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Abstract
Improvements in technology lead to increasing availability of large data sets which
makes the need for data reduction and informative subsamples ever more important. In
this paper we construct D-optimal subsampling designs for polynomial regression in
one covariate for invariant distributions of the covariate.We study quadratic regression
more closely for specific distributions. In particular we make statements on the shape
of the resulting optimal subsampling designs and the effect of the subsample size on
the design. To illustrate the advantage of the optimal subsampling designs we examine
the efficiency of uniform random subsampling.
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1 Introduction

Data Reduction is a major challenge as technological advances have led to a mas-
sive increase in data collection to a point where traditional statistical methods fail or
computing power can not keep up. In this case we speak of big data. We typically
differentiate between the case where the number of covariates is much larger than the
number of observations and the case where the massive amount of observations is the
problem. The first case is well studied, most notably by Tibshirani (1996) introducing
LASSO, which utilizes �1 penalization to find sparse parameter vectors, thus fusing
subset selection and ridge regression. The second case, often referred to as massive
data, can be tackled in two ways. Firstly in a probabilistic fashion, creating random
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subsamples in a non-uniformmanner. Prominent studies include Drineas et al. (2006),
Mahoney (2011) and Ma et al. (2014). They present subsampling methods for linear
regression models called algorithmic leveraging that sample according to probabili-
ties based on the normalized statistical leverage scores of the covariate matrix. More
recently Dereziński and Warmuth (2018) study volume sampling, where subdata is
chosen proportional to the squared volume of the parallelepiped spanned by its obser-
vations. Conversely to these probabilistic methods one can select subdata by applying
deterministic rules. Shi and Tang (2021) present such a method, that maximizes the
minimal distance between two observations in the subdata.Wang et al. (2021) propose
orthogonal subsampling inspired by orthogonal arrays. Most prominently, Wang et al.
(2019) introduce the information-based optimal subdata selection (IBOSS) to tackle
big data linear regression in a deterministic fashion based on D-optimality.

In this paper we study D-optimal subsampling designs for polynomial regression in
one covariate, where the goal is to select a percentage α of the full data that maximizes
the determinant of the information matrix. For the conventional study of approximate
designs in this settingwe refer to Gaffke andHeiligers (1996). Heiligers and Schneider
(1992) consider specifically cubic regression on a ball.We consider D-optimal designs
with measure α that are bounded from above by the distribution of the known covari-
ate. Such directly bounded designs were first studied by Wynn (1977) and Fedorov
(1989). Pronzato (2004) considers this setting using a form of the subsampling design
standardized to one and bounded by α−1 times the distribution of the covariates. More
recently, Pronzato and Wang (2021) studies the same in the context of sequential sub-
sampling. For the characterization of the optimal subsampling designs we make use
of an equivalence theorem by Sahm and Schwabe (2001). This equivalence theorem
enables us to construct such subsampling designs for various settings of the distri-
butional assumptions on the covariate. Here we will only look at distributions of the
covariate that are invariant to a sign change, i.e. symmetric about the vertical axis.
We discuss the shape of D-optimal subsampling subsampling designs for polyno-
mial regression of degree q first. We then study quadratic regression under several
distributional assumptions more closely, after showing two examples for simple lin-
ear regression. In particular we take a look at the percentage of mass of the optimal
subsampling design on the outer intervals compared to the inner one, which changes
drastically given the distribution of the covariate, particularly for heavy-tailed dis-
tributions. In addition we examine the efficiency of uniform random subsampling to
illustrate the advantage of the optimal subsampling designs. All numerical results are
obtained by the Newton method implemented in the R package nleqslv by Hasselman
(2018). All relevant R scripts are available on a GitHub repository https://github.com/
TorstenReuter/polynomial_regression_in_one_covariate.

The rest of this paper is organized as follows. In Sect. 2 we specify the polynomial
model. In Sect. 3we introduce the concept of continuous subsampling designs and give
characterizations for optimization. In Sects. 4 and 5 we present optimal subsampling
designs in the case of linear and quadratic regression, respectively, for various classes
of distributions of the covariate. Section6 contains some efficiency considerations
showing the strength of improvement of the performance of the optimal subsampling
design compared to random subsampling. The paper concludes with a discussion in
Sect. 7. Proofs are deferred to an Appendix.
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2 Model specification

We consider the situation of pairs (xi , yi ) of data, where yi is the value of the response
variable Yi and xi is the value of a single covariate Xi for unit i = 1, . . . , n, for
very large numbers of units n. We assume that the dependence of the response on the
covariate is given by a polynomial regression model

Yi = β0 + β1Xi + β2X
2
i + · · · + βq X

q
i + εi

with independent, homoscedastic random errors εi having zero mean (E(εi ) = 0,
Var(εi ) = σ 2

ε > 0). The largest exponent q ≥ 1 denotes the degree of the polynomial
regression, and p = q + 1 is the number of regression parameters β0, . . . , βq to be
estimated, where, for each k = 1, . . . , q, the parameter βk is the coefficient for the kth
monomial xk , and β0 denotes the intercept. For example, for q = 1, we have ordinary
linear regression, Yi = β0 + β1Xi + εi , with p = 2 parameters β0 (intercept) and β1
(slope) and, for q = 2, we have quadratic regression, Yi = β0 + β1Xi + β2X2

i + εi ,
with p = 3 and an additional curvature parameter β2. Further, we assume that the
units of the covariate Xi are identically distributed and that all Xi and random errors
εi ′ are independent.

For notational convenience, we write the polynomial regression as a general linear
model

Yi = f(Xi )
�β + εi ,

where f(x) = (1, x, . . . , xq)� is the p-dimensional vector of regression functions and
β = (β0, β1, . . . , βq)

� is the p-dimensional vector of regression parameters.

3 Subsampling design

We are faced with the problem that the responses Yi are expensive or difficult to
observe while the values xi of all units Xi of the covariate are available. To overcome
this problem, we consider the situation that the responses Yi will be observed only
for a certain percentage α of the units (0 < α < 1) and that these units will be
selected on the basis of the knowledge of the values xi of the covariate for all units.
As an alternative motivation, we can consider a situation where all pairs (xi , yi ) are
available but parameter estimation is computationally feasible only on a percentage α

of the data. In either case we want to find the subsample of pairs (xi , yi ) that yields
the most precise estimation of the parameter vector β.

To obtain analytical results, the covariate Xi is supposed to have a continuous
distribution with density fX (x), and we assume that the distribution of the covariate
is known. The aim is to find a subsample of this distribution that covers a percentage
α of the distribution and that contains the most information. For this, we will consider
continuous designs ξ as measures of mass α on R with density fξ (x) bounded by the
density fX (x) of the covariate Xi such that

∫
fξ (x) dx = α and fξ (x) ≤ fX (x) for
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all x ∈ R. A subsample can then be generated according to such a continuous design
by accepting units i with probability fξ (xi )/ fX (xi ).

