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Abstract
Maxi-min efficiency criteria are a kind of multi-objective criteria, since they enable
us to take into consideration several tasks expressed by different component-wise
criteria. However, they are difficult to manage because of their lack of differentiability.
As a consequence, maxi-min efficiency designs are frequently built through heuristic
and ad hoc algorithms, without the possibility of checking for their optimality. The
main contribution of this study is to prove that the maxi-min efficiency optimality
is equivalent to a Bayesian criterion, which is differentiable. In addition, we provide
an analytic method to find the prior probability associated with a maxi-min efficient
design, making feasible the application of the equivalence theorem. Two illustrative
examples show how the proposed theory works.

Keywords Equivalence theorem · Maxi-min optimal designs · Standardized criteria

1 Introduction

In this study, we aim at solving a multi-objective optimization problem that consists
in the maximization of a minimum design-efficiency. In optimal design literature,
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different approaches can be classified asmaxi-min efficiency criteria. The standardized
max-min criterion, introduced to tackle the problem of parameter uncertainty, is the
most common. This last issue, however, is not considered in this work because it
has been already extensively studied (see for instance, Chen et al. 2015; Dette and
Biedermann 2003; Nyquist 2013; Fackle-Fornius et al. 2015; Dette et al. 2007, among
others); furthermore, parameter uncertainty is not easily interpretable as a multi-task
problem. Differently, examples of maxi-min efficiency criteria that can be interpreted
as multi-objective problems are: the SMV-criterion (proposed by Dette (1997)), which
aims to obtain an accurate estimation of each one of the model parameters, taking
into account their different scale (see also López-Fidalgo and Tommasi 2004 and the
references therein) and the extensions of T- and KL-criteria (proposed by Atkinson
and Fedorov (1975) and Tommasi et al. (2016), respectively) to handle the problem
of model uncertainty. Another interesting application might be the identification of
an optimal design for model identification, precise parameter estimation and accurate
predictions. This multiple objective could be achieved by maximizing the minimum
efficiency of three criteria reflecting these three distinct goals.

The maxi-min approach arises naturally when we wish to protect against the worst
case scenario; however, it is difficult to compute the corresponding optimal design (the
maxi-min efficiency design) because this criterion is not differentiable. Consequently,
a standard directional derivative argument cannot be applied to check whether a given
design is optimal because unfortunately, the directional derivative involves anunknown
measure; see for instance Wong (1992) and Atkinson and Fedorov (1975).

In addition, the construction of themaxi-min efficiency design is not straightforward
at all. Frequently, it is found numerically by the application of some algorithm, but
there is no way to prove that it is really the optimum.

The main contribution of this study is to prove the equivalence between the maxi-
min efficiency approach and the Bayesian criterion for a specific prior, which is
differentiable. Hence, the directional derivative of the Bayesian criterion can be used
to check for the minimum efficiency optimality. Let us note that the Bayesian criterion
is another kind of multi-objective optimality function, being a convex combination of
different quantities. The connection between maxi-min efficiency and Bayesian opti-
mum designs has been already explored by other authors, see for instance Schervish
(1995),Müller and Pazman (1998) andDette et al. (2007); other versions of the equiva-
lence theorem can be found but they are specialized for specific problems; for instance,
Dette and Biedermann (2003) or Berger et al. (2000) consider parameter uncertainty
in a non-linear model and the D-criterion.

In this study, we prove a more general version of the equivalence theorem, because
it covers any multi-objective problem that can be expressed as a minimum design-
efficiency (for any component-wise criteria). Furthermore, following similar ideas as
in Chen et al. (2017), we provide a method to determine the prior probability that
matches the maxi-min efficiency criterion and the Bayesian optimality; this makes
possible the application of the equivalence theorem.

The paper is organized as follows. In Sect. 2, we recall some background informa-
tion and the used notation. In Sect. 3, we state the equivalence theorem and the rule to
determine the prior probability that makes the minimum efficiency and the Bayesian
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criteria equivalent. Section 4 concerns a pair of illustrative examples. Section 5 pro-
vides some conclusions, and finally Appendix A includes the proofs of the theoretical
results.

