++

E6 +++ +++ +++ + − +++

E7 + + ++ +++ +++ ++

E8 +++ +++ +++ + − −

For p = 0.5, the results for each estimator are similar. The results for the Student’s t
distribution are similar to the normal distribution. Again, the best results were obtained
for the estimators E4, E6, E8. The estimators E2, E3 and E5 showed much worse
results for small p than the others estimators and showed quite good results for high
p. The results for p = 0.5 are, again, similar for each estimator. In the case of Weibull
distribution, the errors aremuch smaller than in the normal and Student’s t distribution.
Only E1 gives a better result for small p than for large p. As the sample grows, the
differences in the errors for individual estimators are practically non-existent. For the
uniform distribution the errors are also smaller than for the normal and Student’s t
distribution. In this case, the estimator E7 gave the best results. Additionally, E1, E2,
E3 and E5 gave a better result for small p than the others. For χ2 distribution the best
results gave E2. Also good results were obtained for the estimators E4, E5, E6 and
E8. Each of the estimators performs worse at high p than at low p. For the exponential
distribution the greatest differences in the results are seen for high p. The best results
are given by the estimator E2, but the estimators E4, E5, E6 and E8 also give quite
good results.

The Tables 1 and 2 contain an assessment of the fit of each estimator depending
on the distribution for, respectively, p = 0.025 and p = 0.975. Within a given
distribution, estimator with the best fit gets three pluses and estimator with the worst
fit gets minus. The errors for a given distribution was analogous for all estimators for
p = 0.5.

In conclusion, none of the estimators performed equally well for different distribu-
tions for low and high p. Different estimators turn out to be the best depending on a
given distribution. Only for p = 0.5 the fit of each estimator is at a very similar level
for a given distribution. Common conclusion for each estimator is that as the sample
size increases, the error decreases and the results for each estimator are very similar.
However, it should be noted that the financial and life situation does not always allow
to obtain a sample of 1000 or 2000 elements. That is why it is so important to choose
an appropriate estimator for a given distribution especially when the research is based
on a small sample.
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Table 2 Estimator fit quality for p = 0.975

Normal Student’s t Weibull Uniform χ2 Exponential

E1 − + − + − −
E2 ++ +++ +++ ++ +++ +++

E3 + ++ + − + +

E4 +++ ++ +++ ++ ++ ++

E5 +++ ++ +++ ++ ++ ++

E6 +++ ++ +++ ++ ++ ++

E7 + − ++ +++ − −
E8 +++ ++ +++ ++ ++ ++

3 Strong consistency and Bahadur representation

In this section we will study a strong consistency of a quantile estimator and the
Bahadur representation for sample quantiles. Further, detailed considerations will be
carried out for the estimator E1.

Theorem 2 Let {Xn, n ≥ 1} be a sequence of random variables with one of the fol-
lowing dependency structures:

1. N A dependence,

2. ϕ-mixing dependence with coefficients satifying
∞∑
n=1

ϕ(2n) < ∞,

3. ρ∗-mixing dependence,

4. ρ-mixing dependence with coefficients satifying
∞∑
n=1

ρ
2
q (2n) < ∞, for q >

1

δ
for

0 < δ <
1

2
.

Let {Xn, n ≥ 1} be indentically distributed with a common distribution function F
and a quantile Q p. Assume that F possesses a positive continuous density f in some
neighborhood Dp of Q p such that 0 < sup{ f (x); x ∈ Dp} < ∞. Moreover, we
assume that f ′(x) is defined in some neighborhood Dp of Q p,

| f ′(x)| < M, x ∈ Dp, M ∈ R. (3)

Then for any 0 < δ < 1
2

P
(
E1 − Qp = o(n− 1

2+δ), as n → ∞
)

= 1. (4)
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Proof It it easy to see that ∀ ε > 0

{
|E1 − Qp| ≥ εn− 1

2+δ

}

=
{
E1 ≥ Qp + εn− 1

2+δ

}
∪

{
E1 ≤ Qp − εn− 1

2+δ

}
= A1

n ∪ A2
n .

