
Statistical Papers
https://doi.org/10.1007/s00362-024-01541-5

REGULAR ART ICLE

Minimum contrast for the first-order intensity estimation of
spatial and spatio-temporal point processes

Nicoletta D’Angelo1 · Giada Adelfio1

Received: 20 March 2023 / Revised: 10 November 2023
© The Author(s) 2024

Abstract
In this paper, we harness a result in point process theory, specifically the expectation of
the weighted K -function, where the weighting is done by the true first-order intensity
function. This theoretical result can be employed as an estimation method to derive
parameter estimates for a particular model assumed for the data. The underlying moti-
vation is to avoid the difficulties associated with dealing with complex likelihoods in
point process models and their maximization. The exploited result makes our method
theoretically applicable to any model specification. In this paper, we restrict our study
to Poisson models, whose likelihood represents the base for manymore complex point
process models. In this context, our proposed method can estimate the vector of local
parameters that correspond to the points within the analyzed point pattern without
introducing any additional complexity compared to the global estimation. We illus-
trate themethod through simulation studies for both purely spatial and spatio-temporal
point processes and show complex scenarios based on the Poisson model through the
analysis of two real datasets concerning environmental problems.

Keywords Second-order characteristics · Spatio-temporal point processes · Local
models · Minimum contrast estimation

1 Introduction

Modeling the complex dynamics of point processes is a fundamental challenge in
various fields, ranging from ecology and epidemiology to urban planning. Researchers
often deal with the complexities of estimating parameters for specific models due to
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the nature of their likelihood functions. In this paper, we present a novel approach,
based on point process result, that simplifies this task.
Typically, a realization of a spatio-temporal point process is characterized via its inten-
sity function, and its parameters are usually fit via the maximum likelihood estimation
(MLE) method.
Unfortunately, for many point processes, the integral term on the likelihood is often
extremely difficult to compute. Even considering the benchmark Poisson process,
many choices have to be made for approximating such integral.
Approximation methods proposed for certain processes, such as Hawkes processes,
suggest a computationally intensive numerical integration method, but in general, the
problem of computation or estimation of the integral term in the log-likelihood can be
burdensome. Furthermore, Poisson likelihood estimation is proved to be consistent,
with its estimates being asymptotically normal, asymptotically unbiased, and efficient,
under quite general conditions. However, in real-life applications, we often do not have
access to extensive datasets, which can make complex to assess rates of convergence.
Despite the computational constraints, Maximum Likelihood (ML) remains the most
widely usedmethod for estimating the parameters of point process intensities. The sig-
nificant work by Baddeley et al. (2015) has established the Berman–Turner technique
(Berman and Turner 1992) as the predominant approach for fitting parametric Poisson
spatial point process models. Furthermore, its spatio-temporal extension continues to
be a convenient way to estimate parameters for spatio-temporal point process models,
directly building upon purely spatial methodologies.

The scientific literature now recognizes spatial point pattern statistics as a mature
discipline, while the spatio-temporal context requires further advancements. Neverthe-
less, parametric models that depend on external variables present specific challenges.
One such challenge is defining the locations of dummy points within the quadra-
ture scheme while respecting the locations of the covariates or, conversely, ensuring
knowledge of the covariate values at the selected dummy point locations.

Due to these considerations, while our method is theoretically applicable to various
model specifications, this paper confines its scope to Poisson models as a starting
proposal for future development. It is important to note that Poisson models cover a
diverse range of models, all of which are based on maximizing the Poisson likelihood.
The examples covered in this manuscript include homogeneous processes, inhomoge-
neous processes dependent on both spatial and temporal coordinates, inhomogeneous
processes influenced by external covariates, models with spatial and spatio-temporal
varying parameters, as well as the estimation of the first-order intensity function in a
log-Gaussian Cox process.

In this paper, a novel estimator for the parameters governing spatio-temporal point
processes is proposed. Unlike the ML estimator, the proposed estimator does not
require the computation or approximation of the computationally expensive integral,
as typically found in the point process log-likelihood, making it computationally more
efficient.

Theproposedparametric estimator is basedon the K -function (Ripley1976;Gabriel
and Diggle 2009) and its deviation from the theoretical value. This technique, either
based on the K -function of the pair correlation function, is commonly referred to as
the minimum contrast technique. Traditionally, it serves as a convenient model-fitting
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procedure for estimating second-order parameters in a class of inhomogeneous spatial
point processes. However, in this context, we utilize it to estimate the parameters of a
first-order intensity function.
Our method builds upon a key result in point process theory: the expectation of the
weighted K -function based on the true first-order intensity function regardless of the
parametric form assumed for the model. Themajor intuition of our idea relies upon the
fact that such K -function weighted by the true first-order intensity function does not
identify a specific model among competitor ones, but, conditionally on the parametric
formassumed for the data, it is able to identify the best set of parameters of the specified
model. In other words, the weighted K -function is now used not only to diagnose a
set of competing models and consequently to select the best one but also to select the
best model among competitor ones with the same parametric specification.
A further notable advantage of our method lies in its ability to exploit local second-
order characteristics (Adelfio et al. 2020). Indeed, a model with constant parameters
may not adequately represent detailed local variations in the data, since the pattern
may present spatial and temporal variations due to the influence of covariates, the scale
or spacing between points, and also perhaps due to the abundance of points (D’Angelo
et al. 2022). Indeed, a different way of analysing a point pattern can be based on local
techniques identifying specific and undiscovered local structure, for instance, sub-
regions characterized by different interactions among points, intensity and influence
of covariates (D’Angelo et al. 2023a). By considering the local version of the weighted
K -function (D’Angelo et al. 2023b), our approach accurately estimates the vector of
local parameters corresponding to specific points within the analyzed point pattern.
This level of detail in estimation is crucial for understanding the different variations
within spatial and spatio-temporal point processes.
Throughout this paper, we will demonstrate the methodology within the spatio-
temporal context. It’s important to note that every aspect presented can be straight-
forwardly reduced to the purely spatial context, as illustrated in both the numerical
experiments and the applications to real data.
All the analyses are carried out through the statistical software R Core Team (2023).
Section 2 sets the preliminaries of spatio-temporal point processes, their first- and
second-order characteristics, and recalls the most used method employed in literature
for fitting global and local Poisson processes. Section 2 introduces the new idea for
fitting a general Poisson processmodel through theminimum contrast procedure (MC)
and formalizes the estimation procedure. Section 4 presents numerical experiments to
study and assess the performance of the proposed fitting procedure, and Sect. 5 shows
more complex challenges through applications to real datasets. The paper ends with
some conclusions in Sect. 6.

2 Preliminaries

Let us give a simple point process defined in space and time, which is a random
countable subset X of R2 × R. Every point (u, t) ∈ X corresponds to an event that
occurred at a spatial location u ∈ R

2 and at time t ∈ R. Its realization is a finite
set {(ui , ti )}ni=1 of distinct points, n ≥ 0 not fixed in advance. This spatio-temporal
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realization is assumed to occur within a bounded region W × T ⊂ R
2 ×R, with area

and length |W | > 0, |T | > 0.
Any event close in both space and time to a given one (u, t) can be defined by a

spatio-temporal cylindrical neighbourhood of the event for each spatial distance r and
time lag h. This can be expressed by the Cartesian product b((u, t), r , h) = {(v, s) :
||u − v|| ≤ r , |t − s| ≤ h}, (u, t), (v, s) ∈ W × T , with || · || denoting the Euclidean
distance in R2. This will be a cylinder with centre (u, t), radius r , and height 2h.

