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Abstract
In this paper the results of Radloff and Schwabe (Stat Papers 60:165–177, 2019) will
be extended for a special class of symmetrical intensity functions. This includes binary
response models with logit and probit link. To evaluate the position and the weights
of the two non-degenerated orbits on the k-dimensional ball usually a system of three
equations has to be solved. The symmetry allows to reduce this system to a single
equation. As a further result, the number of support points can be reduced to the
minimal number. These minimally supported designs are highly efficient. The results
can be generalized to arbitrary ellipsoidal design regions.

Keywords Binary response model · D-optimality · k-dimensional ball · Logit and
probit model · Multiple regression model · Simplex

Mathematics Subject Classification 62K05 · 62J12

1 Introduction

Response surface methodology is often used in engineering experiments to describe
the effect of various factors of influence (explanatory variables) on the outcome of a
technical system. There, some statistical model is assumed to be valid in a vicinity of a
target setting for the explanatory variables.Depending on the shape of the experimental
design used, this vicinity covers a cubical region for factorial designs or a spherical
region for (central) composite designswhere additional axial points are includedwhich

B Martin Radloff
martin.radloff@ovgu.de

Rainer Schwabe
rainer.schwabe@ovgu.de

1 Institute for Mathematical Stochastics, Otto-von-Guericke University, Universitätsplatz 2, 39106
Magdeburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00362-023-01434-z&domain=pdf
http://orcid.org/0000-0002-1874-6455


1022 M. Radloff, R. Schwabe

have the same distance to the target setting as the factorial points on the cube, see e. g.
Box and Draper (1987).

For linear models, these designs share some nice features like rotatability in the
situation of multiple linear regression which makes it reasonable to use a spherical
design region from which the experimental settings may be chosen. There, optimality
properties were obtained in early work byKiefer (1961) and Farrell et al. (1967) which
discuss polynomial regression on the ball. These ideas were followed up by papers in
which also only linear problems were focused on. So Lau (1988) fitted polynomials on
the k-dimensional unit ball by using canonical moments. In Dette et al. (2005, 2007)
and Hirao et al. (2015) harmonic polynomials and Zernike polynomials were used to
be fitted on the unit disc (two-dimensional), the three-, and the k-dimensional unit
ball.

On the other hand generalized linearmodels arewell-examined and used in practical
application, in particular, if the response is binary or consists of count data. Optimal
design in the case of logit or probitmodels, for example, have been investigated byFord
et al. (1992) and Biedermann et al. (2006) on an interval which may be considered as a
“ball” in one dimension. But there does not seem to be much literature available which
extends these results to proper higher dimensional spherical regions. In Radloff and
Schwabe (2019a) we made a first attempt to bring non-linearity or, more specifically,
generalized linearmodels and spherical design regions together in the context of design
optimization. The results therein were extended to a wider class of non-linear models
in Radloff and Schwabe (2019b).

In the present paper, we will start with the model description in Sect. 2 and give
a brief overview of the findings so far in Sect. 3. Then we will consider a special
class of intensity functions which allows to reduce the complexity of finding (locally)
D-optimal designs in Sect. 4. Thereafter we will tackle the problem, that the optimal
designs are not exact designs in general, by establishing highly efficient designs on
the ball in Sect. 5. Some basic notation and some proofs are given in Appendix A and
Appendix B, respectively.

2 General model description

The outcome Y of an experiment may be influenced by a set x = (x1, . . . , xk)�
of k explanatory variables x1, . . . , xk , k ≥ 1, such that the distribution of a single
response Yi is determined by the corresponding experimental setting xi . In particular,
the mean response E(Yi ) = h( f (xi )�β) is a one-to-one function h of the linear
predictor f (xi )�β, where f is a p-dimensional vector of regression functions, p ≥ k,
and β is a p-dimensional vector of parameters. While the functions h and f are
assumed to be known, statistical inference is to be made on the parameter vector β. In
particular, in a linear model, the function h is the identity while, for generalized linear
models, h is the inverse link function. However, the function h may be more general,
e. g. in models with censored observations.

Under distributional assumptions on the response Yi , the influence of the corre-
sponding experimental setting xi on the performance of the statistical inference may
be measured by the elemental information matrix M(xi ,β). In generalized linear
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Exact designs on the ball 1023

models, also the variance Var(Yi ) = σ 2( f (xi )�β) of the response Yi is a function of
the linear predictor only, and the elemental information matrix can be represented as

M(xi ,β) = λ
(
f (xi )�β

)
f (xi ) f (xi )�, (1)

where the intensity function λ is given by λ(z) = h2(z)/σ 2(z) such that the intensity
λ
(
f (xi )�β

)
only depends on the linear predictor f (xi )�β. In a linear model, the

intensity function λ is constant. But, also in other situations, the elemental information
may be of the form (1) with suitable intensity function λ like for censored data. Thus,
we will suppose throughout in the following that the elemental information matrix has
the form (1).

Under the assumption of independent observations Y1, . . . , Yn at experimental set-
tings x1, . . . , xn , the information matrix M((x1, . . . , xn),β) = ∑n

i=1 M(xi ,β) of
the whole experiment is given by the sum of the elemental information matrices at
the single settings. The collection (x1, . . . , xn) of the experimental settings will be
called an (exact) design. The performance of a design can be measured in terms of the
information matrix because the maximum-likelihood estimator of the parameter vec-
tor β is asymptotically normal with (asymptotic) covariance matrix proportional to the
inverse of the information matrix under mild regularity conditions. The aim of design
optimization is then to find experimental settings x1, . . . , xn from a design region X
of potential settings which maximize the information in a certain sense. Here, we will
make use of the D-criterion which is most popular in applications and which aims at
maximizing the determinant of the information matrix. In terms of the (asymptotic)
covariance matrix, the D-criterion can be interpreted as minimization of the volume
of the (asymptotic) confidence ellipsoid for the whole parameter vector β. Note that
the information matrix depends on the value of the parameter vector β. Hence, also
the optimal design will depend on β, and we will consider local D-optimality at some
prespecified β0.