One can obtain that

X�np+0.5� ≤ E1 ≤ X�np+0.5�+1. (5)

Put ξni = I (Xi ≤ Qp + εn− 1
2+δ) − F(Qp + εn− 1

2+δ) for 1 ≤ i ≤ n. Therefore,
we get

A1
n =

{
E1 ≥ Qp + εn− 1

2+δ

}
⊂

{ n∑
i=1

I (Xi ≤ Qp + εn− 1
2+δ) < �np + 0.5� + 1

}

=
{ n∑

i=1

ξni < �np + 0.5� + 1 − nF(Qp + εn− 1
2+δ)

}
. (6)

Note that, using Taylor’s expansion:

F(Qp + εn− 1
2+δ) = p + f (Qp)εn

− 1
2+δ + o(n− 1

2+δ)

we can obtain that there exists some constant c(ε) > 0, depending only on ε > 0,
such that for a sufficiently large n

{ n∑
i=1

ξni < �np + 0.5� + 1 − np − ε f (Qp)n
1
2+δ + o(n

1
2+δ)

}

⊂
{ n∑

i=1

ξni < −c(ε)n
1
2+δ

}
(7)

Hence, on the basis of Eqs. (6),(7), Markov’s inequality and Eq. (2) (for NA, ϕ

and ρ∗-mixing random variables) or Lemma 1 (for ρ-mixing random variables), for

r >
1

δ
where 0 < δ <

1

2
, we get the following estimation
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∞∑
n=1

P

(
E1 ≥ Qp + εn− 1

2+δ

)
≤

∞∑
n=1

P

( n∑
i=1

ξni < −c(ε)n
1
2+δ

)

≤
∞∑
n=1

P

(∣∣∣∣
n∑

i=1

ξni

∣∣∣∣ > c(ε)n
1
2+δ

)
≤ C

∞∑
n=1

n−( 12+δ)r E

∣∣∣∣
n∑

i=1

ξni

∣∣∣∣
r

≤ C
∞∑
n=1

n−( 12+δ)r
[
(nEξ2n1)

r
2 + nE |ξn1|r

]
≤ C

∞∑
n=1

n−δr < ∞.

We can carry out analogous considerations for A2
n using the lower estimate of E1

in the inequality Eq. (5). Hence, we get
∞∑
n=1

P

[
E1 ≤ Qp − εn− 1

2+δ

]
< ∞. By the

Borel-Cantelli lemma we get thesis Eq. (4).
��

Remark 5 One can obtain analogous results for the estimator:

• E2—by assumption that X(�np�) ≤ E2 ≤ X(�np�+1),
• E3—calculations are similar to the estimator E4, which was considered in the
paper (Dudek and Kuczmaszewska (2022)),

• E5 and E6—calculations are analogous to the estimators E3 and E4, because the
proof does not depend on the value of np − �np�,

• E7—by the assumption that X(�(n+1)p�)) ≤ E7 ≤ X(�(n+1)p�+1)),
• E8—it is a combination of the estimator E4 and E3.

Now, let us focus on the Bahadur representation of sample quantiles.

Theorem 3 Let {Xn, n ≥ 1} be a sequence of random variables with one of the fol-
lowing dependency structures:

1. N A dependence,
2. ρ∗-mixing dependence.

Let {Xn, n ≥ 1} be indentically distributed with a common distribution function F
and quantile Q p. Assume that F possesses a positive continuous density f in some
neighborhood Dp of Q p such that

0 < sup{ f (x); x ∈ Dp} < ∞. (8)

Then for any δ > 0

P

(
sup
x∈In

|Fn(x) − F(x) − (Fn(Qp) − p)| = O(n− 1
2+δ), n → ∞

)
= 1,

where In = [
Qp − c0n− 1

4+δ, Qp + c0n− 1
4+δ

]
for some c0 > 0.
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Proof Let {an, n ≥ 1} and {bn, n ≥ 1} be two sequences defined as follows

an = c0n
− 1

4+δ for some c0 > 0, bn = �n 1
4 � + 1

and

Gn(x) = Fn(x) − Fn(Qp) − F(x) + p.

For each n ∈ N and any integer j we define

η j,n = Qp + janb
−1
n , α j,n = F(η j+1,n) − F(η j,n) and J j,n = [η j,n, η j+1,n].

Since Fn and F are nondecreasing we get for x ∈ J j,n

Gn(x) ≤ Fn(η j+1,n) − Fn(Qp) − F(η j,n) + p ≤ Gn(η j+1,n) + α j,n

and

Gn(x) ≥ Fn(η j,n) − Fn(Qp) − F(η j+1,n) + p ≥ Gn(η j,n) − α j,n .

Hence

sup
x∈In

|Fn(x) − F(x) − (Fn(Qp) − p)| ≤ max−bn≤ j≤bn
{|Gn(η j,n)|} + max−bn≤ j≤bn−1

{α j,n}.

It is easy to see that by The Mean Value Theorem and (8) we have

α j,n = F(η j+1,n) − F(η j,n) ≤ C(η j+1,n − η j,n) = Canb
−1
n ≤ Cn− 1

2+δ.

