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Abstract
In numerical analysis, sparse grids are point configurations used in stochastic finite
element approximation, numerical integration and interpolation. This paper is con-
cerned with the construction of polynomial interpolator models in sparse grids. Our
proposal stems from the fact that a sparse grid is an echelon design with a hierarchical
structure that identifies a single model. We then formulate the model and show that it
can be written using inclusion–exclusion formulæ. At this point, we deploy efficient
methodologies from the algebraic literature that can simplify considerably the com-
putations. The methodology uses Betti numbers to reduce the number of terms in the
inclusion–exclusion while achieving the same result as with exhaustive formulæ.

Keywords Smolyak grids · Sparse designs · Inclusion–exclusion · Betti numbers

1 Introduction

The application of computational algebraic methods to experimental design has been
extensively covered by the authors, co-workers and others following the seminal paper
(Pistone and Wynn 1996), monograph (Pistone et al. 2001) and review by the authors
(Maruri-Aguilar and Wynn 2015), with other developments such the study of duality
between fractions of factorial design and models (Maruri-Aguilar et al. 2012). In this
work a design is seen as a set of points and defines a natural polynomial model which
can be used to interpolate data at design points. We concentrate on designs that are
the union of product tensor structures, known as echelon designs. For such designs,
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the exponents of the interpolator have the same form as the design, giving a duality
between designs and models, with both exhibiting hierarchical structure.

Another feature of this hierarchical design-model framework is the central role
played by inclusion–exclusion (IE) formulæ. Inclusion–exclusion has been used exten-
sively in reliability theory, where formulæ are derived from monomial ideals, see
(Sáenz-de Cabezón Wynn 2009). We use the same principles to describe the eche-
lon design points as IE of tensor (product) designs. The benefit of this method is the
reduction in complexity achieved by using the so-called minimal free resolution. In
short, the coefficients in the IE are Betti numbers of the resolution of the monomial
ideal.

In this paper we apply the same machinery to study sparse grids. These grids are
used widely in quadrature, particularly in the Finite Element solution of differen-
tial equations, and the difference of terminology should be noted. Sparse grids are
sometimes referred to as Smolyak grids following the seminal paper (Smolyak 1963).
Recent work has used sparse grids to the solution of differential equations (Nobile
et al. 2008), for interpolation (Barthelmann et al. 2000) and for integration (Novak
and Ritter 1996).

In our development, a set of quadrature points becomes an experimental design
(design for short). This approach is in line with the recent history of the design of
computer experiments, also termed as simulation experiments or simply simulation.
We show that a Smolyak grid satisfies the same IE despite not having the same hier-
archical form as discussed above.

The main result of this paper is that the IE formulæ which hold for interpolators
over echelon designs extend to more general sparse grids. Polynomial interpolators
based on the “echelon” designs inherit the IE decomposition that uses the natural
product model interpolators. Remarkably, the same IE forms are inherited by sparse
grid interpolators. Moreover the reduced forms use the multi-graded Betti numbers
from the algebraic theory.

Betti numbers are at the foundation of algebraic topology, and describe features
of the geometry of manifolds via topologically equivalent, and one might say more
abstract entities, namely simplicial complexes. In statistics they have been used inten-
sively within the relatively new area topological data analysis (TDA) (Edelsbrunner
Harer 2010). However, here Betti numbers are used in a different way, namely as a way
of reducing the complexity of the inclusion–exclusion lemma. It is quickly observed
that in handling large inclusion–exclusion formulæ, there are redundancies; that is to
say a large amount of cancellation of terms andmany sets may be empty. This happens
partly because the underlying dimension may be much smaller that the number of sets
and partly because of the complexity of the inter-relation between the sets. Both in
TDA and IE there are “minimal free resolutions” (a term from the underlying algebraic
topology) which gives, in a well-defined sense the, least complex formulae in which
the plus and minus signs of the formulae are replaced by (multigraded) Betti numbers
(Naiman and Wynn 1997; Sáenz-de Cabezón Wynn 2009).

The “sets” in this paper are the tensor grids of exponentsα inmonomials xα . Thus, in
summary, the Betti numbers support less complex IE formulae, in the sense of number
of terms, in which the complexity is, in a sense, buried in the Betti numbers. The main
purpose of this paper is to point out this structure, that is to say complexity reduction
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using the Betti numbers, is inherited by the natural interpolators based supported on
the tensor grids and their extension to sparse grids.

The rest of the paper is ordered as follows. In Sect. 2 we introduce echelon designs
and the duality between designs and models. We discuss the tensor product notation
and the extreme corner points that define echelon designs. Section3 contains the
main results for interpolation. We define indicators which are the building blocks of
a Lagrange interpolator over a single tensor design and give the result of inclusion–
exclusion which we prove in Appendix 1. This result allows interpolation over general
echelon designs which is achieved by IE formulæ. In Sect. 4 we apply our results to
sparse grids and show thiswith an example.At the core of this paper are two approaches
to response surface modelling, the numerical analysis and the statistical viewpoints.
We briefly discuss these two approaches and suggest future work in Sect. 5.