For a continuous design ξ , the information matrix M(ξ) is defined as M(ξ) =
∫
f(x)f(x)� fξ (x) dx . In the present polynomial setup, M(ξ) = (

m j+ j ′(ξ)
) j ′=0,...,q
j=0,...,q ,

where mk = ∫
xk fξ (x) dx is the kth moment associated with the design ξ . Thus, it

has to be required that the distribution of Xi has a finite moment E(X2q
i ) of order

2q in order to guarantee that all entries in the information matrix M(ξ) exist for all
continuous designs ξ for which the density fξ (x) is bounded by fX (x).

The information matrix M(ξ) measures the performance of the design ξ in the
sense that the covariance matrix of the least squares estimator β̂ based on a subsample
according to the design ξ is proportional to the inverse M(ξ)−1 of the information
matrixM(ξ) or, more precisely,

√
αn(β̂ − β) is normally distributed with mean zero

and covariance matrix σ 2
ε M(ξ)−1, at least asymptotically. Note that for continuous

designs ξ the information matrix M(ξ) is always of full rank and, hence, the inverse
M(ξ)−1 exists. Based on the relation to the covariance matrix, it is desirable to max-
imize the information matrix M(ξ). However, as well-known in design optimization,
maximization of the information matrix cannot be achieved uniformly with respect
to the Loewner ordering of positive-definiteness. Thus, commonly, a design criterion
which is a real valued functional of the information matrix M(ξ) will be maximized,
instead. We will focus here on the most popular design criterion in applications, the
D-criterion, in its common form log(det(M(ξ))) to be maximized. Maximization of
the D-criterion can be interpreted in terms of the covariance matrix to be the same as
minimizing the volume of the confidence ellipsoid for the whole parameter vector β

based on the least squares estimator or, equivalently, minimizing the volume of the
acceptance region for aWald test on the whole model. The subsampling design ξ∗ that
maximizes the D-criterion log(det(M(ξ))) will be called D-optimal, and its density
is denoted by fξ∗(x).

To obtain D-optimal subsampling designs, wewill make use of standard techniques
coming from constrained convex optimization and symmetrization. For convex opti-
mization we employ the directional derivative

FD(ξ, η) = lim
ε→0+

1

ε
(log(det(M((1 − ε)ξ + εη))) − log(det(M(ξ))))

of the D-criterion at a design ξ with non-singular information matrix M(ξ) in the
direction of a design η, where we allow here η to be a general design of mass α that
has not necessarily a density bounded by fX (x). In particular, η = ξx may be a one-
point design which assigns all mass α to a single setting x in R. Evaluating of the
directional derivative yields FD(ξ, η) = p − trace(M(ξ)−1M(η)) (compare Silvey
1980, Example 3.8) which reduces to FD(ξ, ξx ) = p−αf(x)�M(ξ)−1f(x) for a one-
point design η = ξx . Equivalently, for one-point designs η = ξx , we may consider the
sensitivity function ψ(x, ξ) = αf(x)�M(ξ)−1f(x) which incorporates the essential
part of the directional derivative (ψ(x, ξ) = p − FD(ξ, ξx )). For the characterization
of the D-optimal continuous subsampling design, the constrained equivalence theorem
under Kuhn-Tucker conditions (see Sahm and Schwabe 2001, Corollary 1 (c)) can be
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reformulated in terms of the sensitivity function and applied to our case of polynomial
regression.

Theorem 3.1 In polynomial regression of degree q with density fX (x) of the covariate
Xi , the subsampling design ξ∗ with support X ∗ is D-optimal if and only if there exist
a threshold s∗ and settings a1 > · · · > a2r for some r (1 ≤ r ≤ q) such that

(i) the D-optimal subsampling design ξ∗ is given by

fξ∗(x) =
{
fX (x) if x ∈ X ∗
0 otherwise

(ii) ψ(x, ξ∗) ≥ s∗ for x ∈ X ∗, and
(iii) ψ(x, ξ∗) < s∗ for x /∈ X ∗,
where X ∗ = ⋃r

k=0 Ik and I0 = [a1,∞), Ir = (−∞, a2r ], and Ik = [a2k+1, a2k],
for k = 1, . . . , r − 1, are mutually disjoint intervals.

The density fξ∗(x) = fX (x)1X ∗(x) = ∑r
k=0 fX (x)1Ik (x) of the D-optimal sub-

sampling design ξ∗ is concentrated on, at most, q + 1 intervals Ik , where 1A(x)
denotes the indicator function on the set A, i.e., 1A(x) = 1 for x ∈ A, and 1A(x) = 0
otherwise. The density fξ∗(x) has a 0-1-property such that it is either equal to the
density fX (x) of the covariate (on X ∗) or equal to 0 (on the complement of X ∗).
Thus, the generation of a subsample according to the optimal continuous subsampling
design ξ∗ can be implemented easily by accepting all units i for which the value xi
of the covariate is in X ∗ and rejecting all other units with xi /∈ X ∗. The threshold s∗
can be interpreted as the (1−α)-quantile of the distribution of the sensitivity function
ψ(Xi , ξ

∗) as a function of the random variable Xi (see Pronzato and Wang 2021).
A further general concept to be used is equivariance. This can be employed to

transform the D-optimal subsampling design simultaneously with a transformation
of the distribution of the covariate. More precisely, the location-scale transformation
Zi = σ Xi + μ of the covariate and its distribution is conformable with the regression
function f(x) in polynomial regression, and the D-criterion is equivariant with respect
to such transformations.

Theorem 3.2 Let fξ∗(x) be the density for a D-optimal subsampling design ξ∗ for
covariate Xi with density fX (x). Then fζ ∗(z) = 1

σ
fξ∗( z−μ

σ
) is the density for a D-

optimal subsampling design ζ ∗ for covariate Zi = σ Xi + μ with density fZ (z) =
1
σ
fX (

z−μ
σ

).

As a consequence, also the optimal subsampling design ζ ∗ is concentrated on, at
most, p = q + 1 intervals, and its density fζ ∗(z) is either equal to the density fZ (z)
of the covariate Zi (on Z∗ = σX ∗ + μ) or it is equal to 0 (elsewhere) such that, also
here, the optimal subsampling can be implemented quite easily.

