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Abstract
The subject of this work is random coefficient regression models with only one obser-
vation per observational unit (individual). An analytical solution in form of optimality
conditions is proposed for optimal designs for the prediction of individual random
effect for a group of selected individuals. The behavior of optimal designs is illus-
trated by the example of linear regression models.

Keywords Experimental design · Mixed model · Prediction · Random effects

1 Introduction

The subject of this work is random coefficient regression (RCR) models in which
only one observation per observational unit (individual) is possible. These models are
popular e.g. in psychology (see Freund and Holling (2008)) and pharmacokinetics
(see Patan and Bogacka (2007)). The main purpose of the present paper is to obtain
an analytical solution for the designs that are optimal for the prediction of random
effects. Optimal designs for prediction in RCR models have been discussed e.g. in
Gladitz and Pilz (1982), Fedorov and Hackl (1997), Prus and Schwabe (2016) and
Prus (2023). In Gladitz and Pilz (1982) and Prus and Schwabe (2016) the number of
observations per individual is required to be not smaller than the number of unknown
model parameters, which excludes the case of only one observation. Also the same
design for all individuals has been assumed in the both papers. Fedorov and Hackl
(1997) investigated models with specific regression functions. The models considered
in the present work may be seen as a particular case (with one individual per group)
of the multiple-group models discussed in Prus (2023). However, the solution devel-
oped in that paper is based on the assumption of sufficient number of observations per
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1058 M. Prus

individual, i.e. not smaller than the number of parameters.Models with only one obser-
vation per individual were discussed e.g. in Patan and Bogacka (2007) and Graßhoff
et al. (2012). Patan and Bogacka (2007) investigated non-linear mixed-effects models.
Graßhoff et al. (2012) proposed a solution for optimal designs in form of an optimality
condition for RCR models. In these papers optimal design were determined for esti-
mation of fixed effects. However, not much has been done for prediction of random
effects.

In the present work we determine optimal designs for prediction of random effects
for a group of selected individuals in RCRmodels with one observation per individual.
The obtained design criterion (linear criterion) results in amultiple-design problem, for
which the standard approach for design optimization proposed in Kiefer (1974) cannot
be applied. We make use of the optimality conditions for multiple-design problems
proposed in Prus (2022). The obtained analytical results are illustrated by examples
of linear regression models with particular covariance matrices.

The paper has the following structure: In the second section the model is specified
and the mean squared error (MSE) matrix for the best linear unbiased prediction
(BLUP) of the randomeffects is determined. In Sect. 3 the linear design criterion for the
prediction and the resulting optimality conditions are formulated. The analytical results
are illustrated by examples in Sect. 4. The paper is concluded by a short discussion in
Sect. 5.

2 Model specification

In this work we the consider RCRmodels with only one observation per observational
unit (individual) of the following form:

Yi = f(xi )�β i + εi , i = 1, . . . , n, xi ∈ X , (1)

where Yi is an observation at the i-th individual, n is the number of individuals, f =
( f1, . . . , f p)� is a vector of known regression functions, experimental settings xi come
from an experimental region X . The observational errors εi are assumed to have zero
mean and common variance σ 2 > 0. The individual parameters β i = (βi1, . . . , βi p)

�
have unknown expected value (population mean) E (β i ) = β and known covariance
matrix Cov (β i ) = σ 2D. All individual parameters β i and all observational errors εi
are assumed to be uncorrelated.

According toGraßhoff et al. (2012) the covariancematrix of the best linear unbiased
estimator (BLUE) β̂ for the population parameter (fixed effects) β is given by

Cov(β̂) = σ 2M−1, (2)

where

M =
n∑

i=1

M(xi ), (3)
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M(xi ) = g(xi )g(xi )�, (4)

g(xi ) = 1√
f(xi )�Df(xi ) + 1

f(xi ). (5)

In this work we focus on random effects, in particular on the individual deviations
from the mean: bi = β i −β (see e.g. Prus and Schwabe (2013)). Namely, we consider
the situation in which our main interest is in some selected individuals. We determine
optimal experimental settings for prediction of the individual effects for the k selected
individuals: � = 1

k

∑k
i=1 bi , for k ∈ [p, n − p]. We assume n ≥ 2p, otherwise

[p, n − p] = ∅. Note that the order of the individuals does not matter in this case.
Therefore, we can consider k first individuals without loss of generality.