As in Radloff and Schwabe (2019a) and Radloff and Schwabe (2019b), where we
described (locally) D-optimal designs for two special classes of linear and non-linear
models, we consider as the design region X the k-dimensional unit ball Bk = {x ∈
R
k : x21 + · · · + x2k ≤ 1} and a multiple regression model for the linear predictor

f (x)�β = β0 + β1x1 + · · · + βk xk

with regression function f : x �→ (1, x1, . . . , xk)�, and parameter vector β =
(β0, β1, . . . , βk)

� ∈ R
k+1 such that the dimensionof the parameter vector is p = k+1.

Further, we relax the concept of (exact) designs to the class of (generalized) designs ξ

in the spirit of Kiefer (1959). Here, a generalized designmeans an arbitrary probability
measure on the design region X = Bk which is not necessarily discrete, as commonly
assumed in the literature on approximate design theory, but may be continuous. The
standardized information matrix of a (generalized) design ξ is then defined as

M(ξ,β) =
∫

M(x,β) ξ(dx) =
∫

λ
(
f (x)�β

)
f (x) f (x)�ξ(dx),
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which reduces to 1
n M((x1, . . . , xn),β) in the case of a discrete design associ-

ated with the (exact) design (x1, . . . , xn). Then, concerning (local) D-optimality, a
design ξ∗

β0 with regular information matrix M(ξ∗
β0 ,β

0) is (locally) D-optimal (at β0)

if det(M(ξ∗
β0 ,β

0)) ≥ det(M(ξ,β0)) for all probability measures ξ on the design

region X = Bk .

3 Prior results

In Radloff and Schwabe (2016) we stated results on equivariance and invariance
in models, where the elemental information matrix is of the form (1). By rotat-
ing the design region Bk and the parameter space R

k+1 simultaneously by g :
x �→ (g1(x), . . . , gk(x))� such that g1(x) points into the direction of the max-
imum value maxx∈Bk ( f (x)�β) of the linear predictor on the ball, g̃ : β �→
(β0,

√
β2
1 + · · · + β2

k , 0, . . . , 0)
�, and this reparameterization leaves the intensity

λ
(
f (g(x))� g̃(β)

) = λ
(
f (x)�β

)
unchanged. Design optimality carries over from

one parameterization to the other by the transformation g on the design region or its
inverse g−1, respectively.

Thus, we can confine our investigations to parameter vectors of the form

β0 = (β0, β1, 0, . . . , 0)
� (2)

with β1 ≥ 0 in which, apart from the intercept term β0, only the slope β1 for the
component x1 may differ from zero. A (locally) D-optimal design ξ∗

β0 obtained for β
0

of the form (2) then yields a (locally) D-optimal design g−1(ξ∗
β0) for a general β0,

where g−1(ξ∗
β0) is the (measure-theoretic) image of ξ∗

β0 under the mapping g−1.

For β0 of the form (2), the linear predictor reduces to

f (x)�β0 = β0 + β1x1 (3)

where β1 ≥ 0. Note that the linear predictor and, thus, the intensity only vary in x1,
while these quantities are constant in the other directions orthogonal to the direction
of x1.

Ifβ1 = 0, the linear predictor and the intensity functionwill be constant. This results
in a (locally) D-optimal design which does not depend on β0 and is the same as in
the corresponding linear model. According to Pukelsheim (1993, Sect. 15.12) such an
optimal design consists of equally weighted vertices of a regular simplex inscribed in
the unit sphere, which is the boundary of the design region, and the orientation of the
simplex may be chosen arbitrarily. So we only need to consider β1 > 0 from now on.

Forβ0 of the form (2), the (local) D-criterion is rotationally invariant with fixed first
component x1, i. e. invariant with respect to the subgroup of all orthogonal transforma-
tions in the orthogonal group O(k) which leave the x1-component unchanged. Then,
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there will be a (locally) D-optimal (generalized) design ξ∗
β0 which is also rotationally

invariant with fixed x1.
If we regard a design ξ on X as a joint distribution of the projections onto the com-

ponents of x, then it can be decomposed into a marginal design (marginal distribution)
ξ1 on the first component x1 supported on the marginal design region X1, which is
the projection of X onto x1, and a probability kernel η which, for every x1, provides
a conditional design η(x1, ·) on the conditional design region X2(x1), which is the
x1-cut of X , such that ξ = ξ1 ⊗ η, where “⊗” denotes the measure-theoretic product.

In the present case of a (locally) D-optimal rotationally invariant design ξ∗, the
conditional design η(x1, ·) is the uniform distribution on the surface of a (k − 1)-

dimensional ballwith radius
√
1 − x21 – the outmost orbit at position x1. The D-optimal

design is then of the form ξ∗ = ξ∗
1 ⊗ η. As a consequence of the decomposition, the

multidimensional problem reduces to a one-dimensional marginal problem. Only the
marginal design ξ1 has to be optimized, i. e. the positions x1 of the orbits and their
weights have to be determined. To finally get an exact design, the uniform orbits have
to be discretized, for example, by using regular simplices.

In Radloff and Schwabe (2019a) we started with models where the intensity func-
tion belongs to the class of monotonic functions. This means the first derivative of the
intensity function λ′ is positive (or negative) on R. Such models satisfying four par-
ticular conditions on the intensity function λ similar to (A1) to (A4) below have been
investigated in one dimension, for example, by Konstantinou et al. (2014) and on mul-
tidimensional cuboids or orthants by Schmidt and Schwabe (2017). The results therein
can be applied, for example, to Poisson regression and negative binomial regression as
well as special proportional hazard models with censoring, see Schmidt and Schwabe
(2017).