2 Designs andmodels

We start with a general definition of a design that covers designs for response surface
modelling and designs for computer experiments. The objective is to study the effect
of k continuous factors x1, . . . , xk ∈ R on a real valued output y, with information
collected in an experimental design.

Definition 1 A design D is a finite set of n points in R
k . For every factor, the values

of the coordinates of points in D are the levels of the design.

In this paper we are interested in a special type of designs called echelon designs.
The following two definitions form the core of this paper: a hierarchical grid in the
integers and the echelon design built from it. Both objects below are designs as of
Definition 1.

Definition 2 A reference grid G is a finite subset of Zk≥0 with the order ideal property,

that is for every point α = (α1, . . . , αk) ∈ G, all α′ ∈ Z
k≥0 such that 0 ≤ α′ ≤ α

(coordinatewise) are also in G.

Definition 3 An echelon design is a design obtained from a reference gridG by chang-
ing the levels of each factor to any finite real values using a one to one mapping.

Definition 3 starts from a reference grid G to build an echelon design D. The
converse procedure is important, namely that any echelon design D maps to a unique
reference grid G(D), hence the use of the word reference. Using the identity map, a
reference grid is trivially an echelon design.

Example 1 Full factorial experiments 2k are echelon designs. The echelon property is
not limited to designs with two levels, and if the design has all combinations of levels
of factors, then the full factorial design n1n2 · · · nk is an echelon design, where ni is
the number of levels of the i-th factor.

In general, regular fractions of factorial designs are not echelon. A simple case of this
is the fraction 22−1 with point coordinates (−1,−1), (1, 1) that cannot be converted
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Fig. 1 From left to right, a Smolyak design, its reference grid G and an echelon design with the same
reference grid. The points in red in G are the pointsA(G)

Table 1 Map for generating the Smolyak design D from the grid G of Fig. 1

Coordinate of G 0 1 2 3 4 5 6

Coordinate of D 0.5 0.113 0.887 0.020 0.283 0.717 0.980

Frequency 7 3 3 1 1 1 1

The coordinates of D were obtained with the function smolyak.quad from the R library gss (Gu 2014).
Given the symmetry of G, this map is valid for both coordinates x1 and x2

to a reference grid by relabeling levels. However, certain fractions of factorial designs
are echelon designs because they can be converted to a reference grid, such as the
designs used in the method of elementary effects (EE) for screening active factors in
computer experiments, see (Morris 1991).

Example 2 The central panel of Fig. 1 shows a reference grid G with n = 17 points,
which is transformed into a Smolyak design by themap shown in Table 1. For instance,
all the 7 points of G with horizontal (vertical) coordinate equal to zero are relabeled
to a x1 (x2) coordinate with value 0.5. The map is not unique, as points of G with
coordinate value 1 (or 2) could be relabelled to be one of 0.113 or 0.887. The left panel
in Fig. 1 shows the Smolyak design,while the right panel shows another echelon design
with the same size and reference grid G. In both Smolyak and echelon, the numbers at
the bottom (left) are numbers of points with the same x1 (x2) coordinate. The numbers
shown in G give the actual coordinates of points.

A reference grid G is defined by a special set of corner points A(G). This set of
corners A(G) is comprised with those points α ∈ G such that there are no other
points α′ ∈ G that satisfy α ≤ α′ coordinatewise. Trivially, the reference grid defined
by A = A(G) equals G, i.e. G(A) = G. In this last statement, we slightly abused
notation using G for a reference grid and G(A) as the reference grid built from the
set of extreme corners A.
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The simplest reference grid is createdwith a single corner pointα = (α1, . . . , αk) ∈
Z
k≥0, that is G(α) = {α′ ∈ Z

k≥0 : 0 ≤ α′ ≤ α}. The grid G(α) is a product design,
written equivalently as

G(α) = {0, . . . , α1}
⊗

· · ·
⊗

{0, . . . , αk},

and we refer to it as a tensor design. A tensor grid G(α) is already a full factorial
design and any echelon created from it will also be a full factorial.

We now discuss the polynomial models for our designs. The building block for the
model is a monomial whose exponents are entries of α, that is xα = xα1

1 · · · xαk
k . We

write the model over the tensor grid G(α) as

yα(x) =
∑

α′∈G(α)

θα′xα′
,

and in general for a reference grid G with corners A(G) we have the model:

yA(G)(x) =
∑

α′∈G
θα′xα′

.