Further we search for experimental settings that minimize the MSE matrix of the
BLUP �̂ for the individual deviations �.

Lemma 1 The MSE matrix of the BLUP �̂ is given by

Cov(�̂ − �) = σ 2
(
1

k
D − 1

k2
DMkD + 1

k2
DMkM−1MkD

)
, (6)

where Mk = ∑k
i=1M(xi ).

The proof of Lemma 1 is deferred to Appendix A.

3 Experimental design

We consider the following two groups of individuals: the k selected individuals build
the first group (Group 1), and the second group (Group 2) consists of the n − k
remaining individuals. We also allow for group-specific restrictions with respect to
experimental settings, i.e. the experimental regions for the two groups of individuals
may differ from each other. In practice it can be useful in case of some particular
restrictions in two centers/clinics/etc. Further X� denotes the experimental region for
group �, � = 1, 2, and X1 ∪ X2 = X . The particular case X1 = X2 = X will be later
considered more detailed. We add the group index to experimental settings for clear
notation and we define an exact design in group � as

ξ�,e =
(

x�1, . . . , x�N�

m�1, . . . ,m�N�

)
,

where x� j ∈ X� are the support point of ξ�,e, m� j > 0 is the number of observations

at x� j with
∑N1

j=1m1 j = k and
∑N2

j=1m2 j = n − k and N� = |{x�1, . . . , x�N�
}|. Note

thatm� j can be larger than one in case if observations for more than one individual are
taken at point x� j . Note also that the set {x11, . . . , x1N1} coincides with {x1, . . . xk} in
model (1) (and {x21, . . . , x2N2} coincides with {xk+1, . . . xn}).
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1060 M. Prus

For analytical purposes we also introduce approximate designs:

ξ� =
(

x�1, . . . , x�Ñ�

w�1, . . . , w�Ñ�

)
,

where w� j > 0 denotes the weight of observations at x� j ,
∑Ñ�

j=1 w� j = 1, � = 1, 2,

and Ñ� = |{x�1, . . . , x�Ñ�
}|. Note that Ñ� = N� for exact designs. Further we use the

notation ξ = (ξ1, ξ2) for the pair of group designs.
We also define the information (or moment) matrices for the first and second design

as

M1,ξ =
Ñ1∑

j=1

w1 jM(x1 j ),

and

M2,ξ =
Ñ2∑

j=1

w2 jM(x2 j ),

respectively.
For exact designs we obtain w1 j = m1 j/k, w2 j = m2 j/(n− k),Mk = kM1,ξ and

M = kM1,ξ + (n − k)M2,ξ .

In this work we focus on the linear criterion for the prediction of individual devia-
tions for the selected individuals, which is defined for exact designs as

�L = tr
(
Cov(L�̂ − L�)

)
, (7)

where L denotes the transformation matrix.
Neglecting the constants that have no influence on designs, we obtain for approxi-

mate designs the following results.

Theorem 1 The linear criterion for the prediction of individual effects � is given by

�L(ξ) = −tr

[
L̃

(
1

k
M−1

1,ξ + 1

n − k
M−1

2,ξ

)−1
]

, (8)

where L̃ = DLD and L = L�L.
The proof of this result is deferred to Appendix B.
Note that we assume matrices M1,ξ and M2,ξ and consequently Mk non-singular,

which requires k ∈ [p, n− p]. Otherwise linear criterion (7) cannot be written in form
(8).
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As we can see by formula (8), the linear criterion depends on two designs simul-
taneously. In this case the general equivalence theorem (see Kiefer (1974)) cannot be
directly applied. Instead we use the extended version for multiple-design problems
proposed in Prus (2022). To make use of the equivalence theorems presented in that
work, we have to verify convexity of the criterion.

