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Abstract
The traditional frequentist approach to hypothesis testing has recently come under
extensive debate, raising several critical concerns. Additionally, practical applications
often blend the decision-theoretical framework pioneered by Neyman and Pearson
with the inductive inferential process relied on the p-value, as advocated by Fisher.
The combination of the two methods has led to interpreting the p-value as both an
observed error rate and a measure of empirical evidence for the hypothesis. Unfortu-
nately, both interpretations pose difficulties. In this context, we propose that resorting
to confidence distributions can offer a valuable solution to address many of these
critical issues. Rather than suggesting an automatic procedure, we present a natural
approach to tackle the problem within a broader inferential context. Through the use
of confidence distributions, we show the possibility of defining two statistical mea-
sures of evidence that align with different types of hypotheses under examination.
These measures, unlike the p-value, exhibit coherence, simplicity of interpretation,
and ease of computation, as exemplified by various illustrative examples spanning
diverse fields. Furthermore, we provide theoretical results that establish connections
between our proposal, other measures of evidence given in the literature, and standard
testing concepts such as size, optimality, and the p-value.
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E. Melilli, P. Veronese

1 Introduction

In applied research, the standard frequentist approach to hypothesis testing is com-
monly regarded as a straightforward, coherent, and automatic method for assessing
the validity of a conjecture represented by one of two hypotheses, denoted asH0 and
H1. The probabilities α and β of committing type I and type II errors (reject H0,
when it is true and accept H0 when it is false, respectively) are controlled through a
carefully designed experiment. After having fixed α (usually at 0.05), the p-value is
used to quantify the measure of evidence against the null hypothesis. If the p-value
is less than α, the conclusion is deemed significant, suggesting that it is unlikely
that the null hypothesis holds. Regrettably, this methodology is not as secure as it
may seem, as evidenced by a large literature, see the ASA’s Statement on p-values
(Wasserstein and Lazar 2016) and The American Statistician (2019, vol. 73, sup1) for
a discussion of various principles, misconceptions, and recommendations regarding
the utilization of p-values. The standard frequentist approach is, in fact, a blend of
two different views on hypothesis testing presented by Neyman-Pearson and Fisher.
The first authors approach hypothesis testing within a decision-theoretic framework,
viewing it as a behavioral theory. In contrast, Fisher’s perspective considers testing
as a component of an inductive inferential process that does not necessarily require
an alternative hypothesis or concepts from decision theory such as loss, risk or admis-
sibility, see Hubbard and Bayarri (2003). As emphasized by Goodman (1993) “the
combination of the two methods has led to a reinterpretation of the p-value simul-
taneously as an ‘observed error rate’ and as a ‘measure of evidence’. Both of these
interpretations are problematic...”.

It is out of our scope to review the extensive debate on hypothesis testing. Here, we
briefly touch upon a few general points, without delving into the Bayesian approach.

i) The long-standing caution expressed by Berger and Sellke (1987) and Berger
and Delampady (1987) that a p-value of 0.05 provides only weak evidence against the
null hypothesis has been further substantiated by recent investigations into experiment
reproducibility, see e.g., Open Science Collaboration OSC (2015) and Johnson et al.
(2017). In light of this, 72 statisticians have stated “For fields where the threshold for
defining statistical significance for new discoveries is p < 0.05, we propose a change
to p < 0.005”, see Benjamin et al. (2018).

ii) The ongoing debate regarding the selection of a one-sided or two-sided test
leaves the standard practice of doubling the p-value, when moving from the first to
the second type of test, without consistent support, see e.g., Freedman (2008).

iii)There has been a longstanding argument in favor of integratinghypothesis testing
with estimation, see e.g. Yates (1951, pp. 32–33) or more recently, Greenland et al.
(2016) who emphasize that “... statistical tests should never constitute the sole input to
inferences or decisions about associations or effects ... in most scientific settings, the
arbitrary classification of results into significant and non-significant is unnecessary
for and often damaging to valid interpretation of data”.

iv) Finally, the p-value is incoherent when it is regarded as a statistical measure
of the evidence provided by the data in support of a hypothesis H0. As shown by
Schervish (1996), it is possible that the p-value for testing the hypothesisH0 is greater
than that for testingH0

′ ⊃ H0 for the same observed data.
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Confidence distributions and hypothesis testing

While theoretical insights into hypothesis testing are valuable for elucidating var-
ious aspects, we believe they cannot be compelled to serve as a unique, definitive
practical guide for real-world applications. For example, uniformly most powerful
(UMP) tests for discrete models not only rarely exist, but nobody uses them because
they are randomized. On the other hand, how can a test of size 0.05 be considered
really different from one of size 0.047 or 0.053? Moreover, for one-sided hypotheses,
why should the first type error always be much more severe than the second type one?
Alternatively, why should the test for H0 : θ ≤ θ0 versus H1 : θ > θ0 always be
considered equivalent to the test for H0 : θ = θ0 versus H1 : θ > θ0? Furthermore,
the decision to test H0 : θ = θ0 rather than H0 : θ ∈ [θ0 − ε, θ0 + ε], for a suitable
positive ε, should be driven by the specific requirements of the application and not
solely by the existence of a good or simple test. In summary, we concur with Fisher
(1973) that “no scientific worker has a fixed level of significance at which from year
to year, and in all circumstances, he rejects hypotheses; he rather gives his mind to
each particular case in the light of his evidence and his ideas”.

Considering all these crucial aspects, we believe it is essential to seek an applied
hypothesis testing approach that encourages researchers to engage more deeply with
the specific problem, avoids relying on standardized procedures, and is consistently
integrated into a broader framework of inference. One potential solution can be found
resorting to the “confidence distribution” (CD) approach. The modern CD theory
was introduced by Schweder and Hjort (2002) and Singh et al. (2005) and relies on
the idea of constructing a data-depending distribution for the parameter of interest
to be used for inferential purposes. A CD should not be confused with a Bayesian
posterior distribution. It is not derived through the Bayes theorem, and it does not
require any prior distributions. Similar to the conventional practice in point or interval
estimation, where one seeks a point or interval estimator, the objective of this theory
is to discover a distribution estimator. Thanks to a clarification of this concept and a
formalized definition of the CD within a purely frequentist setting, a wide literature
on the topic has been developed encompassing both theoretical developments and
practical applications, see e.g. for a general overview Schweder and Hjort (2016),
Singh et al. (2007), and Xie and Singh (2013). We also remark that when inference
is required for a real parameter, it is possible to establish a relationship between CDs
and fiducial distributions, originally introduced by Fisher (1930). For a modern and
general presentation of the fiducial inference see Hannig (2009) and Hannig et al.
(2016), while for a connection with the CDs see Schweder and Hjort (2016) and
Veronese and Melilli (2015, 2018a). Some results about the connection between CDs
and hypothesis testing are presented in Singh et al. (2007, Sec. 3.3) and Xie & Singh
(2013, Sec. 4.3), but the focus is only on the formal relationships between the support
that a CD can provide for a hypothesis and the p-value.

In this paper we discuss in details the application of CDs in hypothesis testing. We
show how CDs can offer valuable solutions to address the aforementioned difficulties
and how a test can naturally be viewed as a part of a more extensive inferential process.
Once a CD has been specified, everything can be developed straightforwardly, without
any particular technical difficulties. The core of our approach centers on the notion of
support provided by the data to a hypothesis through a CD. We introduce two distinct
but related types of support, the choice of which depends on the hypothesis under
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consideration. They are always coherent, easy to interpret and to compute, even in
case of interval hypotheses, contrary to what happens for the p-value. The flexibility,
simplicity, and effectiveness of our proposal are illustrated by several examples from
various fields and a simulation study. We have postponed the presentation of theoret-
ical results, comparisons with other proposals found in the literature, as well as the
connections with standard hypothesis testing concepts such as size, significance level,
optimality, and p-values to the end of the paper to enhance its readability.

The paper is structured as follows: In Sect. 2, we provide a review of the CD’s
definition and the primary methods for its construction, with a particular focus on
distinctive aspects that arise when dealing with discrete models (Sect. 2.1). Section
3 explores the application of the CD in hypothesis testing and introduces the two
notions of support. In Sect. 4, we discuss several examples to illustrate the benefits of
utilizing the CD in various scenarios, offering comparisons with traditional p-values.
Theoretical results about tests based on the CD and comparisons with other measures
of support or plausibility for hypotheses are presented in Sect. 5. Finally, in Sect. 6, we
summarize the paper’s findings and provide concluding remarks. For convenience, a
table of CDs for some common statistical models can be found in Appendix A, while
all the proofs of the propositions are presented in Appendix B.

2 Confidence distributions

The modern definition of confidence distribution for a real parameter θ of interest,
see Schweder & Hjort (2002; 2016, sec. 3.2) and Singh et al. (2005; 2007) can be
formulated as follows:

Definition 1 Let {Pθ,λ, θ ∈ � ⊆ R,λ ∈ �} be a parametric model for data X ∈ X ;
here θ is the parameter of interest and λ is a nuisance parameter. A function H ofX and
θ is called a confidence distribution for θ if: i) for each value x of X, H(x, ·) = Hx(·)
is a continuous distribution function on �; ii) H(X, θ), seen as a function of the
random elementX, has the uniform distribution on (0, 1), whatever the true parameter
value (θ,λ). The function H is an asymptotic confidence distribution if the continuity
requirement in i) is removed and ii) is replaced by: ii)′ H(X, θ) converges in law to
the uniform distribution on (0, 1) for the sample size going to infinity, whatever the
true parameter value (θ,λ).

