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Abstract
The increasing computational power has led to an increasing interest in Fisher’s test in
social science. As the Fisher and Neyman inference are based on different principles
there is also an increasing interest in understanding the differential features of the
two procedures. For example, Young (2018) found that the Fisher test has better size
properties than the Neyman test in the situation with influential observations. Ding
(2017), on the other hand, showed that the asymptotic variance of the mean-difference
estimator (MDE) under Fisher inference is larger than that under Neyman inference,
and that the asymptotic Fisher test is less powerful than the t-test even for the simplest
case of homogeneous effect. SinceMDE plays an important role for policy evaluation,
these latter results are a concern for using Fisher’s test as argued inYoung (2018).With
the aim of providing an understanding of the usefulness of the exact Fisher test for
inference to the sample and to the population, this paper clarifies the results in Ding
(2017). Using a novel Monte Carlo simulation following the same data generating
processes as in Ding (2017), we demonstrate that the Fisher test has no worse power
properties than the t-test even with heterogeneous effects.

Keywords t-statistic · Randomization test · Size · Power

1 Introduction

The testing problem of a population null hypothesis was of interest to Neyman and
Pearson but not to Fisher. The differential approach to the philosophy of science
between Neyman–Pearson and Fisher is quite discernible in Fisher’s own polemic
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article wherein he put it as differences in logical points of view (see Fisher 1955, p.
69). He further stated

. . . we consider a continuum of hypotheses each eligible as null hypothesis, and
it is the aggregate of frequencies calculated from each possibility in turns as
true—including frequency of error, therefore only the “first kind”, without any
assumption of knowledge a priori–which supply [ ] the amounts of information
available.

Basically, Fisher’s argument concerned two issues with the Neyman–Pearson theory:
(i) the assumption of repeated sampling from the same population, and (ii) the defini-
tion of errors of the second kind (type II error). For him, all one can do from a single
experiment is to make inferences to the sample. Extrapolating the result by assuming
repeated random sampling from a well-defined population with an aim of testing a
population null made no sense for him.

Under the sharp null of no effect for any unit, the Fisher randomization test is a valid
procedure for inference to the sample. The test has the correct level for an effect in
the sample without needing any further assumption (Rubin 1980, 1986; Rosenbaum
2007). Under the additional stable unit treatment value assumption (Rubin 1980) the
test has the correct level for, e.g. testing for an average treatment effect in the sample.
Thus, with an interest of testing an average treatment effect in the sample we could
either use the Fisher randomization test or the Neyman’s test (a t-test) (cf. Ding 2017).

The motivation for this article stems from interesting results in Ding (2017) who
compared the power of randomization test with the t-test for design based inference
to the sample. Using finite population asymptotic theory, Ding (2017) showed that
Fisher’s test statistic, based on themean-difference estimator (MDE), is approximately
normal under the sharp null. He concludes that, if this normal approximation is used
under the alternative, the Fisher test is less powerful than the t-test even for the simplest
case of homogeneous effect. Moreover, the relative power of the t-test against Fisher’s
test is shown to be increasing with the size of the treatment effect.

The growing interest in the Fisher’s test based on the MDE in social science (Athey
and Imbens 2017; Young 2018) for inference to the superpopulation makes these
results important and relevant to examine. One reason is that the results in Ding
(2017) are only established under the null, so that any possibility of revealing the
otherwise differences under the alternative remains unexplored. A second reason is
that the results in Ding (2017) are in contrast to theoretical results based on repeated
sampling, or superpopulation, assymptotics1 and empirical results on Fisher inference
to the superpopulation (Young 2018). The increasing popularity of computer based
experimental designs2 makes up yet a reason. The reason is that for some of these
algorithms Neyman–Pearson inference is not an option, but the Fisher randomization
test is. Thus, if this test is less efficient than the Neyman test, this suggests that the
efficiency gains from some of the designs may well be lost when conducting the
inference.

1 For example, Lehmann (1959); Romano (1990); Chung and Romano (2013).
2 For example, Morgan and Rubin (2012); Bertsimas et al. (2015); Kallus (2018); Lauretto et al. (2017);
Krieger et al. (2019); Johansson and Schultzberg (2020); Kapelner et al. (2021); Johansson et al. (2021).
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In line with Fisher we define the population null as the scientific null and the sample
null as the statistical null. We discuss super population asymptotics and finite popula-
tion asymptotics for both Neyman and Fisher randomization test based on the MDE
for the two estimands; the population average treatment effect (PATE) and the sample
average treatment effect (SATE). Following the same data generating processes as in
Ding (2017), we then conduct a simulation study to assess the power properties of
Fisher’s test based on MDE for inference to both the PATE and SATE. To our knowl-
edge, this simulation study is the first of its kind, expectedly due to the computational
complexity of calculating power of the Fisher randomization tests.

Our simulation results show no overall superiority of Neyman’s test over Fisher’s
test for any effect size. Instead, the property of a test being most powerful in this
case seems to depend on the characteristics of the outcomes in the given sample. For
most samples, and over most subsets of allocations, however, the tests show similar
performance.

