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Abstract
Changes on temperature patterns, on a local scale, are perceived by individuals as the
most direct indicators of global warming and climate change. As a specific example,
for anAtlantic climate location, spring and fall seasons should present amild transition
between winter and summer, and summer and winter, respectively. By observing daily
temperature curves along time, being each curve attached to a certain calendar day, a
regression model for these variables (temperature curve as covariate and calendar day
as response)wouldbeuseful formodeling their relation for a certain period. In addition,
temperature changes could be assessed by prediction and observation comparisons
in the long run. Such a model is presented and studied in this work, considering a
nonparametric Nadaraya–Watson-type estimator for functional covariate and circular
response. The asymptotic bias and variance of this estimator, as well as its asymptotic
distribution are derived. Its finite sample performance is evaluated in a simulation
study and the proposal is applied to investigate a real-data set concerning temperature
curves.
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1 Introduction

The State of the Climate report by Blunden and Arndt (2020) corresponding to 2019,
includes a series of analysis of fullymonitored variables on a global scale. One of these
variables is surface temperature, revealing that July 2019 was Earth’s hottest month
on record. In Europe, 2019 was the second hottest year (following 2018), and 2014–
2019 are Europe’s warmest years on record. The report indicates that the warming
of land and ocean surfaces is reflected across the Globe, with lakes and permafrost
temperatures increasing, as an evidence of climate change.

However, as pointed out by Bloodhart et al. (2015), it is difficult for individuals
to determine if they have experienced the effects of climate change, given that their
information refers to a reduced period of time and is usually restricted to a local scale.
Nevertheless, understanding how people experience the changes on local weather pat-
terns is important, given that personal experiences are known to affect climate change
beliefs (Goebbert et al. 2012) and risk perceptions. Hence, they may condition citi-
zen’s support on prevention policies (see Howe 2018; Goebbert et al. 2012; Taylor
et al. 2014; Bloodhart et al. 2015, among others). As pointed out by Goebbert et al.
(2012) on a global scale, personal perceptions on weather patterns are usually noticed
through temperature changes and this indicator is usually taken as an evidence by
individuals for making inferences about climate changes. However, these subjective
insights should be confirmed with the construction of an appropriate statistical regres-
sion model that allows for assessing if relevant changes in temperature patterns could
have happened in different periods of time.

As a motivating example, consider daily temperature records in Santiago de Com-
postela (NW-Spain) for the period 2002–2019. Temperature curves from February 15,
2002 until June 28, 2005 can be seen in Fig. 1 (left), where the color scale indicates the
day of the year when each curve was observed (note that the scale-palette preserves the
periodicity of the data). In Fig. 1 (right), a functional boxplot (Sun and Genton 2011)
is presented, plotting the 50% central region for the observed temperature curves. The
vertical segments are the whiskers of the boxplot. Modeling the relation between the
temperature curve (as a functional covariate) and the day of the year basis (as a circular
response) for a certain period of time would allow to investigate, by comparing the
predicted day by such amodel for a given temperature curve, in a different period, with
the actual day corresponding to that temperature curve, if temperature curve patterns
are stable along time or if, on the contrary, observed temperature curves are displaced.

The novel methodology presented in this paper exploits the usage of high frequency
temperature records, considering a (flexible) regressionmodelwith a functional covari-
ate (the whole daily temperature curve) and a circular response (a day on a year basis).
Circular data can be viewed as points on the unit circle, so fixing a direction and a
sense of rotation, circular data can be expressed as angles. For a complete introduction
to circular data, we refer to Mardia and Jupp (2000) or Ley and Verdebout (2017).
This type of data appear in different applied fields, and some examples include wind
directions (Fisher 1995), wave directions (Jona-Lasinio et al. 2012; Wang et al. 2015),
or animal orientations (Scapini et al. 2002), among others. Regression analysis con-
sidering models where the response and/or the covariables are circular variables has
been addressed in different papers. Parametric approaches were considered in Fisher
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Fig. 1 Daily temperature curves in Santiago de Compostela (Spain) from February 15, 2002 to June 28,
2005 (left) and its corresponding functional boxplot (right)

and Lee (1992) and Presnell et al. (1998) for regression models with circular response
and Euclidean covariates. The authors assumed a parametric distributionmodel for the
circular response variable. An alternative parametric regression model was also ana-
lyzed in Kim and SenGupta (2017), considering that a multivariate circular variable
depends on several circular covariates. Using nonparametric methods, DiMarzio et al.
(2013) introduced a regression estimator for models with circular response, a single
real-valued covariate and independent errors and also for errors coming from mixing
processes. A similar approach was also applied for time series in Di Marzio et al.
(2012). Following similar ideas, Meilán-Vila et al. (2021) proposed and studied local
polynomial-type regression estimators considering a model with a circular response
and several real-valued covariates for independent data. This class of estimators was
also analyzed in Meilán-Vila et al. (2021) in the presence of spatial correlation.