Lemma 2 The linear criterion for the prediction of individual effects � is convex with
respect to (M1,ξ ,M2,ξ ).

For the proof of Lemma 2 see Appendix C.
As the linear criterion for the prediction of the individual deviations is differen-

tiable and convex with respect to both moment matrices, optimality conditions can be
formulated.

Theorem 2 Approximate designs ξ∗ = (ξ∗
1 , ξ∗

2 ) are L-optimal for the prediction of
the individual effects � iff

g(x)�M−1
1,ξ∗

(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

L̃
(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

M−1
1,ξ∗g(x)

≤ tr

[
M−1

1,ξ∗

(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

L̃
(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1
]

, (9)

for all x ∈ X1, and

g(x)�M−1
2,ξ∗

(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

L̃
(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

M−1
2,ξ∗g(x)

≤ tr

[
M−1

2,ξ∗

(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

L̃
(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1
]

, (10)

for all x ∈ X2.
For support points of ξ∗

1 and ξ∗
2 equalities hold in (9) and (10), respectively.

The proof is deferred to Appendix D.
Note that optimal designs depend on the dispersion matrix of random effectsD, the

total number of individuals n and the number of selected individuals k.
Note also that in case where the design region is the same for all individuals X1 =

X2 = X , optimal designs may be also the same for both groups, i.e. M1,ξ∗ = M2,ξ∗ .
In this situation design criterion (8) simplifies to

�L(ξ) = −tr
[
L̃M1,ξ

]
, (11)

which is linear in design, i.e. singular designs (that result in a singular moment matrix)
or all permissible designs may be optimal. The optimality conditions simplify to the
following inequality:

g(x)�L̃g(x) ≤ tr
(
L̃M1,ξ∗

)
, ∀x ∈ X . (12)
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1062 M. Prus

Behavior of such designs will be illustrated by Example 4.1.

4 Examples

We consider the linear regression model

Yi = β i1 + β i2xi + εi , (13)

which is the particular case of model (1) with f(x) = (1, x)�, and we assume the
diagonal structure of the covariance matrix of random effects: D = diag(d1, d2).

Further we distinguish between the two different cases: the same design region
for all individuals (Example 4.1) and different design regions for different groups
(Example 4.2). We focus on the A-optimality criterion, i.e. L = Ip, where Ip denotes
the p × p identity matrix.

4.1 Example 1

In this example we consider the situation where there are no particular restrictions
for the designs for the selected individuals (that are of our main interest) or for all
other individuals, i.e. the design region is the same for both groups:X1 = X2 = X . In
particular, we consider symmetric design regions:X = [−a, a], for a > 0. Further we
focus on the designs that are the same for both groups: ξ1 = ξ2 with all observations
at the endpoints:

ξ1 =
( −a a
1 − w w

)
, (14)

where w is the weight of observations at point a. The total number of individuals n
and the number of selected individuals k have no influence on designs in the present
case and do not need to be specified. If optimal designs of form (14) exist, they assign
w = 0 orw = 1 (and make the moment matrix singular) or all values ofw are equally
good.

For the present model we obtain

g(x) = 1√
d2x2 + d1 + 1

(1, x)�,

and

M1,ξ = M2,ξ = 1

d2a2 + d1 + 1

(
1 a(1 − 2w)

a(1 − 2w) a2

)
.
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The simplified linear criterion (11) is given by

�L(ξ) = − d2a2 + d21
d2a2 + d1 + 1

,

which is independent of the designs, i.e. all designs (all w ∈ (0, 1)) are optimal or
there is no optimal designs of form (14) at all. The optimality condition (12) is given
by

d2(d21 − d2(d1 + 1))(a2 − x2)

(d2a2 + d1 + 1)(d2x2 + d1 + 1)
≤ 0, ∀ x ∈ [−a, a],

which is satisfied only in case

{d2 ≥ d21
d1 + 1

} ∪ {d2 = 0}. (15)

Hence, under condition (15) all design are equally good. Otherwise, there is no
solution with ξ1 = ξ2, where ξ1 is of form (14).