In addition, we find that with heterogeneous treatment effect, both tests have in
general the wrong size when testing the population null in a single experiment. The
results illustrates Fisher’s concern about the “continuum of hypotheses each eligible
as null hypothesis”. The general attitude in the research community is that the t-test
is preferable to the exact test as it is not restricted to the unrealistic assumption of
homogeneous treatment effects. However, with heterogeneous effects the statistical
null differ from scientific null. The implication is that size of test against a scientific
null is in general only correct under repeated sampling from the same population and
this holds for both tests.

The results also display that finite sample asymptotics is useful as it allows for
Neyman–Pearson design based inference for a fixed, and quite small, sample size.
However, it also shows that a comparison of repeated sampling inference with design
based asymptotics is not meaningful as asymptotically theMDE has the same variance
and SATE equal PATE.

It may also be added that our results are in line with those in Young (2018) who
studied the differences in performance for the inference to the population usingMonte
Carlo simulation and reanalyzed 53 experimental papers culled from the journals of
the American Economic Association. He found similar performance when there are no
influential observations, but that the exact Fisher test based on the t-statistic (Chung
and Romano 2013) has better size properties than the Neyman test. Note further that
our focus is on the sample, or experiment, which clarifies the case for both tests with
inference to the sample in case of heterogeneous effects. Since Young (2018)’s focus
is on differences in inference to the population, the two studies are complementary to
each other.

We may also refer to a few recent variants and extensions of the theory in different
directions. Ding and Dasgupta (2018), by re-formulating the testing problem of an
equal average treatment effect as a general linear hypothesis (GLH) test, consider
Wald, ANOVA-type, and least-squares based test statistics, with emphasis on certain
special cases. Wu and Ding (2021) discuss certain alternative strategies to Fisher’s
randomization test to test equality of average treatment effects. By re-formulating
the testing problem as a general linear hypothesis (GLH), using an appropriate GLH
matrix consisting of contrast comparisons, they consider Wald, ANOVA-type, and
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least-squares based test statistics, with focus on certain special cases. The same testing
problem is also considered in Zhao and Ding (2021), additionally by adjusting the
responses for the presence of covariates.

We begin, in the next section, with a brief orientation to theNeyman and Fisher lines
of inference using Neyman (1923)’s potential outcome framework. The simulation
scheme, comparing power of Neyman test and exact Fisher randomization test (FRT)
with large n, is discussed in Sec. 3, where its results are presented and discussed in
Sec. 4. The paper concludes with some general discussion in Sec. 5.

2 Neyman and Fisher inference

LetYi (w) ∈ R denote the potential outcome for unit i with binary indicatorw referring
to the treatment group, i.e. w = 1 implies treatment and w = 0 implies control. In a
completely randomized experiment with n units, n1 units are assigned to the treatment
group andn0 units to the control.As aunit canonlybe assigned tooneof the twogroups,
lettingWi = 1 or 0 if unit i is assigned to treatment or control group, respectively, the
observed outcome can be either Yi (Wi = 1) or Yi (Wi = 0). In a more compact form,
we can thus write an observed outcome for unit i as

Yi = WiYi (1) + (1 − Wi )Yi (0). (1)

Our inference for Yi , or any linear combinations thereof, will be based on the so-
called SUTVA assumption (Rubin 1980), which implies that there is no interference
between individuals and the same treatment. The quantity of our main interest, the
mean difference estimator (MDE), is defined, using (1), as

τ̂ = Y 1 − Y 0, (2)

where

Yw = 1

nw

nw
∑

i :Wi=w

Yi , w = 0, 1.

For the inference of τ̂ , we need additional assumptions to be stated later.
Throughout the paper we consider a sample of size n to be a random sample from
a (potential) finite population of N units, n ≤ N , and special cases thereof. For
clarity, we will index τ̂ to indicate over which distribution we randomize, i.e, what
sampling design is being considered. For example, we let τ̂N ,n denote the estimator
over random sampling from the population and over random treatment assignment
within the random sample. When n = N , we for simplicity denote τ̂N ,n = τ̂n and
when sampling from the super population we denote the estimator τ̂∞,n .
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2.1 Neyman inference

Given population and sample sizes, N and n, respectively, a total of S = (N
n

)

random
samples can be drawn in this set up. Let uns be a vector containing the indices of the
units in the sth sample, for s = 1, ..., S. The sample average treatment effect (SATE)
for the sth sample then follows as

SATE(uns ) = 1

n

∑

i∈uns
(Yi (1) − Yi (0)), (3)

where the population average treatment effect (PATE) is

τ = μ1 − μ0,

with μw = 1
N

∑N
i=1 Yi (w), w = 0, 1, denoting the population mean. Note that with

homogeneous treatment effects SATE(uns ) = τ,∀s = 1, ..., S.
Now, it can be shown that (see Aronow et al. 2014)

V (̂τN ,n) = 1

N − 1

{

N − n1
n1

σ 2
Y (1) + N − n0

n0
σ 2
Y (0) + 2σY (1),Y (0)

}

, (4)

where

σ 2
Y (w) = 1

N

N
∑

i=1

(Yi (w) − μw)2 and σY (1)Y (0)

= 1

N

N
∑

i=1

(Yi (1) − μ1)(Yi (0) − μ0), w = 0, 1.