In Radloff and Schwabe (2019b) two of the four conditions were modified to (A2′)
and (A3′) and a fifth property (A5) was added to apply the results to more non-linear
models.

(A1) λ is positive on R and twice continuously differentiable.

(A2′) λ is unimodal with mode c(A2′)
λ ∈ R.

(A3′) There exists a threshold c(A3′)
λ ∈ R so that the second derivative u′′ of u = 1

λ
is

both injective on (−∞, c(A3′)
λ ] and injective on [c(A3′)

λ ,∞).

(A4) The function λ′
λ
is non-increasing.

(A5) u = 1
λ
dominates z2 asymptotically for z → ∞.

If c(A2′)
λ = c(A3′)

λ we will write cλ for short. In this context condition (A2′) means

that there exists a c(A2′)
λ ∈ R so that λ′ is positive on (−∞, c(A2′)

λ ) and negative

on (c(A2′)
λ ,∞). Hence, there is only one local maximum which is simultaneously

the global maximum. So the class of intensity functions, which satisfy (A1), (A2′)
and (A3′), is called class of unimodal intensity functions. At this the condition (A3′)
will be needed to apply the Kiefer-Wolfowitz equivalence theorem.
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1026 M. Radloff, R. Schwabe

The intensity functions of this class considered here have to satisfy addition-
ally (A5). The property (A5) is

lim
z→∞

∣∣∣∣
u(z)

z2

∣∣∣∣ = ∞.

This means that u(z) = 1
λ(z) goes faster to infinity than z

2 for z → ∞. The extra con-
dition (A4) gives the log-concavity of λ. This guarantees uniqueness of the solutions
in the following theorems and lemmas.

For a concise notation, we define

q(x1) := λ(β0 + β1x1).

The properties (A1), (A2′), (A3′), (A4) and (A5) transfer to q forβ1 > 0, respectively,

and, analogously, we set c(·)
q = c(·)

λ −β0
β1

with (·) is (A2′), (A3′) or empty.

It should be noted, that for fixed β0 the following propositions do not need (A1),
(A2′), (A3′) and (A4) on the entire real line R. It suffices to have them to hold within
the ball and, in particular, on the interval [−1, 1] for x1 in the case of q and on the
interval [β0 −β1, β0 +β1] in the case of λ, respectively. But, for considering arbitrary
β0, the model has to satisfy the conditions on the whole real line.

We now consider certain intensity functions: the logit model has the intensity func-
tion

qlogit(x1) = exp(β0 + β1x1)

(1 + exp(β0 + β1x1))2

and probit model has

qprobit(x1) = φ2(β0 + β1x1)

�(β0 + β1x1) · (1 − �(β0 + β1x1))

with the density function φ and cumulative distribution function � of the standard
normal distribution. Both models satisfy all five conditions (A1), (A2′), (A3′), (A4),
(A5) and share a common c(A2′)

λ = c(A3′)
λ = 0, say cλ = 0. Analogously cq = −β0

β1
for q.

Beside these two widely used models other models like the complementary log-log
model, see Ford et al. (1992), with intensity function λcomp log log(z) = exp(2z)

exp(exp(z))−1

satisfy all five conditions — here with c(A2′)
λ ≈ 0.466011 and c(A3′)

λ ≈ 0.049084, but

the mode c(A2′)
λ and the threshold c(A3′)

λ do not coincide.
We showed that if the (concise) intensity function q satisfies (A1), (A2′), (A3′)

and (A5) the (locally) D-optimal design ξ∗ = ξ∗
1 ⊗ η is concentrated on exactly two

orbits, which are the support points of the marginal design ξ∗
1 . The idea of the proof

is based on Biedermann et al. (2006) and Konstantinou et al. (2014).
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Exact designs on the ball 1027

The next theorem is themain result of the paper Radloff and Schwabe (2019b) and is
reproduced (with a slight adaptation formore precision) for the readers’ convenience. It
characterizes the positions of the two support points of the optimal marginal design ξ∗

1 .

Theorem 1 For k ≥ 2 the simplified problem (3) with β1 > 0 and intensity function q
satisfying (A1), (A2′), (A3′) and (A5) has a (locally) D-optimal marginal design ξ∗

1
with exactly 2 support points x∗

11 and x∗
12 with x∗

11 > x∗
12 and weights w1 = ξ∗

1 (x∗
11)

and w2 = ξ∗
1 (x∗

12).
There are 3 cases:

(a) If c(A2′)
q > 1 and c(A3′)

q /∈ [−1, 1], then x∗
11 = 1, w1 = 1

k+1 , w2 = k
k+1 and

x∗
12 ∈ (−1, 1) is solution of

q ′(x∗
12)

q(x∗
12)

= 2 (1 + kx∗
12)

k (1 − x∗ 2
12 )

. (4)

If additionally (A4) is satisfied, the solution x∗
12 is unique.

(b) If c(A2′)
q < −1 and c(A3′)

q /∈ [−1, 1], then x∗
12 = −1, w1 = k

k+1 , w2 = 1
k+1 and

x∗
11 ∈ (−1, 1) is solution of

q ′(x∗
11)

q(x∗
11)

= 2 (−1 + kx∗
11)

k (1 − x∗ 2
11 )

. (5)

If additionally (A4) is satisfied, the solution x∗
11 is unique.