A natural extension of the multiple regression model used in Meilán-Vila et al.
(2021)would be to consider a functional covariate belonging to an infinite-dimensional
space. Nowadays, with the advances in data collection methods, more and more data
are being recorded during an interval time or at several discrete time points with a
high frequency, producing functional data. For example, in many fields of applied
sciences such as chemometrics (Abraham et al. 2003), biometrics (Gasser et al. 1998)
and medicine (Antoniadis and Sapatinas 2007), among others, it is quite common
to deal with observations that are curves or functions. The branch of statistics that
analyzes this type of data is called functional data analysis (see, for instance, Ramsay
and Silverman 2005; Ferraty and Vieu 2006; Kokoszka and Reimherr 2017). The
literature on functional regression modeling is really extensive (see, for example,
Greven and Scheipl 2017; Morris 2015; Aneiros et al. 2019, 2022; Goia and Vieu
2016, for complete reviews and recent advances in this field), including parametric
(in particular, linear) and nonparametric models. Assuming parametric conditions,
earlier advances on functional regression were introduced by Ramsay and Silverman
(2005), while a recent overview was provided in Febrero-Bande et al. (2017). The
nonparametric methodologies became popular in the functional regression context
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948 A. Meilán-Vila et al.

with the book by Ferraty and Vieu (2006), this topic being widely addressed in the last
decade (see Ling and Vieu 2018, for a survey). In this framework, if the explanatory
variables are functional, nonparametric regression approaches are essentially based
on an adaptation of the Nadaraya–Watson (Ferraty and Vieu 2002, 2006; Ling et al.
2020) or the local linear regression estimators (Aneiros-Pérez et al. 2011; Berlinet
et al. 2011; Boj et al. 2008; Baíllo and Grané 2009; Ferraty and Nagy 2022).

As pointed out before the aim of the present work is to propose and study a non-
parametric regression estimator for a model with a circular response and a functional
covariate.When the response variable is circular, the regression function can be defined
as the minimizer of a circular risk function. It can be proved that the minimizer of this
risk function is the inverse tangent function of the ratio between the conditional expec-
tation of the sine and the cosine of the response variable. The proposal introduced in
this work implicitly considers two regression models, one for the sine and another for
the cosine of the response variable. Then, a nonparametric estimator for the regression
function is directly obtained by calculating the inverse tangent function of the ratio of
appropriate Nadaraya–Watson estimators for the two regression functions of the sine
and cosine models. This way of proceeding has already been considered previously.
For instance, a similar approachwas employed inMeilán-Vila et al. (2021) andMeilán-
Vila et al. (2021) for regression models with a circular response, Euclidean covariates
and independent or spatially correlated errors, respectively. As in any nonparametric
approach, a crucial issue is the selection of an appropriate bandwidth or smoothing
parameter. In this paper, cross-validation bandwidth selection methods adapted for the
current framework are introduced and analyzed in practice.

This paper is organized as follows. In Sect. 2, the regression model for a circular
response and a functional covariate is presented. In Sect. 3, the nonparametric estimator
of the circular regression function is proposed. Expressions for its asymptotic bias and
variance, as well as its asymptotic distribution are included in Sect. 4. The finite sample
performance of the estimator is studied through simulations in Sect. 5, and illustrated
in Sect. 6 with the real data example on temperature curves. Finally, a discussion on
this paper is included in Sect. 7.

2 Functional-circular regressionmodel

Let {(Xi ,�i )}ni=1 be a random sample from the random vector (X ,�) , where �

is a circular random variable taking values on T = [0, 2π), and X is a functional
variable supported on E , a separable Banach space endowed with a norm ‖·‖. This
general framework includes L p, Sobolev and Besov spaces. Separability condition
avoids measurability problems for the random variable X .