The CD theory is placed in a purely frequentist context and the uniformity of the
distribution ensures the correct coverage of the confidence intervals. The CD should
be regarded as a distribution estimator of a parameter θ and its mean, median or
mode can serve as point estimates of θ , see Xie and Singh (2013) for a detailed
discussion. In essence, the CD can be employed in a manner similar to a Bayesian
posterior distribution, but its interpretation differs and does not necessitate any prior
distribution. Closely related to the CD is the confidence curve (CC) which, given an
observation x, is defined as CCx(θ) = |1− 2Hx(θ)|; see Schweder and Hjort (2002).
This function provides the boundary points of equal-tailed confidence intervals for
any level 1−α, with 0 < α < 1, and offers an immediate visualization of their length.
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Various procedures can be adopted to obtain exact or asymptotic CDs starting, for
example, from pivotal functions, likelihood functions and bootstrap distributions, as
detailed in Singh et al. (2007), Xie and Singh (2013), Schweder and Hjort (2016). A
CD (or an asymptotic CD) can also be derived directly from a real statistic T , provided
that its exact or asymptotic distribution function Fθ (t) is a continuously monotonic
function in θ and its limits are 0 and 1 as θ approaches its boundaries. For example,
if Fθ (t) is nonincreasing, we can define

Ht (θ) = 1 − Fθ (t). (1)

Furthermore, if Ht (θ) is differentiable in θ , we can obtain the CD-density ht (θ) =
−(∂/∂θ)Fθ (t), which coincides with the fiducial density suggested by Fisher. In par-
ticular, when the statisticalmodel belongs to the real regular natural exponential family
(NEF) with natural parameter θ and sufficient statistic T , there always exists an “opti-
mal” CD for θ which is given by (1), see Veronese and Melilli (2015).

The CDs based on a real statistic play an important role in hypothesis testing. In
this setting remarkable results are obtained when the model has monotone likelihood
ratio (MLR). We recall that ifX is a random vector distributed according to the family
{pθ , θ ∈ � ⊆ R}, this family is said to have MLR in the real statistic T (X) if, for any
θ1 < θ2, the ratio pθ2(x)/pθ1(x) is a nondecreasing function of T (x) for values of x
that induce at least one of pθ1 and pθ2 to be positive. Furthermore, for such families, it
holds that Fθ2(t) ≤ Fθ1(t) for each t , see Shao (2003, Sec. 6.1.2). Families with MLR
not only allow the construction of Uniformly Most Powerful (UMP) tests in various
scenarios but also identify the statistic T , which can be employed in constructing
the CD for θ . Indeed, because Fθ (t) is nonincreasing in θ for each t , Ht (θ) can be
defined as in (1) provided the conditions of continuity and limits of Fθ (t) are met. Of
course, if the MLR is nonincreasing in T a similar result holds and the CD for θ is
Ht (θ) = Fθ (t).

An interesting characteristic of the CD that validates its suitability for use in a
testing problem is its consistency, meaning that it increasingly concentrates around
the “true” value of θ as the sample size grows, leading to the correct decision.

Definition 2 The sequence of CDs H(Xn, ·) is consistent at some θ0 ∈ � if, for every
neighborhood U of θ0,

∫
U dH(Xn, θ) → 1, as n → ∞, in probability under θ0.

The following proposition provides some useful asymptotic properties of a CD for
independent identically distributed (i.i.d.) random variables.

Proposition 1 Let X1, X2, . . . be a sequence of i.i.d. random variables from a dis-
tribution function Fθ , parameterized by a real parameter θ , and let Hxn be the CD
for θ based on xn = (x1, . . . , xn). If θ0 denotes the true value of θ , then H(Xn, ·) is
consistent at θ0 if one of the following conditions holds:

i) Fθ belongs to a NEF;
ii) Fθ is a continuous distribution function and standard regularity assumptions hold;
iii) its expected value and variance converge for n → ∞ to θ0, and 0, respectively, in

probability under θ0.
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Finally, if i) or ii) holds the CD is asymptotically normal.

Table 8 in Appendix A provides a list of CDs for various standard models. Here, we
present two basic examples, while numerous others will be covered in Sect. 4 within
an inferential and testing framework.

Example 1 (Normal model) Let X = (X1, . . . , Xn) be an i.i.d. sample from a normal
distribution N(μ, σ 2), with σ 2 known. A standard pivotal function is Q(X̄ , μ) =√
n(X̄ − μ)/σ , where X̄ = ∑

Xi/n. Since Q(X̄ , μ) is decreasing in μ and has the
standard normal distribution 	, the CD for μ is Hx̄ (μ) = 1 − 	(

√
n(x̄ − μ)/σ) =

	(
√
n(μ − x̄)/σ ), that is a N(x̄, σ/

√
n). When the variance is unknown we can use

the pivotal function Q(X̄ , μ) = √
n(X̄ − μ)/S, where S2 = ∑

(Xi − X̄)2/(n − 1),
and the CD for μ is Hx̄,s(μ) = 1 − FTn−1(

√
n(x̄ − μ)/σ) = FTn−1(

√
n(μ − x̄)/σ ),

where FTn−1 is the t-distribution function with n − 1 degrees of freedom.

Example 2 (Uniform model) Let X = (X1, . . . , Xn) be an i.i.d. sample from the
uniform distribution on (0, θ), θ > 0. Consider the (sufficient) statistic T =
max(X1, . . . , Xn) whose distribution function is Fθ (t) = (t/θ)n , for 0 < t < θ .
Because Fθ (t) is decreasing in θ and the limit conditions are satisfied for θ > t , the CD
for θ is Ht (θ) = 1−(t/θ)n , i.e. a Pareto distribution Pa(n, t)with parameters n (shape)
and t (scale). Since the uniform distribution is not regular, the consistency of the CD
follows from condition iii) of Proposition 1. This is because EHt (θ) = nt/(n−1) and
Var Ht (θ) = nt2/((n−2)(n−1)2), so that, for n → ∞, EHt (θ) → θ0 (from the strong
consistency of the estimator T of θ , see e.g. Shao 2003, p.134) and Var Ht (θ) → 0
trivially.

2.1 Peculiarities of confidence distributions for discrete models

When the model is discrete, clearly we can only derive asymptotic CDs. However,
a crucial question arises regarding uniqueness. Since Fθ (t) = Prθ {T ≤ t} does not
coincide with Prθ {T < t} for any value t within the support T of T , it is possible to
define two distinct “extreme” CDs. If Fθ (t) is non increasing in θ , we refer to the right
CD as Hr

t (θ) = 1− Prθ {T ≤ t} and to the left CD as H 

t (θ) = 1− Prθ {T < t}. Note

that Hr
t (θ) < H 


t (θ), for every t ∈ T and θ ∈ �, so that the center (i.e. themean or the
median) of Hr

t (θ) is greater than that of H 

t (θ). If Fθ (t) is increasing in θ , we define

H 

t (θ) = Fθ (t) and Hr

t (θ) = Prθ {T < t} and one again Hr
t (θ) < H 


t (θ). Veronese &
Melilli (2018b, sec. 3.2) suggest overcoming this nonuniqueness by averaging the CD-

densities hrt and h

t using the geometric mean hgt (θ) ∝

√
hrt (θ)h


t (θ). This typically
results in a simpler CD compared to the one obtained through the arithmetic mean,
with smaller confidence intervals. Note that the (asymptotic) CD defined in (1) for
discrete models corresponds to the right CD, and it is more appropriately referred to
as Hr

t (θ) hereafter. Clearly, H 

t (θ) can be obtained from Hr

t (θ) by replacing t with
its preceding value in the support T . For discrete models, the table in Appendix A
reports Hr

t (θ), H 

t (θ) and Hg

t (θ). Compared to H 

t and Hr

t , H
g
t offers the advantage

of closely approximating a uniform distribution when viewed as a function of the
random variable T .
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Fig. 1 (Binomial model) CD-densities (left plot) and CCs (right plot) corresponding to Hg
t (p) (solid lines),

H

t (p) (dashed lines) and Hr

t (p) (dotted lines) for the parameter p with n = 15 and t = 5. In the CC plot,
the horizontal dotted line is at level 0.95

Proposition 2 Given a discrete statistic T with distribution indexed by a real param-
eter θ ∈ � and support T independent of θ , assume that, for each θ ∈ � and t ∈ T ,
Hr
t (θ) < Hg

t (θ) < H 

t (θ). Then, denoting by G j the distribution function of H j

T ,
with j = 
, g, r , we have G
(u) ≤ u ≤ Gr (u). Furthermore,

∫ 1

0
|Gg(u) − u| du <

∫ 1

0
|G
(u) − u| du =

∫ 1

0
|Gr (u) − u| du. (2)

Notice that the assumption in Proposition 2 is always satisfiedwhen themodel belongs
to a NEF, see Veronese and Melilli (2018a).

The possibility of constructing different CDs using the same discrete statistic T
plays an important role in connection with standard p-values, as we will see in Sect.
5.

Example 3 (Binomial model) Let X = (X1, . . . , Xn) be an i.i.d. sample from a
binomial distributions Bi(1, p) with success probability p. Then T = ∑n

i=1 Xi is
distributed as a Bi(n, p) and by (1), recalling the well-known relationship between the
binomial and beta distributions, it follows that the right CD for p is a Be(t + 1, n − t)
for t = 0, 1, . . . , n − 1. Furthermore, the left CD is a Be(t, n − t + 1) and it easily
follows that Hg

t (p) is a Be(t + 1/2, n − t + 1/2). Figure 1 shows the corresponding
three CD-densities along with their respective CCs, emphasizing the central position
of hgt (p) and its confidence intervals in comparison to h


t (p) and hrt (p).

3 Confidence distributions in testing problems

As mentioned in Sect. 1, we believe that introducing a CD can serve as a valuable and
unifying approach, compelling individuals to think more deeply about the specific
problem they aim to address rather than resorting to automatic rules. In fact, the
availability of a whole distribution for the parameter of interest equips statisticians
and practitioners with a versatile tool for handling a wide range of inference tasks,
such as point and interval estimation, hypothesis testing, and more, without the need
for ad hoc procedures. Here, wewill address the issue in the simplest manner, referring
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to Sect. 5 for connections with related ideas in the literature and additional technical
details.