(c) Otherwise c(A2′)
q ∈ [−1, 1] or c(A3′)

q ∈ [−1, 1].
Let x, y ∈ R with x > y and α ∈ (− 1

2 ,
1
2

)
be solution of the equation system:

q ′(x)
q(x)

+ 2

x−y
+ (k−1)

q ′(x) (1−x2) ( 12 −α) + q(x) (−2 x) ( 12 −α)

q(x) (1−x2) ( 12 −α) + q(y) (1−y2) ( 12 +α)
= 0 (6)

q ′(y)
q(y)

− 2

x−y
+ (k−1)

q ′(y) (1−y2) ( 12 +α) + q(y) (−2 y) ( 12 +α)

q(x) (1−x2) ( 12 −α) + q(y) (1−y2) ( 12 +α)
= 0 (7)

1
1
2 −α

− 1
1
2 +α

+ (k−1)
q(x) (1−x2) − q(y) (1−y2)

q(x) (1−x2) ( 12 −α) + q(y) (1−y2) ( 12 +α)
= 0 (8)

(c0) If x, y ∈ (−1, 1) with x > y and α ∈ (− 1
2 ,

1
2 ) is a solution of the equation

system, the orbit positions are x∗
11 = x, x∗

12 = y with weights w1 = 1
2 − α

and w2 = 1
2 + α.

(c1) If x ≥ 1 and y ∈ (−1, 1), then x∗
11 = 1, w1 = 1

k+1 , w2 = k
k+1

and x∗
12 ∈ (−1, 1) is the solution of the Eq. (4).

(c2) If y ≤ −1 and x ∈ (−1, 1), then x∗
12 = −1, w1 = k

k+1 , w2 = 1
k+1

and x∗
11 ∈ (−1, 1) is the solution of the Eq. (5).
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1028 M. Radloff, R. Schwabe

Fig. 1 Logit model for k = 3
and β1 = 1: dependence of x∗

11
and x∗

12 (solid lines) and the
corresponding weights w1 and
w2 = 1 − w1 (dashed lines) on
cq = −β0 ∈ [−1.2, 1.2]

Remark 1 Instead of presenting the whole theorem for k = 1, only the two main
changes in case (c) should be mentioned. So the weights are always w1 = w2 = 1

2
and the equation system (6)–(8) is replaced by

q ′(x)
q(x)

+ 2

x − y
= 0 and

q ′(y)
q(y)

− 2

x − y
= 0. (9)

To illustrate this complex issue we revisit the logit model in dimension k = 3
with β1 = 1. We (numerically) plot the orbit positions x∗

11 and x∗
12 and corresponding

weights w1 and w2 = 1 − w1 depending on −β0 = −β0
β1

= cq , see Fig. 1. The cases
(a) and (b) are in accordance with the results from Radloff and Schwabe (2019a)
because the intensity function is monotonic within the ball. The cases (c1) and (c2)
yield marginal extremum solutions which are identical to (a) and (b). So for these four
cases there exists always an exact minimally supported (locally) D-optimal design. It
consists of a pole point in x1 = −1 or x1 = 1 and the k vertices of a (regular) simplex
which is maximally inscribed in the non-degenerated orbit at x1 = x∗

11 or x1 = x∗
12,

respectively.
But the case (c0) is more problematic because the (locally) D-optimal (generalized)

design consists of two non-degenerated orbits and additionally the weights are rarely
appropriate for a discretization. In Radloff and Schwabe (2019b) we showed two
examples for the logit model (k = 3, β1 = 1) from which we derived (nearly) exact
designs.

For−β0 = 0 the two orbit positions are symmetrical around 0, that is x∗
11 = −x∗

12 ≈
0.52, and the weights are ξ∗

1 (x∗
11) = ξ∗

1 (x∗
12) = 1

2 . These two orbits were discretized

123



Exact designs on the ball 1029

by two 2-dimensional simplices—overall 6 equally weighted support points, see Fig. 2
(left image).

For−β0 = −0.1 the solutions are x∗
11 ≈ 0.42, x∗

12 ≈ −0.62 and ξ∗
1 (x∗

11) ≈ 0.4297,
while 0.4297 ≈ 3

7 . We chose the rounded design ξ≈ with the same support points x∗
11

and x∗
12 but with the marginal design ξ≈

1 (x∗
11) = 3

7 and ξ≈
1 (x∗

12) = 4
7 . So it was

possible to substitute one orbit by the vertices of a 2-dimensional simplex (3 points—
an equilateral triangle) and one by the vertices of a 2-dimensional cube or cross
polytope (4 points—a square). Because of rounding the design ξ≈ is not optimal but
exact and has a high D-efficiency, which compares the rounded design ξ≈ and the
optimal design ξ∗

β0 with respect to β0—here p = k+1 = 4 and β0 = (0.1, 1, 0, 0)�:

EffD(ξ≈,β0) =
⎛
⎝ det(M(ξ≈,β0))

det(M(ξ∗
β0 ,β

0))

⎞
⎠

1
p

≈ 0.999757.

These designs have the following properties, which are unsatisfactory. On the one
hand the number of support points is not minimal. On the other hand only special
cases have appropriate rational weights which allow a discretization or otherwise the
optimality is lost by rounding. Therefore we want to construct minimal supported
exact designs for the case (c0) in this paper which will be (highly) efficient if not
optimal.

But we start with the reduction of the system of three equations in Theorem 1 to only
one single equation for special unimodal intensity functions—symmetrical unimodal
intensity functions. They occur, for example, in binary response models with logit and
probit link.

4 Optimal design for symmetrical unimodal intensity functions

An interesting observation was made in the discussion section in Radloff and Schwabe
(2019b). For models with unimodal intensity function in which the mode and the

threshold coincide (c(A2′)
λ = c(A3′)

λ = cλ) and which are symmetrical, also the two
orbit positions are symmetrical in a certain way, which we want to investigate here.
For one dimension this has been considered and shown in Ford et al. (1992, Sects. 6.5
and 6.6), but this proof cannot be extended to higher dimensions directly.