Likewise, the variance of the heterogeneous treatment effect follows as

σ 2
τ = 1

N

N
∑

i=1

(Yi (1) − Yi (0) − (μ1 − μ0))
2

= σ 2
Y (1) + σ 2

Y (0) − 2σY (1),Y (0),

so that, we can re-write (4) as

V (̂τN ,n) = 1

N − 1

{

N − n1
n1

σ 2
Y (1) + N − n0

n0
σ 2
Y (0) + σ 2

Y (1) + σ 2
Y (0) − σ 2

τ

}

= N

N − 1

{

1

n1
σ 2
Y (1) + 1

n0
σ 2
Y (0)

}

− 1

N − 1
σ 2

τ . (5)

With σ 2
τ fixed, the last term in (5) vanishes and the multiplying factor N/(N −1) → 1

for N → ∞, reducing V (̂τN ,n) to the usual form of variance of two independent
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samples, i.e.,

V (̂τN ,n) =
{

1

n1
σ 2
Y (1) + 1

n0
σ 2
Y (0)

}

[1 + o(1)]. (6)

Then, the standard central limit theorem (CLT) applies under random sampling mech-
anism. It is easy to show (see Theorem 5.1 in the Appendix) that, as n, N → ∞,

τ̂N ,n − τ
√

Var(̂τN ,n)

D−→ N (0, 1), (7)

The proof follows from the discussion above, or as a special case of Example 6 in Li
and Ding (2017).

It is evident that under the super population assumption

τ̂∞,n − τ
√

Var(̂τ∞,n)

D−→ N (0, 1),

but with σ 2
Y (w) = E(Yi (w) − μw)2, μw = E(Yi (w)), w = 0, 1 in (6).

With regard to Neyman’s within-sample inference, let

Y (w) = 1

n

n
∑

i=1

Yi (w) and S2Y (w) = 1

n − 1

n
∑

i=1

(Yi (w) − Y (w))2, w = 0, 1.

This helps us define

V (̂τn) = S2Y (1)

n1
+ S2Y (0)

n0
− S2τ

n
, (8)

as originally given by Neyman (1923), where S2τ is the sample variance of the hetero-
geneous treatment, defined as

S2τ = 1

n − 1

n
∑

i=1

(Yi (1) − Yi (0) − (Y (1) − Y (0))2.

This structure can be used to test Neyman’s SATE hypotheses

Hn
0 (N ) : SATE(uns ) = 0 vs. Hn

1 (N ) : SATE(uns ) �= 0. (9)

Recall also that the corresponding PATE hypotheses are

H0(N ) : τ = 0 vs. H1(N ) : τ �= 0. (10)
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It follows (see Theorem 5.2 in the Appendix) from τ̂n as test statistic that for SATE
hypotheses,

τ̂n − τ√
Var(̂τn)

D−→ N (0, 1), (11)

where Var(̂τn) is given in (8) and τ̂N ,n = τ̂n for N = n, so that SATE(uns ) → τ when
n → ∞.

Neyman (1923) proposed

̂Var(̂τn) = s2Y1
n1

+ s2Y0
n0

, (12)

as a consistent estimator of the variances, simultaneously, for the inference to the
sample (cf. Eqn. 11) and to the population for N → ∞ (cf. Eqn. 7), where

s2Yw
= 1

nw − 1

nw
∑

i :Wi=w

(Yi − Yw)2,

Note that, (12) is obtained by ignoring S2τ /n in V (̂τn) making ̂Var(̂τn) an upper-
bound estimator of Var(̂τn). Under rather weak assumptions (see assumptions (5.1)
and (5.2) in the Appendix) we can replace Var(̂τn) in equation (11) by the Neyman
variance estimator ̂Var(̂τn).

Thus, for a realized experiment where the j th allocation is randomly selected,
j = 1, ...,

( n
n1

)

, the asymptotic p-value of a two-sided test can be approximated by

πN = 2�(−τ̂
j
n /

√

̂

Var (̂τ j
n ))), (13)

where τ̂
j
n is the estimate of the j th allocation based on the sample uns and �(.) is the

distribution function of the normal distribution.
To summarize, the same test statistics are being used for inference to the PATE and

SATE. In order to establish (11) we are implicitly assuming that the experiment is
conducted on the whole populations.

2.2 Fisher’s exact randomization test

Consider Fisher’s null and alternative hypotheses, respectively, as

Hn
0 (F) : Yi (1) = Yi (0) ∀ i ∈ uns vs. Hn

1 (F) : Yi (1) �= Yi (0), i ∈ uns ,

where Hn
0 (F) coincides with Neyman’s null, Hn

0 (N ), in (10) under homogeneous
treatment effect within the sample, i.e. we can write

Hn
0 (F) : SAT E(uns ) = 0 against SAT E(uns ) �= 0.
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The exact Fisher randomization test (FRT) is performed by estimating the treatment
effect under all possible permutations of the ‘potential’ outcomes under Hn

0 (F). To
see this, let A = ( n

n1

)

and let the matrix W = (wi j ) ∈ Rn×A arrange all possible
random allocations in a complete randomized experiment such thatwi j = 0 if unit i is
not treated and wi j = 1 if treated. Denoting Y(w) = (Y1(w), ...,Yn(w))′, w = 0, 1,
the vector of observed outcomes is defined as

Y= W jY(1) + (1 − W j )Y(0),

where W j = (W j
1 , ...,W j

n )′ is the specific allocation vector for j th experiment j =
1, ...A and 1 is a vector of 1’s. The exact p-value for a two-sided hypothesis can then
be obtained as

πF = Pr
{

|̂τ(W,Y)|) ≥ |̂τ j
n ||Hn

0 (F)
}

(14)

where τ̂ (W,Y) is the symmetric distribution of estimates under the null over all A
allocations inW. As this test is derived solely from the actual randomization, the size
of the test is always correct.