2 Background and notation

In this section, we introduce the main ideas of optimal experimental design and the
notation used in what follows.

Let us assume that f (y, x, θ) is a statistical model that describes the response
Y at the experimental condition x , which may be chosen in a compact set X and
θ ∈ � ⊆ IRp denotes a p × 1 parameter vector.

An approximate design is a probability measure on the design spaceX with a finite
support, i.e.

ξ =
{

x1 x2 · · · xr
ξ(x1) ξ(x2) · · · ξ(xr )

}
,

where ξ(xi ) ≈ ni/n, and ni is the number of observations to be taken at the
experimental condition xi , i = 1, . . . , r .

The aim is to find a design ξ∗
θ maximizing (minimizing) a concave (convex) optimal-

ity criterion function�(ξ ; θ) defined on the space of all designs� to the real line. This
means that an optimal design ξ∗

θ may be found according to several criteria reflecting
different inferential goals: parameter estimation, prediction or model discrimination.
Many optimality criteria for the precise estimation of θ are concave (or convex) func-
tions of the information matrix of a design ξ ∈ �, i.e. �(ξ ; θ) = �[M(ξ, θ)],
where

M(ξ, θ) =
∫
X
EY

{
∂ log f (y, x, θ)

∂θ

∂ log f (y, x, θ)

∂θT

}
dξ(x). (1)

If �(ξ ; θ) is a non-negative concave function, then a measure of the goodness of a
design ξ with respect to the optimal design ξ∗

θ , is the following efficiency function:

0 ≤ Eff(ξ, θ) = �(ξ, θ)

�(ξ∗
θ , θ)

≤ 1. (2)

If�(ξ ; θ) is convex, then the ratio on the right-hand side of Eq. (2) should be reversed.

3 Minimum efficiency and pseudo-Bayesian criteria

Let �i (ξ ; θi ) with i = 1, . . . , k be k different concave optimality criteria, that reflect
distinct goals and possibly depend on some unknown parameter vector θi . Let θ0i
be a guessed value for θi ; thus, ξ∗

i = ξ∗
i;θ0i = argmaxξ∈� �i (ξ ; θ0i ) are local

optimum designs. When we are interested in a compromise design that is ‘good’
for all the different criteria, we need to combine �i (ξ ; θi ), for i = 1, . . . , k, in
a multi-objective criterion. To this aim, as suggested by Dette (1997), we should
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first standardize the criteria �i (ξ) = �i (ξ ; θ0i ), obtaining their efficiency functions:
Eff i (ξ) = �i (ξ)/�i (ξ

∗
i ), i = 1, . . . , k.

An easyway of combining the standardized criteria is through a linear combination.
If we have same prior knowledge about criteria �i (ξ) for i = 1, . . . , k, we might
compute a Bayesian optimum design maximizing the following criterion:

�B(ξ ;π)=
k∑

i=1

πi · Eff i (ξ), 0 ≤ πi ≤ 1,
k∑

i=1

πi = 1, (3)

whereπT = (π1, . . . , πk) is a prior probability on the set {1, . . . , k}. For an application
of this criterion, see for instance Tommasi and López-Fidalgo (2010).

A design ξ∗
π is Bayesian optimal if and only if ∂�B(ξ∗

π , ξ̄ ;π) ≤ 0 for any ξ̄ , where

∂�B(ξ∗
π , ξ̄ ;π) =

∫ k∑
i=1

πi
∂�i (ξ

∗
π , ξx )

�i (ξ
∗
i )

d ξ̄ (dx)

is the directional derivative of criterion (3) at ξ∗
π in the direction of ξ̄ − ξ∗

π , and
∂�i (ξ

∗
π , ξx ) denotes the directional derivative of the component-wise criterion �i (·)

at ξ∗
π in the direction of ξx −ξ∗

π . It is easy to prove that ξ
∗
π is a Bayesian optimal design

if and only if it satisfies the following inequality:

k∑
i=1

πi
∂�i (ξ

∗
π , ξx )

�i (ξ
∗
i )

≤ 0, x ∈ X , (4)

and that
k∑

i=1

πi
∂�i (ξ

∗
π , ξx )

�i (ξ
∗
i )

= 0, at the support points of ξ∗
π . (5)

Whenweare unable to provide a prior distributionπ , another possibility to takes into
consideration all the objectives represented by the k different criteria is the following
minimum efficiency criterion:

�(ξ) = min
i∈{1,...,k}Eff i (ξ) =

[
max

i∈{1,...,k}
1

Eff i (ξ)

]−1

.