Given a set A ⊆ � ⊆ R, it seems natural to measure the “support” that the data
x provide to A through the CD Hx, as CD(A) = Hx(A) = ∫

A dHx(θ). Notice that,
with a slight abuse of notation widely used in literature (see e.g., Singh et al. 2007,
who call Hx(A) strong-support), we use Hx(θ) to indicate the distribution function on
� ⊆ R evaluated at θ and Hx(A) to denote themass that Hx induces on a (measurable)
subset A ⊆ �. It immediately follows that to compare the plausibility of k different
hypotheses Hi : θ ∈ �i , i = 1, . . . , k, with �i ⊆ � not being a singleton, it is
enough to compute each Hx(�i ). We will call Hx(�i ) the CD-support provided by
Hx to the set�i . In particular, consider the usual case inwhichwe have two hypotheses
H0 : θ ∈ �0 andH1 : θ ∈ �1, with �0 ∩�1 = ∅, �0 ∪�1 = � and assume thatH0
is not a precise hypothesis (i.e. is not of type θ = θ0). As in the Bayesian approach
one can compute the posterior odds, here we can evaluate the confidence odds CO0,1
of H0 against H1

CO0,1 = Hx(�0)

Hx(�1)
= Hx(�0)

1 − Hx(�0)
.

IfCO0,1 is greater than one, the data supportH0 more thanH1 and this support clearly
increases with CO0,1. Sometimes this type of information can be sufficient to have
an idea of the reasonableness of the hypotheses, but if we need to take a decision, we
can include the confidence odds in a full decision setting. Thus, writing the decision
space as D = {0, 1}, where i indicates accepting Hi , for i = 0, 1, a penalization for
the two possible errors must be specified. A simple loss function is


(θ, δ) =
⎧
⎨

⎩

a0 if θ ∈ �0 and δ = 1
a1 if θ ∈ �1 and δ = 0
0 otherwise,

(3)

where δ denotes the decision taken and ai > 0, i = 0, 1. The optimal decision is the
one that minimizes the (expected) confidence loss

L(δ, Hx ) =
∫

�


(θ ′, δ)dHx (θ
′) = a0Hx (�0)I{1}(δ) + a1Hx (�1)I{0}(δ).

Therefore, we will choose H0 if a0Hx(�0) > a1Hx(�1), that is if CO0,1 > a1/a0
or equivalently if Hx(�0) > a1/(a0 + a1) = γ . Clearly, if there is no reason to
penalize differently the two errors by setting an appropriate value for the ratio a1/a0,
we assume a0 = a1 so that γ = 0.5. This implies that the chosen hypothesis will be the
one receiving the highest level of the CD-support. Therefore, we state the following

Definition 3 Given the two (non precise) hypotheses Hi : θ ∈ �i , i = 0, 1, the CD-
support of Hi is defined as Hx(�i ). The hypothesis H0 is rejected according to the
CD-test if theCD-support is less than afixed thresholdγ depending on the loss function
(3) or, equivalently, if the confidence odds CO0,1 are less than a1/a0 = γ /(1 − γ ).
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Fig. 2 The CD*-supports of the
points θ0, θ1, θm and θ2
correspond to half of the solid
vertical lines and are given by
Hx(θ0), Hx(θ1), Hx(θm ) = 1/2
e 1 − Hx(θ2), respectively

Unfortunately, the previous notion of CD-support fails for a precise hypothesis
H0 : θ = θ0, since in this case Hx({θ0}) trivially equals zero. Notice that the problem
cannot be solved by transforming H0 : θ = θ0 into the seemingly more reasonable
H0

′ : θ ∈ [θ0 − ε, θ0 + ε] because, apart from the arbitrariness of ε, the CD-support
for very narrow range intervals would typically remain negligible. We thus introduce
an alternative way to assess the plausibility of a precise hypothesis or, more generally,
of a “small” interval hypothesis.

Consider first H0 : θ = θ0 and assume, as usual, that Hx(θ) is a CD for θ , based
on the data x. Looking at the confidence curve CCx(θ) = |1− 2Hx(θ)| in Fig. 2, it is
reasonable to assume that the closer θ0 is to the median θm of the CD, the greater the
consistency of the value of θ0 with respect to x. Conversely, the complement to 1 of the
CC represents the unconsidered confidence relating to both tails of the distribution.
We can thus define a measure of plausibility for H0 : θ = θ0 as (1 − CCx(θ))/2 and
this measure will be referred to as the CD*-support given by x to the hypothesis. It is
immediate to see that

CD*({θ0}) = 1

2
(1 − CCx(θ0))

=
{ 1

2 (1 − (1 − 2Hx(θ0))) = Hx(θ0) if Hx(θ0) ≤ 1
2

1
2 (1 − (2Hx(θ0) − 1)) = 1 − Hx(θ0) if Hx(θ0) > 1

2

= min{Hx(θ0), 1 − Hx(θ0)}. (4)

In other words, if θ0 < θm [θ0 > θm] the CD*-support is Hx(θ0) [1 − Hx(θ0)] and
corresponds to the CD-support of all θ ’s that are less plausible than θ0 among those
located on the left [right] side of the CC . Clearly, if θ0 = θm the CD*-support equals
1/2, itsmaximumvalue. Notice that in this case no alternative hypothesis is considered
and that the CD*-support provides a measure of plausibility for θ0 by examining “the
direction of the observed departure from the null hypothesis”. This quotation is derived
fromGibbons and Pratt (1975) andwas originally stated to support their preference for
reporting a one-tailed p-value over a two-tailed one. Here we are in a similar context
and we refer to their paper for a detailed discussion of this recommendation.

An alternative way to intuitively justify formula (4) is as follows. Since Hx({θ0}) =
0, we can look at the set K of values of θ which are in some sense “more consistent”
with the observed data x than θ0, and define the plausibility of H0 as 1 − Hx(K ).
This procedure was followed in a Bayesian framework by Pereira et al. (1999) and
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Pereira et al. (2008) who, in order to identify K , relay on the posterior distribution of
θ and focus on its mode. We refer to these papers for a more detailed discussion of
this idea. Here we emphasize only that the evidence 1− Hx(K ) supportingH0 cannot
be considered as evidence against a possible alternative hypothesis. In our context,
the set K can be identified as the set {θ ∈ � : θ < θ0} if Hx(θ0) > 1 − Hx(θ0)

or as {θ ∈ � : θ > θ0} if Hx(θ0) ≤ 1 − Hx(θ0). It follows immediately that
1− Hx(K ) = min{Hx(θ0), 1− Hx(θ0)}, which coincides with the CD*-support given
in (4).

We can readily extend the previous definition of CD*-support to interval hypotheses
H0 : θ ∈ [θ1, θ2]. This extension becomes particularly pertinent when dealing with
small intervals, where the CD-support may prove ineffective. In such cases, the set
K of θ values that are “more consistent” with the data x than those falling within the
interval [θ1, θ2] should clearly exclude this interval. Instead, it should include one of
the two tails, namely, either θ ∈ � : θ < θ1 or θ ∈ � : θ > θ2, depending on which
one receives a greater mass from the CD. Then

K =
{ {θ ∈ � : θ < θ1} if Hx(θ1) > 1 − Hx(θ2)

{θ ∈ � : θ > θ2} if Hx(θ1) ≤ 1 − Hx(θ2)

so that the CD*-support of the interval [θ1, θ2] is CD*([θ1, θ2]) = 1 − Hx(K ) =
min{Hx(θ2), 1 − Hx(θ1)}, which reduces to (4) in the case of a degenerate interval
(i.e., when θ1 = θ2 = θ0). Therefore, we can establish the following

Definition 4 Given the hypothesis H0 : θ ∈ [θ1, θ2], with θ1 ≤ θ2, the CD*-support
of H0 is defined as min{Hx(θ2), 1 − Hx(θ1)}. If Hx(θ2) < 1 − Hx(θ1) it is more
reasonable to consider values of θ greater than those specified byH0, and conversely,
the opposite holds true in the reverse situation. Furthermore, the hypothesis H0 is
rejected according to the CD*-test if its CD*-support is less than a fixed threshold γ ∗.

The definition of CD*-support has been established for bounded interval (or pre-
cise) hypothesis. However, it can be readily extended to one-sided intervals such
as (−∞, θ0] or [θ0,+∞), but in these cases, it is evident that the CD*- and
the CD-support are equivalent. For a general interval hypothesis we observe that
Hx([θ1, θ2]) ≤ min{Hx(θ2), 1 − Hx(θ1)}. Consequently, the CD-support can never
exceed the CD*-support, even though they exhibit significant similarity when θ1 or
θ2 resides in the extreme region of one tail of the CD or when the CD is highly
concentrated (see examples 4, 6 and 7).

Remark 1 It is crucial to emphasize that both CD-support and CD*-support are coher-
ent measures of the evidence provided by the data for a hypothesis. This coherence
arises from the fact that if H0 ⊂ H0

′, both the supports for H0
′ cannot be less than

those for H0. This is in stark contrast to the behavior of p-values, as demonstrated in
Schervish (1996), Peskun (2020), and illustrated in Examples 4 and 7.

Finally, as seen in Sect. 2.1, various options for CDs are available for discrete
models. Unless a specific problem suggests otherwise (see Sect. 5.1), we recommend
using the geometric mean Hg

t as it offers a more impartial treatment ofH0 and eH1,
as shown in Proposition 2.
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Fig. 3 (Normal model) CD-densities (left plot) and CCs (right plot) for μ with x̄ = 2.7 and three values
of σ/

√
n: 1/

√
50 (solid line), 1/

√
25 (dashed line) and 1/

√
10 (dotted line). In the CC plot the dotted

horizontal line is at level 0.95

4 Examples

In this section, we illustrate the behavior, effectiveness, and simplicity of CD- and
CD*-supports in an inferential context through several examples. We examine various
contexts to assess the flexibility and consistency of our approach and compare it with
the standard one. It is worth noting that the computation of the p-value for interval
hypotheses is challenging and does not have a closed form.

Example 4 (Normal model) As seen in Example 1, the CD for the mean μ of a normal
model is N(x̄, σ/

√
n), for σ known. For simplicity, we assume this case; otherwise, the

CD would be a t-distribution. Figure 3 shows the CD-density and the corresponding
CC for x̄ = 2.7 with three different values of σ/

√
n: 1/

√
50 = 0.141, 1/

√
25 = 0.2

and 1/
√
10 = 0.316.

The observed x̄ specifies the center of both the CD and the CC, and values of μ

that are far from it receive less support the smaller the dispersion σ/
√
n of the CD.

Alternatively, values ofμwithin theCC, i.e.,within the confidence interval of a specific
level, are more reasonable than values outside it. These values become more plausible
as the level of the interval decreases. Table 1 clarifies these points by providing the
CD-support, confidence odds, CD*-support, and the p-value of the UMPU test for
different interval hypotheses and different values of σ/

√
n.