A unimodal intensity function in which the mode and the threshold coincide

(c(A2′)
λ = c(A3′)

λ = cλ) will be called symmetrical to cλ if

λ(cλ + z) = λ(cλ − z)

for all z ∈ R.
The intensity functions of the logit and probit models are symmetrical with cλ = 0.

But the unimodal intensity function of the complementary log-log model has c(A2′)
λ =

c(A3′)
λ and cannot be symmetrical for this reason.
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1030 M. Radloff, R. Schwabe

In the present paper we focus only on the logit and probit models as practically
important examples and most commonly used models with symmetrical unimodal
intensity function. But it is conceivable that there are more models of this type, par-
ticularly with regarding to binary response. Assuming Yi as Bernoulli distributed with
success probability pi = F

(
f (xi )�β

)
, where F is a strictly increasing, continu-

ously differentiable cumulative distribution function and f = F ′ is the corresponding
density function, the intensity function is

λ(z) = f 2(z)

F(z)(1 − F(z))
.

Then symmetry will be inherited: if the density function is symmetrical, the intensity
function will be symmetrical, too.

If the density function has additionally a local extremum at the symmetry line, the
intensity functionwill also have a local extremum there. It has to be checked separately
whether this is the only (local) maximum.

Lemma 2 Let the intensity function λ be symmetrical to cλ in the situation of Theo-
rem 1 (c0).

• For β0 = cλ let r solve

λ′(cλ+r)

λ(cλ+r)
= − A(k, r , c, β1)

(k+1) r (r+c−β1)(r+c+β1)(r−c+β1)(r−c−β1)
(10)

with

A(k, r , c, β1) := − 2 k r2
(
β2
1 +c2−r2

)
+

(
β2
1 −c2−r2

)2−4 c2 r2

+
(
β2
1 −c2+r2

)√(
β2
1 −c2−r2

)2+4 (k2−1) c2 r2

and c := cλ − β0. Then

x = c

β1
+ r

β1
, (11)

y = c

β1
− r

β1
, (12)

α = −(
β2
1 −c2−r2

)+
√(

β2
1 −c2−r2

)2+4 (k2−1) c2 r2

4 (k+1) c r
(13)

is a solution of the equation system (6)–(8).
• For β0 = cλ a solution of (6)–(8) is x = r

β1
, y = − r

β1
and α = 0, where r is the

solution of

λ′(cλ + r)

λ(cλ + r)
= − 2

(
β2
1 − k r2

)

(k + 1) r
(
β2
1 − r2

) . (14)
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Remark 2 For the particular case k = 1, cf. Remark 1, let λ be symmetrical to cλ.
Then x = cλ−β0

β1
+ r

β1
and y = cλ−β0

β1
− r

β1
with r solution of

λ′(cλ + r)

λ(cλ + r)
= −1

r
(15)

solve the equation system (9).

Lemma 2, whose proof sketch can be found in Appendix B, and Remark 2 in combi-
nation with Theorem 1 give (locally) D-optimal designs for models with symmetrical
unimodal intensity functions. As a result we reduced the system of Eqs. (6)–(8) to
only one single Eq. (10).

But the question remains whether condition (A4) can guarantee a unique solution
as in Theorem 1(a) and (b) because Theorem 1(c), especially (c0), tells nothing about
the uniqueness of the positions of the two orbits. Without uniqueness there may be
more than one optimal design of this shape. Before dealing with that, we want to add a
remark on the range of values for r in Lemma 2, so that there are two non-degenerated
orbits.

Remark 3 If the system of Eqs. (6)–(8) in Theorem 1(c0) has a solution with two inner
support points for the marginal design, it is required that x, y ∈ (−1, 1) and, hence,

−1 <
cλ − β0

β1
± r

β1
< 1

must be valid. This leads with β1 > 0 to r ∈ (−(cλ − β0) − β1,−(cλ − β0) + β1)

and r ∈ ((cλ − β0) − β1, (cλ − β0) + β1). Consequently, both intervalsmust overlap.
This happens for cλ − β0 > 0 at 0 < cλ − β0 < β1 and for cλ − β0 < 0 at −β1 <

cλ − β0 < 0. Thus cλ − β0 ∈ (−β1, β1) and in particular β2
1 > (cλ − β0)

2 must hold.
Then r is in the interval (|cλ − β0| − β1,−|cλ − β0| + β1). But Theorem 1(c) needs
x > y and consequently r > 0. Hence, r ∈ (0,−|cλ − β0| + β1).

This remains valid in particular for β0 = cλ, i. e. cλ − β0 = 0. So r ∈ (−β1, β1).
With r > 0 it is r ∈ (0, β1).

Lemma 3 In situation of Lemma 2 let the intensity function λ additionally satisfy
condition (A4), then Eq. (10), whose right hand side is continuously continued
in −|cλ − β0| + β1, has a unique solution in r ∈ (0, |cλ − β0| + β1).

This also holds for β0 = cλ and Eq. (14), which has exactly one solution in r ∈
(0, β1).

Remark 4 For k = 1, cf. Remark 2, and for an intensity function satisfying (A4) there
is only one solution of (15).

The proof of Lemma 3 is sketched in Appendix B. Lemma 3 guarantees a unique
solution in r ∈ (0, |cλ − β0| + β1). But Remark 3 points out that for Theorem 1 (c0)
we need r ∈ (0,−|cλ − β0| + β1). This means that the unique solution can result in
the two-orbit case or in the one-orbit one-pole case of Theorem 1 (c).
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1032 M. Radloff, R. Schwabe

Fig. 2 Logit model for k = 3, β1 = 1 and −β0 = 0: discretized (locally) D-optimal designs with 6 or 4
support points

5 Minimally supported designs

In the situation of Theorem 1(a), (b), (c1) and (c2) the designs have always theminimal
number of support points to estimate the parameter vector β. These are k + 1 support
points.