This multi-objective optimality function, differently from the previous one, is not
differentiable, and thus the computation of �-optimal designs is not straightforward
at all.

A design ξ∗ is a maxi-min efficiency design if and only if

ξ∗ = argmax
ξ

min
i∈{1,...,k}Eff i (ξ) = argmin

ξ
max

i∈{1,...,k}
1

Eff i (ξ)
.
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From the last equation, ξ∗ is also the design that minimizes the maximum inefficiency
optimality criterion:

�−1(ξ) = max
i∈{1,...,k}

1

Eff i (ξ)
. (6)

We find maxi-min efficiency designs by minimizing �−1(ξ), for which we can state
the following propositions:

Proposition 1 The maximum inefficiency criterion �−1(ξ) is a convex function.

The proof is straightforward.

Proposition 2 The directional derivative of �−1(ξ) at ξ in the direction of ξ̄ − ξ is

∂�−1(ξ ; ξ̄ ) = max
ei∈C(ξ)

∫
X

ψ(x, ei , ξ)ξ̄ (dx),

where ei denotes the canonical vector of the Euclidean space,

C(ξ) =
{
ei : i = arg max

j∈{1,...k}
1

Eff j (ξ)

}
=

{
ei : i = arg min

j∈{1,...k}Eff j (ξ)

}
,

and ψ(x, ei , ξ) = −�i (ξ
∗
i )

∂�i (ξ, ξx )

�2
i (ξ)

.

The proof is deferred to Appendix A.

3.1 Equivalence theorem

Bayesian optimumdesigns are usually found by applying standard algorithms, because
the equivalence inequality (4) is completely known. Maxi-min efficiency designs are
difficult to determine because they are not differentiable (their equivalence inequality
depends on an unknown measure); see for instance, Wong (1992). See also Chen et al.
(2017) and Dette and Biedermann (2003) for an equivalence theorem for the standard-
izedmax-minD-optimal design criterion. In this section,we provide a new formulation
of the equivalence theorem, which establishes a connection between �B(ξ ;π) and
�(ξ).

Theorem 3 (Equivalence Theorem) A design ξ∗ is a maxi-min efficiency design if and
only if there exists a probability distribution π∗ on the index set

I(ξ∗) =
{
i : i = arg min

j∈{1,...,k}Eff j (ξ
∗)

}
, (7)

such that ξ∗ is a Bayesian optimum design for the prior distribution π∗, that is, if and
only if ξ∗ fulfils the following inequality,

∑
i∈I(ξ∗)

π∗
i

∂�i (ξ
∗, ξx )

�i (ξ
∗
i )

≤ 0, x ∈ X . (8)
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The detailed proof of the equivalence theorem is deferred to Appendix A. In
addition, from (5), we can state the following corollary:

Corollary 3.1 The quantity
∑

i∈I(ξ∗) π∗
i

∂�i (ξ
∗,ξx )

�i (ξ
∗
i )

attains its maximum value of zero

at every support point of ξ∗.

The equivalence between the minimum efficiency and the Bayesian optimality cri-
teria can be used to check whether a design is optimal with respect to criterion (6).
Recently, several algorithms have been applied to construct optimal designs numeri-
cally; see for instance,Dette et al. (2003)who apply theNedler–Mead algorithm, (Chen
et al. 2015, 2020), where the authors use particle swarm optimization, or (Belmiro
et al. 2015), where a semi-infinite programming based algorithm is considered. These
algorithms provide a solution based on a suitable stopping rule; however, it is neces-
sary to check the equivalence inequality to prove that an ‘optimum’ has been reached.
We follow the same idea as in Chen et al. (2017) (page 87). Given a solution of a
numerical procedure ξ∗

s , from the equivalence inequality (8) with ξ∗
s instead of ξ∗, we

can compute the prior distribution π∗ solving the minimization problem

min
πi∈[0;1],∑i∈I(ξ∗

s ) πi=1

∑
x∈Sξ∗

s

[
k∑

i=1

πi
∂�i (ξ

∗
s , ξx )