It can be observed that when the interval is sufficiently large, e.g., [2.0, 2.5], the
CD- and the CD*-supports are similar. However, for smaller intervals, as in the other
three cases, the difference between the CD- and the CD*-support increases with the
variance of the CD, σ/

√
n, regardless of whether the interval contains the observation

x̄ or not. These aspects are general depending on the form of the CD. Therefore, a
comparison between these two measures can be useful to clarify whether an interval is
smaller or not, according to the problem under analysis. Regarding the p-value of the
UMPU test (see Schervish 1996, equation 2), it is similar to the CD*-support when
the interval is large (first case). However, the difference increases with the growth of
the variance in the other cases. Furthermore, enlarging the interval from [2.4, 2.6] to
[2.3, 2.6], not reported in Table 1, while the CD*-supports remain unchanged, results
in p-values reducing to 0.241, 0.331, and 0.479 for the three considered variances. This
once again highlights the incoherence of the p-value as a measure of the plausibility
of a hypothesis.
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Table 1 (Normal model) CD-support, confidence odds CO0,1, CD*-support and p-value of the UMPU test
for different hypotheses, when x̄ = 2.7 under different values of σ/

√
n

H0 σ/
√
n CD-support CO0,1 CD*-support p-value

[2.0, 2.5] 0.141 0.079 0.086 0.079 0.078

0.200 0.158 0.188 0.159 0.159

0.316 0.250 0.333 0.263 0.277

[2.4, 2.6] 0.141 0.222 0.286 0.239 0.256

0.200 0.242 0.319 0.309 0.375

0.316 0.205 0.257 0.376 0.547

[2.65, 2.85] 0.141 0.495 0.980 0.639 0.782

0.200 0.372 0.593 0.599 0.825

0.316 0.245 0.325 0.563 0.880

[2.75, 2.85] 0.141 0.218 0.278 0.361 0.505

0.200 0.175 0.212 0.402 0.628

0.316 0.120 0.136 0.437 0.755

Now, consider a precise hypothesis, for instance, H0 : μ = 2.35. For the three
values used for σ/

√
n, the CD*-supports are 0.007, 0.040, and 0.134, respectively.

From Fig. 3, it is evident that the point μ = 2.35 lies to the left of the median of the
CD. Consequently, the data suggest values ofμ larger than 2.35. Furthermore, looking
at the CC, it becomes apparent that 2.35 is not encompassed within the confidence
interval of level 0.95 when σ/

√
n = 1/

√
50, contrary to what occurs in the other two

cases. Due to the symmetry of the normal model, the UMPU test coincides with the
equal tailed test, so that the p-value is equal to 2 times the CD*-support (see Remark
4 in Sect. 5.2). Furthermore, the size of the CD*-test is 2γ ∗, where γ ∗ is the threshold
fixed to decide whether to reject the hypothesis or not (see Proposition 5. Thus, if a test
of level 0.05 is desired, it is sufficient to fix γ ∗ = 0.025, and both the CD*-support
and the p-value lead to the same decision, namely, rejecting H0 only for the case
σ/

√
n = 0.141.

To assess the effectiveness of the CD*-support, we conduct a brief simulation study.
For different values of μ, we generate 100000 values of x̄ from a normal distribution
with mean μ and various standard deviation σ/

√
n. We obtain the corresponding

CDs with the CD*-supports and compute also the p-values. In Table 2, we consider
H0 : μ ∈ [2.0, 2.5] and the performance of the CD*-support can be evaluated looking
for example at the proportions of values in the intervals [0, 0.4), [0.4, 0.6) and [0.6, 1].
Values of the CD*-support in the first interval suggest a low plausibility of H0 in the
light of the data, while values in the third one suggest a high plausibility. We highlight
the proportions of incorrect evaluations in boldface. The last column of the table
reports the proportion of errors resulting from the use of the standard procedure based
on the p-value for a threshold of 0.05. Note how the proportion of errors related to the
CD*-support is generally quite low with a maximum value of 0.301, contrary to what
happens for the automatic procedure based on the p-value, which reaches a proportion
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Table 2 (Normal model) Simulation for various values of μ and σ/
√
n, for the hypothesis H0 : μ ∈

[2.0, 2.5]. Proportion of values of the CD*-support in the intervals [0, 0.4), [0.4, 0.6) and [0.6, 1] and
proportion of errors of the p-values for a threshold of 0.05. Error proportion are in boldface

μ σ/
√
n Proportion of Proportion of

CD*-support in p-value errors

[0, 0.4) [0.4,0.6) [0.6, 1]
2.3 0.141 0.057 0.051 0.847 0.000

0.200 0.144 0.189 0.667 0.005

0.316 0.301 0.292 0.407 0.016

2.7 0.141 0.878 0.074 0.075 0.592

0.200 0.772 0.123 0.106 0.741

0.316 0.653 0.180 0.163 0.845

2.9 0.141 0.995 0.004 0.001 0.117

0.200 0.960 0.028 0.012 0.361

0.316 0.843 0.096 0.060 0.651

of error of 0.845. Notice that the maximum error due to the CD*-support is obtained
whenH0 is true, while that due to the p-value is obtained in the opposite, as expected.

We consider now the two hypotheses H0 : μ = 2.35 and H0 : μ ∈ [2.75, 2.85].
Notice that the interval in the second hypothesis should be regarded as small, because
it can be checked that the CD- and CD*-supports consistently differ, as can be seen for
example in Table 1 for the case x̄ = 2.7. Thus, this hypothesis can be considered not
too different from a precise one. Because for a precise hypothesis the CD*-support
cannot be larger than 0.5, to evaluate the performance of the CD*-support we can
consider the three intervals [0, 0.2), [0.2, 0.3) and [0.3, 0.5].

Table 3 reports the results of the simulation including again the proportion of errors
resulting from the use of the p-value with threshold 0.05. For the precise hypothesis
H0 : μ = 2.35, the proportion of values of the CD*-support less than 0.2 when
μ = 2.35 is,whatever the standard deviation, approximately equal to 0.4. This depends
on the fact that for a precise hypothesis, the CD*-support has a uniform distribution
on the interval [0, 0.5], see Proposition 5. This aspect must be taken into careful
considerationwhen setting a threshold for aCD*-test.On the other hand, the proportion
of values of the CD*-support in the interval [0.3, 0.5], which wrongly support H0
when it is false, goes from 0.159 to 0.333 for μ = 2.55 and from 0.010 to 0.193 for
μ = 2.75, which are surely better than those obtained from the standard procedure
based on the p-value. Take now the hypothesis H0 : μ ∈ [2.75, 2.85]. Since it can
be considered not too different from a precise hypothesis, we consider the proportion
of values of the CD*-support in the intervals [0, 0.2), [0.2, 0.3) and [0.3, 1]. Notice
that, for simplicity, we assume 1 as the upper bound of the third interval, even though
for small intervals, the values of the CD*-support can not be much larger than 0.5. In
our simulation it does not exceed 0.635. For the different values of μ considered the
behavior of the CD*-support and p-value is not too different from the previous case
of a precise hypothesis even if the proportion of errors when H0 is true decreases for
both while it increases whenH0 is false.
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Table 3 (Normal model) Simulation for various values of μ and σ/
√
n, for the hypothesesH0 : μ = 2.35

and H0 : μ ∈ [2.75, 2.85]. Proportion of values of the CD*-support in the three specified intervals and
proportion of errors of the p-values for a threshold of 0.05. Error proportions are in boldface

H0 : μ = 2.35

Proportion of Proportion of
μ σ/

√
n CD*-support in p-value errors

[0, 0.2) [0.2,0.3) [0.3, 0.5]
2.35 0.141 0.400 0.199 0.401 0.05

0.200 0.400 0.199 0.401 0.05

0.316 0.399 0.202 0.399 0.05

2.55 0.141 0.730 0.111 0.159 0.703

0.200 0.598 0.150 0.252 0.829

0.316 0.487 0.180 0.333 0.903

2.75 0.141 0.977 0.013 0.010 0.188

0.200 0.879 0.057 0.064 0.484

0.316 0.683 0.124 0.193 0.757

H0 : μ ∈ [2.75, 2.85]
μ σ/

√
n Proportion of Proportion of

CD*-support in p-value errors

[0, 0.2) [0.2, 0.3) [0.3, 1]
2.8 0.141 0.230 0.148 0.622 0.038

0.200 0.272 0.167 0.561 0.043

0.316 0.317 0.179 0.504 0.047

3.0 0.141 0.594 0.122 0.284 0.745

0.200 0.482 0.145 0.373 0.843

0.316 0.409 0.168 0.423 0.908

3.2 0.141 0.949 0.025 0.026 0.226

0.200 0.819 0.073 0.108 0.508

0.316 0.614 0.130 0.256 0.764

Example 5 Binomial model Suppose we are interested in assessing the chances of
candidate A winning the next ballot for a certain administrative position. The latest
election poll based on a sample of size n = 20, yielded t = 9 votes in favor of
A. What can we infer? Clearly, we have a binomial model where the parameter p
denotes the probability of having a vote in favor of A. The standard estimate of p
is p̂ = 9/20 = 0.45, which might suggest that A will lose the ballot. However, the
usual (Wald) confidence interval of level 0.95 based on the normal approximation, i.e.
p̂ ± 1.96

√
p̂(1 − p̂)/n, is (0.232, 0.668). Given its considerable width, this interval

suggests that the previous estimate is unreliable. We could perform a statistical test
with a significance level α, but what is H0, and what value of α should we consider?
If H0 : p ≥ 0.5, implying H1 : p < 0.5, the p-value is 0.327. This suggests not
rejectingH0 for any usual value α. However, if we chooseH0

′ : p ≤ 0.5 the p-value
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Fig. 4 (Binomial model) CD-densities (left plot) and CCs (right plot) corresponding to Hg
t (p), for the

parameter p, with p̂ = t/n = 0.45: n = 20, t = 9 (solid lines) and n = 60, t = 27 (dashed lines). In the
CC plot the horizontal dotted line is at level 0.95

is 0.673, and in this case, we would not reject H0
′. These results provide conflicting

indications. As seen in Example 3, the CD for p, Hg
t (p), is Be(9.5,11.5) and Fig. 4

shows its CD-density along with the corresponding CC, represented by solid lines.
The dotted horizontal line at 0.95 in the CC plot highlights the (non asymptotic) equal-
tailed confidence interval (0.251, 0.662), which is shorter than theWald interval. Note
that our interval can be easily obtained by computing the quantiles of order 0.025 and
0.975 of the beta distribution.