This model has observations collected in a reference grid design G and uses points α

in G as model exponents. This duality between design and model was referred to in
the introduction, see also (Pistone et al. 2001). When we consider the elements ofG as
exponents of a model, thenA(G) are the exponents of the set of directing monomials,
see (Bates et al. 2003).

Although the model yA(G)(x) uses all the points and exponents in G, we refer to it
by its most extreme points A(G). This notation is necessary for later as our methods
depend on inclusion exclusion. We also use the notation G(A) when we wish to
recapture the reference grid from its defining corner set A.

Example 3 Consider the reference grid G shown in Fig. 1. If we start from G, we
recover its extreme points as A = A(G) = {(0, 6), (2, 2), (6, 0)}. Taking a slightly
different approach, we recover the full grid of n = 17 points from A as G = G(A).

The following lemma links models built with the reference grid and an echelon
design. This result is taken from Pistone et al. (2001).

Lemma 1 If D is an echelon design, then it identifies a unique model with exponent
vectors given by the elements of the reference grid with extreme corner A(G(D)).

In the following section we develop the models for the reference grids using indi-
cator functions.

3 Interpolation

Consider a non-negative integer vector α.We are interested in interpolation over points
in tensor design G(α). That is, assume that at every point α′ = (α′

1, . . . , α
′
k) of G(α),
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a real data value yα′ is available. We will construct a polynomial interpolator using
the full set of data {yα′ : α′ ∈ G(α)}.

To build the interpolator, we start by defining the indicator function for the point α′
in the gridG(α). The indicator is the product of k one dimensional indicators obtained
by Lagrange interpolation:

Iα′(x) =
k∏

i=1

αi∏

m=0
m �=α′

i

xi − m

α′
i − m

, (1)

where x = (x1, . . . , xk) ∈ R
k is the point at which the indicator is evaluated. For

simplicity we write Iα′(x) instead of the notation I (α)

α′ (x) that makes explicit that this
is the indicator function for point α′ in the gridG(α) for a given α ∈ Z

k≥0. The notation

I (α)

α′ (x) is used in Appendix 1 to prove Lemma 2.
For a point x in G(α), the function Iα′(x) has the indicator property

Iα′(x) =
{
1 if x = α′
0 if x �= α′ .

The interpolator function over the full tensor grid G(α) is built as a linear combi-
nation of the indicator functions, using the values y′

α as coefficients:

yα(x) =
∑

0≤α′≤α

yα′ Iα′(x). (2)

Example 4 Consider the grid {(α′
1, α

′
2) : α′

1 = 0, 1;α′
2 = 0, 1, 2, 3} of n = 8 points in

Z
2≥0. This is the reference grid G(α) for α = (1, 3), equivalently written as a tensor

grid G(α) = {0, 1}⊗{0, 1, 2, 3}. The indicator function of point α′ = (0, 3) ∈ G(α)

is

Iα′(x) = x1 − 1

0 − 1
· x2
3

· x2 − 1

3 − 1
· x2 − 2

3 − 2
= −1

6
(x1 − 1)x2(x2 − 1)(x2 − 2).

3.1 Interpolation on echelon design

We consider interpolation over a reference grid G(A), for a set of corner points A.
Suppose that this grid is the union of two tensor grids

G({α, γ }) = G(α) ∪ G(γ ).

Here A = {α, γ }, where α, γ are distinct vectors with non-negative integer entries.
To avoid trivial cancellations, in what follows the vectors α, γ do not dominate each
other, that is neither α ≤ γ nor α ≥ γ . By this requirement we avoid the inclusions
G(α) ⊂ G(γ ) and G(α) ⊃ G(γ ).
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The following is a simple inclusion–exclusion for the designs, using indicator func-
tions in an obvious way:

I (G({α, γ })) = I (G(α)) + I (G(γ )) − I (G(α) ∩ G(γ )),

where the indicator I (G) takes the unit value on grid points in G and zero on integer
vectors (grid points) outside G.

The greatest common divisor betweenmonomials xα and xγ is themonomial xα∧γ ,
with α ∧ γ := (min(α1, γ1),min(α2, γ2), . . . ,min(αk, γk)). Note that α ∧ γ is the
extreme corner point of the tensor grid G(α ∧ γ ) = G(α) ∩ G(γ ).

A main result of this paper is that the set inclusion–exclusion (IE) for the design
points extends to the interpolators. The proof is given in Appendix 1.

Lemma 2 Let yα(x), yγ (x) and yα∧γ (x) be the interpolator functions over grids
G(α),G(γ ) and G(α ∧ γ ), respectively; and let y{α,γ }(x) be the interpolator function
over the reference grid with corners A = {α, γ }, that is over G(α) ∪ G(γ ). Then the
interpolator y{α,γ }(x) satisfies the following inclusion–exclusion formula

y{α,γ }(x) = yα(x) + yγ (x) − yα∧γ (x). (3)

Example 5 Consider G(γ ) with γ = (2, 2) and G(α) of Example 4 with corner point
α = (1, 3). These grids determine a design D = G(α) ∪ G(γ ) ⊂ Z

2≥0 of n = 11
points.