�i (ξ
∗
i )

]2

, (9)

whereSξ∗
s
denotes the support of ξ∗

s and I(ξ∗
s ) is the set defined in (7) with ξ∗ replaced

by ξ∗
s . Equation (9) comes out from the equivalence theorem, for which the weighted

sum of the component-wise criteria’s derivatives must be zero at each support point
of the optimal design, and thus, the weights can be chosen by minimizing the sum of
squares of these expressions for all the support points.

Given a design ξ∗
s , using the solutions of (9) we can check whether ξ∗

s really is an
optimal design by computing the equivalence inequality (8).

Remark 1 At the optimal design, the value of (9) should be zero (except for rounding
approximations).

4 Illustrative examples

The first example of this section underlines the difficulty in finding out a maxi-min
efficiency design,when the search is done step-by-step by comparing the k efficiencies.
This leads to the conclusion that suitable optimization algorithms should be applied,
and then their numerical solutions should be checked for their optimality through
Equivalence inequality (8). This procedure is followed in Example 4.2.

4.1 SMV-optimum designs in biology immunoassays

In biology, immunoassays are usually performed to quantify the concentration of an
analyte. In this example, the SMV-optimality criterion is applied to the four-parameter
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logistic model, which is the most frequently used model for symmetric immunoassay
data,

y = θ1 + θ2 − θ1

1 +
(
x

θ4

)θ3
+ ε, x ∈ X = [0,∞), (10)

where y is the response at the concentration x , ε ∼ N (0; σ 2) is a random error, and
θ1 > 0, θ2 > 0, θ3 ∈ IR, and θ4 > 0 are unknown parameters.

The SMV-optimality criterion, proposed by Dette (1997),

�SMV (ξ) = max
i∈{1,...,4}

eTi M
−1(ξ, θ0) ei

eTi M
−(ξ∗

i , θ0) ei

is an example of maximum inefficiency criterion (6), where k = 4 is the dimension
of θ = (θ1, θ2, θ3, θ4); θ0 is a guessed value for θ ; �i (ξ) is given by

�i (ξ) =
{ [eTi M−(ξ, θ0) ei ]−1 if ei ∈ Range[M(ξ, θ0)]
0 otherwise

, i = 1, . . . , 4

where M(ξ, θ) is the information matrix (1) for model (10), and ei , i = 1, ..., 4 are
the canonical basis of IR4.
In this example, X = [0, 5], θ0 = (1, 2, 1, 1) and the gradient in (1) is

∂ log f (y, x, θ)

∂θ
=

(
1 − 1

1 + x
,

1

1 + x
,− x log [x + 10−6]

(1 + x)2
,

x

(1 + x)2

)T

,

where the third component has been slightly modified for computational reasons.
The procedure followed to find out the optimal design is quite cumbersome, but the

prior probabilities which solve (9) enable us to identify the right maxi-min efficiency
design. At first we search for designs that have the same efficiencies for any pair of
the indices. Let I = {i1, . . . , il}, with l = 2, . . . , k, be an index set. For instance, for
I = {2, 4} we obtain the design

ξ
(2,4)
1 =

{
0 1.321 2.756 5

0.212 0.221 0.395 0.173

}
,

which has the same efficiency, 0.2116, for both 2 and 4 standardized criteria, but
the efficiencies of the other criteria are smaller (0.1139 and 0.0525 for standardized
criteria 1 and 3, respectively). Thus, ξ (2,4)

1 is not a minimum efficiency design and is
discarded. In particular, one of the other efficiencies is very low, and thus after a new
search the design

ξ
(2,4)
2 =

{
0 0.649 1.192 5

0.139 0.574 0.115 0.172

}
,
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Table 1 Designs giving the same efficiency for i ∈ {1, 2, 4}
Design ξ Eff i (ξ), i ∈ {1, 2, 4} Eff3(ξ)