The CD-support provided by the data for the two hypotheses H0 : p ≥ 0.5 and
H1 : p < 0.5 (the choice ofwhat is called H0 being irrelevant), is 1−Hg

t (0.5) = 0.328
and Hg

t (0.5) = 0.672 respectively. Therefore, the confidence odds are CO0,1 =
0.328/0.672 = 0.488, suggesting that the empirical evidence in favor of the victory
of A is half of that of its defeat. Now, consider a sample of size n = 60 with t = 27,
so that again p̂ = 0.45. While a standard analysis leads to the same conclusions (the
p-values forH0 andH0

′ are 0.219 and 0.781, respectively), the use of the CD clarifies
the differences between the two cases. The corresponding CD-density and CC are also
reported in Fig. 4 (dashed lines) and, as expected, they are more concentrated around
p̂. Thus, the accuracy of the estimates of p is greater for the larger n and the length of
the confidence intervals is smaller. Furthermore, for n = 60,CO0,1 = 0.281 reducing
the chance that A wins to about 1 to 4.

As a second application on the binomial model, we follow Johnson and Rossell
(2010) and consider a stylized phase II trial of a new drug designed to improve the
overall response rate from 20% to 40% for a specific population of patients with a
common disease. The hypotheses areH0 : p ≤ 0.2 versusH1 : p > 0.2. It is assumed
that patients are accrued and the trial continues until one of the two events occurs:
(a) data clearly support one of the two hypotheses (indicated by a CD-support greater
than 0.9) or (b) 50 patients have entered the trial. Trials that are not stopped before the
51st patient accrues are assumed to be inconclusive.

Basedon a simulationof 1000 trials, Table 4 reports the proportions of trials that con-
clude in favor of each hypothesis, along with the average number of patients observed
before each trial is stopped, for θ = 0.1 (the central value of H0) and for θ = 0.4.
A comparison with the results reported by Johnson and Rossell (2010) reveals that
our approach is clearly superior with respect to Bayesian inferences performed with
standard priors and comparable to that obtained under their non-local prior carefully
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Table 4 (Binomial model) Proportions of trials ended in favor ofH0 and in favor ofH1, with the average
number of patients enrolled forH0 true (p = 0.1) and forH1 true (p = 0.4)

p Proportion of trials
Stopped forH0

Proportion of trials
Stopped forH1

Average number of
patients enrolled

0.1 0.814 0.131 12.71

0.4 0.046 0.941 6.86

specified. Although there is a slight reduction in the proportion of trials stopped for
H0 (0.814 compared to 0.91), the average number of involved patients is lower (12.7
compared to 17.7), and the power is higher (0.941 against 0.812).

Example 6 (Exponential distribution) Suppose an investigator aims to compare the
performance of a new item, measured in terms of average lifetime, with that of the
one currently in use, which is 0.375. To model the item lifetime, it is common to use
the exponential distribution with rate parameter λ, so that the mean is 1/λ. The typical
testing problem is defined by H0 : λ = 1/0.375 = 2.667 versus H1 : λ �= 2.667. In
many cases, it would be more realistic and interesting to consider hypotheses of the
form H0 : λ ∈ [λ1, λ2] versus H1 : λ /∈ [λ1, λ2], and if H0 is rejected, it becomes
valuable to know whether the new item is better or worse than the old one. Note
that, although an UMPU test exists for this problem, calculating its p-value is not
simple and cannot be expressed in a closed form. Here we consider two different null
hypotheses: H0 : λ ∈ [2, 4] and H0 : λ ∈ [2.63, 2.70], corresponding to a tolerance
in the difference between the mean lifetimes of the new and old items equal to 0.125
and 0.005, respectively. Given a sample of n new items with mean x̄ , it follows from
Table 8 in Appendix A that the CD for λ is Ga(n, t), where t = nx̄ . Assuming n = 10,
we consider two values of t , namely, 1.5 and 4.5. The corresponding CD-densities
are illustrated in Fig. 5 showing how the observed value t significantly influences the
shape of the distribution, altering both its center and its dispersion, in contrast to the
normal model. Specifically, for t = 1.5, the potential estimates of λ, represented by
the mean and median of the CD, are 6.67 and 6.45, respectively. For t = 4.5, these
values change to 2.22 and 2.15.

Table 5 provides the CD- and the CD*-supports corresponding to the two null
hypotheses considered, along with the p-values of the UMPU test. Figure 5 and Table
5 togethermake it evident that, for t = 1.5, the supports of both interval null hypotheses
are very low and leading to their rejection, unless the problem requires a loss function
that strongly penalizes a wrong rejection. Furthermore, it is immediately apparent that
the data suggest higher values of λ, indicating a lower average lifetime of the new
item. Note that the standard criterion “p-value < 0.05” would imply not rejecting
H0 : λ ∈ [2, 4]. For t = 4.5, when H0 : λ ∈ [2, 4], the median 2.15 of the CD
falls within the interval [2, 4]. Consequently, both the CD- and the CD*-supports are
greater than 0.5, leading to the acceptance of H0, as also suggested by the p-value.
WhenH0 : λ ∈ [2.63, 2.70], theCD-support becomesmeaningless, whereas theCD*-
support is not negligible (0.256) and should be carefully evaluated in accordance with
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Fig. 5 (Exponential model)
CD-densities for the rate
parameter λ, with n = 10 and
t = 1.5 (dashed line) and
t = 4.5 (solid line)

Table 5 (Exponentialmodel)CD-support, CD*-support and p-value of theUMPU test for different hypothe-
ses with a sample of size n = 10 and t = 1.5 and t = 4.5

H0 t = nx̄ CD-support CD*-support p-value

[2, 4] 1.5 0.083 0.084 0.086

4.5 0.572 0.587 0.630

[2.63, 2.70] 1.5 0.001 0.009 0.013

4.5 0.028 0.256 0.555

2.67 1.5 0 0.008 0.013

4.5 0 0.242 0.550

the problem under analysis. This contrasts with the indication provided by the p-value
(0.555).

For the point null hypothesis λ = 2.67, the analysis is similar to that for the interval
[2.63, 2.70]. Note that, in this case, in addition to the UMPU test, it is also possible
to consider the simpler and most frequently used equal-tailed test. The corresponding
p-value is 0.016 for t = 1.5 and 0.484 for t = 4.5; these values are exactly two times
the CD*-support, see Remark 4.

Example 7 (Uniform model) As seen in Example 2, the CD for the parameter θ of the
uniform distribution U(0, θ) is a Pareto distribution Pa(n, t), where t is the sample
maximum. Figure 6 shows the CD-density for n = 10 and t = 2.1.

Consider now H0 : θ ∈ [θ1, θ2] versus H1 : θ /∈ [θ1, θ2]. As usual, we can
identify the interval [θ1, θ2] on the plot of the CD-density and immediately recognize
when the CD-test trivially rejects H0 (the interval lies on the left of t , i.e. θ2 < t),
when the value of θ1 is irrelevant and only the CD-support of [t, θ2] determines the
decision (θ1 < t < θ2), or when the whole CD-support of [θ1, θ2] must be considered
(t < θ1 < θ2). These facts are not as intuitive when the p-value is used. Indeed, for
this problem, there exists the UMP test of level α (see Eftekharian and Taheri 2015)
and it is possible to write the p-value as

p − value =

⎧
⎪⎨

⎪⎩

tn

θn1
t < θ1

θn2 −tn

θn2 −θn1
θ1 ≤ t ≤ θ2

0 t > θ2,
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Fig. 6 (Uniform model) CD-density for θ with n = 10 and t = 2.1

Table 6 (Uniform model)
CD-support, CD*-support and
the p-value of the UMP test, for
two different hypotheses and
three different values of t , with
fixed sample size n = 10

H0 t CD-support CD*-support p-value

[1.5, 2.2] 1.60 0.959 0.959 0.980

2.10 0.372 0.372 0.380

2.19 0.045 0.045 0.046

[2.0, 2.2] 1.60 0.066 0.107 0.107

2.10 0.372 0.372 0.605

2.19 0.045 0.045 0.072

(we are not aware of previous mention of it). Table 6 reports the p-value of the UMP
test, as well as the CD and CD*-supports, for the two hypotheses H0 : θ ∈ [1.5, 2.2]
and H0

′ : θ ∈ [2.0, 2.2] for a sample of size n = 10 and various values of t .
It can be observed that, when t belongs to the interval [θ1, θ2], the CD- and CD*-

supports do not depend on θ1, as previously remarked, while the p-value does. This
reinforces the incoherence of the p-value shown by Schervish (1996). For instance,
when t = 2.19, the p-value for H0 is 0.046, while that for H0

′ (included in H0) is
larger, namely 0.072. Thus, assuming α = 0.05, the UMP test leads to the rejection
of H0 but it results in the acceptance of the smaller hypothesisH0

′.