To consider the asymptotic case, a direct application of a central limit theorem in
Ding (2017) ensures asymptotic normality of τ̂ (W,Y) under Hn

0 (F), with limiting
variance

Var (̂τ (W,Y|Hn
0 (F)) = n

n1n0
s2,

where s2 = (n − 1)−1 ∑n
i=1(Yi − Y )2 and Y = n−1 ∑n

i=1 Yi . Comparing this vari-
ance of the normal approximation of Fisher’s exact test with that of the Neyman’s
conservative test, the discrepancy comes out to be (see Ding 2017)

Var(̂τ (W,Y|Hn
0 (F))−Var(N )

=
(

1

n0
− 1

n1

)

× (S21 − S20 ) + 1

n
(Y (1) − Y (0))2 + op(n

−1), (15)

using Var(N ) = S2Y (1)/n1 + S2Y (0)/n0. This implies that, Fisher’s and Neyman’s tests

are asymptotically equivalent under the null if either n0 = n1 or if S21 = S20 . Otherwise,
the relative difference of variances grows with the size of the treatment effect.

2.2.1 Permutation testing

Let FY (w) denote the distribution of the potential outcomes in the population,
where w = 0, 1. For a random sample of observed outcomes {Yi (Wi )}ni=1 that are
exchangeable (e.g. under SATE(uns ) = τ with homoscedasticity), Hoeffding (1951)’s
well-know permutation CLT gives (see also Li and Ding 2017; Boos and Stefanski
2013), under the null,

τ̂ (W,Y)/
√

Var(̂τ∞,n)
D−→ N (0, 1),
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as n → ∞. Romano (1990) showed that if the distributions of {Yi (1)}n1i=1 and
{Yi (0)}n0i=1 have common mean μ and finite variances σ 2

1 and σ 2
0 , and if n1/n0 → 1,

then

τ̂ (W,Y)
d→τ̂∞,n/

√

V (̂τ∞,n) as n → ∞.

Note that, if the exact FRT is carried out using the statistic

τ̂∞,n/

√

s2Y1
n1

+ s2Y0
n0

,

then its type I error asymptotically coincides with the nominal α under H0(N ), and it
also retains the exact error rate of α in finite samples under the sharp null (Chung and
Romano 2013). Furthermore, under normality of the super populations, i.e. Y (w) ∼
N (μw, σ 2), w = 0, 1, the exact FRT is the UMP test ( Lehmann 1959, §5.8). Further,
if n1/n0 is bounded, where n → ∞, then the exact FRT can be approximated with
the standard t-test.

3 Power of exact FRT for large n

Now, consider power. For exact FRT, power under an alternative is a fixed quantity
for given set of Y(1) and Y(0) in the design space W. For each allocation vector
W j , j = 1, ..., A, there is a corresponding Y and an exact p-value, πF , defined by
Eqn. (14). The power of the exact FRT for inference to the units of the sample is defined
as the proportion of the A allocations in W that achives πF smaller than or equal to
α. A Monte Carlo simulation of “exact power” would thus require A2 calculations.

For large n, πF can be approximated through simulations, and estimate πF using
M < A randomly drawn allocations. For sufficiently large M , this approximation, say
π̂F , will be close to πF . Achieving a similar accuracy for estimated power through
simulation-based approximation obviously needs M2 computations.

We dedicate this section to discuss an alternative approximation strategy, where we
do exact FRT test and power computations by using independent subsets of allocations,
and then averaging the results over the subsets. Tomotivate the case,webegin bybriefly
reviewing the small simulation study reported in Ding (2017).

3.1 Motivation

The following description is directly taken from Ding (2017). Let Y (0) ∼ N (0, 1/16)
and n = 100. For Y (1), the data generation process (DGP) is bifurcated as: (a)
Y (1) ∼ N (τ, 1/16), n1 = n0 = 50, and (b) Y (1) ∼ N (τ, 1/4), n1 = 70, n0 = 30,
where τ = 1/10 in both (a) and (b). Since, Yi (0) �= Yi (1), ∀i ∈ u100s for all generated
samples, τ = 0 will differ from Hn

0 (F) or, generally, from Hn
0 (N ) in both DGPs.