{
0 0.764 1.162 5

0.154 0.388 0.233 0.225

}
0.1546 0.0864

{
0 0.815 1.927 5

0.167 0.551 0.114 0.168

}
0.1670 0.1058

{
0 0.771 2.532 5

0.224 0.299 0.313 0.164

}
0.2238 0.1745

Table 2 Designs giving the same efficiency for i ∈ {2, 3, 4} and a larger one for i = 1

Design ξ Eff i (ξ), i ∈ {2, 3, 4} Eff1(ξ)

{
0 0.642 2.662 5

0.207 0.327 0.268 0.198

}
0.2075 0.2441

{
0 0.527 1.499 5

0.231 0.284 0.109 0.376

}
0.23047 0.3220

{
0 0.470 0.821 5

0.177 0.313 0.262 0.248

}
0.1772 0.2477

gets a common efficiency of 0.1386 for indices 2 and 4, and efficiencies for the other
criteria which are not so bad as in the previous case (0.1696 and 0.1140 for indices 1
and 3, respectively). However, once again one of the efficiencies is smaller than that
for the indices in I , and ξ

(2,4)
2 is discarded as well.

After some attempts, finally we find out the design

ξ
(2,4)
3 =

{
0 0.101 1.244 5

0.478 0.171 0.242 0.109

}
,

giving the same efficiency, 0.4778, for indices 2 and 4, which is smaller than the other
efficiencies, 0.5734 and 0.5879 (for indices 1 and 3, respectively); therefore, ξ (2,4)

3 is a
candidate design for the Bayesian optimality. To prove that, it is necessary to identify
a prior distribution in I , π = {π2, π4}, such that ξ

(2,4)
3 is Bayesian optimal for π .

To find such a distribution, we employ condition (9). The weights minimizing this
expression are π2 = 0.608 and π4 = 1 − π2, but the minimum value obtained from
these weights is 3.547, which is far from zero. Thus, this design cannot be Bayesian
optimal (and neither maxi-min efficiency optimal).

We obtain similar results with every pair (i1, i2) of indices. Thus, the search pro-
ceeds among designs producing equal efficiencies for three of the component-wise
criteria. At first we look for designs that produce a common efficiency for the indices
in I = {1, 2, 4}; Table 1lists some designs verifying this condition, however, none of
them has the remaining efficiency larger than this common value.

The same happens with the triplets of indices {1, 3, 4} and {1, 2, 3}. Differently,
for the set I = {2, 3, 4}, we find out some designs with the same common efficiency,
which is smaller than that for i = 1; see Table 2.
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However, none of them can be Bayesian optimal because no distribution of weights
in I gets a minimum value zero in (9). Finally, for the same index set, we obtain the
design

ξ∗ =
{

0 0.126 1.279 5
0.497 0.114 0.241 0.148

}
,

with efficiencies {0.5963, 0.4970, 0.4970, 0.4970}. Setting ξ∗
s = ξ∗ in (9), we get the

solution π∗ = {0, 0.493, 0.054, 0.453} with a minimum value of 6.644 x 10−4 and
hence, ξ∗ turns out to be Bayesian optimal for π∗.

4.2 Maxi-min optimal discriminating designs in toxicology studies

In toxicology studies, wemay have a continuous response and several possible models
for the true mean response. As in Dette et al. (2010), we assume the following rival
models for the mean response of the outcome Y :

η1(x, θ) =ae−bx ; θ =(a, b)T, a > 0, b > 0,

η2(x, θ) =ae−bxd ; θ =(a, b, d)T, a > 0, b > 0, d ≥ 1,

η3(x, θ) =a
[
c − (c − 1)e−bx]; θ =(a, b, c)T, a > 0, b > 0, c∈[0, 1],

η4(x, θ) =a
[
c − (c − 1)e−bxd

]
; θ =(a, b, c, d)T, a > 0, b > 0, c∈[0, 1], d ≥ 1,

and the following criterion for discriminating between pairs of models:

min
i∈{1,2,3,4}Eff i (ξ) = min

{
Eff2−1(ξ),Eff3−1(ξ),Eff4−2(ξ),Eff4−3(ξ)