Example 8 (Sharpe ratio) The Sharpe ratio is one of the most widely used measures
of performance of stocks and funds. It is defined as the average excess return relative
to the volatility, i.e. SR = θ = (μR − R f )/σR , where μR and σR are the mean and
standard deviation of a return R and R f is a risk-free rate. Under the typical assumption
of constant risk-free rate, the excess returns X1, X2, . . . , Xn of the fund over a period
of length n are considered, leading to θ = μ/σ , where μ and σ are the mean and
standard deviation of each Xi . If the sample is not too small, the distribution and the
dependence of the Xi ’s are not so crucial, and the inference on θ is similar to that
obtained under the basic assumption of i.i.d. normal random variables, as discussed in
Opdyke (2007). Following this article, we consider the weekly returns of the mutual
fundFidelity Blue Chip Growth from 12/24/03 to 12/20/06 (these data are available for
example on Yahoo! Finance, https://finance.yahoo.com/quote/FBGRX) and assume
that the excess returns are i.i.d. normal with a risk-free rate equal to 0.00052. Two
different samples are analyzed: the first one includes all n1 = 159 observations from
the entire period, while the second one is limited to the n2 = 26 weeks corresponding
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Fig. 7 (Sharpe ratio) CD-densities for θ = μ/σ with n1 = 159, t1 = 0.008 (solid line) and n2=26,
t2 = 0.267 (dashed line)

to the fourth quarter of 2005 and the first quarter of 2006. The sample mean, the
standard deviation, and the corresponding sample Sharpe ratio for the first sample are
x̄1 = 0.00011, s1 = 0.01354, t1 = x̄1/s1 = 0.00842. For the second sample, the
values are x̄2 = 0.00280, s2 = 0.01048, t2 = x̄2/s2 = 0.26744.

We can derive the CD for θ starting from the sampling distribution of the statistic
W = √

nT = √
n X̄/S, which has a noncentral t-distribution with n − 1 degrees of

freedom and noncentrality parameter τ = √
nμ/σ = √

nθ . This family has MLR
(see Lehmann and Romano 2005, p. 224) and the distribution function FW

τ of W is
continuous in τ with limτ→+∞ FW

τ (w) = 0 and limτ→−∞ FW
τ (w) = 1, for each

w in R. Thus, from (1), the CD for τ is H τ
w(τ ) = 1 − FW

τ (w). Recalling that θ =
τ/

√
n, the CD for θ can be obtained using a trivial transformation which leads to

H θ
w(θ) = H τ

w(
√
nθ) = 1− FW√

nθ
(w), where w = √

nt . In Figure 7, the CD-densities
for θ relative to the two samples are plotted: they are symmetric and centered on the
estimate t of θ , and the dispersion is smaller for the one with the larger n.

Now, let us consider the typical hypotheses for the Sharpe ratioH0 : θ ≤ 0 versus
H1 : θ > 0. From Table 7, which reports the CD-supports and the corresponding
odds for the two samples, and from Fig. 7, it appears that the first sample clearly
favors neither hypothesis, while H1 is strongly supported by the second one. Here,
the p-value coincides with the CD-support (see Proposition 3), but choosing the the
usual values 0.05 or 0.01 to decide whether to rejectH0 or not may lead to markedly
different conclusions.

When the assumption of i.i.d. normal returns does not hold, it is possible to show
(Opdyke 2007) that the asymptotic distribution of T is normal with mean and variance
θ and σ 2

T = (1+θ2(γ4−1)/4−θγ3)/n, where γ3 and γ4 are the skewness and kurtosis
of the Xi ’s. Thus, the CD for θ can be derived from the asymptotic distribution of T
and is N(t, σ̂ 2

T ), where σ̂ 2
T is obtained by estimating the population moments using

the sample counterparts. The last column of Table 7 shows that the asymptotic CD-
supports forH0 are not too different from the previous ones.

Example 9 (Ratio of Poisson rates) The comparison of Poisson rates μ1 and μ2 is
important in various contexts, as illustrated for example byLehmann&Romano (2005,
sec. 4.5), who also derive the UMPU test for the ratio φ = μ1/μ2. Given two i.i.d.
samples of sizes n1 and n2 from independent Poisson distributions, we can summarize
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Table 7 (Sharpe ratio) Exact CD-support, confidence odds CO0.1 and asymptotic CD-support for the
hypothesisH0 : θ ≤ 0 versus H1 : θ > 0 for n1=159, t1 = 0.008 and n2=26, t2 = 0.267

n t = x̄/s w = √
nt CD-support CO0,1 Asymptotic CD-support

159 0.008 0.106 0.458 0.844 0.458

26 0.267 1.364 0.092 0.102 0.090

the data with the two sufficient sample sums S1 and S2, where Si ∼ Po(niμi ), i = 1, 2.
Reparameterizing the joint density of (S1, S2)with φ = μ1/μ2 and λ = n1μ1+n2μ2,
it is simple to verify that the conditional distribution of S1 given S1 + S2 = s1 + s2
is Bi(s1 + s2, wφ/(1 + wφ)), with w = n1/n2, while the marginal distribution of
S1+ S2 depends only on λ. Thus, for making inference on φ, it is reasonable to use the
CD for φ obtained from the previous conditional distribution. Referring to the table
in Appendix A, the CD Hg

s1,s2 for wφ/(1 + wφ) is Be(s1 + 1/2, s2 + 1/2), enabling
us to determine the CD-density for φ through the change of variable rule:

hGs1,s2(φ) = 1

B(s1 + 1/2, s2 + 1/2)
ws1+1/2φs1−1/2(1 + wφ)−s1−s2−1, φ > 0. (5)

We compare our results with those derived by the standard conditional test imple-
mented through the function poisson.test in R. We use the “eba1977” data set
available in the package ISwR, (https://CRAN.R-project.org/package=ISwR), which
contains counts of incident lung cancer cases and population size in four neigh-
boring Danish cities by age group. Specifically, we compare the s1 = 11 lung
cancer cases in a population of n1 = 800 people aged 55–59 living in Frederi-
cia with the s2 = 21 cases observed in the other cities, which have a total of
n2 = 3011 residents. For the hypothesis H0 : φ = 1 versus H1 : φ �= 1,
the R-output provides a p-value of 0.080 and a 0.95 confidence interval of (0.858,
4.277). If a significance level α = 0.05 is chosen, H0 is not rejected, leading to
the conclusion that there should be no reason for the inhabitants of Fredericia to
worry.

Looking at the three CD-densities forφ in Fig. 8, it is evident that values ofφ greater
than 1 are more supported than values less than 1. Thus, one should test the hypothesis
H0 : φ ≤ 1 versus H1 : φ > 1. Using (5), it follows that the CD-support of H0 is
Hg
s1,s2(1) = 0.037, and the confidence odds areCO0,1 = 0.037/(1−0.037) = 0.038.

To avoid rejecting H0, a very asymmetric loss function should be deemed suitable.
Finally, we observe that the confidence interval computed in R, is the Clopper-Pearson
one, which has exact coverage but, as generally recognized, is too wide. In our context,
this corresponds to taking the lower bound of the interval using the CC generated by
H 

s1,s2 and the upper bound using that generated by Hr

s1,s2 (see Veronese and Melilli
2015). It includes the interval generated by Hg

s1,s2 , namely (0.931, 4.026), as shown
in the right plot of Fig. 8.
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Fig. 8 (Poisson-rates) CD-densities (left plot) and CCs (right plot) corresponding to Hg
s1,s2 (φ) (solid lines),

H

s1,s2 (φ) (dashed lines) and Hr

s1,s2 (φ) (dotted lines) for the parameter φ. In the CC plot the vertical lines

identify the Clopper-Pearson confidence interval (dashed and dotted lines) and that based on Hg
s1,s2 (φ)

(solid lines). The dotted horizontal line is at level 0.95

5 Properties of CD-support and CD*-support

5.1 One-sided hypotheses

The CD-support of a set is the mass assigned to it by the CD, making it a fundamental
component in all inferential problems based on CDs. Nevertheless, its direct utiliza-
tion in hypothesis testing is rare, with the exception of Xie and Singh (2013). It can
also be viewed as a specific instance of evidential support, a notion introduced by
Bickel (2022) within a broader category of models known as evidential models, which
encompass both posterior distributions and confidence distributions as specific cases.

Let us now consider a classical testing problem. Let X be an i.i.d. sample with a
distribution depending on a real parameter θ and letH0 : θ ≤ θ0 versusH1 : θ > θ0,
where θ0 is a fixed value (the case H0

′ : θ ≥ θ0 versus H1
′ : θ < θ0 is perfectly

specular and will not be analyzed). In order to compare our test with the standard one,
we assume that the model has MLR in T = T (X). Suppose first that the distribution
function Fθ (t) of T is continuous and that the CD for θ is Ht (θ) = 1 − Fθ (t). From
Sect. 3, the CD-support forH0 (which coincides with the CD*-support) is Ht (θ0). In
this case, the UMP test exists, as established by the Karlin-Rubin theorem, and rejects
H0 if t > tα , where tα depends on the chosen significance level α, or alternatively, if
the p-value Prθ0(T ≥ t) is less than α. Since Prθ0(T ≥ t) = 1 − Fθ0(t) = Ht (θ0),
the p-value coincides with the CD-support. Thus, to define a CD-test with size α, it is
enough to fix its rejection region as {t : Ht (θ0) < α}, and both tests lead to the same
conclusion.

When the statistic T is discrete, we have seen that various choices of CDs are
possible. Assuming that Hr

t (θ) < Hg
t (θ) < H 


t (θ), as occurs for models belonging
to a realNEF, it follows immediately that Hr

t provides stronger support forH0 : θ ≤ θ0
than Hg

t does, while H 

t provides stronger support for H′

0 : θ ≥ θ0 than Hg
t does. In

other words, H 

t is more conservative than Hg

t for testingH0 and the same happens to
Hr
t for H0

′. Therefore, selecting the appropriate CD can lead to the standard testing
result. For example, in the case of H0 : θ ≤ θ0 versus H1 : θ > θ0, the p-value is
Prθ0(T ≥ t) = 1−Prθ0(T < t) = H 


t (θ0), and the rejection region of the standard test
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and that of the CD-test based on H 

t coincide if the threshold is the same. However,

as both tests are non-randomized, their size is typically strictly less than the fixed
threshold.

The following proposition summarizes the previous considerations.

Proposition 3 Consider a model indexed by a real parameter θ with MLR in the
statistic T and the one-sided hypotheses H0 : θ ≤ θ0 versus H1 : θ > θ0, or
H0

′ : θ ≥ θ0 versus H1
′ : θ < θ0. If T is continuous, then the CD-support and the

p-value associated with the UMP test are equal. Thus, if a common threshold α is set
for both rejection regions, the two tests have size α. If T is discrete, the CD-support
coincideswith the usual p-value if H 


t [Hr
t ] is chosenwhenH0 : θ ≤ θ0 [H0

′ : θ ≥ θ0].
For a fixed threshold α, the two tests have a size not greater than α.