To make it more precise, let Yi (0) = ε0i and Yi (1) = τ + ε1i , assuming E(ε0i ) =
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E(ε1i ) = 0 in the super population. Then, for a sample of size n = 100,

SATE(u100s ) = τ + ε1s − ε0s,

with εws = ∑100
i=1 εwi/100, w = 0, 1, where ε0 s �= ε1 s for most samples. Averaging

over 1000 simulation runs, Ding (2017) computes the p-values of the Neyman’s test
as

2�

(

−τ̂
j
100/

√

̂

Var(̂τ j
100)

)

, j = 1, ..., 1000,

and the p-values of the exact FRT are approximated as

π̂
j
F = 1

M

M
∑

m=1

1
(

|̂τ(Wm,Y)| ≥ |̂τ j
100|

)

, j = 1, ..., 1000, (16)

where M ≡ 105 and 1(·) is an indicator function. This, however, implies that the
simulation set up in Ding (2017) is not for testing Hn

0 (N ). As alluded to above, this
set up rather pertains to the power for testing H0(N ), although using only a single
sample from this super population.

From Table 1 in Ding (2017), where the results of the two DGPs are reported,
we note an overall power, for case (a), as 0.512 for Neyman’s test and 0.497 for
Fisher’s test. The results are not only similar, but also close to the expected power
under repeated sampling, i.e. = 1−�(−0.04)+�(−3.96) = 0.516. For case (b), the
power of Neyman’s test is 0.07 while that of Fisher’s test is 0.008, which is even lower
than the nominal level. Both are however far from the expected power under repeated
sampling which, in this case, is = 1 − �(0.6302) + �(−3.2898) = 0.265.

The crux of the aforementioned comparison is that Ding (2017) does not consider
all possible estimates τ̂

j
100, , j = 1, ..., A, rather only the estimates in the set τ̂

j
100,

j = 1, ..., 1000, in a subset WB1 of W. The subset WB1 , with card(WB1) = 1000,
is only one set out of

( A
1000

)

with A = (100
50

)

and
(100
70

)

, respectively. Another random
subset, sayWB2 , wouldmost likely give other results. The problem is less pertinent for
Neyman inference since the corresponding statistic does not depend on the empirical
distribution over all allocations. However as seen for the DGP (b), the power can be
quite far from expected even for Neyman’s test.

3.2 Exact FRT in allocation subsets

The power of a size α FRT can be computed as

pF = 1

A

A
∑

j=1

1(π j
F ≤ α),
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where

π
j
F = 1

A

A
∑

m=1

1
(

|̂τ(Wm,Y)| ≥ |̂τ j
n |

)

, m = 1, ..., A. (17)

Ding (2017) selected a subset of 1000 allocations and calculated the power within this
set, i.e.

pF |1000 = 1

1000

1000
∑

j=1

1(π̂ j
F ≤ α).

The power calculated over the subsetWB1 may not be a good approximation of the real
power of the exact FRT, whether or not the complete set of allocations or the Monte
Carlo approximation of the exact p-value is used. If 105 allocations provide good
enough precision for the approximation of p-values, then the power should also be
well approximated by the same set. This, however, requires 1010 iterations in one cell,
which is simply not possible. We, instead, will make use of the algorithm developed
in Johansson and Schultzberg (2020).

In the re-randomization context, Johansson and Schultzberg (2020) suggest an
alternative toMonteCarlo approximation of the p-valuewith large n.For the following
discussion of their approach, it is instructive to reformulate the definition of the SATE
(cf. Eqn. 3) as the average of all potential estimates in a sample, i.e.

SATE(uns ) = 1

A

∑

j∈W
τ̂
j
n . (18)

In (18), it follows from the symmetry that unbiasedness of the MDE stems from
that for any single allocation; e.g. W j = (0, 1, 0, 1, ..., 0, 1)′, there exist a mirror
allocation with 1’s and 0’s exchanged.3 This means, the unbiasedness can be preserved
for any set of allocationsWBk , k = 1, ..., K , with cardinality larger than two, as long
as the set includes only pairs of mirror allocations. To emphasize a set containing only
mirror allocations, we add the superscript ∗. For example,W∗

Bk
is a set of allocations

of cardinality Bk, i.e. card(W∗
Bk

) = Bk, containing Bk/2 pairs of mirror allocations.
Here we simply take K random subsets, all of size B∗, where B∗ is small enough

to conduct the exact test. The exact p-value for a two sided hypothesis test for a given
sample for each subset of allocations is thus defined as

πF |Bk = Pr(|̂τ(W∗
Bk ,Y)|) ≥ |̂τ j

n (k, s)|, k = 1, ..., K ,

where τ̂
j
n (k, s) denotes an estimate for kth subset in sth sample. Even though the

level of this test is always correct and the MDE is unbiased, it is important to note
that the distributions of τ̂ (W∗

Bk
,Y) and τ̂ (W,Y) generally differ, which explains why

3 This always holds for balanced experiments.Withn small andodd, the unbiasedness of themeandifference
estimatormay no longer hold; see e.g. (Morgan andRubin 2012, p. 9) for an examplewith n = 3 and n1 = 2.
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the power with W∗
Bk

generally differs from the exact power. Computing power by
averaging over the K subsets reduces the approximation error.

4 Simulation study of exact FRT

To validate the discussion so far, we perform three simulation studies. The first re-
examines the small simulation in Ding (2017). The second uses the same DGP but
with n = 12. In the third, we study the performance of the two strategies in a pair
wise stratified experiment. The two latter cases allow us to obtain the exact power of
the exact FRT.