The Campbell Theorem states that, for any non-negative function f on (R2 ×R)k ,
the following holds

E

[ �=∑
ζ1,...,ζk∈X

f (ζ1, . . . , ζk)

]
=

∫
R2×R

· · ·
∫
R2×R

f (ζ1, . . . , ζk)λ
(k)(ζ1, . . . , ζk)

k∏
i=1

dζi .

This essential result defines one of the main tools of point process theory, i.e. the
product densities λ(k), k ∈ N and k ≥ 1.

The arguably most important product densities are obtained for k = 1 and k = 2,
called the intensity functionλ and the (second-order) product density λ(2), respectively.

In short, the intensity function gives the rate of occurrence of events in the given
region, and the second-order product density describes the correlation between pairs
of points of the pattern.

The pair correlation function

g((u, t), (v, s)) = λ(2)((u, t), (v, s))

λ(u, t)λ(v, s)

is linked to λ(2), formally interpretable as the standardized probability density of an
event occurring in two small spatio-temporal volumes. This constitutes an important
second-order tool, knowing that a Poisson process has g((u, t), (v, s)) = 1.

2.1 Likelihood-based inference for spatio-temporal Poisson point processes

Assuming that the template model is a Poisson process, with a parametric intensity or
rate function λ(u, t; θ), u ∈ W , t ∈ T , with parameters θ ∈ �, the log-likelihood is

log L(θ) =
∑
i

λ(ui , ti ; θ) −
∫
W

∫
T

λ(u, t; θ)dtdu. (1)

In practice, intensity models of log-linear form λ(u, t; θ) = exp(θ Z(u, t)), are often
considered, with Z(u, t) a spatio-temporal covariate function, including the space or
time coordinates themselves.
The most direct approach to fitting this model is to adopt the method described by
Berman and Turner (1992), which involves employing a finite quadrature approxima-
tion for the log-likelihood. It is actually the default implemented in the spatstat
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package (Baddeley and Turner 2005), and for this reason, this approach is widely
recognized as the standard method for fitting Poisson spatial models.
Renaming the data points as x1, . . . , xn with (ui , ti ) = xi for i = 1, . . . , n, then
m additional dummy points (un+1, tn+1) . . . , (um+n, tm+n) are generated, to form a
set of n + m quadrature points, where m is commonly taken larger than n. Then,
some quadrature weights a1, . . . , am are determined so that integrals in Eq. (1) can be
approximated by a Riemann sum

∫
W

∫
T λ(u, t; θ)dtdu ≈ ∑n+m

k=1 akλ(uk, tk; θ). The
quadrature weights ak are taken such that

∑n+m
k=1 ak = l(W × T ), with l the Lebesgue

measure. Then the log-likelihood in Eq. (1) of the templatemodel can be approximated
as

log L(θ) ≈
∑
k

ak(yk log λ(uk, tk; θ) − λ(uk, tk; θ)) +
∑
k

ak, (2)

taking yk = ek/ak , with the indicator ek equaling 1 if uk is a data point and 0 oth-
erwise. Apart from the constant

∑
k ak , this expression is formally equivalent to the

weighted log-likelihood of a Poisson regression model. This connection to the log-
likelihood of a Poisson regressionmodelmakes the use of standardGeneralized Linear
Models (GLM) software possible to maximize it, which significantly contributes to its
widespread popularity. However, many choices have to be made in order to define the
spatio-temporal quadrature scheme. The first one regards the spatio-temporal partition
of W × T into cubes Ck of equal volume ν, and assigning the weight ak = ν/nk to
each quadrature point (dummy or data) where nk is the number of points that lie in
the same cube as the point uk .
The number of dummy points should be sufficient for an accurate estimate of the
likelihood, but at the moment of writing, there aren’t guidelines on this aspect. Only
Raeisi et al. (2021) and D’Angelo et al. (2023a), studying more complex models than
the Poisson one, start with a number of dummy points m ≈ 4n, increasing it until∑

k ak = l(W × T ).
Sometimes, however, a model with constant parameters may not adequately represent
detailed local variations in the data (D’Angelo et al. 2022). A local estimation approach
should accurately estimate the vector of local parameters corresponding to specific
points within the analyzed point pattern (D’Angelo et al. 2023a). This level of detail
in estimation can reveal to be crucial for understanding the observed variations within
space and time.
Assume now that the template model is a Poisson process, with a parametric intensity
or rate function λ(u, t; θ i )with space and time locations u ∈ W , t ∈ T and parameters
θ i ∈ �, with i the data point index. Estimation can still be performed through the
fitting of a GLM using a localized version of the quadrature scheme just introduced.
In order to obtain the local estimates θ̂ i , the local log-likelihood associated with the
spatio-temporal location (v, s) can be written as

log L((v, s); θ) =
∑
i

wi (ui − v, ti − s)λ(ui , ti ; θ)

−
∫
W

∫
T

λ(u, t; θ)wi (ui − v, ti − s)dtdu
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where for instance wi (v, s) = wσs (v − ui )wσt (s − ti ). In this case, wσs and wσt are
weight functions, and σs, σt > 0 are their smoothing bandwidths. It is not necessary to
assume that wσs and wσt are probability densities. For simplicity, one might consider
only kernels of fixed bandwidth, even though spatially adaptive kernels could also
be used. Note that if the template model is the homogeneous Poisson process with
intensity λ, then the local likelihood estimate of λ̂(v, s) reduces to the kernel estimator
of the point process intensity (Diggle 2013) with kernel proportional to wσswσt .
A similar approximation of that used in Eq. (2) for the local log-likelihood associated
with each desired location (v, s) ∈ W × T can therefore be used as follows

log L((v, s); θ) ≈
∑
k

wk(v, s)ak(yk log λ(uk, tk; θ) − λ(uk, tk; θ))

+
∑
k

wk(v, s)ak . (3)

We refer to D’Angelo et al. (2023a) for further details, but basically, for each desired
location (v, s), one replaces the vector of quadrature weights ak by ak(v, s) =
wk(v, s)ak , and consequently can still use the GLM software to fit the Poisson local
regression.

2.2 The spatio-temporal K-function and its estimator

Gabriel and Diggle (2009) define the spatio-temporal inhomogeneous K -function and
propose a non-parametric estimator.

Definition 1 A point process defined in space and time is second-order intensity
reweighted stationary and isotropic if its intensity function is bounded away from
zero and its pair correlation function depends only on the spatio-temporal difference
vector (r , h), where r = ||u − v|| and h = |t − s|.
Definition 2 For a second-order intensity reweighted stationary, isotropic spatio-
temporal point process, the spatio-temporal inhomogeneous K -function is

K (r , h) = 2π
∫ r

0

∫ h

0
g(r ′, h′)r ′dr ′dh′

where g(r , h) = λ(2)(r , h)/(λ(u, t)λ(v, s)), r = ||u − v||, h = |t − s|.
The most widely used and simplest estimator of the spatio-temporal K -function is:

K̂ (r , h) = 1

|W ||T |
n∑

i=1

n∑
j>i

1(||ui − u j || ≤ r , |ti − t j | ≤ h). (4)

A homogeneous Poisson process has E[K̂ (r , h)] = πr2h, regardless the first-
order intensity λ. The spatio-temporal K -function represents a useful tool to measure
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interaction and clustering in space and time. The estimator K̂ (r , h) is commonly
compared to its theoretical counterpart E[K̂ (r , h)] = πr2h. Values K̂ (r , h) > πr2h
suggest spatio-temporal clustering of points, while K̂ (r , h) < πr2h suggests a regular
pattern.