Remark 2 The CD-tests with threshold α mentioned in the previous proposition have
significance level α and are, therefore, valid, that is supθ∈�0

Prθ (H(T ) ≤ α) ≤ α

(see Martin and Liu 2013). This is no longer true if, for a discrete T , we choose Hg
t .

However, Proposition 2 implies that its average size is closer to α compared to those
of the tests obtained using H 


t [Hr
t ], making Hg

t more appropriate when the problem
does not strongly suggest that the null hypothesis should be considered true “until
proven otherwise”.

5.2 Precise and interval hypotheses

The notion of CD*-support surely demands more attention than that of CD-support.
Recalling that the CD*-support only accounts for one direction of deviation from the
precise or interval hypothesis, we will first briefly explore its connections with similar
notions.

While the CD-support is an additive measure, meaning that for any set A ⊆ � and
its complement Ac, we always have CD(A) + CD(Ac) = 1, the CD*-support is only
a sub-additive measure, that is CD*(A) + CD*(Ac) ≤ 1, as can be easily checked.
This suggests that the CD*-support can be related to a belief function. In essence, a
belief function belx(A)measures the evidence in x that supports A. However, due to its
sub-additivity, it alone cannot provide sufficient information; it must be coupled with
the plausibility function, defined as plx(A) = 1 − belx(Ac). We refer to Martin and
Liu (2013) for a detailed treatment of these notions within the general framework of
Inferential Models, which admits a CD as a very specific case. We only mention here
that they show that when A = {θ0} (i.e. a singleton), belx({θ0}) = 0, but belx({θ0}c)
can be different from 1. In particular, for the normal model N(θ, 1), they found that,
under some assumptions, belx({θ0}c) = |2	(x − θ0) − 1|. Recalling the definition
of the CC and the CD provided in Example 1, it follows that the plausibility of θ0 is
plx({θ0}) = 1 − belx({θ0}c) = 1 − |2	(x − θ0) − 1| = 1 − CCx(θ0), and using (4),
we can conclude that the CD*-support of θ0 corresponds to half their plausibility.

The CD*-support for a precise hypothesis H0 : θ = θ0 is related to the notion of
evidence, as defined in a Bayesian context by Pereira et al. (2008). Evidence is the
posterior probability of the set {θ ∈ � : p(θ |x) < p(θ0|x)}, where p(θ |x) is the
posterior density of θ . In particular, when a unimodal and symmetric CD is used as a
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posterior distribution, it is easy to check that the CD*-support coincides with half of
the evidence.

The CD*-support is also related to the notion of weak-support defined by Singh
et al. (2007) as supθ∈[θ1,θ2] 2min{Hx(θ), 1− Hx(θ)}, but important differences exist.
If data give little support to H0, our definition highlights better whether values of
θ on the right or on the left of H0 are more reasonable. Moreover, if H0 is highly
supported, that is θm ∈ [θ1, θ2], the weak-support is always equal to one, while the
CD*-support assumes values in the interval [0.5, 1], allowing to better discriminate
between different cases. Only if H0 is a precise hypothesis the two definitions agree,
leaving out the multiplicative constant of two.

There exists a strong connection between the CD*-support and the e-value intro-
duced by Peskun (2020). Under certain regularity assumptions, the e-value can be
expressed in terms of a CD and coincides with the CD*-support, so that the prop-
erties and results originally established by Peskun for the e-value also apply to
the CD*-support. More precisely, let us first consider the case of an observation
x generated by the normal model N(μ, 1). Peskun shows that for the hypothesis
H0 : μ ∈ [μ1, μ2], the e-value is equal to min{	(x − μ1),	(μ2 − x)}. Since, as
shown in Example 1, Hx (μ) = 1−	(x−μ) = 	(μ−x), it immediately follows that
min{Hx (μ2), 1 − Hx (μ1)} = min{	(μ2 − x),	(x − μ1)}, so that the e-value and
the CD*-support coincide. For a more general case, we present the following result.

Proposition 4 LetX be a randomvector distributed according to the family of densities
{pθ , θ ∈ � ⊆ R} with a MLR in the real continuous statistic T = T (X), with
distribution function Fθ (t). If Fθ (t) is continuous in θ with limits 0 and 1 for θ tending
to sup(�) and inf(�), respectively, then the CD*-support and the e-value for the
hypothesis H0 : θ ∈ [θ1, θ2], θ1 ≤ θ2, are equivalent.

We emphasize, however, that the advantage of the CD*-support over the e-value relies
on the fact that knowledge of the entire CD allows us to naturally encompass the testing
problem into a more comprehensive and coherent inferential framework, in which the
e-value is only one of the aspects to be taken into consideration.

Suppose now that a test of significance forH0 : θ ∈ [θ1, θ2], with θ1 ≤ θ2, is desired
and that the CD for θ is Ht (θ). Recall that the CD-support for H0 is Ht ([θ1, θ2]) =∫ θ2
θ1

dHt (θ) = Ht (θ2)− Ht (θ1), and that when θ1 = θ2 = θ0, or the interval [θ1, θ2] is
“small”, it becomes ineffective, and theCD*-supportmust be employed. The following
proposition establishes some results about the CD- and the CD*-tests.

Proposition 5 Given a statistical model parameterized by the real parameter θ with
MLR in the continuous statistic T , consider the hypothesis H0 : θ ∈ [θ1, θ2] with
θ1 ≤ θ2. Then,

(i) both the CD- and the CD*-tests reject H0 for all values of T that are smaller or
larger than suitable values;

(ii) if a threshold γ is fixed for the CD-test, its size is not less than γ ;
(iii) for a precise hypothesis, i.e., θ1 = θ2, the CD*-support, seen as function of the

random variable T , has the uniform distribution on (0, 0.5);
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(iv) if a threshold γ ∗ is fixed for the CD*-test, its size falls within the interval
[γ ∗,min(2γ ∗, 1)] and equals min(2γ ∗, 1) when θ1 = θ2, (i.e. when H0 is a
precise hypothesis);

(v) the CD-support is never greater than the CD*-support, and if a common threshold
is fixed for both tests, the size of the CD-test is not smaller than that of the CD*-test.

Remark 3 Point i) highlights that the rejection regions generated by the CD- and CD*-
tests are two-sided, resembling standard tests for hypotheses of this kind. However,
even when γ = γ ∗, the rejection regions differ, with the CD-test being more conser-
vative for H0. This becomes crucial for small intervals, where the CD-test tends to
reject the null hypothesis almost invariably.

Remark 4 Under the assumption of Proposition 5, the p-value corresponding to
the commonly used equal tailed test for a precise hypothesis H0 : θ = θ0 is
2min{Fθ0(t), 1 − Fθ0(t)}, so that it coincides with 2 times the CD*-support.

For interval hypotheses, a UMPU test essentially exists only for models within a
NEF, and an interesting relationship can be established with the CD-test.

Proposition 6 Given the CD based on the sufficient statistic of a continuous real
NEF with natural parameter θ , consider the hypothesis H0 : θ ∈ [θ1, θ2] versus
H1 : θ /∈ [θ1, θ2], with θ1 < θ2. If the CD-test has size αCD, it is the UMPU test
among all αCD-level tests.

For interval hypotheses, unlike one-sided hypotheses, when the statistic T is
discrete, there is no clear reason to prefer either H 


t or Hr
t . Neither test is more

conservative, as their respective rejection regions are shifted by just one point in the
support of T . Thus, Hg

t can be considered again a reasonable compromise, due to its
greater proximity to the uniform distribution. Moreover, while the results stated for
continuous statistics may not hold exactly for discrete statistics, they remain approx-
imately valid for not too small sample sizes, thanks to the asymptotic normality of
CDs, as stated in Proposition 1.

6 Conclusions

In this article, we propose the use of confidence distributions to address a hypothesis
testing problem concerning a real parameter of interest. Specifically, we introduce the
CD- and CD*-supports, which are suitable for evaluating one-sided or large inter-
val null hypotheses and precise or small interval null hypotheses, respectively. This
approach does not necessarily require identifying the first and second type errors or
fixing a significance level a priori. We do not propose an automatic procedure; instead,
we suggest a careful and more general inferential analysis of the problem based on
CDs. CD- and CD*-supports are two simple coherent measures of evidence for a
hypothesis with a clear meaning and interpretation. None of these features are owned
by the p-value, which is more complex and generally does not exist in closed form for
interval hypothesis.

123



Confidence distributions and hypothesis testing

It is well known that the significance level α of a test, which is crucial to take a
decision, should be adjusted according to the sample size, but this is almost never
done in practice. In our approach, the support provided by the CD to a hypothesis
trivially depends on the sample size through the dispersion of the CD. For example, if
H0 : θ ∈ [θ1, θ2], you can easily observe the effect of sample size on theCD-support of
H0 by examining the interval [θ1, θ2] on the CD-density plot. The CD-support can be
non-negligible also when the length � = θ2 − θ1 is small for a CD that is sufficiently
concentrated on the interval. The relationship between � and the dispersion of the
CD highlights again the importance of a thoughtful choice of the threshold used for
decision-making and the unreasonableness of using standard values. Note that the
CD- and CD*-tests are similar in many standard situations, as shown in the examples
presented.

Finally, we have investigated some theoretical aspects of the CD- and CD*-tests
which are crucial in standard approach.While for one-sided hypotheses, an agreement
with standard tests can be established, there are some distinctions to be made for two-
sided hypotheses. If a threshold γ is fixed for a CD- or CD*-test, then its size exceeds
γ reaching 2γ for a CD*-test relative to a precise hypothesis. This is because the
CD*-support only considers the appropriate tail suggested by the data and it does
not adhere to the typical procedure of doubling the one-sided p-value, a procedure
that can be criticized, as seen in Sect. 1. Of course, if one is convinced of the need
to double the p-value, in our context, it is sufficient to double the CD*-support. In
the case of a precise hypothesis H0 : θ = θ0, this leads to a valid test because
Prθ0 (2min{Hx(θ0), 1 − Hx(θ0)} ≤ α) ≤ α, as can be deduced by considering the
relationship of the CD*-support with the e-value and the results in Peskun (2020, Sec.
2).
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Appendix B. Proof of propositions

Proof of Proposition 1 The asymptotic normality and the consistency of the CD in i)
and ii) follow from Veronese &Melilli (2015, Thm. 3) for models belonging to a NEF
and from Veronese & Melilli (2018b, Thm. 1) for continuous arbitrary models. Part
iii) of the proposition follows directly using the Chebyshev’s inequality. �
Proof of Proposition 2 Denote by Fθ (t) the distribution function of T , assume that its
support T = {t1, t2, . . . , tk} is finite for simplicity and let p j = p j (θ) = Prθ (T = t j ),
j = 1, 2, . . . , k for a fixed θ . Consider the case Hr

t (θ) = 1− Fθ (t) (if Hr
t (θ) = Fθ (t)

the proof is similar) so that, for each j = 2, . . . , k, H 

t j (θ) = Hr

t j−1
(θ) and H 


t1(θ) = 1.