A further reduction of the optimization problem can be achieved by utilizing sym-
metry properties. Therefore, we consider the transformation of sign change, g(x) =
−x , and assume that the distribution of the covariate is symmetric, fX (−x) = fX (x)
for all x . For a continuous design ξ , the design ξ g transformed by sign change has den-
sity fξ g (x) = fξ (−x) and, thus, satisfies the boundedness condition fξ g (x) ≤ fX (x),
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when the distribution of Xi is symmetric, and has the same value for the D-criterion as
ξ , log(det(M(ξ g))) = log(det(M(ξ))). By the concavity of the D-criterion, standard
invariance arguments can be used as in Pukelsheim (1993, Chapter 13) and Heiligers
and Schneider (1992). In particular, any continuous design ξ is dominated by its sym-
metrization ξ̄ = (ξ + ξ g)/2 with density fξ̄ (x) = ( fξ (x) + fξ (−x))/2 ≤ fX (x)

such that log(det(M(ξ̄ ))) ≥ log(det(M(ξ))) (1993, Chapter 13.4). Hence, we can
restrict the search for a D-optimal subsampling design to symmetric designs ξ̄ with
density fξ̄ (−x) = fξ̄ (x)which are invariant with respect to sign change (ξ̄

g = ξ̄ ). For

these symmetric subsampling designs ξ̄ , the moments mk(ξ̄ ) are zero for odd k and
positive when k is even. Hence, the information matrixM(ξ̄ ) is an even checkerboard
matrix (see Jones and Willms 2018) with positive entries m j+ j ′(ξ̄ ) for even index
sums and entries equal to zero when the index sum is odd. The inverseM(ξ̄ )−1 of the
information matrix M(ξ̄ ) shares the structure of an even checkerboard matrix. Thus,
the sensitivity function ψ(x, ξ̄ ) is a polynomial with only terms of even order and is,
hence, a symmetric function of x . This leads to a simplification of the representation of
the optimal subsampling design in Theorem 3.1 because the supportX ∗ of the optimal
subsampling design ξ∗ will be symmetric, too.

Corollary 3.3 In polynomial regression of degree q with a symmetrically distributed
covariate Xi with density fX (x), the D-optimal subsampling design ξ∗ with density
fξ∗(x) = ∑r

k=0 fX (x)1Ik (x) has symmetric boundaries a1, . . . , a2r of the intervals
I0 = [a1,∞)], Ik = [a2k+1, a2k], and Ir = (−∞, a2r ], i. e. a2r+1−k = −ak and,
accordingly, Ir−k = −Ik .

This characterization of the optimal subsampling design ξ∗ will be illustrated in the
next two sections for ordinary linear regression (q = 1) and for quadratic regression
(q = 2).

4 Optimal subsampling for linear regression

In the case of ordinary linear regression Yi = β0 + β1Xi + εi , we have

M(ξ) =
(

α m1(ξ)

m1(ξ) m2(ξ)

)

,

for the information matrix of any subsampling design ξ . The inverse M(ξ)−1 of the
information matrix is given by

M(ξ)−1 = 1

αm2(ξ) − m1(ξ)2

(
m2(ξ) −m1(ξ)

−m1(ξ) α

)

,

and the sensitivity function

ψ(x, ξ) = 1

αm2(ξ) − m1(ξ)2
(m2(ξ) − 2m1(ξ)x + αx2) (1)
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is a polynomial of degree two in x . The D-optimal continuous subsampling design
ξ∗ has density fξ (x) = fX (x) for x ≤ a2 and for x ≥ a1 while fξ (x) = 0 for
a2 < x < a1. The corresponding subsampling design then accepts those units i for
which xi ≤ a2 or xi ≥ a1, and rejects all units i for which a2 < xi < a1.

To obtain the D-optimal continuous subsampling design ξ∗ by Theorem 3.1, the
boundary points a1 and a2 have to be determined to solve the two non-linear equations

P(Xi ≤ a2) + P(Xi ≥ a1) = α (2)

and

ψ(a2, ξ
∗) = ψ(a1, ξ

∗).

By equation (1), the latter condition can be written as

αa22 − 2m1(ξ
∗)a2 = αa21 − 2m1(ξ

∗)a1,

which can be reformulated as

α(a1 + a2) = 2m1(ξ
∗). (3)

When the distribution of Xi is symmetric, Corollary 3.3 provides symmetry a2 =
−a1 of the boundary points. This is in agreement with condition (3) becausem1(ξ

∗) =
0 in the case of symmetry. Further, by the symmetry of the distribution, P(Xi ≤ a2) =
P(Xi ≥ a1) = α/2, and a1 has to be chosen as the (1−α/2)-quantile of the distribution
of Xi to obtain the D-optimal continuous subsampling design.

Example 4.1 (normal distribution) If the covariate Xi comes from a standard normal
distribution, then the optimal boundaries are the (α/2)- and the (1 − α/2)-quantile
±z1−α/2, and unit i is accepted when |xi | ≥ z1−α/2.

For Xi having a general normal distribution with mean μ and variance σ 2, the
optimal boundaries remain to be the (α/2)- and (1−α/2)-quantile a2 = μ−σ z1−α/2
and a1 = μ + σ z1−α/2, respectively, by Theorem 3.2.

This approach applies accordingly to all distributions which are obtained by a
location or scale transformation of a symmetric distribution: units will be accepted
if their values of the covariate lie in the lower or upper (α/2)-tail of the distribution.
This procedure can be interpreted as a theoretical counterpart in one dimension of the
IBOSS method proposed by Wang et al. (2019).

However, for an asymmetric distribution of the covariate Xi , the optimal proportions
for sampling from the upper and lower tail may differ. By condition (7), there will be
a proportion α1, 0 ≤ α1 ≤ α, for the upper tail and α2 = α − α1 for the lower tail
such that a1 is the (1 − α1)-quantile and a2 is the α2-quantile of the distribution of
the covariate Xi , respectively. In view of condition (3), neither α1 nor α2 can be zero.
Hence, the optimal subsampling design will have positive, but not necessarily equal
mass at both tails. This will be illustrated in the next example.
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Table 1 Numeric values for the boundary points a and b for selected values of the subsampling proportion
α in the case of standard exponential Xi

α b P(Xi ≤ b) a P(Xi ≥ a) % of mass on [0, b]
0.5 0.39572 0.32681 1.75335 0.17319 65.36

0.3 0.21398 0.19264 2.23153 0.10736 64.21

0.1 0.06343 0.06146 3.25596 0.03854 61.46

0.01 0.00579 0.00577 5.46588 0.00423 57.71

Example 4.2 (exponential distribution) If the covariate Xi comes from a standard
exponential distribution with density fX (x) = e−x , x ≥ 0, we conclude from Theo-
rem 3.1 that fξ∗(x) = fX (x)1[0,b]∪[a,∞)(x) with a = a1 and b = a2 when a2 ≥ 0.
Otherwise, when a2 < 0, the density fX (x) of the covariate Xi vanishes on the left
interval I1 = (−∞, a2] because the support of the distribution of Xi does not cover
the whole range of R. In that case, we may formally let b = 0. Then, we can calculate
the entries of M(ξ∗) as functions of a and b as

m1(ξ
∗) = 1 + (a + 1)e−a − (b + 1)e−b

m2(ξ
∗) = 2 + (a2 + 2a + 2)e−a − (b2 + 2b + 2)e−b .