4.2 Example 2

In this example we assume different design regions X1 and X2. In particular, we
concentrate on symmetric design regions of different lengths: X = [−1, 1] and X =
[−a, a], for a > 0. We consider the endpoints-designs

ξ1 =
( −1 1
1 − w1 w1

)
, (16)

and

ξ2 =
( −a a
1 − w2 w2

)
, (17)

where w1 and w2 are the weights of observations at points 1 and a for the first and the
second group, respectively. We simplified the notations w12 and w22 to w1 and w2, as
there are only two support points for each design. Further we consider two different
cases for the covariance matrix of random effects: random intercept and random slope.

Case 1 d1 = d and d2 = 0
In the case of random intercept we have

g(x) = 1√
d + 1

(1, x)�,

M1,ξ = 1

d + 1

(
1 1 − 2w

1 − 2w 1

)
,
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1064 M. Prus

and

M2,ξ = 1

d + 1

(
1 a(1 − 2w)

a(1 − 2w) a2

)
.

Linear criterion (8) for thismodel will not be presented here because of its complex-
ity. We use software Maple2020 for further computations. For the following points
the first derivative of the criterion function is zero:

w1 = aw2 − a

2
+ 1

2
, (w1, w2) ∈ [0, 1]2. (18)

All designswith property (18) turn out to be optimal, i.e. they satisfy optimality con-
ditions (9) and (10) for all possible values of a. Note that the designs are independent
of the variance parameter d.

Case 2 d1 = 0 and d2 = d
For the random slope we obtain

g(x) = 1√
da2 + 1

(1, x)�,

M1,ξ = 1

da2 + 1

(
1 1 − 2w

1 − 2w 1

)
,

and

M2,ξ = 1

da2 + 1

(
1 a(1 − 2w)

a(1 − 2w) a2

)
.

Using the same approach as for the random intercept case, it can be verified that all
designs with

w1 = a + 2w2 − 1

2a
, (w1, w2) ∈ [0, 1]2, (19)

are optimal for all a > 0.
Note that in both cases: random intercept and random slope, the obtained designs

are optimal for all values of the total number of individuals n and the number of
selected individuals k ∈ [p, n − p]. Note also that a = 1 would lead to w1 = w2,
which is in accordance with Example 4.1.

5 Discussion

We considered RCR models in which only one observation per individual is possi-
ble. We focused on individual random effects for a group of selected individuals, in
particular on the mean random effect in the group. The solution for optimal designs
is proposed in form of optimality conditions. The number of selected individuals k is
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assumed to be between the number of parameters p and n − p, where n is the total
number of individuals, which is possible only for models with n ≥ 2p. If the main
interest is in a very small, i.e. k < p, or a very large number of selected individ-
uals, another approach is, however, needed. Optimal designs are determined for the
BLUP of the random effects, which depends on the variance parameters (covariance
matrices). The variance parameters are assumed to be known, which is in general not
the case in practice. In a practical situation, where the covariance matrices have to
be estimated, we deal with estimated BLUP (EBLUP). The obtained optimal designs
in general depend on the variance parameters and are, therefore, locally optimal.
The problem of local optimality may be solved for particular models by considering
robust design criteria, for example minimax-criterion. For specific covariance struc-
ture, optimal designs may be independent of variance parameters, which has been
illustrated by the example of the linear regression models with random intercept and
random slope. All observational errors were assumed to have the same variance. Het-
eroscedastic errors, especially depending on the experimental settings (as considered
by Graßhoff et al. (2012)), are analytically more challenging. However, an extension
may be considered in a future research. Moreover optimal designs have been obtained
for individual effects (individual deviations from the population parameter) via their
arithmetic mean. Design optimization for the prediction of the individual deviations
or individual parameters themselves turned out to be more challenging. It may also be
a subject of future investigations, especially for particular models.
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A Proof of Lemma 1

Model (1) can be rewritten in vector form as follows

Y = Xβ + Zb + εi , i = 1, . . . , n, xi ∈ X , (20)

with X = (f(x1), . . . f(xn))�, Z = block-diag
(f(x1)�, . . . f(xn)�) and block-diag (A1, . . . ,An) is the block-diagonal matrix with
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1066 M. Prus

blocks A1, . . . ,An . This model is the classical linear mixed model considered e.g. in
Henderson (1975).