The supports of the random variables Hr
T (θ), H 


T (θ) and Hg
T (θ) are, respectively,

SHr
T

= {Hr
tk− j+1

(θ), j = 1, 2, . . . , k} = {0, pk , pk + pk−1, . . . , pk + pk−1 + . . . + p2},
SH


T
= {H 


tk− j+1
(θ), j = 1, 2, . . . , k} = {pk, pk + pk−1, . . . , pk + pk−1 + . . . + p2, 1},

SHg
T

= {Hg
tk− j+1

(θ) = c j , j = 1, 2, . . . , k}, with

c1 ∈ (0, pk), c2 ∈ (pk, pk + pk−1), . . . , ck ∈ (pk + pk−1 + . . . + p2, 1), (6)

where (6) holds because Hr
t j (θ) < Hg

t j (θ) < H 

t j (θ). The probabilities correspond-

ing to the points included in the three supports are of course the same, that is
pk, pk−1, . . . , p1, in this order, so that G
(u) ≤ u ≤ Gr (u).

Let d(Q, R) = ∫ |Q(x) − R(x)|dx be the distance between the two arbitrary
distribution functions Q and R. Denoting Gu as the uniform distribution function on
(0, 1), we have

d(Gr ,Gu) = d(G
,Gu) = 1

2

k∑

j=1

p2j

d(Gg,Gu) = 1

2

k∑

j=1

p2j +
k−1∑

j=1

[c j+1 − (pk + . . . + pk− j+1)]

[c j+1 − (pk + . . . + pk− j )] + c1 · (c1 − pk)

<
1

2

k∑

j=1

p2j ,

where the last inequality follows from (6). Thus, the distance from uniformity of
Hg
T (θ) is less than that of H 


T (θ) and of Hr
T (θ) and (2) is proven. �

Proof of Proposition 4 Given the statistic T and the hypothesis H0 : θ ∈ [θ1, θ2],
the e-value, see Peskun 2020, equation 12), is min

{

maxθ∈[θ1,θ2] Fθ (t),

maxθ∈[θ1,θ2](1 − Fθ (t))

}

. Under the assumptions of the proposition, it follows that
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Ft (θ) is monotonically nonincreasing in θ for each t (see Section 2). As a result, the
e-value simplifies to:

e-value = min
{
Fθ1(t), 1 − Fθ2(t)

} = min {1 − Ht (θ1), Ht (θ2)} ,

where the last expression coincides with the CD*-support of H0. Note that the same
result holds if the MLR is nondecreasing in T ensuring that Ft (θ) is monotonically
nondecreasing. �
Proof of Proposition 5 Point i). Consider first theCD-test and let g(t) = Ht ([θ1, θ2]) =
Ht (θ2)−Ht (θ1) = Fθ1(t)− Fθ2(t) , which is a nonnegative, continuous function with
limt→±∞ g(t) = 0 and with derivative g′(t) = fθ1(t) − fθ2(t). Let t0 ∈ R be a point
such that g is nondecreasing for t < t0 and strictly decreasing for t ∈ (t0, t1), for a
suitable t1 > t0; the existence of t0 is guaranteed by the properties of g. It follows
that g′(t) ≥ 0 for t < t0 and g′(t) < 0 in (t0, t1). We show that t0 is the unique
point at which the function g′ changes sign. Indeed, if t2 were a point greater than
t1 such that g′(t) > 0 for t in a suitable interval (t2, t3), with t3 > t2, we would
have, in this interval, fθ1(t) > fθ2(t). Since fθ1(t) < fθ2(t) for t ∈ (t0, t1), this
implies fθ2(t)/ fθ1(t) > 1 for t ∈ (t0, t1) and fθ2(t)/ fθ1(t) < 1 for t ∈ (t2, t3),
which contradicts the assumption of the (nondecreasing) MLR in T . Thus, g(t) is
nondecreasing for t < t0 and nonincreasing for t > t0, and the set {t : Ht ([θ1, θ2]) <

γ } coincides with {t : t < t ′ or t > t ′′} for suitable t ′ and t ′′.
Consider now the CD*-test. The corresponding support is min{Ht (θ2), 1 −

Ht (θ1)} = min{1−Fθ2(t), Fθ1(t)}, which is a continuous function of t and approaches
zero as t → ±∞. Moreover, it equals Fθ1(t) for t ≤ t∗ = inf{t : Fθ1(t) = 1− Fθ2(t)}
and 1 − Fθ2(t) for t ≥ t∗. Thus, the function is nondecreasing for t ≤ t∗ and nonin-
creasing for t ≥ t∗, and the result is proven.

Point ii). Suppose having observed t ′ = F−1
θ1

(γ ), then the CD-support for H0 is

Ht ′([θ1, θ2]) = Ht ′(θ2) − Ht ′(θ1) = Fθ1(t
′) − Fθ2(t

′) = Fθ1(F
−1
θ1

(γ )) − Fθ2(F
−1
θ1

(γ ))

= γ − Fθ2(F
−1
θ1

(γ )) ≤ γ,

so that t ′ belongs to the rejection region defined by the threshold γ . Due to the structure
of this region specified in point i), all t ≤ t ′ belong to it. Now,

sup
θ∈[θ1,θ2]

Prθ {T ≤ t ′} = sup
θ∈[θ1,θ2]

Fθ (F
−1
θ1

(γ )) = Fθ1(F
−1
θ1

(γ )) = γ

because Fθ (t) ≤ Fθ1(t) for each t and θ ∈ [θ1, θ2]. It follows that the size of the
CD-test with threshold γ is not smaller than γ .

Point iii). The result follows from the equality of the CD*-support with the e-value,
as stated in Proposition 4, and the uniformity of the e-value as proven in Peskun (2020,
Sec. 2).

Point iv). The size of the CD*-test with threshold γ ∗ is the supremum on [θ1, θ2]
of the following probability

Prθ {min[HT (θ2), 1 − HT (θ1)] < γ ∗} = Prθ {min[1 − Fθ2(T ), Fθ1(T )] < γ ∗}
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= 1 − Prθ {1 − Fθ2(T ) > γ ∗, Fθ1(T ) > γ ∗}
= 1 − Prθ {T < F−1

θ2
(1 − γ ∗), T > F−1

θ1
(γ ∗)}

= 1 − Prθ {F−1
θ1

(γ ∗) < T < F−1
θ2

(1 − γ ∗)}
= 1 − [Fθ (F

−1
θ2

(1 − γ ∗)) − Fθ (F
−1
θ1

(γ ∗))], (7)

under the assumption that F−1
θ1

(γ ∗) < F−1
θ2

(1 − γ ∗), otherwise the probability is
one. Because Fθ2(t) ≤ Fθ (t) ≤ Fθ1(t) for each t and θ ∈ [θ1, θ2], it follows that
Fθ (F

−1
θ1

(γ ∗)) ≤ Fθ1(F
−1
θ1

(γ ∗)) = γ ∗, and Fθ (F
−1
θ2

(1−γ ∗)) ≥ Fθ2(F
−1
θ2

(1−γ ∗)) =
1 − γ ∗ so that the size is

sup
θ∈[θ1,θ2]

{1 − [Fθ (F
−1
θ2

(1 − γ ∗)) − Fθ (F
−1
θ1

(γ ∗))]}

≤ 1 − [Fθ2(F
−1
θ2

(1 − γ ∗)) − Fθ1(F
−1
θ1

(γ ∗))] = 2γ ∗.

Finally, if θ = θ2, from (7) we have

1 − [Fθ2(F
−1
θ2

(1 − γ ∗)) − Fθ2(F
−1
θ1

(γ ∗))] = 1 − 1 + γ ∗ + Fθ2(F
−1
θ1

(γ ∗)) ≥ γ ∗

and thus the size of the CD*-test must be included in the interval [γ ∗, 2γ ∗], provided
that 2γ ∗ is less than 1. For the case θ1 = θ2, it follows from (7) that the size of the
CD*-test is 2γ ∗.

Point v). Because Ht ([θ1, θ2] = Ht (θ2) − Ht (θ1) ≤ Ht (θ2) and also Ht (θ2) −
Ht (θ1) ≤ 1 − Ht (θ1), recalling Definition 4, it immediately follows that the CD-
support is not greater than the CD*-support. Thus if the same threshold is fixed for
the two tests, the rejection region of the CD-test includes that of the CD*-test, and the
size of the first test is not smaller than that of the second one. �
Proof of Proposition 6 Recall from point i) of Proposition 5, that the CD-test with
threshold γ rejects H0 : θ ∈ [θ1, θ2] for values of T less than t ′ or greater than t ′′,
with t ′ and t ′′ solutions of the equation Fθ1(t) − Fθ2(t) = γ . Denoting with πCD its
power function, we have

πCD(θ1) − πCD(θ2) = [Prθ1(T < t ′) + Prθ1(T > t ′′)] − [Prθ2(T < t ′) + Prθ2(T > t ′′)]
= [Fθ1(t

′) + 1 − Fθ1(t
′′)] − [Fθ2(t

′) + 1 − Fθ2(t
′′)]

= [Fθ1(t
′) − Fθ2(t

′)] − [Fθ1(t
′′) − Fθ2(t

′′)] = 0.

Thus the power function of the CD-test is equal in θ1 and θ2 and this condition char-
acterizes the UMPU test for the exponential families, see Lehmann & Romano (2005,
p. 135). �
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