The inhomogeneous version of the K -function in Eq. (4) (Gabriel and Diggle 2009)
is

K̂ I (r , h) = |W ||T |
n(n − 1)

n∑
i=1

∑
j>i

1(||ui − u j || ≤ r , |ti − t j | ≤ h)

λ̂(ui , ti )λ̂(u j , t j )
. (5)

Also, for the inhomogeneous case E[K̂ I (r , h)] = πr2h, when the weighting intensity
is the true one. This represents a very important result in the spatio-temporal point
process theory since it allows the usage of the weighted estimator K̂ I (r , h) as a diag-
nostic tool for a general fitted first-order intensity function λ(·, ·). In other words,
it can be used for assessing the goodness-of-fit of spatio-temporal point processes
with any fitted first-order intensity function. In practice, if the fitted intensity is close
enough to the true one, its expectation should be close to the theoretical Poisson one
E[K̂ (r , h)] = πr2h. Therefore, values K̂ I (r , h) greater than πr2h indicate that the
model is not a good fit since the distances among points exceed those of the theoretical
Poisson.

InAdelfio et al. (2020), local versions of both the homogeneous and inhomogeneous
spatio-temporal K -functions are provided, as diagnostic tools accounting also for local
characteristics. They define an estimator of the intensity by λ̂ = n/(|W ||T |), and then
propose expressing the localized version of Eq. (4) for the i-th event (ui , ti ) as

K̂ i (r , h) = 1

λ̂2|W ||T |
∑

(ui ,ti ) �=(v,s)

1(||ui − v|| ≤ r , |ti − s| ≤ h) (6)

and the local version of Eq. (5) as

K̂ i
I (r , h) = 1

|W ||T |
∑

(ui ,ti ) �=(v,s)

1(||ui − v|| ≤ r , |ti − s| ≤ h)

λ̂(ui , ti )λ̂(v, s)
, (7)

with (v, s) being any other point’s spatial and temporal coordinates. They further
proved that also the local inhomogeneous estimators behave as the corresponding
theoretical Poisson ones, i.e. the expectation of Eqs. (6) and (7) is πr2h as well.

3 Minimum contrast for first-order intensity estimation

In this section, we present the rationale behind our intuition for employing the K -
function as an inferential tool for estimating model parameters in a minimum contrast
approach. In particular, we refer to a graphical representation of a straightforward
example, the homogeneous Poisson process model, characterized by a constant inten-
sity.
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Fig. 1 In blue: the theoretical K -function of a simulated Poisson process with 500 points. In light blue: the
estimated K -function, weighted by the true intensity function. In pink and green: the estimated K -functions,
weighted by some wrong intensities (λ = {400, 750}). (Color figure online)

Our primary insight arises from the realization that the K -function, when weighted
by the true first-order intensity function, can serve as a tool for identifying the optimal
set of parameters for the assumed parametric model, as opposed to the traditional
approach of selecting the best model among competing alternatives.
This idea is shown graphically in Fig. 1.

The blue surface of Fig. 1 represents the theoretical K -function of a simulated
spatio-temporal Poisson process with 500 points. As an example, we estimate three
K -functions, respectively weighted by: the true intensity (in light blue) and twowrong
constant intensities (400 in pink and 750 in green). From these plots, we can observe
that the overall behaviour of the K -function is the same (i.e. increasing with the space
and time lags), with the only difference in the magnitude values of the K -functions.
In particular, the K -function weighted by the true intensity function reports the values
closer to the theoretical one.
Indeed, the theory suggests that the squared difference between the observed K -
function and the theoretical one should approach zero, as the intensity used for
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weighting the observed K -function approaches the true one (Adelfio et al. 2020).
The value of the sum of the squared differences are 0.07, 0.0002 and 0.06 for the K -
functions weighted by 400, 500 and 750, respectively. As expected, the lowest value
is obtained when weighting for the true intensity function.

We now formalize the proposed method of parameter estimation using KI (r , h) in
Eq. (4) and its estimator K̂ I (r , h) of Eq. (5).

Let be given a point process model with the intensity λ(u, t; θ) (in brief: λθ ) with a
vector of parameters θ ∈ �. The proposed minimum contrast for first-order intensity
estimation (MC) procedure is defined by the minimization of the following objective
function

M(θ) =
∫ hmax

h0

∫ rmax

r0
φ(r , h){(K̂ I (r , h; λθ )) − πr2h)}2drdh (8)

with respect to θ , providing a vector of estimates θ̂ :

θ̂ = argmin
θ∈�

M(θ).

Here r0, h0, rmax and hmax are the lower and upper space and time lag limits of the
contrast criterion, andφ(r , h) is a weight that depends on the spatio-temporal distance.
Note that ourMC proposal poses the basis on the assumption that πr2h is the expected
value of the K -function when this is weighted by the true intensity function. Given
the model assumed for the data, the combination of parameters leading to a good
intensity (that is, a small discrepancy in Eq. (8)) may not be unique. This might result
in biased (and unreliable) estimates. We refer to Baddeley et al. (2022) for a detailed
classification of causes for these practical difficulties, with particular reference to the
purely spatial case.

For this reason, we employ a further step in our proposal, by a radial penalization
presented in Kreutz (2018). That work aimed at addressing the feasibility of unique
parameter estimation in dynamic systems. Numerical optimization is used to test the
uniqueness of parameters by means of a penalty in the radial direction which has the
goal to enforce the displacement of the parameters. The suggested method is based on
a comparison of the objective function of common fitting with a penalized fit pulling
the parameter vector away from the first estimate. A major characteristic of their
method is that it allows identifiability analysis of all parameters in a joint manner, as
well as the possibility to investigate the identifiability of each parameter individually.
Their proposed approach enables quick testing for parameter identifiability, whereas
the several other approaches proposed in the literature are typically computationally
demanding, difficult to perform and/or not applicable in many application settings.
Indeed, their method is suited for any model with an optimization-based parameter
estimation such as maximum likelihood and least-squares. This is the reason why
it appears applicable to our purposes, particularly addressing the joint identifiability
investigation of all model parameters.

Definition 3 Let θ ∈ � be the parameter vector containing all p unknown constants in
themodel assumed for the data.A parameter θ j ( j = 1, . . . , p) is said to be structurally
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locally identifiable, if, for almost any θ j , there exists a neighbourhood P such that if

θ ∈ P ∧ g(θ(1)
j ) = g(θ(2)

j ) ⇒ θ
(1)
j = θ

(2)
j

“Almost any”means for all parameters except for isolated points. If this property holds
not only within a neighbourhood but also for the whole parameter space, the parameter
is termed structurally globally identifiable (Chis et al. 2011).

Therefore, alternatively to estimating θ according to Eq. (8), we suggest the use of
a penalized objective function

MR
tot (θ) = M(θ) + MR

pen(θ) (9)

with

MR
pen(θ) = 1

R2

(√∑
j

(θ j − θ̂ j )2 − R

)2

, (10)

where 1/R2 is the tuning parameter representing the penalization strength. In essence,
the penalty acts as an extra data point that is utilized to pull the parameter in the
direction where the data is least informative.

The penalty term MR
pen(θ) has its minimum at a sphere with radius R centered

around θ̂ . The final estimates are found as

θ∗ = argmin
θ∈�

MR
tot (θ).