4.1 Case I: re-examining Ding (2017)’s study

We extend the DGPs in Ding (2017), keeping Y (0) ∼ N (0, 1/16) throughout where,
for the alternative, we let (a) Y (1) ∼ N (τ, 1/16) with n1 = n0 = 50, (b) Y (1) ∼
N (τ, 1/4) with n1 = 70, n0 = 30, and (c) Y (1) ∼ N (τ, 1/4) with n1 = 30, n0 = 70.
Settings (a) and (b) with τ = 0.10 are as in Ding (2017), whereas setting (c) is
considered as an extension thereof.

For power, we consider an increasing alternative with τ = {0, 0.05, 0.1, 0.15, 0.2,
0.25, 0.3}. As another extension, the same simulations are also conducted under homo-
geneous effects, where the outcome under treatment is generated as Y (1) = Y (0)+ τ .
As in Ding (2017), we test H0(N ) : τ = 0 using the 5% level. But we repeat the
test over s = 1, ...100. Likewise, we let B∗ = 1000, but calculate the power of Ney-
man and the exact test for each random subset W∗

Bk
, k = 1, ..., 50 of W. That is, for

Neyman test we calculate the power as

pN (k, s, τ ) = 1

1000

∑

j∈Bk
1(π j

N (s, τ ) ≤ 0.05),

with k = {1, ..., 50}, s = {1, ..., 100} and τ given above, where each p-value,
π

j
N (s, τ ), is the standard p-value from a two-sample t-test with the Satterthwaite

approximation of the degrees of freedom (Welch 1947),4 The power of Fisher’s test
is computed as

pF |Bk (k, s, τ ) = 1

1000

∑

j∈Bk
1(π j

F |Bk (k, s, τ ) ≤ 0.05), (19)

with k, s, τ as above, where, for j = 1, ..., 1000,

π
j
F |Bk (k, s, τ ) = 1

1000

∑

m∈B∗
k

1(|̂τ(W∗m
Bk ,Y))| ≥ |̂τ j

n (k, s)|).

4 In R it follows by default using the base function t.test().
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The number of replicates in a complete MC simulation should be 1.0089 × 1029(=
(100
50

)

) for DGPs (a) and (b), and 2.9372 × 1025 (= (100
70

) = (100
30

)

) for (c). Here the
number of replicates are 50 × 1000 = 50, 000 for each cell when averaging over the
subsets.

The results for all DGPs and effect types (homogeneous vs. heterogeneous) are
summarized using a four-way analysis of variance (ANOVA),with factors (i) Inference
(Fisher and Neyman), (ii) Effect size (seven levels), (iii) Subset (50 levels), and (iv)
Sample (100 levels). We restrict the analysis to second order interactions. The upper
panel of Table 1 reports for the homogeneous effects, with results corresponding to
DGPs (a), (b) and (c) in columns 3–4, 5–6 and 7–8, respectively; the lower panel
depicts the same set up for the heterogeneous case.

The strength of the coefficient of determination, R2, exceeding 99% for all layouts,
is an encouraging indicator for the summarization of results by ANOVA. The first
take-home message from Table 1 is that the effect size is the most important factor, as
expected. Secondly, the sample factor contributes quite substantially in explaining the
variance, both as main effect but also in terms of interaction with the effect size. Again
as expected, this particularly holds for heterogeneous effects case. Thirdly, differences
in inference contributes to a small extent to the variation. However, as this factor has
just one degrees of freedom (DF), the F-statistic is quite high, even though not close
to the F-statistic for the sample (including interaction effects). The final conclusion
pertains to the Subset factor, in that it does not add much to the explanation of the
variance, which means the approximation errors incurred by using the subsets in the
simulations is small.

Figure 1 depicts the simulation results across τ , with heterogeneous and homoge-
neous effects displayed in left and right panels, and DGPs (a), (b) and (c) displayed
in upper, middle and lower panels, respectively. The box plots display inference to
the experiment across 100 random samples, i.e. the fraction of rejected tests across τ

in each of 100 experiments. With homogeneous effect, the fraction of rejected tests
provide the size when τ = 0 and power when τ > 0. Inference to the population is
obtained by averaging the fraction of the rejected over the 100 random samples, as
displayed by the power curves.

For homogeneous effects, we observe similar results with respect to inference to
the experiment and to the population. With respect to inference to the experiment, the
Fisher test has by design the correct size, while there is a very small divergence for
the Neyman test. There is a small divergence in power within samples. The maximum
divergence in power between the two tests is 12%, for τ = 0.15 in panel B. This
suggests that, for homogeneous effects, the conclusion from a single experiment does
not generally depend on the type of test conducted. As seen by the power curves, the
two tests are indistinguishable for the inference to the population.