We now show the interpolating property for point x = (0, 3) ∈ G(α), that is we
show that yD(x) equals y(0,3) when evaluated at x = (0, 3). There are three terms of
Equation (3) to be evaluated at x = (0, 3), and given the location of x in G(α) but not
in G(γ ), this computation uses the second case in the proof of Lemma 2.

The first of the three terms in Equation (3) is yα(x), to be evaluated at x . As
yα interpolates over G(α), this value is y(0,3), precisely the value that we wish to
interpolate. The second evaluation is for yγ (x), composed of 9 summand terms. Of

these, only the indicators I (γ )

(0,0)(x), I
(γ )

(0,1)(x) and I (γ )

(0,2)(x) have non zero value when
evaluated at x . For the first one, when evaluated at x = (0, 3), the value is

I (γ )

(0,0)(x) = 1

4
(x1 − 1)(x1 − 2)(x2 − 1)(x2 − 2) = 1,

and the other two values are −3 and 3 respectively so that

yγ (x) = y(0,0) − 3y(0,1) + 3y(0,2)

at x = (0, 3). The third evaluation is for yα∧γ (x) with 6 terms. The evaluation of
indicators at x = (0, 3) coincide with those of yγ (x). Specifically, when evaluated at

x = (0, 3), the indicators I (α∧γ )

(0,0) (x), I (α∧γ )

(0,1) (x) and I (α∧γ )

(0,2) (x) give values 1,−3 and
3, respectively so that at x = (0, 3) we have

yα∧γ (x) = y(0,0) − 3y(0,1) + 3y(0,2) = yγ (x).
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Fig. 2 Grids involved in Taylor IE

Indicators defined over grids G(α ∧ γ ) = G(α) ∩G(γ ) and G(γ ) are different func-
tions, for instance I (α∧γ )

(0,0) (x) = − 1
2 (x1 − 1)(x2 − 1)(x2 − 2) that coincides with

I (γ )

(0,0)(x) at x = (0, 3). We have thus shown the interpolating property at x = (0, 3),
that is

yD(x) = y(0,3) + (
y(0,0) − 3y(0,1) + 3y(0,2)

) − (
y(0,0) − 3y(0,1) + 3y(0,2)

) = y(0,3).

Example 6 In this example the grids G(α) and G(γ ) lie in different dimensions, con-
sider G(α) with α = (2, 2, 2), a grid with 27 points in Z

3≥0; and grid G(γ ) with
γ = (0, 0, 3). Although G(γ ) is embedded in Z

3≥0, it is a set of 4 points lying along
the x3 coordinate only. The design is D = G(α)∪G(γ ), andwe show the interpolating
property for yD(x) at the point x = (1, 1, 2) ∈ G(α).

We begin with yα(x) = y(1,1,2) at x = (1, 1, 2) because of interpolating property
of yα . For the inclusion–exclusion we require the grid G(α) ∩ G(γ ) that has extreme
corner point α ∧ γ = (0, 0, 2). There is a single point (0, 0, 2) in both G(γ ) and
G(α) ∩ G(γ ) that shares the most coordinates with the point (1, 1, 2). The indicators
are I (γ )

(0,0,2)(x) = −x3(x3 − 1)(x3 − 3)/2 and I (α∧γ )

(0,0,2)(x) = x3(x3 − 1)/2 which when
evaluated at (1, 1, 2) take the value one. Completing Equation (3), at x = (1, 1, 2) we
have yD(x) = y(1,1,2) + y(0,0,2) − y(0,0,2) = y(1,1,2).

In general, reference grids we will have more than two corners and the inclusion–
exclusion will require several layers. Figure2 shows the grids involved in the IE with
three generators α, γ, δ. The top left panel is the reference grid G = G({α, γ, δ});
each of the other figures corresponds to a specific labeled grid; black dots are points
in the grid while grey dots are points in G but outside the labeled grid.