Therefore we obtain

∞∑
n=1

P

(
sup
x∈In

|Fn(x) − F(x) − (Fn(Qp) − p)| ≥ c0n
− 1

2+δ

)

≤ C
∞∑
n=1

P

(
max−bn≤ j≤bn

|Gn(η j,n)| ≥ c0
2
n− 1

2+δ

)
.

Moreover, we note that

Gn(η j,n) = Fn(η j,n) − Fn(Qp) − F(η j,n) + p = 1

n

n∑
i=1

(
Y
Qp
i − Y ( j,n)

i

)

where Y
Qp
i = E(I [Xi ≤ Qp]) − I [Xi ≤ Qp] and Y ( j,n)

i = E(I [Xi ≤ η j,n]) −
I [Xi ≤ η j,n], −bn ≤ j ≤ bn are respectively N A or ρ∗-mixing random variables.
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It follows from theMarkov’s inequality and Eq. (2) (for NA and ρ∗-mixing random

variables) that for r > max

{
2,

5

4δ

}
where δ > 0 we have

∞∑
n=1

P

(
sup
x∈In

|Fn(x) − F(x) − (Fn(Qp) − p)| ≥ c0n
− 1

2+δ

)

≤ C
∞∑
n=1

bn∑
j=−bn

P

(
|Gn(η j,n)| ≥ c0

2
n− 1

2+δ

)

= C
∞∑
n=1

bn∑
j=−bn

P

(
|

n∑
i=1

(
Y
Qp
i − Y ( j,n)

i

)
| ≥ c0

2
n

1
2+δ

)

≤ C
∞∑
n=1

bn∑
j=−bn

P

(
|

n∑
i=1

Y
Qp
i | + |

n∑
i=1

Y ( j,n)
i | ≥ c0

2
n

1
2+δ

)

≤ C
∞∑
n=1

bn∑
j=−bn

(
P

(
|

n∑
i=1

Y
Qp
i | ≥ c0

4
n

1
2+δ

)
+ P

(
|

n∑
i=1

Y ( j,n)
i | ≥ c0

4
n

1
2+δ

))

≤ C
∞∑
n=1

bn∑
j=−bn

[ E

(
| ∑n

i=1 Y
Qp
i |

)r

(n
1
2+δ)r

+
E

(
| ∑n

i=1 Y
( j,n)
i |

)r

(n
1
2+δ)r

]

≤ C
∞∑
n=1

2bnn
−δr ≤ C

∞∑
n=1

n
1
4−δr < ∞.

By the Borel-Cantelli lemma we get thesis. ��

Theorem 4 Let {Xn, n ≥ 1} be a sequence of random variables with one of the fol-
lowing dependency structures:

1. ϕ-mixing dependence with coefficients satifying
∞∑
n=1

ϕ(2n) < ∞,

2. ρ-mixing dependence with coefficients satifying
∞∑
n=1

ρ
2
q (2n) < ∞, for q >

max

{
2, 5

2δ

}
for δ > 0.

Let {Xn, n ≥ 1} be indentically distributed with a common distribution function F
and quantile Q p. Assume that F possesses a positive continuous density f in some
neighborhood Dp of Q p such that

0 < sup{ f (x); x ∈ Dp} < ∞. (9)
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Then for any δ > 0

P

(
sup
x∈In

|Fn(x) − F(x) − (Fn(Qp) − p)| = O(n− 3
4+δ), n → ∞

)
= 1,

where In = [
Qp − c0n− 1

2+δ, Qp + c0n− 1
2+δ

]
for some c0 > 0

Proof The proof of Theorem 4 is very similar to the proof of Theorem 3. Analogously,
let {an, n ≥ 1} and {bn, n ≥ 1} be two sequences defined as follows

an = c0n
− 1

2+δ for some c0 > 0, bn = �n 1
4 � + 1

and

Gn(x) = Fn(x) − Fn(Qp) − F(x) + p.

Let η j,n , α j,n and J j,n be defined as in Theorem 3.
As it was shown in Theorem 3, it is easy to see that

α j,n = F(η j+1,n) − F(η j,n) ≤ C(η j+1,n − η j,n) = Canb
−1
n ≤ Cn− 3

4+δ.

Therefore we get

∞∑
n=1

P

(
sup
x∈In

|Fn(x) − F(x) − (Fn(Qp) − p)| ≥ c0n
− 3

4+δ

)

≤ C
∞∑
n=1

P

(
max−bn≤ j≤bn

|Gn(η j,n)| ≥ c0
2
n− 3

4+δ

)
.