In Radloff and Schwabe (2019b) revisited here in the introductory section we
indicated exemplarily a (locally) D-optimal design for the logit model on the 3-
dimensional ball with −β0 = 0 and β1 = 1. This design consists of six support
points which are the vertices of two regular 2-dimensional simplices—equilateral tri-
angles, see Fig. 2 (left image). But this is not theminimumof support points to estimate
the four parameters.

So the question arises whether it is possible to reduce the number of support points
as it can be found in the concept of fractional factorial designs, see e. g. Pukelsheim
(1993, Sect. 15.11). Instead of using all vertices of the hypercube [−1, 1]k as in the
full factorial design the fractional factorial design picks only a special percentage of
these points. For k = 3

(
(−1,−1, 1)�, (−1, 1,−1)�, (1,−1,−1)�, (1, 1, 1)�

)

represents a 23−1-fractional factorial design.
Here, we do not want to pick four of the six points, but we want to use the orthog-

onality of the spaces spanned by the points (without the x1-component) in the two
orbits (x1 = −1 and x1 = 1) of the given 23−1-fractional factorial design. Here
span{(−1, 1)�, (1,−1)�} ⊥ span{(−1,−1)�, (1, 1)�}. The idea is illustrated in
Fig. 2 (right image). The spanned spaces by points (without the x1-component) in
the orbits are orthogonal to each other. And all points span a simplex.

As stated above a (generalized) design ξ which is rotationally invariant with fixed x1
(this means it is invariant with respect to all orthogonal transformations in the orthog-
onal group O(k) which do not change the x1-component) and which has all mass
on the unit sphere can be decomposed into a marginal design ξ1 on [−1, 1] and a
probability kernel η (conditional design), i. e. ξ = ξ1 ⊗ η. For fixed x1 the kernel
η(x1, ·) is the uniform distribution on the surface of a (k − 1)-dimensional ball with

radius
√
1 − x21—the radius of the orbit at position x1. If x1 ∈ {−1, 1}, the (k − 1)-
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Exact designs on the ball 1033

dimensional ball with the uniform distribution reduces to a single point and represents
only a one-pointmeasure. Rememberingq(x1) = λ(β0+β1x1) the related information
matrix, see Radloff and Schwabe (2019a), is

M(ξ1 ⊗ η,β0) =
⎛
⎝

∫
q dξ1

∫
q id dξ1∫

qiddξ1
∫
q id2 dξ1

O2×(k−1)

O(k−1)×2
1

k−1

∫
q (1 − id2) dξ1 Ik−1

⎞
⎠ (16)

with the identity function id (id(x1) = x1) and the parameter vector β0 =
(β0, β1, 0, . . . , 0)�.

The informationmatrix for a design on the k-dimensional unit sphere Sk−1, which is
based on exactly two orbits, can be determined analogously to this result. Additionally
the uniform distribution does not cover the the full orbits but only sub-spheres.

Lemma 4 Let ξ1 be the two-point measure in x11 and x12 with ξ1(x11) = 1
2 − α

and ξ1(x12) = 1
2 + α with α ∈ (− 1

2 ,
1
2

)
. Further let η(x11, ·) be a uniform distribu-

tion on Sm−2
(√

1 − x212
) × {0}k−m and likewise η(x12, ·) be a uniform distribution

on {0}m−1 × Sk−m−1
(√

1 − x212
)
. Then the information matrix is

M(ξ1 ⊗ η,β0) =

⎛
⎜⎜⎝

∫
q dξ1

∫
q id dξ1∫

q id dξ1
∫
q id2 dξ1

O2×(k−1)

O(k−1)×2
c1 Im−1 O(m−1)×(k−m)

O(k−m)×(m−1) c2 Ik−m

⎞
⎟⎟⎠ (17)

with c1 = 1
m−1 q(x11) (1−x211) ( 12 −α) and c2 = 1

k−m q(x12) (1−x212) ( 12 +α).

Now the optimality case in Theorem 1 (c0) on two orbits should be used to investi-
gate when both information matrices (16) and (17) are identical. With that both related
(generalized) designs would be (locally) D-optimal.

Lemma 5 Both information matrices (16) and (17) are identical in the situation of
Theorem 1(c0) if and only if α = 1

2 − m
k+1 .

The proof can be found in Appendix B.
Consequently both orbits need the weights ξ1(x11) = m

k+1 and ξ1(x12) = k−m+1
k+1

to coincide both information matrices. This allows an experimental design, which
has the same value for the D-optimality criterion, consisting of two orbits with m
and with k − m + 1 support points. This can be done by two regular simplices—
one simplex in dimension m − 1 and one in dimension k − m. So the simplices are

the discretizations of the uniform distributions on Sm−2
(√

1 − x211
) × {0}k−m and

on {0}m−1 × Sk−m−1
(√

1 − x212
)
.
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Fig. 3 Logit model with k = 3 and β1 = 1: D-efficiency for type-1-designs (solid lines), type-2-designs
(dotted lines) and type-3-designs (dashed lines) with exactly k + 1 = 4 equally weighted support points for
−β0 ∈ (−0.403, 0.403)

Let Sm ∈ R
m×(m+1) be a matrix, where the columns represent the m + 1 vertices

of an m-dimensional regular simplex (in R
m). Then the columns of the matrix

⎛
⎝

x111�
m x121�

k−m+1
R1 Sm−1 O(m−1)×(k−m+1)

O(k−m)×m R2 Sk−m

⎞
⎠

with arbitrary orthogonal transformations R1 ∈ O(m − 1) and R2 ∈ O(k − m)

represent the support points of such a minimal supported design.