3.1 Selection of the radius R

Any penalized approach requires a tuning parameter which controls the degree
of shrinking of the model coefficients. Traditional selection criteria for regression
problems involve selecting the lowest goodness-of-fit criterion among competitors.
However, the main problem when dealing with residual analysis for point processes is
to find a correct definition of residuals since the one used in dependence models can
not be used for point processes (Adelfio et al. 2020).
An alternative approach to defining a weighted second-order statistic is the usage of
the smoothed raw residuals (Baddeley et al. 2005).

As our whole fitting method is based on a weighted second-order statistic, we
choose to employ the smoothed raw residuals for the selection of the radius R.

The predicted number of points occurring in a given spatial region W is equal to∫
W λ̂θ (u)du, with λ̂θ (u) the intensity of a model fitted to an inhomogeneous Poisson
process. Consequently, the raw residual process (Baddeley et al. 2005) in each region
W ⊂ R

2 can be defined as the number of points which fall in W , denoted as

r(W ) = n(x ∩ W ) −
∫
W

λ̂θ (u)du. (11)
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Here x denotes the observed realization of a purely spatial point pattern, and n(x ∩
W ) is its number of points falling in W . Increments of r(W ) are analogous to the
raw residuals (observed minus fitted values) in a linear model. The adequacy of the
fitted model can be checked by inspecting whether r(W ) ≈ 0 and various plots and
transformations of r(W ) can be useful diagnostics for a fitted point process model.
The resulting residuals can be displayed easily by smoothing them. Hence, we can
define the smoothed residual fields as

s(u) = λ̃θ (u) − λ†(u) (12)

with λ̃θ (u) a non-parametric estimate of the fitted intensity, usually estimated through
kernel procedures. A common practice is to select the smoothing bandwidth for the
kernel estimation of the raw residuals by cross-validation as the value that minimizes
the Mean Squared Error (MSE) criterion defined by Diggle (1985), by the method
of Berman and Diggle (1989). This is because, among the possible alternatives pro-
posed in the literature, the cross-validation method is typically the most adaptive,
and, therefore, the one which should resemble the true intensity function the most.
This is particularly relevant when assessing the goodness-of-fit of a parametric fitted
intensity function. See Diggle (2013) for further details. On the other hand, λ†(u) is a
smoothed version of the estimated intensity of the fittedmodel. Note that the smoothed
residual fields procedure is intended for parametric specifications of the fitted inten-
sity function. Given these, of course, smaller differences in Eq. (12) indicate that the
fitted model is close to the real one. For this reason, we choose the best model among
competitors as the one with the lowest values of the smoothed raw residuals.

A note is in order. Raw residuals in Eq. (11) are proposed by Baddeley et al. (2000).
Whereas previous works (Lawson 1993; Stoyan and Grabarnik 1991) have defined
diagnostic values for the data points only, these residuals are also ascribed to locations
which are not points of the pattern. This is related to an important methodological issue
for point processes. In a point pattern dataset, the observed information isn’t limited
to the locations of the observed points within the pattern. The absence of points in
other locations also provides valuable information. With the additional advantage of
graphical presentation, smoothed raw residuals become a straightforward and effective
diagnostic tool.

We, therefore, select the radius R as the one minimizing the integration of the
smoothed raw residuals over the analysed area:

R̂ = argmin
R

∫
W

(λ̃(u) − λ
†
R(u))du, (13)

where λ
†
R(u) = λ†(u; θ̂ R), which is the intensity obtained by imputing the estimated

parameter vector θ̂ with the R radius value in the penalization procedure.
Moving to the spatio-temporal context, fixed bandwidths for spatial or spatio-

temporal data based on the maximal smoothing (over-smoothing) principle of Terrell
(1990) can be employed. The optimal values minimize the asymptotic mean integrated
squared error assuming normally distributed data (Silverman 1986). Two separate val-
ues can be obtained for the purely spatial and temporal components by independently
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applying the normal scale rule to the spatial and temporal margins of the supplied data.
Alternatively, bandwidth selection for standalone spatio-temporal density/intensity
can be based on either unbiased least squares cross-validation (LSCV), likelihood
(LIK) cross-validation, or bootstrap estimation of the MISE, providing an isotropic
scalar spatial bandwidth and a scalar temporal bandwidth.

3.2 Local extension

Our proposal can also be extended in a local context, representing an alternative to the
most standard local likelihood procedure, which consists of many choices, including
the quadrature scheme but also the weighting functions for the spatio-temporal kernels
(as in Eq. (3)). Suppose then that the model incorporates a vector of parameters θ i for
each point i . Let K̂ i

I (r , h; λθ )) denote the local estimators calculated from the data.
For each point indexed by i we consider

Mlocal(θ i ) =
∫ hmax

h0

∫ rmax

r0
φ(r , h){(K̂ i

I (r , h; λθ ) − πr2h)}2drdh.

Then, we can obtain a vector of estimates θ̂ i , one for each point i , as

θ̂ i = argmin
θ∈�

Mlocal(θ i ).

In practice, one could also wish to specify a different weight function φ(r , h) for
each point i , making the objective function as follows

Mlocal(θ i ) =
∫ hmax

h0

∫ rmax

r0
φi (r , h){(K̂ i

I (r , h; λθ ) − πr2h)}2drdh.

Finally, the penalized optimization could also be implemented locally, giving rise
to the estimated parameters

θ∗
i = argmin

θ∈�
MR

local;tot (θ i ),

where the component MR
local;pen(θ i ) could depend on a fixed R value, or either on

an individual one Ri for each point.

3.3 Cox processes

Cox processes are point process models typically used when observing clustering
among points of the analysed pattern. In general, any Cox model can be estimated by
a two-step procedure, involving first the first-order intensity and then the cluster or
correlation parameters.
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First, a Poisson process with a particular model for the log-intensity is fitted to the
point pattern data, providing the estimates of the coefficients of all the terms that
characterize the intensity.
Then, the estimated intensity is taken as the true one and the cluster or correlation
parameters are estimated using either themethod of minimum contrast (Pfanzagl 1969;
Eguchi 1983; Diggle 1979; Diggle and Gratton 1984; Møller et al. 1998; Davies and
Hazelton 2013; Siino et al. 2018), Palm likelihood (Ogata and Katsura 1991; Tanaka
et al. 2008), or composite likelihood (Guan 2006).
The most common technique for this second stage is the minimum contrast, and it is
the method which we shall refer to here.
Log-Gaussian Cox processes are one of the most prominent clustering models. By
specifying the intensity of the process and the moments of the underlying Gaus-
sian Random Field (GRF), it is possible to estimate both the first and second-order
characteristics of the process. Following the inhomogeneous specification in Dig-
gle et al. (2013), a LGCP for a generic point in space and time has the intensity

(u, t) = λ(u, t) exp(S(u, t)) where S is a Gaussian process with E(S(u, t)) =
μ = −0.5σ 2 and so E(exp S(u, t)) = 1 and with variance and covariance matrix
C(S(ui , ti ), S(u j , t j )) = σ 2γ (r , h) under the stationary assumption, with γ (·) the
correlation function of the GRF, and r and h some spatial and temporal distances.
Following Møller et al. (1998), the first-order product density and the pair correla-
tion function of an LGCP are E(
(u, t)) = λ(u, t) and g(r , h) = exp(σ 2γ (r , h)),
respectively.
Driven by a GRF, controlled in turn by a specified covariance structure, the implemen-
tation of the LGCP framework in practice requires a proper estimate of the intensity
function. Usually, this is achieved through the maximization of the Poisson likelihood
in Eq. (1), with all the challenges already introduced. We substitute the fitting of the
first-order intensity function with the proposed minimum contrast procedure, making
the two-step minimum contrast estimation procedure as follows:

• The intensity parameters θ are estimated by minimizing either M(θ) in Eq. (8)
or MR

tot (θ) in Eq. (9), depending on the necessity (instead of the maximising
likelihood of the Poisson process with intensity λ(·; θ))

• The interaction/covariance parametersψ are estimated byminimizing the discrep-
ancy between a second-order summary statistics (either the pcf or K -function) and
its theoretical value under the assumed covariance function.