To obtain the optimal solutions for a and b in the case a2 ≥ 0, the two non-linear
equations (2) and (3) have to be satisfied which become here e−b − e−a = 1− α and
α(a + b) = 2m1(ξ

∗).
If a2 < 0would hold, the first condition revealsa = − log(α) and, hence,m1(ξ

∗) =
α(a + 1). There, similar to the proof of Theorem 5.2 below, the second condition has
to be relaxed to ψ(a, ξ∗) ≥ ψ(0, ξ∗) which can be reformulated to αa ≥ 2m1(ξ

∗) =
2α(a + 1) and yields a contradiction. Thus, this case can be excluded, and a2 has to
be larger than 0 for all α.

For selected values of α, numerical results are presented in Table 1. Additionally
to the optimal values for a and b, also the proportions P(Xi ≤ b) and P(Xi ≥ a)

are presented in Table 1 together with the percentage of mass allocated to the left
interval [0, b]. In Fig. 1, the density fξ∗ of the optimal subsampling design ξ∗ and the
corresponding sensitivity function ψ(x, ξ∗) are exhibited for α = 0.5 and α = 0.3.
Vertical lines indicate the positions of the boundary points a and b, and the dotted
horizontal line displays the threshold s∗.

As could have been expected, less mass is assigned to the right tail of the right-
skewed distribution because observations from the right tail are more influential and,
thus, more observations seem to be required on the lighter left tail for compensation.

For Xi having an exponential distribution with general intensity λ > 0 (scale
1/λ), the optimal boundary points remain to be the same quantiles as in the standard
exponential case, a1 = a/λ and a2 = b/λ associated with the proportion α, by
Theorem 3.2.
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Fig. 1 Density of the optimal subsampling design (solid line) and the standard exponential distribution
(dashed line, upper panels), and sensitivity functions (lower panels) for subsampling proportions α = 0.5
(left) and α = 0.3 (right)

5 Optimal subsampling for quadratic regression

In the case of quadratic regression Yi = β0 + β1Xi + β2X2
i + εi we have

M(ξ̄ ) =
⎛

⎝
α 0 m2(ξ̄ )

0 m2(ξ̄ ) 0
m2(ξ̄ ) 0 m4(ξ̄ )

⎞

⎠ , (4)

for the information matrix of a symmetric subsampling design ξ̄ . The inverseM(ξ̄ )−1

of the information matrix is given by

M(ξ̄ )−1 = 1

αm4(ξ̄ ) − m2(ξ̄ )2

⎛

⎜
⎝

m4(ξ̄ ) 0 −m2(ξ̄ )

0 α
m4(ξ̄ )

m2(ξ̄ )
− m2(ξ̄ ) 0

−m2(ξ̄ ) 0 α

⎞

⎟
⎠ ,

and the sensitivity function

ψ(x, ξ̄ ) = 1

αm4(ξ̄ ) − m2(ξ̄ )2
(m4(ξ̄ ) − 3m2(ξ̄ )x2 + α

m4(ξ̄ )

m2(ξ̄ )
x2 + αx4) (5)

is a polynomial of degree four and is symmetric in x .
According to Corollary 3.3, the density fξ∗(x) of the D-optimal continuous sub-

sampling design ξ∗ has, at most, three intervals that are symmetrically placed around
zero, where the density is equal to the bounding density fX (x), and fξ∗(x) is equal
to zero elsewhere. Thus the density fξ∗(x) of the D-optimal subsampling design has
the shape

fξ∗(x) = fX (x)1(−∞,−a]∪[−b,b]∪[a,∞)(x), (6)

where a > b ≥ 0. We formally allow b = 0 which means that ψ(0, ξ∗) ≤ s∗ =
ψ(a, ξ∗) and that the density fξ∗(x) is concentrated on only two intervals, fξ∗(x) =
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Table 2 Numeric values for the boundary points a and b for selected values of the subsampling proportion
α in the case of standard normal Xi

α a 1 − (a) b 2(b) − 1 % of mass on [−b, b]
0.5 1.02800 0.15198 0.24824 0.19605 39.21

0.3 1.34789 0.08885 0.15389 0.12231 40.77

0.1 1.88422 0.02977 0.05073 0.04046 40.46

0.01 2.73996 0.00307 0.00483 0.00386 38.55

fX (x)1(−∞,−a]∪[a,∞)(x). Although the information matrix will be non-singular even
in the case of two intervals (b = 0), the optimal subsampling design will include a
non-degenerate interior interval [−b, b] in many cases, b > 0, as illustrated below
in Examples 5.1 and 5.3. However, for a heavy-tailed distribution of the covariate
Xi , the interior interval may vanish in the optimal subsampling design as shown in
Example 5.5.

To obtain the D-optimal continuous subsampling design ξ∗ by Corollary 3.3, the
boundary points a = a1 and b = a2 ≥ 0 have to be determined to solve the two
non-linear equations

P(|Xi | ≤ b) + P(|Xi | ≥ a) = α (7)

and

ψ(b, ξ∗) = ψ(a, ξ∗). (8)

By equation (5), the latter condition can be written as

αm2(ξ
∗)b4 + (

αm4(ξ
∗) − 3m2(ξ

∗)2
)
b2 = αm2(ξ

∗)a4 + (
αm4(ξ

∗) − 3m2(ξ
∗)2

)
a2,

which can be reformulated as

αm2(ξ
∗)(a2 + b2) = αm4(ξ

∗) − 3m2(ξ
∗)2. (9)

For finding the optimal solution, we use the Newton method implemented in the R
package nleqslv by Hasselman (2018) to calculate numeric values for a and b based
on equations (7) and (8) for various symmetric distributions.

The case b = 0 relates to the situation of only two intervals (r = 1 < q). There,
condition (7) simplifies to a = q1−α/2, where q1−α/2 is the (1 − α/2)-quantile of
the distribution of the covariate Xi , and equation (8) has to be relaxed to ψ(0, ξ∗) ≤
ψ(a, ξ∗), similar to the case b = 0 in Example 4.2.

Example 5.1 (normal distribution) For the case that the covariate Xi comes from a
standard normal distribution, results are given in Table 2 for selected values of α.
Additionally to the optimal values for a and b, also the proportions P(Xi ≥ a) =
P(Xi ≤ −a) = 1 − (a) and P(−b ≤ Xi ≤ b) = 2(b) − 1 are presented in
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(b) α = 0.1

Fig. 2 Density of the optimal subsampling design (solid line) and the standard normal distribution (dashed
line, upper panels), and sensitivity functions (lower panels) for subsampling proportions α = 0.5 (left) and
α = 0.1 (right)

Table 2 together with the percentage of mass (2(b) − 1)/α allocated to the interior
interval [−b, b]. In Fig. 2, the density fξ∗ of the optimal subsampling design ξ∗ and the
corresponding sensitivity function ψ(x, ξ∗) are exhibited for α = 0.5 and α = 0.1.