For heterogeneous effect, we observe substantial variation in fraction of rejected
within samples. As expected, a substantial amount of experiments rejects the hypoth-
esis of τ = 0. The pattern is similar between the two tests in the balanced case and
equal variance for case (a). The maximum divergence in power between the two tests
is 12.5%, for τ = 0.15. However with unbalanced designs and unequal variances
substantial differences between the tests are seen. With n1 = 70 (panel (b)) there are
more cases rejecting τ = 0 for the Neyman test, while it is the reverse when n1 = 30
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Table 1 ANOVA results for the Monte Carlo simulation with n = 100

Df Sum Sq F value Sum Sq F value Sum Sq F value

Homogeneous

a b c

Inference 1 0.75 4921.36 2.92 16401.53 2.92 16401.53

Effect 6 10013.54 10939388.72 9945.00 9311889.78 9945.00 9311889.78

Subset 49 0.01 1.86 0.02 2.55 0.02 2.55

Sample 99 30.42 2014.43 38.14 2164.63 38.14 2164.63

Inference× effect 6 0.88 956.43 2.77 2591.40 2.77 2591.40

Inference× subset 49 70.03 3.46 0.03 3.05 0.03 3.05

Inference× sample 99 0.24 16.12 0.74 41.90 0.74 41.90

Effect× subset 294 0.04 0.90 0.05 0.91 0.05 0.91

Effect× sample 594 36.47 402.48 37.49 354.56 37.49 354.56

Subset× sample 4851 1.99 2.69 2.41 2.79 2.41 2.79

Residuals 63951 9.76 (R2 = 0.99) 11.38 (R2 = 0.99) 11.38 (R2 = 0.99)

Heterogeneous

a b c

Inference 1 0.53 5030.25 354.56 139538.48 354.56 139538.48

Effect 6 9743.08 15421849.24 7725.75 506754.31 7725.75 506754.31

Subset 49 0.01 1.19 0.01 0.08 0.01 0.08

Sample 99 542.94 52084.12 741.58 2948.02 741.58 2948.02

Inference× effect 6 0.81 1283.38 110.79 7266.91 110.79 7266.91

Inference× subset 49 0.00 0.70 0.01 0.07 0.01 0.07

Inference× sample 99 0.56 53.58 21.57 85.74 21.57 85.74

Effect× subset 294 0.03 0.90 0.05 0.07 0.05 0.07

Effect× sample 594 1419.12 22689.51 1752.97 1161.44 1752.97 1161.44

Subset× sample 4851 0.49 0.96 1.19 0.10 1.19 0.10

Residuals 63951 6.73 (R2 = 0.99) 162.49 (R2 = 0.99) 162.49 (R2 = 0.99)

(panel (c)). Thus with heterogeneous effects in unbalanced design, the conclusion for
Fisher’s test from a single experiment may likely differ from that using t-test. These
differences in inference to the experiment is summarized in the power curves in the
figure. For (a), the size and power over random sampling is the same for both strategies,
which confirms the result in Lehmann (1959, §5.8). For (b), the average size of the
t-test exceeds 5% and, neglecting the size distortion, the t-test is also more powerful
than the exact Fisher test. For (c), the roles of the two tests are reversed.

The last thing to note from the figure is that there is no sign of a diverging difference
in power with the effect size as suggested from Eqn. (15), neither for inference in the
single experiment nor for inference over random sampling.

Note that, since we approach the numerical assessment by conducting exact Fisher
inference within each subset and then averaging over all subsets, its usefulness can be
gauged from the act that the results in Fig. 1 seem validating the theoretical results in
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Fig. 1 Power comparison of Fisher andNeyman test for 100 independent samples in a complete randomized
experiment with n = 100, where n1 = 50 and σ 2

Y (0) = σ 2
Y (1) = 1/16 in the top panel, n1 = 70 and

σ 2
Y (1) = 1/4 in the middle panel, n1 = 30 and σ 2

Y (1) = 1/4 in the bottom panel. Solid line is the power
averaged over sets and samples

Lehmann (1959). In the next two sub-sections, we consider the performance in small
experiment, where simulations are conducted within the complete set of allocations.

4.2 Small sample version

We use the same DGP as above, also keeping 100 random draws from the super
population, now with n = 12 and τ = {0, 0.25, 0.5, 0.75, 1, 1.25}, where n1 is 6,
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8 and 4 for DGP (a), (b) and (c), respectively. Figure2 presents the results from the
simulations across τ .

The box plots and lines display, respectively, average size and power over 100
samples. The results for heterogeneous and homogeneous effects are displayed in the
left and right panels, respectively, where DGPs (a)–(c) are displayed in top, middle
and bottom panels, respectively. The overall picture is the same as with n = 100.
There is substantial variation in power for heterogeneous effects, but also the power
curves for the two strategies overlap. There is also no sign of a diverging difference in
power with the effect size as suggested by Eqn. (15). For homogeneous effects, there
is some size distortion for t-test, and exact Fisher test is somewhat more powerful.

4.2.1 Pairwise stratification

Now we consider a pairwise stratified experiment. Let Yi j (w), w = 0, 1, i = 1, ..., n,
j = 1, 2, be potential outcomes of units in a matched-pair experiment with 2n units
(n pairs). The within-pair estimator

τ̂i = Wi (Yi1 − Yi2) + (1 − Wi )(Yi2 − Yi1)

is unbiased for the within-pair average causal effect τi , where

τ̂n(s) = 1

n

n
∑

i=1

τ̂i

is an unbiased estimator of the sample treatment effect

SATE(uns ) = 1

n

n
∑

i=1

τi .