The main result considers a reference grid defined by a set of corner points A. We
give the theorem below, whose proof by induction we omit.
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Theorem 1 Let G(A) be a reference grid for a set of corner points A. Then the
following holds:

(i) There is an IE for G(A) in terms of indicators of tensor grids:

I (G(A)) =
∑

α∈A
I (G(α)) −

∑

α,γ∈A,α �=γ

I (G(α ∧ γ ))

+
∑

α,γ,δ∈A,α �=γ �=δ

I (G(α ∧ γ ∧ δ)) + · · ·

(ii) The unique interpolator yA(x) for points in G(A) satisfies the following

yA(x) =
∑

α∈A
yα(x) −

∑

α,γ∈A,α �=γ

yα∧γ (x) +
∑

α,γ,δ∈A,α �=γ �=δ

yα∧γ∧δ(x) + · · ·

3.2 Betti numbers

In algebraic theory, the inclusion–exclusion of Theorem 1 is known as the Taylor
resolution, which is the most complex case of IE, namely using all the singleton
generators, then all possible pairs, triples and so on. The Taylor resolution is often
highly redundant and it is possible to reduce the complexity of the IE by using other
“resolutions” Sáenz-de Cabezón Wynn (2009). Here is a simple example to show
reduction in IE complexity by cancelation.

Example 7 Consider the set of corner points A = {(2, 0), (1, 1), (0, 2)} that define a
reference grid of six points in two dimensions. The full Taylor inclusion–exclusion of
I (G(A)) is:

I (G(A)) = I (G((2, 0))) + I (G((1, 1))) + I (G((0, 2)))

−I (G((2, 0)) ∩ G((1, 1))) − I (G((1, 1)) ∩ G((0, 2)))

−
�����������
I (G((2, 0)) ∩ G((0, 2))) +

����������������
I (G((2, 0)) ∩ G((1, 1)) ∩ G((0, 2))).

The cancellation occurs between terms that are equal, despite coming from inter-
sections involving different numbers of sets, that isG((2, 0))∩G((0, 2)) = G ((0, 0))
which equalsG((2, 0))∩G((1, 1))∩G((0, 2)). The interpolator has five terms as well
yA(x) = y(2,0)(x) + y(1,1)(x) + y(0,2)(x) − y(2,0)∧(1,1)(x) − y(1,1)∧(0,2)(x).

The efficacy of cancellations to simplify IE depends on the specific design. IE in
Example 7 needed only five terms. We give two more complex examples.

The first column of Table 2a gives the extreme corners A of a grid with n = 112
points in five factors. The rest of columns contain the layers of inclusion–exclusion
for the Taylor IE, for example the column labelled “3-way” has the

(5
3

) = 10 results
of the type α ∧ γ ∧ δ for α, γ, δ ∈ A. For this grid, the exhaustive Taylor computation
is highly redundant with many cancellations so that out of the 31 terms, we only need
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Table 2 Inclusion–exclusion for
two grids each with five
generators

A 2-way 3-way 4-way 5-way
+ − + − +
(a)

11111 11111

11111 11111

21111 11111 11111 11111 11111

12111 11111 11111 11111

11211 11111 11111 11111

11121 11111 11111 11111

11112 11111 11111 11111

11111 11111

11111 11111

11111 11111

(b)

11222 11122

12122 11212

12222 12212 11221 11112 11111

21222 12221 12112 11121

22122 21122 12121 11211

22212 21212 12211 12111

22221 21221 21112 21111

22112 21121

22121 21211

22211 22111

The grid (a) has maximal redundancy, while (b) has maximal complex-
ity with no redundancies. The extreme corners of each grid are given
in the first column A, and the multi-indices have simplified notation
e.g., 11121 means the point with coordinates (1, 1, 1, 2, 1)

six for the IE. The indicator is

I (G(A)) = I (G((2, 1, 1, 1, 1))) + I (G((1, 2, 1, 1, 1))) + I (G((1, 1, 2, 1, 1)))

+I (G((1, 1, 1, 2, 1))) + I (G((1, 1, 1, 1, 2))) − 4I (G((1, 1, 1, 1, 1))).

For this grid, or any echelon design built from it, the IE interpolator is

yA(x) = y(2,1,1,1,1)(x) + y(1,2,1,1,1)(x) + y(1,1,2,1,1)(x)

+y(1,1,1,2,1)(x) + y(1,1,1,1,2)(x) − 4y(1,1,1,1,1)(x). (4)

Table 2b has the results for a grid with n = 242 points and the same number of factors
and generators as the grid of Table 2a. However, this case has maximal complexity and
no simplifications can be made. In summary, for this grid, both IE indicator I (G(A))

and interpolator yA(x) need all 31 terms.
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Fig. 3 The left panel shows a grid G, and the right panel shows exponents of the derived monomial ideal
by flipping corners of G around point c. The shaded area is included to illustrate the flip operation

We require an efficient method to retrieve only the essential IE terms. There is no
space to cover the theory of monomial ideals behind improved resolutions and simpli-
fied inclusion–exclusions for interpolators. We however we give a short explanation.

An efficient way of construction the sought inclusion–exclusion uses results from
monomial ideals (Sáenz-de Cabezón Wynn 2009). Recall that a monomial ideal is a
set of polynomials, and in our case, we build the ideal by flipping the grid G around
a point. After flipping, the points become the exponents of monomials that generate
an ideal. We use the shorthand that the monomial ideal obtained by this flipping the
corners inA around a point c is the derived ideal. The objective of creating the derived
ideal is to determine efficiently the IE decomposition of the grid G.