Vertical lines indicate the positions of the boundary points −a, −b, b, and a,
respectively. In the subplots of the sensitivity function, the dotted horizontal line
displays the threshold s∗. For other values of α, the plots are looking similar.

The numerical results in Table 2 suggest that the interior interval [−b, b] does not
vanish for any α (0 < α < 1). This will be established in the following theorem.

Theorem 5.2 In quadratic regression with standard normal covariate Xi , for any
subsampling proportion α ∈ (0, 1), the D-optimal subsampling design ξ∗ has density
fξ∗(x) = fX (x)1(−∞,−a]∪[−b,b]∪[a,∞)(x) with a > b > 0.

For Xi having a general normal distribution with mean μ and variance σ 2, the
optimal boundary points remain to be the same quantiles as in the standard normal
case, a1, a4 = μ ± σa and a2, a3 = μ ± σb, by Theorem 3.2.

Example 5.3 (uniform distribution) If the covariate Xi is uniformly distributed on
[−1, 1] with density fX (x) = 1

21[−1,1](x), we can obtain analytical results for the
dependence of the subsampling design on the proportion α to be selected.

The distribution of Xi is symmetric. By Corollary 3.3, the density of the D-optimal
continuous subsampling design ξ∗ has the shape

fξ∗(x) = 1

2
1[−1,−a]∪[−b,b]∪[a,1](x), (10)

where we formally allow a = 1 or b = 0 resulting in only one or two intervals of
support. The relevant entries in the information matrix M(ξ∗) are m2(ξ

∗) = 1
3 (1 −

a3 + b3) and m4(ξ
∗) = 1

5 (1 − a5 + b5). If, in Corollary 3.3, the boundary points
a1 and a2 satisfy a1 ≤ 1 and a2 ≥ 0, then a = a1 and b = a2 are the solution of
the two equations a − b = 1 − α and αm2(ξ

∗)(a2 + b2) = αm4(ξ
∗) − 3m2(ξ

∗)2
arising from conditions (7) and (9). On the other hand, if there exist solutions a and b
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Fig. 3 Boundary points a
(dashed) and b (solid) of the
D-optimal subsampling design
in the case of uniform Xi on
[−1, 1] as functions of α

Table 3 Values for the boundary points a and b for selected values of the subsampling proportion α in the
case of uniform Xi on [−1, 1]
α a P(Xi ≥ a) b = P(−b ≤ Xi ≤ b) % of mass on [−b, b]
0.5 0.70983 0.14508 0.20983 41.97

0.3 0.81737 0.09132 0.11737 39.12

0.1 0.93546 0.03227 0.03546 35.46

0.01 0.99336 0.00332 0.00336 33.55

of these equations such that 0 < b < a < 1, then these are the boundary points in the
representation (10), and the density of the optimal subsampling design is supported
by three proper intervals. Solving the two equations results in

a(α) = 1

2
(1 − α) +

(
1

180(1 − α)

(
45 − 15α + 15α2 − 45α3 + 20α4

− 4α
√
5
√
45 − 90α + 90α2 − 75α3 + 57α4 − 27α5 + 5α6

))1/2

(11)

and

b(α) = a(α) − (1 − α) (12)

for the dependence of a and b on α. The values of a and b are plotted in Fig. 3.
There it can be seen that 0 < a < b < 1 for all α and that a and b both tend to 1/

√
5

as α tends to 1. Similar to the case of the normal distribution, the resulting values and
illustrations are given in Table 3 and Fig. 4. Note that the mass of the interior interval
P(−b ≤ Xi ≤ b) is equal to b itself as Xi is uniformly distributed on [−1, 1].

Also here, in Fig. 4, vertical lines indicate the positions of the boundary points −a,
−b, b, and a, and the dotted horizontal line displays the threshold s∗. Moreover, the
percentage of mass at the different intervals is displayed in Fig. 5.

The results in Table 3 and Fig. 5 suggest that the percentage of mass on all three
intervals [−1,−a], [−b, b], and [a, 1] tend to 1/3 as α tends to 0. We establish this
in the following theorem.
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Fig. 4 Density of the optimal subsampling design (solid line) and the uniform distribution on [−1, 1]
(dashed line, upper panels), and sensitivity functions (lower panels) for subsampling proportions α = 0.5
(left) and α = 0.1 (right)

Fig. 5 Percentage of mass on the support intervals [a, 1] (left) and [−b, b] (right) of the D-optimal sub-
sampling design in the case of uniform Xi on [−1, 1] as a function of α

Theorem 5.4 In quadratic regression with covariate Xi uniformly distributed on
[−1, 1], let ξ∗

α be the optimal subsampling design for subsampling proportion α,
0 < α < 1, defined in equations (11) and (12). Then limα→0 ξ∗

α ([−b, b])/α = 1/3.

It is worth-while mentioning that the percentages of mass displayed in Fig. 5 are not
monotonic over the whole range of α ∈ (0, 1), as, for example the percentage of mass
at the interior interval [−b, b] is increasing from 0.419666 at b = 0.50 to 0.448549
at b = 0.92 and then slightly decreasing back again to 0.447553 at b = 0.99.

Finally, it can be checked that, for all α, the solutions satisfy 0 < b < a < 1 such
that the optimal subsampling designs are supported on three proper intervals.

In the two preceding examples it could be noticed that the mass of observations is
of comparable size for the three supporting intervals in the case of a normal and of a
uniform distribution with light tails. This may be different in the case of a heavy-tailed
distribution for the covariate Xi as the t-distribution.

Example 5.5 (t-distribution) For the case that the covariate Xi comes from a
t-distribution with ν degrees of freedom, we observe a behavior which differs sub-
stantially from the normal case of Example 5.1. The interior interval typically has less
mass than the outer intervals and may vanish for some values of α. We show this in the
case of the least possible number ν = 5 of degrees of freedom to maintain an existing
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Table 4 Values for the boundary points a and b for selected values of the subsampling proportion α in the
case of t5-distributed Xi

α a P(Xi ≥ a) b P(−b ≤ Xi ≤ b) % of mass on [−b, b]
0.10 2.01505 0.05000 0 0 0

0.07 2.31512 0.03423 0.00202 0.00153 2.03

0.03 3.09141 0.01356 0.00380 0.00288 4.74

0.01 4.18942 0.00429 0.00187 0.00142 14.23

Table 5 Values of the critical value α∗ for selected degrees of freedom ν of the t-distribution

ν 5 6 7 8 9 30 ∞
α∗ 0.08207 0.34670 0.50374 0.60125 0.66670 0.92583 1

fourth moment, which appears in the information matrix of the D-optimal continuous
subsampling design ξ∗ while maximizing the dispersion.