}
, (11)

where index i denotes 4 different pairwise comparisons: η1 vs η2, η1 vs η3, η2 vs η4,
and η3 vs η4, respectively. In other terms, for a fixed value θ0,

Eff i (ξ) = minξ eTi M
−
i (ξ, θ0)ei

eTi M
−1
i (ξ, θ0)ei

,

with

ei =
⎧⎨
⎩
e3 ∈ IR3 for i = 1, 2
e3 ∈ IR4 for i = 3
e4 ∈ IR4 for i = 4

and Mi (ξ, θ0) =
⎧⎨
⎩
M2(ξ, θ0) for i = 1
M3(ξ, θ0) for i = 2
M4(ξ, θ0) for i = 3, 4

,

where e j , j = 3, 4 is the j-th canonical basis of the Euclidean space and Mj (ξ, θ0) is
the information matrix (1) for the mean response η j (x, θ), with j = 1, 2, 3, 4. Dette
et al. (2003) found the maxi-min efficiency designs using a numerical procedure based
on the Nedler–Mead algorithm. Setting θ0 = (1, 3, 0, 1)T (see Table 3 in Dette et al.
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Fig. 1 Sensitivity function

2003), the authors found the following numerical solution:

ξ∗
s =

{
0 .105 .44 1

.141 .233 .199 .427

}
,

for which Eff1(ξ∗
s ) = .705, Eff2(ξ∗

s ) = Eff4(ξ∗
s ) = .682 and Eff3(ξ∗

s ) = .871, and
hence I(ξ∗

s ) = {2; 4} and π∗
1 = π∗

3 = 0. From (9), where

�i (ξ) =
{ [eTi M−

i (ξ, θ0) ei ]−1 if ei ∈ Range[Mi (ξ, θ0)]
0 otherwise

, i = 1, . . . , p (12)

and

∂�i (ξ ; ξx ) = [eTi M−1
i (ξ, θ0)∇η(x, θ0)]2 − eTi M

−1
i (ξ, θ0) ei

[eTi M−1
i (ξ, θ0) ei ]2

,

with ∇η(x, θ) = [ ∂η(x,θ)
∂θ1

, . . . ,
∂η(x,θ)

∂θ4
]T , we obtain π∗

2 = .574 and π∗
4 = 1 − π∗

2 .
Figure 1, which shows the sensitivity function on the left-hand side of (8),

proves that the numerical solution ξ∗
s actually is a maxi-min efficiency design.

5 Conclusions and discussion

In practice, obtaining an optimal design that accounts for several goals or experi-
menter’s interests, is a difficult task. There is much literature on different approaches,
usually considering specific situations. In this study, we consider a quite general set-
ting; we aims at finding a max-min efficiency design which maximizes the minimum
of the efficiencies of several component-wise criteria (reflecting different tasks). This
multi-objective criterion depends on some nominal values of the parameters, therefore
a sensitivity analysis to assess this dependence is advisable.
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An equivalence theorem for a design optimality with respect 1051

We provide theoretical results, including an equivalence theorem which states that
the maxi-min efficiency design is Bayesian optimal for a specific prior distribution on
the set of the component-wise criteria. Furthermore, a method to identify this prior
distribution is given. This is important for two reasons.

(i) It enables the application of the equivalence theorem in such a way the optimality
of a particular design, e.g. found by the implementation of an algorithm, can
be checked through the equivalence theorem since the prior probability can be
determined.

(ii) This prior distribution tells the practitioner the weight the optimal design is assign-
ing to each component-wise criterion. Notice that if a criterion does not receive
any weight, this does not mean that the optimal design is going to be bad for
that criterion. It is quite the opposite, as the efficiency of the optimal design with
respect to that specific component-wise criterion will be higher than those with
positive weights.
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Appendix A

Lemma 4 The maximum inefficiency criterion admits the following expression

�−1(ξ) = max
i∈{1,...,k}

1

Eff i (ξ)
= max

c∈C
(ξ ; c),

where C is the convex hull
of the canonical vectors {e1, . . . , ek,−e1, . . . ,−ek} and