(√
m + 1

m
Im + 1 − √

m + 1

m
√
m

1m1
�
m

∣∣∣∣∣ − 1√
m

1m

)
∈ R

m×(m+1)

is an example for Sm . In this notation Im stands for the standard simplex which needs
to be scaled and shifted appropriately so that it is in combination with the last vertex
− 1√

m
1m (last column) a regular simplex on the unit sphere Sm−1.

Finally, we want to look at the D-efficiency, here with β0 = (β0, β1, 0, . . . , 0)�,

EffD(ξ,β0) =
⎛
⎝ det(M(ξ,β0))

det(M(ξ∗
β0 ,β

0))

⎞
⎠

1
p

∈ [0, 1]
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for designs ξ with exactly p = k + 1 equally weighted support points in the region
where two non-degenerated orbits occur.

As an example, the logit model with β1 = 1 is used to determine the D-efficiency
in dimensions k = 3 and k = 6. In Figs. 3 and 4 only the regions for −β0 with two
non-degenerated orbits in the optimal design (case (c0) in Theorem 1), i. e. −β0 ∈
(−0.403, 0.403) for k = 3 and −β0 ∈ (−0.480, 0.480) for k = 6, are plotted.

For this purpose, three different types of exact designs are compared with the
(locally) D-optimal design ξ∗

β0 . The optimal design is a generalized design with real-

valued weights. Therefore it cannot be discretized as an exact design in general.
First, the two optimal exact designs with one pole and one orbit, which are dis-

cretized as a regular (k − 1)-dimensional simplex, are used for comparison. The orbit
position remains unchanged and is determined at the boundary values −β0 ≈ ±0.403
or −β0 ≈ ±0.480 for k = 3 or k = 6, respectively. See the solid lines for these
type-1-designs in both figures.

Second, the designs with the same orbit position as the associated design
which is (locally) optimal for −β0 are the next alternative. Only the weights were
rounded/shifted to integral multiples of 1

k+1 . See the dotted lines for these type-2-
designs.

Third, the designs with fixed design weights which are integral multiples of 1
k+1

represent the last model category. So only the positions of the orbits have to be opti-
mized with these fixed design weights. This can be done by solving only the Eqs. (6)
and (7) with the selected weights in Theorem 1(c). Equation (8) is omitted. See the
dashed lines for these type-3-designs in both plots.

The Fig. 3 reveals for dimension k = 3 that there are only three positions in the
range −β0 ∈ (−0.403, 0.403) where (locally) D-optimal designs with the minimal
number of support points, which are four points, exist. For −β0 ≈ −0.403 this is the
design (type-1-design) consisting of the pole x∗

12 = −1 and one orbit at x∗
11 with three

points as vertices of an equilateral triangle. Then for −β0 = 0 there are two orbits
with two points each. And, at −β0 ≈ 0.403 the design (type-1-design) consists of one
orbit at x∗

12 with three equally weighted support points and the pole x∗
11 = 1. In the

span between these optimality positions the considered discretizations provide a fairly
high efficiency. Using the transition directly from pole and orbit to orbit and pole, the
efficiency is always greater than 0.988 (intersection of the solid lines, both type-1-
designs). If the two orbits are also discretized in between, the efficiency is greater
than 0.993 (intersection of dotted line and solid lines, type-2- and type-1-designs)
or even greater than 0.997 (intersection of dashed line and solid lines, type-3- and
type-1-designs).

For dimension k = 6, see Fig. 4, an efficiency of more than 0.986 is possible by
stepping directly from pole and orbit with six support points to orbit with six design
points and pole (both type-1-designs). If the intermediate steps (two orbits with 2
and 5 points, 3 and 4 points, 4 and 3 points as well as 5 and 2 points) are used,
then by simple rounding of the weights to integral multiples of 1

k+1 an efficiency
greater than 0.995 (dotted lines and solid lines, type-2- and type-1-designs) and with
additional optimization of the orbit positions even greater than 0.999 (dashed lines
and solid lines, type-3- and type-1-designs) can be achieved.
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Fig. 4 Logit model with k = 6 and β1 = 1: D-efficiency for type-1-designs (solid lines), type-2-designs
(dotted lines) and type-3-designs (dashed lines) with exactly k + 1 = 7 equally weighted support points for
−β0 ∈ (−0.480, 0.480)

6 Conclusion

In summary it can be postulated that very efficient designs are generated based on
only k + 1 design points which is the minimal number of support points to estimate
the parameter vector. It seems that higher dimensions enable designs with higher
D-efficiency, in particular using the third option of discretization. Here we only con-
sidered designs with exactly two orbits. Thus it cannot be excluded that there are
designs with a better efficiency or even (locally) optimal designs which are supported
by exactly k + 1 points. Maybe these designs have support points which lie not on
the orbit but are jittered a little bit. This as well as a potential lower efficiency bound
needs further investigations.

On the other side the reduction of the equation system to one single equation for
determining (locally) D-optimal design for symmetrical unimodal intensity functions
is a nice feature and can help to decrease computing costs.

Also the question of optimal designs on the ball with respect to other optimality
criteria should be considered in future.

Finally, we want to emphasize that the established designs do not only work for the
unit ball. By using the concept of equivariance for linear transformations, say scaling,
reflecting and rotating, the class of design regions can be extended to k-dimensional
balls with arbitrary radius or any k-dimensional ellipsoid.
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Appendix A: Notation

Bk k-dimensional unit ball
Bk (r) k-dimensional ball with radius r
Sk−1 unit sphere, which is the surface of Bk
Sk−1(r) sphere with radius r , which is the surface of Bk (r)
Ok k-dimensional zero-vector
Ok1×k2 (k1 × k2)-dimensional zero-matrix
1k k-dimensional one-vector
Ik (k × k)-dimensional identity matrix
id identity function, id(x) = x
O(k) The orthogonal group in R

k , which is the set of all orthogonal linear transformations and can
be represented by (k × k)-matrices. So O(k) = {A ∈ R

k×k : A�A = Ik } such that
det(A) ∈ {−1, 1}.