Theorem 5.6 In quadratic regression with t-distributed covariate Xi ∼ t5 with five
degrees of freedom, there is a critical value α∗ ≈ 0.082065 of the subsampling pro-
portion α such that the D-optimal subsampling design ξ∗ has

(i) density fξ∗(x) = fX (x)1(−∞,−a]∪[−b,b]∪[a,∞)(x) with a > b > 0 for α < α∗.
(ii) density fξ∗(x) = fX (x)1(−∞,−t5,1−α/2]∪[t5,1−α/2,∞)(x), where t5,1−α/2 is the (1 −

α/2)-quantile of the t5-distribution, for α ≥ α∗.

For illustration, numerical results are given in Table 4. The percentage of mass on
the interior interval [−b, b] is equal to zero for all larger values of α as stated in The-
orem 5.6. The percentage of mass on [−b, b] decreases with increasing subsampling
proportion α before vanishing entirely.

Further calculations provide that the critical value α∗, where a the D-optimal sub-
sampling design switches from a three-interval support to a two-interval support,
increases with the number of degrees ν of freedom of the t-distribution and converges
to one when ν tends to infinity. This is in accordance with the results for the normal
distribution in Example 5.1 as the t-distribution converges in distribution to a standard
normal distribution for ν → ∞.We have given numeric values for the crossover points
for selected degrees of freedom in Table 5, where ν = ∞ relates to the normal dis-
tribution. The corresponding value α∗ = 1 indicates that the D-optimal subsampling
design is supported by three intervals for all α in this case.

6 Efficiency

To exhibit the gain in using a D-optimal subsampling design compared to random sub-
sampling, we consider the performance of the uniform random subsampling design
ξα of size α, which has density fξα (x) = α fX (x), compared to the D-optimal sub-
sampling design ξ∗

α with mass α.
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Table 6 Efficiency of uniform subsampling w.r.t. D-optimality for selected values of the subsampling
proportion α

α

0.5 0.3 0.1 0.01

Linear regression Normal 0.73376 0.61886 0.47712 0.34403

Exponential 0.73552 0.61907 0.46559 0.30690

Quadratic regression Normal 0.73047 0.59839 0.41991 0.24837

Uniform 0.78803 0.70475 0.62411 0.58871

t5 0.66400 0.50656 0.29886 0.10941

t9 0.70390 0.56087 0.36344 0.17097

More precisely, the D-efficiency of any subsampling design ξ withmassα is defined
as

effD,α(ξ) =
(

det(M(ξ))

det(M(ξ∗
α ))

)1/p

,

where p is the dimension of the parameter vector β. For this definition the homo-
geneous version (det(M(ξ)))1/p of the D-criterion is used which satisfies the
homogeneity condition (det(λM(ξ)))1/p = λ(det(M(ξ)))1/p for all λ > 0 (see
Pukelsheim 1993, Chapter 6.2).

For uniform random subsampling, the information matrix is given by M(ξα) =
αM(ξ1), whereM(ξ1) is the information matrix for the full sample with raw moments
mk(ξ1) = E(Xk

i ) as entries in the ( j, j ′)th position, j + j ′ − 2 = k. Thus, the D-
efficiency effD,α(ξα) of uniform random subsampling can be nicely interpreted: the
sample size (mass) required to obtain the same precision (in terms of the D-criterion),
as when the D-optimal subsampling design ξ∗

α of mass α is used, is equal to the inverse
of the efficiency effD,α(ξα)−1 times α. For example, if the efficiency effD,α(ξα) is
equal to 0.5, then twice as many observations would be needed under uniform random
sampling than for a D-optimal subsampling design of sizeα. Of course, the full sample
has higher information than any proper subsample such that, obviously, for uniform
random subsampling, effD,α(ξα) ≥ α holds for all α.

For the examples of Sects. 4 and 5, the efficiency of uniform random subsampling
is given in Table 6 for selected values of α

and exhibited in Fig. 6 for the full range of α between 0 and 1 (solid lines).
Here the determinant of the information matrix is determined as in the examples of

Sects. 4 and 5 for the optimal subsampling designs ξ∗
α either numerically or by explicit

formulas where available.
Both Table 6 and Fig. 6 indicate that the efficiency of uniform random subsampling

is decreasing in all cases when the proportion α of subsampling gets smaller. In the
case of quadratic regression with uniformly distributed covariate, the decrease is more
or less linearwith aminimumvalue of approximately 0.58whenα is small. In the other
cases, where the distribution of the covariate is unbounded, the efficiency apparently
decreases faster, when the proportion α is smaller than 10%, and tends to 0 for α → 0.
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Fig. 6 Efficiency of uniform random subsampling (solid line) and of an IBOSS-type subsampling design
(dashed line) w.r.t. D-optimality

The latter property can be easily seen for linear regression and symmetric distribu-
tions: there, the efficiency effD,α(ξα) of uniform random sampling is bounded from
above by c/q1−α/2, where c = E(X2

i )
1/2 is a constant and q1−α/2 is the (1 − α/2)-

quantile of the distribution of the covariate. When the distribution is unbounded like
the normal distribution, then these quantiles tend to infinity for α → 0 and, hence,
the efficiency tends to 0. Similar results hold for quadratic regression and asymmetric
distributions.

In any case, as can be seen from Table 6, the efficiency of uniform random subsam-
pling is quite low for reasonable proportions α ≤ 0.1 and, hence, the gain in using the
D-optimal subsampling design is substantial.

By equivariance arguments as indicated above in the examples of Sects. 4 and 5,
the present efficiency considerations carry over directly to a covariate having a general
normal, exponential, or uniform distribution, respectively.

In the IBOSS approach by Wang et al. (2019), of the proportion α is taken from
both tails of the data. The corresponding continuous subsampling design ξ ′

α would be
to have two intervals (−∞, b] and [a,∞) and to choose the boundary points a and b to
be the (1− α/2)- and (α/2)-quantile of the distribution of the covariate, respectively.
For linear regression, it can been seen from Corollary 3.3 that the subsampling design
ξ ′
α is D-optimal when the distribution of the covariate is symmetric. As the IBOSS
procedure does not use prior knowledge of the distribution, it would be tempting to
investigate the efficiencyof the corresponding continuous subsamplingdesign ξ ′

α under
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asymmetric distributions. For the exponential distribution, this efficiency effD,α(ξ ′
α) is

added to the upper left panel in Fig. 6 by a dashed line. There the subsampling design
ξ ′
α shows a remarkably high efficiency over the whole range of α with a minimum
value 0.976 at α = 0.332.