(ξ ; c) = cT

⎡
⎢⎢⎣

1
Eff1(ξ)

. . . 0

0
. . . 0

0 . . . 1
Effk (ξ)

⎤
⎥⎥⎦ c.
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Proof The function (ξ ; c) is convex with respect to c; thus, it reaches its maximum
at one (or more) of the vertexes of the set C, and

max
c∈C

(ξ ; c) = max
c∈C

cT

⎡
⎢⎢⎣

1
Eff1(ξ)

. . . 0

0
. . . 0

0 . . . 1
Effk (ξ)

⎤
⎥⎥⎦ c

= max
i∈{1,...,k} e

T
i

⎡
⎢⎢⎣

1
Eff1(ξ)

. . . 0

0
. . . 0

0 . . . 1
Effk (ξ)

⎤
⎥⎥⎦ei = max

i∈{1,...,k}
1

Eff i (ξ)
=�−1(ξ),

which proves the lemma. ��
Proof of Proposition 2. The set C = {c : c ∈ IRk, |c|1 ≤ 1}, where |c|1 =
max {|c1|, . . . , |ck |} is compact. Therefore, from Eq. (2.6.15) of Fedorov and Hackl
(1997), the directional derivative of �−1(ξ) evaluated at ξ in the direction of ξ̄ − ξ is

∂�−1(ξ ; ξ̄ ) = max
c∈C(ξ)

∫
X

ψ(x, c, ξ)ξ̄ (dx) = max
ei∈C(ξ)

∫
X

ψ(x, ei , ξ)ξ̄ (dx),

where ψ(x, c, ξ) is the directional derivative of (ξ ; c) in the direction of ξx − ξ and

C(ξ) =
{
c : c(ξ) = argmax

c∈C
(ξ ; c)

}
=

{
ei : ei (ξ) = arg max

i∈{1,...k} (ξ ; ei )
}

.

The last expression for C(ξ) is because (ξ ; c) always reaches its maximum at one
or more points defined by the canonical vectors.

Moreover,

ψ(x, ei , ξ) = lim
λ→0+

�i (ξ
∗
i )

�i [(1−λ)ξ+λξx ] − �i (ξ
∗
i )

�i (ξ)

λ

=−�i (ξ
∗
i )

�i (ξ)
lim

λ→0+
�i [(1−λ)ξ+λξx ] −�i (ξ)

λ
· lim
λ→0+

1

�i [(1−λ)ξ+λξx ]
=−�i (ξ

∗
i )

∂�i (ξ, ξx )

�2
i (ξ)

. (13)

��
The following two lemmas are necessary to prove the Equivalence Theorem stated in
Sect. 3.

Lemma 5 Let ξ and ξ̄ be two designs and let η denote a discrete distribution on C(ξ),
then

max
η

∫
X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ) ξ̄ (dx) = max
ei∈C(ξ)

∫
X

ψ(x, ei , ξ) ξ̄ (dx).
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Proof The following inequality

max
η

∫
X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ) ξ̄ (dx) ≥
∫
X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ) ξ̄ (dx)

holds for any η; thus, it is valid also for the measure ηi which puts the whole mass at
the vector ei ,

max
η

∫
X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ) ξ̄ (dx) ≥
∫
X

ψ(x, ei , ξ)ξ̄ (dx).

The last inequality is satisfied for any ei ∈ C(ξ), and this means that

max
η

∫
X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ) ξ̄ (dx) ≥ max
ei∈C(ξ)

∫
X

ψ(x, ei , ξ) ξ̄ (dx). (14)

On the other hand,

∫
C(ξ)

∫
X

ψ(x, ei , ξ) ξ̄ (dx) η(dei ) ≤ max
ei∈C(ξ)

∫
X

ψ(x, ei , ξ) ξ̄ (dx).

This inequality is obtained by replacing each term∫
X ψ(x, ei , ξ) ξ̄ (dx) by maxei∈C(ξ)

∫
X ψ(x, ei , ξ) ξ̄ (dx), and it is satisfied for any

measure η; thus,

max
η

∫
C(ξ)

∫
X

ψ(x, ei , ξ) ξ̄ (dx) η(dei ) ≤ max
ei∈C(ξ)

∫
X

ψ(x, ei , ξ) ξ̄ (dx). (15)

The lemma follows from inequalities (14) and (15). ��

Lemma 6 For any design ξ , the following equality is verified:

min
ξ̄

max
η

∫
X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ) ξ̄ (dx) = max
η

min
x∈X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ).