In particular, we propose to perform the second step relying on the joint minimum
contrast (Siino et al. 2018) procedure for obtaining the interaction parameters ψ

MJ (ψ) =
∫ hmax

h0

∫ rmax

r0
φ(r , h){ Ĵ (r , h) − J (r , h;ψ)}2drdh,

with Ĵ (r , h) the estimate of the second-order summary statistics and J (r , h;ψ) its
theoretical value depending on the functional form assumed for the covariance struc-
ture.
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Table 1 Means, MSE, and SE values of the estimates obtained over 1000 simulations for the purely spatial
scenarios

Process E [n] True par Mean MSE SE

Homogeneous Poisson 500 θ0 = 6.21 6.21 0.002 0.03

Inhomogeneous Poisson 500 θ1 = 8.34 8.64 2.81 0.69

Inhomogeneous Poisson 500 θ0 = 2 3.37 2.12 20.06

θ1 = 6 4.03 2.06 23.71

Inhomogeneous Poisson 500 θ0 = 2 2.01 2.83 0.79

R ∈ [0.25, 10] Eq. (14) θ1 = 6 5.96 2.81 1.52

Inhomogeneous Poisson 500 θ0 = 2 1.94 2.89 0.87

R = 2.5 θ1 = 6 6.02 2.89 1.52

Inhomogeneous Poisson 500 θ0 = 2 1.81 3.01 0.91

R ∈ [0.25, 10] Eq. (13) θ1 = 6 6.22 3.04 1.69

We would like to emphasize that in this paper, particularly in the simulation studies,
we execute the first step using the proposed procedure based on the K -function, and
the second step through the pair-correlation function.

4 Simulation results

In this section, we report some experimental results, for illustrating the proposed
estimation procedure, both for the space and spatio-temporal case. Note indeed that
the whole theory introduced in Sect. 3 is easily implementable for the purely spatial
case, as the theory regarding the properties of global and local weighted second-order
statistics holds the same. We refer to Adelfio et al. (2020) and references therein.

4.1 Space

We simulate 1000 spatial point patterns from three different purely spatial point pro-
cesses in the unit square with 500 points on average following these scenarios:

1. homogeneous Poisson process with constant intensity λ = exp(θ0);
2. inhomogeneous Poisson process with intensity λ(x, y) = exp(θ1x);
3. inhomogeneous Poisson process with intensity λ(x, y) = exp(θ0 + θ1x).

Table 1 shows the results of the proposed minimum contrast estimation procedure,
reporting the means, MSE, and standard errors (SE) of the estimates obtained for the
1000 replications. The spatial lags in the K -function are 153 values ranging between
0 and 1/4 of the maximum distance.

The procedure performs effectively when the parameter to be estimated is unique.
However, challenges arise in the third scenario, likely stemming from issues related to
parameter identifiability. Indeed, as anticipated in Sect. 3, theminimumof the objective
function in Eq. (8) is not unique, but the combination of the estimated parameters
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represents the best fit in terms of intensity. Therefore, we proceed by adding a penalty
to the already employed objective function only for the third scenario.

Having simulated from known parameters, we choose the radius R to be used in
the penalization procedure as the one minimizing the discrepancy between the true
parameters and the estimated ones. Formally:

R̂ = argmin
R

∑
j

(θ j − θ̂ j,R)2

θ̂ j,R
. (14)

We explore different ranges for R, omitted for brevity in Table 1, and we note that
the choice of the R range, in the minimization of Eq. (14), does not seem to be rele-
vant. Indeed, the penalization procedure clearly overcomes the identifiability problem
previously encountered. Moreover, we can spot smaller standard errors than the unpe-
nalized version. Another relevant result is that the mean of all the selected R values
over the 1000 simulations, i.e. R= 2.5, leads to comparable results. We interpret this
numerical result as an indication that an optimal value of R should exist, which is
related to the combination of the true parameters.

Naturally, in real data applications, one does not have the knowledge of the true
parameter values, making it impossible to carry out the minimization as described in
Eq. (14). Therefore, we proceed by employing the tuning parameter selection criterion
proposed in Sect. 3.1. It is important to note that further investigations could be con-
ducted to assess the performance of the R selection procedure as outlined in Sect. 3.1.
However, at the time of writing, the testing of the R selection procedure falls outside
the scope of this research.

4.2 Space–time

Moving to the spatio-temporal context, we simulate 1000 spatio-temporal point pat-
terns in the unit cube with 500 points on average from the following point processes:

1. homogeneous Poisson process with constant intensity λ = exp(θ0);
2. inhomogeneous Poisson process with intensity λ(x, y, t) = exp(θ0 + θ1x).

The spatial and temporal distances used in the observed weighted K -functions are
15 values ranging from 0 to rmax , equal to 1/4 of the maximum (spatial or temporal)
distances.

Table 2 reports the means, MSE, and SE of the estimates of the two considered
processes, obtained over 1000 simulations.

We notice that the mean of the intensity function for the homogeneous scenario
appears systematically overestimated. For the inhomogeneous point processes, we
employ the penalized procedure with radius R = 2.5 since, as noticed in the purely
spatial case, this tends tomake the estimated parameters more similar to the true values
than in the unpenalized case.
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Table 2 Means,MSE, and SE values of the estimates obtained over 1000 simulations for the spatio-temporal
scenarios

Process E [n] True par Mean MSE SE

Homogeneous Poisson 500 θ0 = 6.21 6.27 0.006 2.62

Inhomogeneous Poisson 500 θ0 = 2 2.85 2.38 1.19

R = 2.5 θ1 = 6 4.89 2.34 1.52

Table 3 Mean and quartiles of the distributions of the estimated local parameters, averaged over 100
simulated point patterns

Process E [n] True par 25% 50% (MSE) Mean (MSE) 75%

Inhomogeneous Poisson 500 θ0 = 2 − 1.28 3.55 (2.10) 2.59 (2.49) 6.08

θ1 = 6 0.95 4.34 (2.10) 5.09 (2.34) 9.50

Inhomogeneous Poisson 500 θ0 = 2 0.95 2.49 (2.51) 3.09 (2.22) 4.44

R = 2.5 θ1 = 6 2.87 5.39 (2.45) 6.12 (2.96) 9.08

MSE values come in parentheses

4.2.1 Local space–time

Section 3.2 introduced the further advantage of our proposal, showing the possibility
of fitting local parameters. Preliminary analyses not reported for brevity showed a
systematic overestimation of the local parameters in the homogeneous case. Moving
to the inhomogeneous scenario, we show results averaged over 100 simulated patterns
in Table 3.

The means and medians are similar to the true values of the parameters, and the
variability of the local estimates is smaller when adding the penalty. For the consid-
ered simulation scenarios we highlight that the fitted intensity, obtained imputing the
average of the local parameters, greatly resembles the true one.