As an extension of IBOSS for quadratic regression, we may propose a procedure
which takes proportions α/3 from both tails of the data as well as from the center of the
data. This procedure can be performed without any prior knowledge of the distribution
of the covariate. The choice of the proportions α/3 is motivated by the standard case
D-optimal design on an interval where one third of the weight is allocated to each
of the endpoints and to the midpoint of the interval, respectively. For a symmetric
distribution, the corresponding continuous subsampling design ξ ′′

α can be defined by
the boundary points a and b to be the (1 − α/3)- and (1/2 + α/6)-quantile of the
distribution of the covariate, respectively. In the case of the uniform distribution, the
subsampling design ξ ′′

α is the limiting D-optimal subsampling design for α → 0 by
Theorem 5.4. In Fig. 6, the efficiency effD,α(ξ ′′

α ) is shown by dashed lines for the
whole range of α for the uniform distribution as well as for the normal and for the
t- distribution in the case of quadratic regression. In all three cases, the subsampling
design ξ ′′

α is highly efficient over the whole range of α with minimum values 0.994 at
α = 0.079 for the normal distribution, 0.989 at α = 0.565 for the uniform distribution,
and 0.978 atα = 0.245 for the t5-distribution, respectively. This is of particular interest
for the t5-distribution, where the interior interval of the D-optimal subsampling design
ξ∗
α is considerably smaller than of the IBOSS-like subsampling design ξ ′′

α and even
vanishes entirely for α > α∗ ≈ 0.08. However, we only tested this extension of
IBOSS for quadratic regression for symmetric distributions of the covariate. Further
investigations for non-symmetric distributions is necessary.

7 Concluding remarks

In this paper we have considered a theoretical approach to evaluate subsampling
designs under distributional assumptions on the covariate in the case of polynomial
regression on a single explanatory variable. We first reformulated the constrained
equivalence theorem under Kuhn-Tucker conditions in Sahm and Schwabe (2001) to
characterize the D-optimal continuous subsampling design for general distributions of
the covariate. For symmetric distributions of the covariate we concluded the following.
The D-optimal subsampling design is equal to the bounding distribution in its support
and the support of the optimal subsampling design will be the union of at most q + 1
intervals that are symmetrically placed around zero. Further we have found that in
the case of quadratic regression the D-optimal subsampling design has three support
intervals with positive mass for all α ∈ (0, 1), whereas the interior interval vanishes
for some α for a t-distributed covariate. In contrast to that, for linear regression, always
two intervals are required at the tails of the distribution.

The main emphasis in this work was on D-optimal subsampling designs. But many
of the results may be extended to other optimality criteria like A- and E-optimality
from the Kiefer’s q -class of optimality criteria, I MSE-optimality for predicting
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the mean response, or optimality criteria based on subsets or linear functionals of
parameters.

The D-optimal subsampling designs show a high performance compared to uniform
random subsampling. In particular, for small proportions, the efficiency of uniform
random subsampling tends to zero when the distribution of the covariate is unbounded.
This property is in accordance with the observation that estimation based on subsam-
pling according to IBOSS is “consistent” in the sense that the mean squared error goes
to zero with increasing population size even when the size of the subsample is fixed.

We propose a generalization of the IBOSS method to quadratic regression which
does not require prior knowledge of the distribution of the covariate and which per-
forms remarkably well compared to the optimal subsampling design. However, an
extension to higher order polynomials does not seem to be obvious.
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Appendix A: Proofs

Before proving Theorem 3.1, we establish two preparatory lemmas on properties of the
sensitivity functionψ(x, ξ) for a continuous subsampling design ξ with density fξ (x)
and reformulate an equivalence theorem on constraint design optimality by Sahm and
Schwabe (2001) for the present setting. The first lemma deals with the shape of the
sensitivity function.

Lemma A.1 The sensitivity functionψ(x, ξ) is a polynomial of degree 2q with positive
leading term.

Proof of LemmaA.1 For a continuous subsampling design ξ with density fξ (x), the
information matrixM(ξ) and, hence, its inverseM(ξ)−1 is positive definite. Thus the
last diagonal elementm(pp) ofM(ξ)−1 is positive and, as f(x) = (1, x, . . . , xq)�, the
sensitivity function ψ(x, ξ) = f(x)�M(ξ)−1f(x) is a polynomial of degree 2q with
coefficient m(pp) > 0 of the leading term. ��

The second lemma reveals a distributional property of the sensitivity function con-
sidered as a function in the covariate Xi .

Lemma A.2 The random variable ψ(Xi , ξ) has a continuous cumulative distribution
function.
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Proof of LemmaA.2 As the sensitivity function ψ(x, ξ) is a non-constant polynomial
by Lemma A.1, the equation ψ(x, ξ) = s has only finitely many roots x1, . . . , x�,
� ≤ 2q, say, by the fundamental theorem of algebra. Hence, P(ψ(Xi , ξ) = s) =∑�

k=1 P(Xi = xk) = 0 by the continuity of the distribution of Xi which proves the
continuity of the cumulative distribution function of ψ(Xi , ξ). ��

With the continuity of the distribution of ψ(Xi , ξ
∗) the following equivalence

theorem can be obtained from Corollary 1(c) in Sahm and Schwabe (2001) for the
present setting by transition from the directional derivative to the sensitivity function
and considering R as the design region.

Theorem A.3 (Equivalence Theorem) The subsampling design ξ∗ is D-optimal if and
only if there exist a threshold s∗ and a subset X ∗ of R such that

(i) the D-optimal subsampling design ξ∗ is given by

fξ∗(x) = fX (x)1X ∗(x)

(ii) ψ(x, ξ∗) ≥ s∗ for x ∈ X ∗, and
(iii) ψ(x, ξ∗) < s∗ for x /∈ X ∗.

As P(ψ(Xi , ξ
∗) ≥ s∗) = P(Xi ∈ X ∗) = ∫

fξ∗(x) dx = α, the threshold s∗ is the
(1 − α)-quantile of the distribution of ψ(Xi , ξ

∗).

Proof of Theorem 3.1 By Lemma A.1 the sensitivity function ψ(x, ξ) is a polynomial
in x of degree 2q with positive leading term. Using the same argument as in the proof
of Lemma A.2 we obtain that there are at most 2q roots of the equationψ(x, ξ∗) = s∗
and, hence, there are at most 2q sign changes in ψ(x, ξ∗) − s∗. As ψ(x, ξ∗) is a
polynomial of even degree, also the number of (proper) sign changes has to be even,
and they occur at a1 > · · · > a2r , say, r ≤ q. Moreover, for 0 < α < 1,X ∗ is a proper
subset of R and, thus, there must be at least one sign change, r ≥ 1. Finally, as the
leading coefficient of ψ(x, ξ∗) is positive, ψ(x, ξ∗) gets larger than s∗ for x → ±∞
and, hence, the outmost intervals [a1,∞) and (−∞, a2r ] are included in the support
X ∗ of ξ∗. By the interlacing property of intervals with positive and negative sign for
ψ(x, ξ∗) − s∗, the result follows from the conditions on the D-optimal subsampling
design ξ∗ in Theorem A.3. ��
Proof of Theorem 3.2 First note that for any μ and σ > 0, the location-scale trans-
formation z = σ x + μ is conformable with the regression function f(x), i. e. there
exists a non-singular matrix Q such that f(σ x + μ) = Qf(x) for all x . Then, for any
design ξ bounded by fX (x), the design ζ has density fζ (z) = 1

σ
fξ (

z−μ
σ

) bounded by
fZ (z) = 1

σ
fX (

z−μ
σ

). Hence, by the transformation theorem for measure integrals, it
holds that

M(ζ ) =
∫

f(z)f(z)�ζ(dz)

=
∫

f(σ x + μ)f(σ x + μ)�ξ(dx)
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=
∫

Qf(x)f(x)�Q�ξ(dx)

= QM(ξ)Q�.