Following Ding (2017), the conservative variance estimator of τ̂n(s) is

Var(N ) = 1

n(n − 1)

n
∑

i=1

(̂τi − τ̂n(s))
2,

where Ding’s Theorem 4 show that

Var(̂τ (W,Y|HF
0 )) = 1

n2

n
∑

i=1

τ̂ 2i ,

so that

Var(̂τ (W,Y|HF
0 )) − Var(N ) = 1

n
SATE(uns )

2 + op(n
−1). (20)

123



Is Fisher inference...

c, Heterogeneous c, Homogeneous

b, Heterogeneous b, Homogeneous

a, Heterogeneous a, Homogeneous

0 0.25 0.5 0.75 1 1.25 0 0.25 0.5 0.75 1 1.25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tau

Po
w

er

Inference Power FR Power NP

Fig. 2 Difference in power between Fisher and Neyman inference over
(12
6
) = 924,

(12
8
) = 495 and

(12
4
) = 495 possible allocations in 100 independent samples, respectively, in top, middle and lower panels.

The solid line is the power averaged over the 100 samples

We draw 100 independent samples of size n = 30. For each sample, the p-values for
all 2n/2 = 32,768 possible allocations under the paired design are calculated. We again
assume

Y (0) ∼ N (0, 1/16), (21)
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Fig. 3 Difference in power between Fisher and Neyman inference over all 215 = 32, 768 possible alloca-
tions under pairwise stratified randomization in 100 independent samples with n = 30. The solid line is the
power averaged over samples

and generate the counterfactual as

(a) : Y (1) ∼ N (τ, 1/16) (22)

(b) : Y (1) = Yi (0) + τ, (23)

where τ = {0, 0.05, 0.15, 0.25, 0.35, 0.45}. The size and power for each sample is
computed as the proportion of corresponding p-values below α = 0.05. The results
for heterogeneous effect under DGP (a) are shown in the left panel of Fig. 3 and those
of homogeneous effect under DGP (b) are in the right panel. The most important
finding is that the power curves of the two tests overlap so that we cannot discover
any divergence in the power of t-test in comparison with the Fisher’s test, as expected
from Eqn. (20).

5 Discussion

Ding (2017) gives interesting theoretical results on the comparison of Neyman’s and
Fisher’s two-sample inference based on the theory of potential outcomes. The present
paper examines to what extent Ding (2017)’s results apply for the exact Fisher test
for inference to the sample under the alternative. Based on the same data generating
processes as in Ding (2017), we conduct a Monte Carlo study that captures the finite,
but large, sample power properties of the exact Fisher randomization test. The results
show no overall superiority of the Neyman test over the exact Fisher randomization
test for any effect size. Instead, the property of a test being most powerful in this case
seems to depend on the characteristics of the outcomes in the given sample.
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For heterogeneous treatment effect, both tests have in general wrong size when
testing the population (or scientific) null in a single experiment, which illustrates
Fisher’s concern (Fisher 1955).The crux in the single experiment case is that the sample
average treatment effect (SATE) depends on the units sampled to the experiment and,
with N fixed, SATE in general differs from zero. This fact perhaps pertains to what
Fisher (1955, p. 69)meant with the statement “we consider a continuumof hypotheses,
each eligible as null hypothesis”. The within-sample asymptotic theory solves the
problem by assuming the sample to be infinite, but most experiments are conduced on
a finite sample whence the Neyman and Fisher tests have the same problem testing
the scientific null.

It is however interesting to note that when testing for a sample (or statistic) null, the
two tests may give different conclusions, at least so in unbalanced designs and with
unequal variances. This gives some food for thought for theoretical research since at
the end of the day, all we as statisticians have is the results from a single experiment.
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Appendix

Theorem 5.1 Consider τ̂ in (2) under a simple random sampling scheme, and let N ,
n1, n0, be as defined above. Given that n1/n0 is bounded, we have, as n, N → ∞,

τ̂N ,n − τ
√

Var(̂τN ,n)

D−→ N (0, 1),

with

Var(̂τN ,n) =
{

1

n1
σ 2
Y (1) + 1

n0
σ 2
Y (0)

}

[1 + o(1)].

For such limit theorem, see Erdös and Renyi (1959) and Hajek (1960), with unified
and generalized results presented in Li and Ding (2017).

Theorem 5.2 For τ̂n as a test statistic for Hn
0 (N ), we have, as n → ∞,

τ̂n − τ√
Var(̂τn)

D−→ N (0, 1),
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where

Var(̂τn) = S2Y (1)

n1
+ S2Y (0)

n0
− S2τ

n
,

Corollary 5.1 Under Assumptions 5.1-5.2, the limit in Theorem 5.2 remains valid by

replacing Var(̂τn) with its consistent estimator
s2Y1
n1

+ s2Y0
n0

.

Assumption 5.1 Let nk/n → ck ∈ (0, 1), as nk → ∞, k = 0, 1, where n = n1 + n0.

Assumption 5.2 max
1≤i≤n

d2i,w/
∑

i d
2
i,w → 0, as n → ∞, where di,w = Yiw − Yw,

w = 0, 1.
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