Figure3 gives a graphical explanation of the process. We flip the corners in A
around a point c as follows, every corner α ∈ A is flipped to become α̃ = c − α

and similarly for γ, δ in the same figure. When the whole grid is flipped, the point
c becomes the origin as shown in the right panel. The choice of flip point c is not
critical as long as it is at least equal to the maximum value of G for the coordinate in
turn. In the figure, c was even beyond the maximum value per coordinate which has
no influence in the result.

Example 8 We continue with the grid G of Example 7. To be specific, if the corner
pointsA are flipped around the maximum point per coordinate c = (2, 2), we retrieve
the same A which when turned to exponents yields x21 , x1x2, x

2
2 which are used to

generate the derived ideal. For the generator corners ofG in Example 2, we flip around
c = (6, 6) and convert to exponents so that we have ideal generators x61 , x

4
1 x

4
2 , x

6
2 . In

a more complex case, the grid of Example 6 uses flip point c = (2, 2, 3) which gives
monomials x3, x21 , x

2
2 .

The result of homological computations with ideals is a collection of Betti num-
bers βα, j . These numbers are non-negative integers that provide the coefficients in a
maximally reduced IE and thus are what we are looking for. Each number is indexed
by a vector of non-negative integers α and an integer j that controls the role of the
number in the inclusion–exclusion. We only use positive βα, j , as those zeroes do not
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contribute to the result and for simplicity, we collect the Betti numbers for the same
j in a set that we label Bj . The computations are carried out using, for example, the
function HilbertSeriesMultiDeg of the CoCoA computer package (Abbott et
al.). The results of computations over the derived ideal have to be reversed around c
so that we can use them for the grid.

The following theorem is a simplification of the exhaustive series of Theorem 1
and it is given without a proof.

Theorem 2 Let G(A) be an echelon for a set of corner points A. Let βα, j be the
multigraded Betti numbers associated with the minimal free resolution of the derived
monomial ideal, and let the non-zero Betti numbers with the same value of j be
collected in B j . Then

(i) There is an IE for I (G(A)):

I (G(A)) =
k−1∑

j=0

(−1) j
∑

α∈Bj

βα, j I (G(α)),

(ii) The unique interpolator overG(A) can be decomposed into tensor grid interpolator
of the same form:

yA(x) =
k−1∑

j=0

(−1) j
∑

α∈Bj

βα, j yα(x).

Theorems 1 and 2 yield exactly the same result concerning either the composition
of I (G(A)), or the interpolation formulæ for yA(x) over G(A). However the former
is much more complex, involving 2|A| − 1 terms, while the latter has many of these
redundancies removed. As shown by example earlier, the reduction in complexity
achievedwith Theorem 2 depends on the generators of the derived ideal. The following
example continues an earlier grid with maximal redundancy.

Example 9 Consider the grid of Table 2a, which will be flipped around the point
c = 22222, written using the notation of Table 2. The derived ideal only requires
the extreme corners, that once flipped are 01111, 10111, 11011, 11101 and 11110
so that the ideal is generated by monomials x2x3x4x5, x1x3x4x5, x1x2x4x5, x1x2x3x5
and x1x2x3x4. The non-zero Betti numbers are β̃01111,0 = 1, β̃10111,0 = 1, β̃11011,0 =
1, β̃11101,0 = 1, β̃11110,0 = 1 and β̃11111,1 = 4, where the tilde indicates that results
refer to the derived ideal. To use these numbers in the grid, we need to reverse themulti-
indices around c, dropping the tilde notation in the process. The Betti numbers are
β21111,0 = 1, β12111,0 = 1, β11211,0 = 1, β11121,0 = 1, β11112,0 = 1 and β11111,1 =
4. With these numbers we retrieve the simplified IE interpolator of Equation (4). By
contrast, the grid of Table 2b yields all Betti numbers for multi-indices in Table 2b
equal to one, with no simplification possible.
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4 Extension to sparse grids

Sparse grids are designs used in stochastic finite element approximation, numerical
integration and interpolation Nobile et al. (2008) and Plumlee (2014). They have a
reduced number of runs while preserving the accuracy of approximations.

To construct a sparse design, we use the construction of Definition 3. That is, we
start from a reference grid G(A). Recall that although the reference grid lies in Z

k≥0,
it is already an echelon design, and each factor xi has ni levels 0, 1, . . . , ni − 1. Next,
define new levels for the design D, in which the levels of variable xi are replaced by
new levels

zi,1, . . . , zi,ni ,

for i = 1, . . . , k. The replacement of levels is arbitrary and only requires a one to
one mapping, hence the design D may not resemble at all its reference grid G. The
operations described above can be reversed and design D in the class defined by the
operation has a unique reference grid G(D).