Therefore det(M(ζ )) = det(Q)2 det(M(ξ)). Thus ξ∗ maximizes the D-criterion over
the set of subsampling designs bounded by fX (x) if and only if ζ∗ maximizes the
D-criterion over the set of subsampling designs bounded by fZ (z). ��
Proof of Corollary 3.3 The checkerboard structure of the information matrix M(ξ∗)
carries over to its inverse M(ξ∗)−1. Hence, the sensitivity function ψ(x, ξ∗) is an
even polynomial, which has only non-zero coefficients for even powers of x , and is
thus symmetric with respect to 0, i. e. ψ(−x, ξ∗) = ψ(x, ξ∗). Accordingly, also the
roots of ψ(x, ξ∗) = s∗ are symmetric with respect to 0. ��
Proof of Theorem 5.2 In view of the shape (6) of the density and by Corollary 3.3, the
tails are included in the optimal subsampling design such that a < ∞.

Next, we consider the symmetric design ξ ′ which is supported only on the tails and
which will be the optimal subsampling design when b = 0. This design has density
fξ ′(x) = 1(−∞,−a]∪[a,∞)(x) fX (x) with a = z1−α/2 for given α. The information
matrixM(ξ ′) is of the form (4) with relevant entries

m2(ξ
′) = α + √

2/πa exp(−a2/2),

m4(ξ
′) = 3m2(ξ

′) + √
2/πa3 exp(−a2/2) .

For the sensitivity function (5), we have

ψ(0, ξ ′) = αm4(ξ
′)

αm4(ξ ′) − m2(ξ ′)2

and

ψ(a, ξ ′) = αm4(ξ
′)

αm4(ξ ′) − m2(ξ ′)2
− α2m2(ξ

′)a2

αm4(ξ ′) − m2(ξ ′)2

+ αa2

m2(ξ ′)
+ α2a4

αm4(ξ ′) − m2(ξ ′)2
.

Let c(α) = ψ(0, ξ ′)−ψ(a, ξ ′) be the difference between the values of the sensitivity
function at x = 0 and x = a, then

c(α) = αa2
(

2m2(ξ
′)

αm4(ξ ′) − m2(ξ ′)2
− a2α

αm4(ξ ′) − m2(ξ ′)2
− 1

m2(ξ ′)

)

. (13)

c(α) is continuous in α and does not have any roots in (0, 1). Further, it can be checked
that c(0.1) > 0, say. Thus c(α) > 0 which means that ψ(0, ξ ′) > ψ(a, ξ ′) for all
α. Hence, by Theorem A.3, the subsampling design ξ ′ cannot be optimal and, as a
consequence, the optimal subsampling design ξ∗ has support on three proper intervals
with b > 0 for all α. ��
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Proof of Theorem 5.4 Let

u(α) = 45 − 15α + 15α2 − 45α3 + 20α4

− 4
√
5
√
45α2 − 90α3 + 90α4 − 75α5 + 57α6 − 27α7 + 5α8

and

v(α) = 180(1 − α) .

Then

b(α) =
(
u(α)

v(α)

)1/2

− 1

2
(1 − α).

We have u(0) = 45, v(0) = 180, and b(α) can be continuously extended to b(0) = 0
at α = 0. The derivative of b is given by

b′(α) = 1

2
+ 1

2

u′(α)v(α) − u(α)v′(α)

v(α)2

√
v(α)

u(α)
, (14)

where

u′(α) = −15 + 30α − 135α2 + 80α3 − w(α), (15)

v′(α) = −180, (16)

and

w(α) = 2
√
5
90 − 270α + 360α2 − 375α3 + 342α4 − 189α5 + 40α6

√
45 − 90α + 90α2 − 75α3 + 57α4 − 27α5 + 5α6

.

We have v′(0) = −180. To determine u′(0) we note that w(0) = 60 and thus u′(0) =
−75. Hence, also the derivative b′(α) can be continuously extended at α = 0 and the
value for b′(0) can be obtained by plugging in the values of u(0), v(0), u′(0), and
v′(0) into formula (14),

b′(0) = 1

2
+ 1

2

−75 · 180 + 45 · 180
1802

√
180

45
= 1

3
.

Finally, we note that b(α)/α is the percentage of mass on the interior interval
[−b(α), b(α)] and that limα→0 b(α)/α is the derivative b′(0) of b(α) at α = 0.
Hence, the percentage of mass on the interior interval tends to b′(0) = 1/3 when the
subsampling proportion α goes to 0. ��
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Fig. 7 Difference
c(α) = ψ(0, ξ ′) − ψ(a, ξ ′)
(solid) for the case of a
t-distributed covariate with 5
degrees of freedom

Proof of Theorem 5.6 The proof will follow the idea of the proof of Theorem 5.2. For
α ∈ (0, 1), we consider the symmetric design ξ ′ which is supported only on the tails
and which will be the optimal subsampling design when b = 0. This design has
density fξ ′(x) = 1(−∞,−a]∪[a,∞)(x) fX (x) with a = t5,1−α/2. The relevant entries of
the information matrixM(ξ ′) are

m2(ξ
′) = 5

3π

(

π − 2
√
5a(a2 − 5)

(a2 + 5)2
− 2 arctan(a/

√
5)

)

,

m4(ξ
′) = 25

3π

(

3π + 10
√
5a(a2 + 3)

(a2 + 5)2
− 6 arctan(a/

√
5)

)

.

The sensitivity function ψ(x, ξ ′) and the difference c(α) = ψ(0, ξ ′) − ψ(a, ξ ′)
between the values of the sensitivity function at x = 0 and x = a are defined as
for the normal distribution with the above moments m2(ξ

′) and m4(ξ
′) related to the

t-distribution inserted. The function c(α) defined by (13) then looks as shown in Fig. 7.
The vertical dotted line indicates the position of the critical value α∗ ≈ 0.082065,

where the curve of the function c(α) intersects the horizontal dotted line indicating
c = 0.

Thus forα < α∗ ≈ 0.082065we haveψ(0, ξ ′) > ψ(a, ξ ′) and the design ξ ′ cannot
be optimal by Theorem A.3. In this situation, an inner interval has to be included in
the optimal subsampling design ξ∗ with b > 0.

Conversely, for α ≥ α∗ ≈ 0.082065 we have that ψ(0, ξ ′) ≤ ψ(a, ξ ′). Hence,
the design ξ ′ is optimal by Theorem A.3, and no inner interval has to be added to the
optimal subsampling design ξ∗ = ξ ′ (b = 0). ��
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