Appendix B: Proofs

Sketch of the Proof of Lemma 2 By plugging (11) and (12) into (8) and using the sym-
metry to simplify, we get

−2 α
(
4 c r α+(

β2
1 −c2−r2

))+4 (k−1) c r
( 1
2 −α

) ( 1
2 +α

)
( 1
2 −α

) ( 1
2 +α

) (
4 c r α+(

β2
1 −c2−r2

)) = 0.

In the numerator there is a polynomial of degree two in α with the two roots α∓(r)
depending on r :

α∓(r) := − (
β2
1 − c2 − r2

) ∓
√(

β2
1 − c2 − r2

)2 + 4 (k + 1) (k − 1) c2 r2

4 (k + 1) c r
.

Nowweexamine the values ofα∓(r)depending on r . Only−|c|−β1, |c|−β1,−|c|+β1
or |c| + β1 can solve the expression α∓(r) = ± 1

2 . But −|c| − β1 and |c| + β1 are not
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in the interesting region for r . We have

α− (±(|c| − β1)) = ±1

2
sign(c) and α+ (±(|c| − β1)) = ∓1

2
sign(c)

k − 1

k + 1
.

Because of limr↗0 α− (r) = sign(c)∞ and limr↘0 α− (r) = −sign(c)∞ the root
α−(r) has in the interval r ∈ [|c| − β1,−|c| + β1] only values outside (− 1

2 ,
1
2 ).

Hence, α−(r) is not a relevant root.
Since limr→0 α+ (r) = 0 the discontinuity of the root α+(r) in r = 0 can be

removed. Soα+(r)has only values in (− 1
2 ,

1
2 )on the interval r ∈ [|c| − β1,−|c| + β1]

and α+(r), which is (13), is the only relevant root.
After inserting (11) and (12) into (6) as well as (11) and (12) into (7) and subtracting

both obtained equations and simplifying by using the symmetry, we get

(k + 1) λ′(cλ + r)

λ(cλ + r)
= −(k − 1)

−2 r + α · 4 c(
β2
1 − c2 − r2

) + α · 4 c r − 2

r
.

Equation (10) follows by plugging α+(r) as α into it and by some simplifications.
For β0 = cλ, i. e. c = cλ − β0 = 0, we get directly α = 0 by inserting x = r

β1
and

y = − r
β1

in (8) and exploiting the symmetry. This is inserted in (6) and in (7). The
difference between these two equations results in (14).

Sketch of the Proof of Lemma 3 This proof is a lot of curve sketching. We start
with β0 = cλ. The denominator of the right hand side of (10) has five roots in r .
−|cλ − β0| − β1 < 0 and |cλ − β0| − β1 < 0 are not in the considered inter-
val (0, |cλ − β0| + β1). In r = −|cλ − β0| + β1 there is a discontinuity which can be
removed. In r = 0 and in r = |cλ − β0| + β1 there are two poles. Analyzing these
poles for the considered interval we see that the values start from −∞ (r ↘ 0) and go
up to +∞ (r ↗ |cλ − β0| + β1). Sophisticated curve sketching shows that the right
hand side of (10) is strictly monotonically increasing on (0, |cλ − β0| + β1). So it is
strictly monotonically increasing and covers (−∞,∞). In combination with (A4) for
the left hand side of (10) (monotonically decreasing) there is exactly one solution.

For β0 = cλ we can mention that the right hand side of (14) is also strictly mono-
tonically increasing on (0, β1). Hence, there is only one solution.

An analogue result holds for the situation in Remark 4.

Proof of Lemma 5 Rearranging Eq. (8) equivalently in two ways gives

q(x12) (1−x212) ( 12 +α) = q(x11) (1−x211) ( 12 −α)
k ( 12 +α)−( 12 −α)

k ( 12 −α)−( 12 +α)
and

q(x11) (1−x211) ( 12 −α) = q(x12) (1−x212) ( 12 +α)
k ( 12 −α)−( 12 +α)

k ( 12 +α)−( 12 −α)
.

The two denominators are zero if and only if α = 1
2 − 1

k+1 and α = 1
2 − k

k+1 ,

respectively. But this cannot happen to non-degenerated orbits because 1
2 − k

k+1 <

α < 1
2 − 1

k+1 .

123



Exact designs on the ball 1039

Putting both equations into the diagonal entry of the information matrix (16) yield

1

k − 1

∫
q (1 − id2) dξ1

= q(x11) (1−x211) ( 12 −α)

[
1

k − 1
+ 1

k − 1
· k ( 12 +α)−( 12 −α)

k ( 12 −α)−( 12 +α)

]

and

1

k − 1

∫
q (1 − id2) dξ1

= q(x12) (1−x212) ( 12 −α)

[
1

k − 1
· k ( 12 −α)−( 12 +α)

k ( 12 +α)−( 12 −α)
+ 1

k − 1

]

They are identical to the diagonal entries of the information matrix (17) in Lemma 4
if and only if

1

k−1
+ 1

k−1
· k ( 12 +α)−( 12 −α)

k ( 12 −α)−( 12 +α)
= 1

m−1
and

1

k−1
· k ( 12 −α)−( 12 +α)

k ( 12 +α)−( 12 −α)
+ 1

k−1
= 1

k−m

which are both equivalent to α = 1
2 − m

k+1 .
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