4.3 Convergence study

Having assessed the performance of the proposed procedure, we now proceed to
investigate the impact of varying sample sizes in the simulated patterns to gain a
deeper understanding of the convergence behavior.
At this scope, Tables 4 and 5 contain themeans,MSE, and SE of the estimates obtained
over 100 simulations of both homogeneous and inhomogeneous processes, for three
sample sizes: E [n] = {250, 500, 750}.
Table 4 reports results for the purely spatial scenarios, while Table 5 contains those
of the spatio-temporal one. In both cases, we employed the R = 2.5 penalization for
the inhomogeneous processes, as it proved to be the optimal value in the previous
simulations.

We have established that the most favorable scenario for our proposal is the purely
spatial homogeneous one, characterized by minimal bias and limited variability in the
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Table 4 Means,MSE, and SE of the estimates obtained over 100 simulations for the purely spatial scenarios

Process E [n] True par MC MLE

Mean MSE SE Mean MSE SE

Homogeneous Poisson 250 θ0 = 5.52 5.51 0.004 0.03 5.51 0.004 0.06

500 θ0 = 6.21 6.21 0.002 0.03 6.22 0.002 0.04

750 θ0 = 6.62 6.62 0.001 0.03 6.62 0.001 0.04

Inhomogeneous Poisson 250 θ0 = 1.3215 1.49 0.26 0.95 1.31 0.10 0.34

R = 2.5 θ1 = 6 5.59 0.54 1.44 6.00 0.14 0.40

500 θ0 = 2 1.89 0.13 0.87 1.95 0.05 0.24

θ1 = 6 6.09 0.21 1.52 6.05 0.07 0.29

750 θ0 = 2.42 2.27 0.11 0.79 2.41 0.04 0.19

θ1 = 6 6.29 0.21 1.59 6.02 0.06 0.23

Table 5 Means, MSE, and SE of the estimates obtained over 100 simulations for the spatio-temporal
scenarios

Process E [n] True par MC MLE

Mean MSE SE Mean MSE SE

Homogeneous Poisson 250 θ0 = 5.52 5.59 0.01 2.33 5.59 1.06 0.06

500 θ0 = 6.21 6.27 0.006 2.62 6.26 0.13 0.04

750 θ0 = 6.62 6.68 0.005 2.79 6.69 0.006 0.04

Inhomogeneous Poisson 250 θ0 = 1.3215 2.43 2.21 0.78 1.84 0.33 0.33

R = 2.5 θ1 = 6 4.56 3.46 0.78 5.37 0.49 0.39

500 θ0 = 2 2.76 0.92 0.72 2.53 0.33 0.23

θ1 = 6 5.01 1.58 0.74 5.33 0.50 0.27

750 θ0 = 2.42 3.18 0.94 0.71 2.97 0.33 0.19

θ1 = 6 5.01 1.65 0.74 5.32 0.50 0.22

estimates. The sample size primarily impacts theMSE, which naturally decreases with
the increasing number of points in the simulated pattern, as expected.
In contrast, the spatio-temporal estimates of the homogeneous intensity exhibit a higher
level of bias, providing a slight overestimation of the single parameter.
Focusing to the inhomogeneous case, we observe that both the spatial and spatio-
temporal scenarios display some degree of bias. Among these scenarios, the one with
500 points stands out as the most favorable. This is likely due to the value of R set to
2.5, which was actually obtained from simulations with that sample size.
However, the MSE value shows minimal improvement as the number of points
increases, moving from 500 to 750 points, whether in spatial or spatio-temporal con-
texts.
Moving to the comparison with MLE results, we can note there are differences in
the standard errors and performance of these methods in different scenarios. In the
spatial homogeneous case, MLE and MC results are pretty similar and MLE standard
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errors are slightly higher than theMC ones. In the homogeneous spatio-temporal case,
MLE standard errors are quite smaller than MC standard errors, that is, MLE provides
more precise and reliable parameter estimates compared to MC in this particular
scenario. In inhomogeneous cases (both spatial and spatio-temporal), we can still
note a difference in standard errors between MLE and MC but of lower magnitude,
suggesting that MLE still outperforms MC in terms of parameter estimation, but the
difference is not as pronounced as in the homogeneous spatio-temporal case. Finally,
the better performance in spatial contexts is attributed to the additional complexity of
the temporal component in the spatio-temporal scenarios. In summary, as expected,
it seems that MLE performs slightly better, mostly for scenarios involving spatio-
temporal complexity, as it provides more precise parameter estimates with smaller
standard errors compared to MC. However, our proposal may represent a promising
and valid alternative, especially when considering the computational complexity of
the specific statistical methods and observed data.

4.4 External covariates

This section addresses the further challenge of estimating the first-order intensity
function depending on external covariates. In spatial point process theory, these are
known as spatial covariates, and they pose additional challenges with respect to the
most common homogeneous or inhomogeneous Poisson processes since, for compu-
tational feasibility, their value must be known theoretically at each location.
In real data analysis, external covariates, often representing environmental phenomena,
are not collected in the same detail as the observed pattern.
This implies that the standard quadrature scheme must either be customized to align
with the locations of covariates or, conversely, external covariate values must be inter-
polated at the positions of both data and dummy points. Naturally, this requirement
can complicate the implementation of the quadrature scheme method, particularly as
the number of covariates increases, considering that each covariate may potentially be
gathered at distinct sites.
Here we illustrate an example of a spatial point pattern whose realization is assumed to
depend on an external covariate, to prove the applicability of ourmethod. It’s important
to highlight that a notable advantage of our proposedmethod is that precise knowledge
of covariate values is required only at the data point locations. The advantage of this
approach is its capability to treat both marks and spatial covariates in a consistent
manner within the linear predictor of the fitted first-order intensity function.
The Italian catalogue considered in this section is downloaded from the Istituto
Nazionale di Geofisica e Vulcanologia (INGV) archive. As done in D’Angelo et al.
(2022), we focus on the seismic sequence of the Abruzzo region. Therefore, the anal-
ysed earthquakes that occurred between May 2012 and May 2016 in Abruzzo are
displayed in the left panel of Fig. 2, consisting of 85 events with 2.5 as the threshold
magnitude. On the right panel of Fig. 2, we display the spatial covariate, whose effect
on the intensity of earthquakes we are interested in studying: the distance from the
nearest seismic station, henceforth denoted Dns(u).
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Fig. 2 Left panel: Earthquakes occurred in Abruzzo between May 2012 and May 2016, consisting of 85
events with 2.5 as the threshold magnitude. Right panel: Spatial covariate representing the distance to the
nearest seismic station

Table 6 Estimates of model for
the Italian earthquake data
obtained by MLE and MC
procedures

MLE MC

Estimate SE Estimate SE

Intercept 4.83 0.20 5.36 0.35

Distance − 0.08 0.02 − 0.06 0.05

We therefore proceed by fitting the following model

λ(u) = exp(θ0 + θ1Dns(u)). (15)

Table 6 contains the estimates of the model for the Italian earthquake data obtained
by both MLE and the MC procedures.

As expected, the MC procedure tends to estimate higher values for the intercept.
Furthermore, both MLE and MC estimate a negative covariate’s coefficient.
A negative value of the coefficient of the spatial covariate is reasonable since usually,
as the distance from the nearest station recording the event increases, the intensity
decreases, as detection of earthquakes is usually more accurate if they occur not far
from the network station. This result is in line with those in D’Angelo et al. (2022).
To corroborate these results and reinforce the numerical experiments already shown,
we run simulations in the presence of an external spatial covariate.
In particular, we simulate 100 realizations from the model in Eq. (15), with the MLE
estimated parameters as the true ones, that is, with θ0 = 4.83 and θ1 = − 0.08. Figure
3 shows the obtained intensity function used to simulate the patterns (left panel) and
an example of a simulated pattern (right panel).