Then the MSE matrix for the BLUP b̂ for random effects b = (b�
1 , . . . ,b�

n )� can
be computed as follows:

Cov(b̂ − b) =
(
W − Z�R−1X(X�R−1X)−1X�R−1Z

)−1

= W−1 − W−1Z�R−1X
(
X�R−1ZW−1Z�R−1X − X�R−1X

)−1
X�R−1ZW−1,

where G = Cov (b), R = Cov (ε) and W = Z�R−1Z + G−1. For R = σ 2
In and

G = σ 2
In ⊗ D we obtain

W−1 = σ 2 (
In ⊗ D − block-diag

(
DMx1D, . . . ,DMxnD

))
,

(
X�R−1ZW−1Z�R−1X − X�R−1X

)−1 = −M−1,

and

X�R−1ZW−1 = (
Mx1D, . . . ,MxnD

)
,

which result in

Cov(b̂ − b) = σ 2 (
In ⊗ D − block-diag

(
DMx1D, . . . ,DMxnD

))

+σ 2

⎛

⎝
DMx1M

−1Mx1D . . . DMx1M
−1MxnD

. . . . . . . . .

DMxnM
−1Mx1D . . . DMxnM

−1MxnD

⎞

⎠ .

Then from � = 1
k

((
1�
k , 0�

n−k

) ⊗ Ip
)
b and consequently

Cov(�̂ − �) = 1

k2

(
1�
k , 0�

n−k

)
⊗ IpCov(b̂ − b)

(
1�
k , 0�

n−k

)� ⊗ Ip,

follows Eq. (6).

B Proof of Theorem 1

To determine the linear criterion for approximate designs, we use the basic formula (7)
and we replace matricesMk andM by kM1,ξ and kM1,ξ + (n− k)M2,ξ , respectively.
Then we suppress the first term (1k tr(D)), which is independent of designs, and the
multiplicator σ 2/k2, and we obtain

�L(ξ) = tr
{
LD

[
kM1,ξ

(
kM1,ξ + (n − k)M2,ξ

)−1
kM1,ξ − kM1,ξ

]
D

}
,
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which can be easily simplified to (8) using the properties of the trace and the standard
formula for the inverse of sum of two non-singular matrices.

C Proof of Lemma 2

The function h(N) = N−1 is non-increasing in Loewner ordering and matrix-convex
for any positive definite matrix N. Then

1

k
M−1

1,ξ + 1

n − k
M−1

2,ξ ,

is matrix-convex and

(
1

k
M−1

1,ξ + 1

n − k
M−1

2,ξ

)−1

,

is matrix-concave in (M1,ξ ,M2,ξ ), respectively (see e. g. Bernstein (2018), ch. 10).
Consequently,

−tr

[
L̃

(
1

k
M−1

1,ξ + 1

n − k
M−1

2,ξ

)−1
]

,

is convex with respect to (M1,ξ ,M2,ξ ) for any positive semi-definite matrix L̃.

D Proof of Theorem 2

According to Theorem 2 in Prus (2022), designs ξ∗ = (ξ∗
1 , ξ∗

2 )minimize a convex cri-
terion� if and only if the directional derivative of� at (M1,ξ∗ ,M2,ξ∗) in the direction
of (g(x)g(x)�,M2,ξ∗) is non-negative for all x ∈ X1, and the directional derivative
of � at (M1,ξ∗ ,M2,ξ∗) in the direction of (M2,ξ∗ , g(x)g(x)�) is non-negative for all
x ∈ X2. For support points of ξ∗

1 and ξ∗
2 the related directional derivatives are equal to

zero. By computing the directional derivatives for linear criterion (8), i. e.� = �L(ξ),
and setting them non-negative, we obtain inequalities (9) and (10).
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