Proof Given ξ̄ , the inequality

∫
X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ) ξ̄ (dx) ≥ min
x∈X

∫
C(ξ)

ψ(x, ei , ξ) η(dei )

holds for any η; therefore,

max
η

∫
X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ) ξ̄ (dx) ≥ max
η

min
x∈X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ). (16)
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Since inequality (16) holds for any ξ̄ , for the measure ξ̄ that minimizes the left-hand
side of (16),

min
ξ̄

max
η

∫
X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ) ξ̄ (dx) ≥ max
η

min
x∈X

∫
C(ξ)

ψ(x, ei , ξ)η(dei ).

(17)
On the other hand, the inequality

min
ξ̄

max
η

∫
X

∫
C(ξ)

ψ(x, ei , ξ) η(dei ) ξ̄ (dx) ≤ max
η

∫
X

∫
C(ξ)

ψ(x, ei , ξ)η(dei ) ξ̄ (dx)

holds for any ξ̄ ; thus, it is also valid for any measure ξ̄ = ξx , that is,

min
ξ̄

max
η

∫
X

∫
C(ξ)

ψ(s, ei , ξ) η(dei ) ξ̄ (ds) ≤ max
η

∫
C(ξ)

ψ(x, ei , ξ)η(dei ), x ∈ X .

(18)
Since inequality (18) holds for any x ∈ X , it is also valid for the value of x which
minimizes the quantity

∫
C(ξ)

ψ(x, ei , ξ)η(dei ), that is,

min
ξ̄

max
η

∫
X

∫
C(ξ)

ψ(s, ei , ξ) η(dei ) ξ̄ (ds) ≤ max
η

min
x∈X

∫
C(ξ)

ψ(x, ei , ξ)η(dei ).

(19)
The lemma follows from inequalities (17) and (19). ��

Proof of Theorem 3. Since�−1(ξ) is a convex function of ξ , a necessary and sufficient
condition for ξ∗ to be an optimum design is that

∂�−1(ξ∗, ξ) = max
ei∈C(ξ∗)

∫
X

ψ(x, ei , ξ
∗)ξ(dx) ≥ 0,∀ ξ,

that is,

min
ξ

max
ei∈C(ξ∗)

∫
X

ψ(x, ei , ξ
∗)ξ(dx) ≥ 0.

From Lemma 5 the above is equivalent to

min
ξ

max
η

∫
X

∫
C(ξ∗)

ψ(x, ei , ξ
∗) η(dei ) ξ(dx) ≥ 0. (20)

On the other hand, from Lemma 6 inequality (20) is equivalent to

max
η

min
x

∫
C(ξ∗)

ψ(x, ei , ξ
∗) η(dei ) ≥ 0.
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Thus, there exists a measure η (the maximum of the previous one) satisfying

min
x

∫
C(ξ∗)

ψ(x, ei , ξ
∗) η(dei ) ≥ 0,

that is,

∫
C(ξ∗)

ψ(x, ei , ξ
∗) η(dei ) ≥ 0, x ∈ X .

From Equation (13) and setting ηi = η(ei ), the previous inequality becomes

∑
ei∈C(ξ∗)

�i (ξ
∗
i )

∂�i (ξ
∗, ξx )

�2
i (ξ

∗)
ηi ≤ 0, x ∈ X . (21)

Let I(ξ∗) = {
i : i = argmin j∈{1,...,k} Eff j (ξ∗)

}
, setting

π∗
i = ηi

Eff2i (ξ
∗)

/
∑

i∈C(ξ∗)

ηi

Eff2i (ξ
∗)

, i ∈ I(ξ∗)

inequality (21) becomes

∑
i∈I(ξ∗)

π∗
i

∂�i (ξ
∗, ξx )

�i (ξ
∗
i )

≤ 0, x ∈ X . (22)

The thesis follows from comparing inequality (22) with (4). ��
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