Table 7 shows the result for this scenario and also those where the number of points
has increased by the double and the quadruple. In these scenarios, the true coefficient
of the spatial covariate is kept fixed, and the number of points is increased by adding
the logarithm of 2 and 4, respectively, to the true intercept.

TheMC procedure accurately estimates values close to the true ones. Hence, again,
its performance appears to be robust and relatively independent of the sample size.
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Fig. 3 Left panel: Intensity function used to simulate the patterns. Right panel: One pattern simulated
according to the intensity function

Table 7 Means, MSE, and SE values obtained over 100 simulations from the model in Eq. (15), both for
MC and MLE methods, for three different sample sizes

MC (R = 0.5) MLE E [n]
Mean Mean MSE SE Mean MSE SE

Intercept 4.83 4.81 0.03 0.19 4.63 0.08 0.34 87.33

Distance − 0.08 − 0.08 0.0002 0.02 − 0.06 0.0006 0.03

Intercept 5.52 5.5 0.02 0.14 5.45 0.35 0.35 175.81

Distance − 0.08 − 0.08 0.0001 0.01 − 0.08 0.01 0.03

Intercept 6.21 6.19 0.01 0.10 6.29 0.55 0.34 349.11

Distance − 0.08 − 0.08 0.00008 0.008 − 0.09 0.01 0.03

We note that both methods in Eqs. (14) and (13), independently select the same
value of R = 0.5, providing strong evidence that our selection process is robust and
reliable.
A further notice regards the comparison between MC and MLE estimates. The MC
estimates exhibit lower bias, with smaller MSE and standard errors when compared to
the MLE method. This difference in performance may be due to the application of the
radial penalty, with the penalty radius R optimized for this specific case, enhancing
the accuracy of the MC estimates compared to the MLE method in this particular
scenario.

4.5 Log-Gaussian Cox processes

This section is devoted to the assessment of the two-step minimum contrast procedure
introduced in Sect. 3.3, specifically tailored for LGCPs.
We consider a scenario used in Siino et al. (2018), used there to compare the per-
formance with that of the then-proposed joint minimum contrast (JMC) estimation
method.
The objective is to investigate the possible differences in the estimates of interaction
parameters when the summary statistic used in the second stage is weighted by a
first-order intensity function estimated through our proposed method.
We consider a separable structure for the covariance function of the GRF (Brix and
Diggle 2001) that has exponential form for both the spatial and the temporal compo-
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Table 8 Estimates’ means and
MSE values of 200 simulated
log-Gaussian Cox processes
with 1000 expected number of
points, obtained by both the
MLE and MC procedure at the
first step, and minimum contrast
based on JMC at the second

True values MLE MC

Mean MSE Mean MSE

σ 2 5 6.54 5.03 6.57 3.88

α 0.05 0.08 0.001 0.05 0.0002

β 2 2.43 0.92 1.79 0.40

nents, C(r , h) = σ 2 exp(−r/α) exp(−h/β), where σ 2 is the variance, α is the scale
parameter for the spatial distance and β is the scale parameter for the temporal one.
200 point patterns are generated with n = 1000 expected number of points in the
spatio-temporal windowW ×T = [0, 1]2×[0, 50], with constant first-order intensity
equal to b = log(n/|W × T |) = 20.
We consider a moderate degree of clustering in the processes with variance σ 2 = 5
and scale parameters in space and time, α = 0.10 and β = 2. The mean of the GRF
is fixed μ = −0.5σ 2.
Table 8 reports the estimates’ means and MSE values of the 200 simulated log-
Gaussian Cox processes obtained with the MLE and MC procedure at the first step
and the JMC procedure at the second one.

These results are indeed quite promising, especially when considering the second-
order parameter estimates obtained using the MCmethod in the first step. While these
estimates differ from theMLE results, they still provide comparable outcomes. Indeed,
the variance parameter tends to be overestimated; however, the spatial and temporal
range parameter estimates are way more precise compared to those obtained using
MLE in the first stage. This improvement can be attributed to the estimated value of
the first-order constant intensity function, which has an average of 29.33 when using
the MC method, higher than the value of 20 estimated by MLE.

5 Applications to real data

This section is dedicated to the analysis of real datasets using the newly proposed
inferential framework, with a specific emphasis on the local characteristics of the
point patterns.

5.1 Analysis of copper data

We examine the Berman–Huntington points and lines dataset, also analyzed by Bad-
deley (2017). The origins and analysis of these data were first presented by Berman
(1986) and have since been explored by Berman and Diggle (1989), Berman and
Turner (1992), Baddeley and Turner (2000), Foxall and Baddeley (2002), Baddeley
et al. (2005), to cite a few.
These data were collected during an extensive geological survey of a regionmeasuring
70 × 158 km in central Queensland, Australia. The dataset comprises 67 points rep-
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Fig. 4 Left panel: Berman–Huntington points and lines dataset. Black points are the locations of copper ore
deposits, and grey lines are the geological linements. Right panel: The available covariate for the copper
data: Distance from the faults (D f (u)), computed as the Euclidean distances from the spatial location u of
events and the map of geological information

Table 9 Estimates of model for the copper data in Eq. (16) obtained by MLE and MC procedures

MLE MC

Estimate SE Estimate SE

Intercept − 4.93 0.18 − 4.52 0.0003

Distance from the faults − 0.10 0.08 − 0.11 0.0001

resenting copper ore deposits and 146 line segments depicting geological lineaments
(left panel of Fig. 4).

Lineaments, visible on satellite imagery, are linear features primarily believed to
be geological faults (Berman 1986). Typically, the focus lies on predicting copper
deposits based on the pattern of these lineaments, which can be readily observed in
satellite images.
For this reason, we construct the spatial covariate Distance from the faults (D f ),
computed as the Euclidean distances from the spatial location u of events and the map
of geological information (Baddeley et al. 2015). The covariate surface is displayed
in the right panel of Fig. 4.

We proceed by fitting the following model for the copper ore deposit intensity

λ(u) = exp(θ0 + θ1D f (u)). (16)

The estimates and their uncertainty are reported in Table 9.
The difference between the unpenalized and the penalized procedure is negligible,

both in terms of estimates and standard errors, suggesting that the unpenalized proce-
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Fig. 5 Smoothed local parameters. Top panels:MLE estimates. Bottompanels:Minimumcontrast estimates

dure suffices for this particular scenario.Wewant to reiterate the noteworthy similarity
between the MC estimates and the MLE estimates.

Finally, we also compare the MC local estimation approach with that of Baddeley
(2017). This means to fit the following model, with space-varying parameters

λ(u) = exp(θ0(u) + θ1(u)D f (u)). (17)

Note that this model differs from the one in Eq. (16) since both the parameters are
indexed by the spatial location u.

Figure 5 reports the smoothed local estimates for both parameters and both estima-
tion procedures.