The reversibility of operations implies that the design D still identifies a single
polynomial model with exponents given by points in the reference grid G. The main
result of the paper is that the inclusion–exclusion results for the tensor designs and
interpolators that hold for the echelon designs extend to the sparse designs obtained
by a set of transformation of level of each factor. We shall now call such a design a
Smolyak grid.

It is clear that any component tensor grid of the reference grid is transformed into a
tensor grid in the design D. Thus a Smolyak grid defined from a reference grid G(D)

has a set of defining corner points A which then indexes an IE, for D.
We use the simple notation yα̃ to indicate the interpolator over the block defined

by the "corner" α, and Ã for the full Smolyak grid. Over the sparse grid Ã, the (Betti)
reduced IE polynomial interpolator is

yÃ(x) =
k−1∑

j=0

(−1) j
∑

α∈Bj

βα, j yα̃(x).

Example 10 Consider a Smolyak design D with k = 2 factors and n = 161 points
and with 15 levels per factor. The reference grid G has generators {(14, 6), (6, 14)}
so that the inclusion–exclusion involves three tensor grids and corresponding design
points as shown in Fig. 4.

5 Conclusions and future research

The sparse grids described are based on a reference grid and despite the apparently
predominant one-factor-at-a-time structure, the relabelling of coordinates allows an
efficient exploration of the design space while keeping the number of runs low. These

123



1246 H. Maruri-Aguilar, H. Wynn

Fig. 4 The plots in the top row show in red the points of grid G(α) and in black the points in G(A) \G(α).
Each plot is headed by α. The plots in the bottom row are the corresponding points in the Smolyak design

designs are an important subclass of experimental designs both from a theoretical
point of view and because of their widespread use in applications.

Sparse grids have been mainly used in two disciplines: numerical analysis (NA)
and experimental design (DE). A motivation for the current paper was to rediscover
and clarify intricate formulæ used in the numerical analysis literature by using the
Betti number decomposition of the last section.

For a fixed reference grid G(A), the construction of a design for which G(D) =
G(A) still requires the specification of the numerical values of levels of each factor
zi,1, . . . , zi,ni . Thus if the design is to optimised, it should be optimised with respect
both the reference grid G(D) and the spacings.

By analogy with factorial design and response surface design, one may outline a
design first without specifying the spacing. A "star-composite design" is an example,
being made up of a factorial design and a star without specifying the spacing of either.
The spacing may be decided later based on the shape of the whole design region,
preset candidate points, optimum design or some structural property e.g., rotatability.
We could say, informally, that we shown one method of producing a generalised star
design, but have left till later issues of spacing. This is partly because the numerical
analysis definitions of optimality and the statistical ones are different so that more
research is needed.We also note that although weworked on saturated models, actions
like adding replicate points to improve statistical capabilities do not change the model
identified.

In NA one may consider an approximation of a function by yÃ(x) and select the

spare grid Ã making use of the inequality

f − yÃ(x) ≤ f − y∗ × �,

where y∗ is some best approximator to f , in some class, � is the so-called Lebesgue
constant, and · a chosen metric. But sparse grids are beginning to attract interest in
the statistical literature; an example is Plumlee (2014). There is an opportunity to draw
the extensive literature on optimal design for application to sparse grids, in the choice
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of reference grid and spacing, whether for physical response surface experiments or
computer experiments.

Whether in NA or DE, the use of algebra reduces complexity by tensor decompo-
sition and we believe, this will help us to understand in future research the important
trade off between sparsity and optimality.
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Appendix A—Proof of IE theorem

Proof The proof is the verification of the interpolating property of y{α,γ }(x) at grid
points α′ in D = G(A) = G(α) ∪ G(γ ). There are three cases to consider, based
upon the partition of D into disjoint sets G(α) ∩ G(γ ), G(α)\(G(α) ∩ G(γ )) and
G(γ ) \ (G(α) ∩ G(γ )). In what follows we compute y{α,γ }(α′), for α′ taking values
in each of the three disjoint sets.

Case 1. The first case we consider is for the intersection of grids, that is when
α′ ∈ G(α) ∩G(γ ). Concerning yα(x), this function interpolates over the intersection
of grids G(α) ∩ G(γ ) as G(α) ∩ G(γ ) ⊂ G(α) so that α′ ∈ G(α) ∩ G(γ ) implies
α′ ∈ G(α) and finally yα(α′) = yα′ . A similar argument shows that α′ ∈ G(γ ) and
thus yγ (α′) = yα′ . Finally, the function yα∧γ (x) also has interpolating property in the
intersection G(α) ∩ G(γ ), that is yα∧γ (α′) = yα′ and

y{α,γ }(α′) = yα(α′) + yγ (α′) − yα∧γ (α′)
= yα′ + yα′ − yα′ = yα′ .