Next, we have

Gn(η j,n) = Fn(η j,n) − Fn(Qp) − F(η j,n) + p = 1

n

n∑
i=1

(
Y ( j,n)
i − EY ( j,n)

i

)
,

where Y ( j,n)
i = I [Qp < Xi ≤ η j,n], −bn ≤ j ≤ bn are respectively ϕ or ρ-mixing

random variables.
Moreover, it is easy to obtain by The Mean Value Theorem that for r ≥ 2

E |Y ( j,n)
i |r ≤ C janb

−1
n .

It follows from theMarkov’s inequality andEq. (2) (forϕ-mixing randomvariables)

or Lemma 1 (for ρ-mixing random variables) that for r > max

{
2,

5

2δ

}
where δ > 0
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we have

∞∑
n=1

P

(
sup
x∈In

|Fn(x) − F(x) − (Fn(Qp) − p)| ≥ c0n
− 3

4+δ

)

≤ C
∞∑
n=1

bn∑
j=−bn

P

(
|Gn(η j,n)| ≥ c0

2
n− 3

4+δ

)

= C
∞∑
n=1

bn∑
j=−bn

P

(
|

n∑
i=1

(
Y ( j,n)
i − EY ( j,n)

i

)
| ≥ c0

2
n

1
4+δ

)

≤ C
∞∑
n=1

bn∑
j=−bn

n−( 14+δ)r E |
n∑

i=1

(
Y ( j,n)
i − EY ( j,n)

i

)
|r

≤ C
∞∑
n=1

bn∑
j=−bn

n−( 14+δ)r
[(

nE(Y ( j,n)
1 )2

) r
2 + nE |Y ( j,n)

1 |r
]

≤ C
∞∑
n=1

bn∑
j=−bn

n−( 14+δ)r
(
njanb

−1
n

) r
2 ≤ C

∞∑
n=1

n− δr
2 + 1

4 < ∞,

By the Borel-Cantelli lemma we get thesis. ��

Theorem 5 Suppose that assumptions of Theorem 2 hold. Then for any 0 < δ <
1

2
we have,

P

(
E1 = Qp − Fn(Qp) − p

f (Qp)
+ O(n− 1

2+δ), as n → ∞
)

= 1 (10)

for NA and ρ∗-mixing random variables.

Proof One can note that

Fn(E1) ≤ n−1(�np + 0.5� + 1) = p + O(n−1).

By Taylor’s expansion we obtain for 0 < θ < 1

F(E1) = p + f (Qp)(E1 − Qp) + 1

2
f ′(Qp + θ(E1 − Qp))(E1 − Qp)

2.

From Eq. (3) and Theorem 2 for 0 < δ <
1

2
it follows that

|Fn(E1) − F(E1) + f (Qp)(E1 − Qp)|
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≤ 1

2
| f ′(Qp + θ(E1 − Qp))|(E1 − Qp)

2 + O(n−1) = o(n−1+2δ). (11)

By Eq. (11) and Theorem 3 for 0 < δ <
1

2
we get that with probability 1,

| f (Qp)(E1 − Qp) + Fn(Qp) − p|
≤ |Fn(E1) − F(E1) + f (Qp)(E1 − Qp)| + |Fn(E1) − F(E1) − (Fn(Qp) − p)|
≤ o(n−1+2δ) + sup

x∈In

|Fn(x) − F(x) − (Fn(Qp) − p)| = O(n− 1
2+δ),

which gives that f (Qp)(E1 − Qp) + Fn(Qp) − p = O(n− 1
2+δ), when n → ∞.

Hence, we get Eq. (10). ��

Theorem 6 Suppose that assumptions of Theorem 2 hold. Then for any 0 < δ <
1

4
we get

P

(
E1 = Qp − Fn(Qp) − p

f (Qp)
+ O(n− 3

4+δ), as n → ∞
)

= 1 (12)

for ϕ and ρ-mixing random variables.

Proof Analogously as in the proof of Theorem 5, using Eq. (11) and Theorem 4 for

0 < δ <
1

4
we get that with probability 1,

| f (Qp)(E1 − Qp) + Fn(Qp) − p| = O(n− 3
4+δ).

Hence, we get Eq. (12). ��

Remark 6 The calculations for the estimators E2, E4, E5, E6, E7 and E8 proceed anal-
ogously through the condition that Fn(Ei ) = p + O(n−1), where i = 2, 4, 5, 6, 7, 8.
Assuming that Fn(E3) ≤ p, one can obtain analogous results for the estimator E3.
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