These findings highlight the higher variability of the MC estimates in comparison
to the MLE estimates. Furthermore, the relatively smoother MLE estimates can be
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Table 10 Estimates’ values (SE
in brackets) of the log-Gaussian
Cox processes applied to the
Greek earthquake data with the
MLE and MC procedure at the
first step

MLE MC
Estimate (SE) Estimate (SE)

λ 0.006 (0.030) 0.007 (0.000)

σ 2 8.15 10.95

α 0.23 0.18

β 83.97 51.69

attributed to the underlying kernel technique employed in the log-likelihood function,
which is optimizedduring theMLEprocess.On theother hand, theMCprocedure tends
to identify more distinct and separated regions in individual point spatial domains.
However, it’s important to note that a substantial portion of the analyzed region, such
as the right-center part, exhibits different values of intensity. This variation is likely
attributed to the presence of kernel smoothing artefacts, which can lead to localized
inconsistencies in the estimated intensity values.

5.2 Analysis of Greek seismicity

For this last scenario, we consider the same data analysed in D’Angelo et al. (2022),
related to 1111 earthquakes that occurred in Greece between 2005 and 2014, coming
from the Hellenic Unified Seismic Network (H.U.S.N.), with the specific aim of fitting
both a global and a local version of Log-Gaussian Cox process (LGCP)model. Indeed,
D’Angelo et al. (2023a) proposed a local version of spatio-temporal log-Gaussian
Cox processes by using Local Indicators of Spatio-Temporal Association (LISTA)
functions plugged into the minimum contrast procedure to obtain space as well as
time-varying parameters of the covariance structure. The dataset and the functions to
fit both global and local LGCPs are available from the R Core Team (2023) package
stopp (D’Angelo and Adelfio 2023).

Our specification involves a constant intensity for the first-order intensity function.
Therefore, our primary focus is to investigate how variations in the estimate of the first-
order intensity function affects the estimation of the second-order structure, following
the approach taken in our previous numerical experiments. Specifically, we utilize
the same separable doubly exponential covariance function to ensure a comparable
evaluation for our purpose.
Table 10 reports the estimates of the log-Gaussian Cox processes applied to the Greek
earthquake data with the MLE and MC procedure at the first step.

The covariance parameters are obtained by using the pair-correlation function in
the second step, weighted by the first-order intensity function previously estimated.
As expected, in the first step, the MC procedure tends to estimate a higher first-order
constant intensity function, and this influence is evident in the estimates of the covari-
ance function. The MLE procedure, on the other hand, appears to attribute a greater
portion of the process’s variability to the clustered structure of the pattern, resulting
in smaller variance and higher range parameters. Otherwise, the MC procedure yields
an overall higher estimate of the first-order constant intensity function, but less dense
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Fig. 6 Local estimates of the local LGCP fitted to the Greek seismic data, with the MC method for the
estimation of the first-order intensity function

clusters with higher variance and smaller range parameters. In other words, the two
methods seem to interpret and model the underlying spatial structure differently, with
implications for the estimated covariance function and the overall pattern characteri-
zation.

Note that the magnitude of the parameters, particularly the covariance parameters,
depends on spatio-temporal units. Consequently, both MLE and MC procedures may
provide overall higher values. In other words, both procedures may lead to the overall
conclusion that the observed pattern exhibits clustering characteristics. Indeed, pre-
vious studies showed that this seismic catalog clearly exhibits a clustered structure
which can be well described by an LGCP.
Furthermore, D’Angelo et al. (2023a) showed that a local version of the LGCP further
improves the fitting to the data. For this reason, we proceed by fitting a local LGCP to
the data, again with both the estimates (MLE and MC) at the first step, and compare
the results.
With local LGCP, we mean that the first-order intensity function is the same (global
one) previously fitted and reported in Table 10, but we fit individual interaction param-
eters for each of the points in the observed pattern. Of course, we also expect these
local estimates to change if compared to the ones obtained using MLE at the first step.
Figure 6 shows the result of the two-step minimum contrast fitting.

As expected, the local estimates slightly change between the two methods. Indeed
the conclusions one could draw from this application could be the same as inD’Angelo
et al. (2023a), meaning that both estimations permit to observe regions where points
tend to cluster in smaller clusters (bottom right area: small variance and high range
parameters) and other where clustering is more mild.
However, we still identify some differences, particularly regarding the MC selecting
a smaller area with the most dense clustering.

6 Conclusions and future work

This paper presents a novel fitting procedure for the first-order intensity function of
point processes, based on the minimum contrast procedure. Knowing the expectation
of the K -function when weighted by the true intensity function, we utilize this result
to construct a model estimation procedure that is adaptable to any model specification.
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The only prerequisite is the knowledge of the expression of the first-order intensity
function, completely circumventing the need to face the likelihood, which can often
be complex to maximize, in point process models.

Themotivation behind our research stems from the desire to simplify the estimation
process and broaden its applicability. By employing the expectation of the weighted
K -function, our method offers an intuitive solution to the complexities associated
with point process models. In detail, compared to MLE and standard point process
estimation methods, our method completely avoids dealing with the likelihood and,
therefore, avoids the complexities of its two- or three-dimensional integrals. Turning
to the local estimation context, our method is able to provide local estimates without
introducing any additional complexity, than the global estimation.

This paper particularly deals with Poisson process models, whose likelihood rep-
resents the foundation of many more complex models.

We have presented simulated results for both purely spatial and spatio-temporal
contexts, along with the analysis of two real datasets related to environmental issues.
These real datasets serve to illustrate more complex scenarios than the Poisson one.
An important finding from our simulation studies is that our approach appears to be
robust to variations in sample size, whether in spatial or spatio-temporal patterns.
This finding is particularly relevant as it suggests that our method may not require
exceptionally large datasets to yield reliable results.

In conclusion, our approachopens the path for future researchutilizing theminimum
contrast procedure for first-order intensity estimation in considerably more complex
models than the Poisson model, as already sketched in this study.

It is important to stress that the results presented in this paper concerning the Poisson
case are highly noteworthy. Indeed, in our approach, we have entirely overcome the
need for likelihood maximization and the subsequent approximation of the integral
over the intensity function. Furthermore, we have not required any quadrature scheme
or the selectionof kernelweights for local estimation.Despite these simplifications, our
method has yielded results that are comparable to those obtained through Maximum
Likelihood Estimation. This highlights the effectiveness and validity of the proposed
approach, which can significantly reduce the computational complexity, maintaining
accuracy and reliability in parameter estimation, and producing results that do not
deviate much from the more traditional MLE approach.

Many research paths could be deepened in future. First, we believe that the opti-
mization procedure could be improved by weighting the objective function in Eq. (8)
by a φ(r , h) function. This would basically correspond to giving more importance
to some specific spatial and temporal lags. For instance, Diggle (2013) suggested
using φ(r , h) to weight the discrepancy measure by the inverse (approximate) vari-
ance of the K -function (in which Guan and Sherman (2007), used their sub-sampling
method to achieve). The variance of the K -function, however, is typically unknown.
For a spatial Poisson process, it is suggested to use φ(r) = r−2, but no other spe-
cific recommendations for other types of process are given. Then, we want to run
extended simulation studies to assess the performance of the proposed procedure in
more complex settings, for instance, with Self-Exciting models such as the Epidemic-
Type Aftershock-Sequence (ETAS) ones (Ogata 1988).

123



Minimum contrast for the first-order intensity estimation...

Furthermore, in parallel to our idea, Kresin and Schoenberg (2023) showed that
parameters in spatio-temporal point process models, alternatively to MLE, can be
estimated consistently, under general conditions by minimizing the Stoyan-Grabarnik
statistic. Therefore, we wish to compare our proposal based on the K -function to
Kresin and Schoenberg (2023)’s proposal.
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