Case 2. The second case iswhenα′ ∈ G(α)\(G(α)∩G(γ )). The function yα(x) has
interpolating property because α′ ∈ G(α)\(G(α)∩G(γ )) ⊂ G(α) and thus yα(α′) =
yα′ . Neither of the functions yγ (x) and yα∧γ (x), have interpolating properties for
α′ ∈ G(α)\(G(α) ∩ G(γ )). To show why this is the case, recall Equation (2) for
interpolators over G(γ ) and over G(α) ∩ G(γ ) = G(α ∧ γ ):

yγ (x) =
∑

0≤α′′≤γ

yα′′ I (γ )

α′′ (x)
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and

yα∧γ (x) =
∑

0≤α′′≤α∧γ

yα′′ I (α∧γ )

α′′ (x),

where we used the notation I (γ )

α′′ (x), I (α∧γ )

α′′ (x) emphasizing that these are indicators
over different reference grids, namely G(α) and G(α ∧ γ ). The ranges of summation
above are G(α) and G(α)∩G(γ ) respectively and neither of these include the current
case α′ ∈ G(α) \ (G(α) ∩ G(γ )) hence yγ (x) and yα∧γ (x) do not interpolate for
α′. However, the core part of this case is that when evaluated at x = α′, these two
functions take the same value

yγ (α′) = yα∧γ (α′),

which we show next. By the construction of yγ (x), the only non zero terms I (γ )

α′′ (α′) of
yγ (α′) are for those points inG(γ ) that share the largest number of coordinateswith the
given α′, as no single point shares all coordinates with α′ because α′ /∈ G(γ ). Without
lack of generality, assume that a point α′′ ∈ G(γ ) shares the first k − 1 coordinates
with α′ ∈ G(α)\(G(α)∩G(γ )), and that the coordinate that is not equal between this
generic α′′ ∈ G(γ ) and α′

k is the k-th coordinate, that is α′ = (α′′
1 , α

′′
2 , . . . , α

′′
k−1, α

′
k).

The inner product in the i-th coordinate in Equation (1) is

γi∏

m = 0
m �= α′′

i

xi − m

α′′
i − m

= xi
α′′
i

xi − 1

α′′
i − 1

· · · xi − α′′
i + 1

α′′
i − α′′

i + 1

xi − α′′
i − 1

α′′
i − α′′

i − 1
· · · xi − γi

α′
i − γi

, (A1)

and this product is equal to one because it is evaluated at xi = α′′
i . This result holds

for coordinates i = 1, . . . , k − 1.
To complete our development for I (γ )

α′′ (α′), we compute the product of Equation
(A1) evaluated at xk = α′

k that becomes the indicator, that is

I (γ )

α′′ (α′) = α′
k

α′′
k

α′
k − 1

α′′
k − 1

· · · α′
k − α′′

k + 1

α′′
k − α′′

k + 1

α′
k − α′′

k − 1

α′′
k − α′′

k − 1
· · · α′

k − γk

α′′
k − γk

.

This non-zero quantity is the coefficient of yα′′ in the evaluation of yγ (α′).
For the indicator Iα∧γ,α′(α′) the results above hold, namely that the indicator terms

are zero except for when α′′ shares all but one coordinate with α′ and that the product
of terms equals one. This is true despite the fact that the product of Equation (A1)
in Iα∧γ,α′(x) runs for values of m in the range 0, 1, α′′

i − 1, α′′
i + 1, . . . ,min(αi , γi )

with min(αi , γi ) ≤ γi . In other words, indicators for different reference grids involve
a different number of products.

The only fact needed to complete the equality between yγ (α′) and yα∧γ (α′) is to
show that I (γ )

α′′ (α′) = I (α∧γ )

α′′ (α′), namely that the indices of the last coordinate run
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over the same range for I (α∧γ )

α′′ (α′). This is true because for the k-th coordinate we have
(α ∧ γ )k = min (αk, γk) = γk and this is the case because the G(α) differs (exceeds)
at least on the k − th coordinate and for this to happen αk > γk . This completes this
second case and we have shown that yγ (α′) = yα∧γ (α′) so that

y{α,γ }(α′) = yα′ + yγ (α′) − yα∧γ (α′)
= yα′ + yγ (α′) − yγ (α′) = yα′ .

Case 3. The third case α′ ∈ G(γ )\(G(α) ∩ G(γ )) is shown exactly as the second
case, only reversing with the role of G(α) by taking G(γ ).

Combining the three cases, we have shown the interpolation property of y{α,γ }(x)
of Equation (3) over G(A) = G(α)∪G(γ ), that is y{α,γ }(α′) = yα′ for α′ ∈ G(A). �
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