Assume that the circular random variable � depends on the functional random
variable X through the following regression model:

�i = [m(Xi ) + εi ](mod 2π), i = 1, . . . , n, (1)

where m is a smooth trend or regression function mapping E onto T, mod stands for
the modulo operation and εi , i = 1, . . . , n, is an independent sample of a circular
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random variable ε, satisfying E[sin(ε) | X = χ ] = 0 and having finite concentration.
In this setting, the circular regression function m in model (1) can be defined as the
minimizer of the risk function E{1 − cos[� − m(X )] | X = χ}. The minimizer of
this cosine risk is given by:

m(χ) = atan2[m1(χ),m2(χ)], (2)

where m1(χ) = E[sin(�) | X = χ ], m2(χ) = E[cos(�) | X = χ ] and the function
atan2(y, x) returns the angle between the x-axis and the vector from theorigin to (x, y).
With this formulation,m1 andm2 can be considered as the regression functions of two
regression models, being sin(�) and cos(�) their response variables, respectively,
and with functional covariates. Specifically, we assume the models

sin(�i ) = m1(Xi ) + ξi , i = 1, . . . , n, (3)

and

cos(�i ) = m2(Xi ) + ζi , i = 1, . . . , n, (4)

where m1 and m2 are regression functions mapping E onto [−1, 1]. The ξi and the
ζi are independent error terms, absolutely bounded by 1, satisfying E(ξ | X = χ) =
E(ζ | X = χ) = 0. Additionally, for every χ ∈ E , set s21 (χ) = Var(ξ | X = χ),
s22 (χ) = Var(ζ | X = χ) and c(χ) = E(ξζ | X = χ). The assumption that models
(3) and (4) simultaneously holdwith (1) leads to certain relations between the variances
and covariances of the errors in these models, as it is described below.

Set �(χ) = E[cos(ε) | X = χ ], σ 2
1 (χ) = Var[sin(ε) | X = χ ], σ 2

2 (χ) =
Var[cos(ε) | X = χ ] and σ12(χ) = E[sin(ε) cos(ε) | X = χ ]. Then, using the sine
and cosine addition formulas in model (1), it follows that, for i = 1, . . . , n,

sin(�i ) = sin[m(Xi )] cos(εi ) + cos[m(Xi )] sin(εi ) (5)

and

cos(�i ) = cos[m(Xi )] cos(εi ) − sin[m(Xi )] sin(εi ). (6)

Hence, defining f1(χ) = sin[m(χ)] and f2(χ) = cos[m(χ)] and applying conditional
expectations in (5) and (6), it holds that

m1(χ) = f1(χ)�(χ) and m2(χ) = f2(χ)�(χ). (7)

Note that f1(χ) and f2(χ) correspond to the normalized versions ofm1(χ) andm2(χ),
respectively. Indeed, taking into account that f 21 (χ) + f 22 (χ) = 1, it can be easily
deduced that �(χ) = [m2

1(χ) + m2
2(χ)]1/2. Hence, under model (1), �(χ) amounts

to the mean resultant length of � given X = χ , and taking into account that it is
assumed that E[sin(ε) | X = χ ] = 0, also corresponds to the mean resultant length
of ε given X = χ . The following explicit expressions for the conditional variances of
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950 A. Meilán-Vila et al.

the error terms involved in models (3) and (4), in terms of the conditional variances
and covariance of the Cartesian coordinates of ε, can be obtained:

s21 (χ) = f 21 (χ)σ 2
2 (χ) + 2 f1(χ) f2(χ)σ12(χ) + f 22 (χ)σ 2

1 (χ), (8)

s22 (χ) = f 22 (χ)σ 2
2 (χ) − 2 f2(χ) f1(χ)σ12(χ) + f 21 (χ)σ 2

1 (χ), (9)

as well as for the covariance between the error terms in (3) and (4),

c(χ) = f1(χ) f2(χ)σ 2
2 (χ) − f 21 (χ)σ12(χ)

+ f 22 (χ)σ12(χ) − f1(χ) f2(χ)σ 2
1 (χ). (10)

A nonparametric Nadaraya–Watson-type estimator of the circular regression func-
tion m in model (1) is presented and studied in what follows.

3 Nonparametric regression estimator

ANadaraya–Watson-type estimator form(χ), inmodel (1) can be defined by replacing
m1(χ) and m2(χ) in (2) by suitable Nadaraya–Watson estimators. Specifically, the
following estimator:

m̂h(χ) = atan2[m̂1,h(χ), m̂2,h(χ)] (11)

is considered, where m̂1,h(χ) and m̂2,h(χ) denote the Nadaraya–Watson estimators of
m1(χ) andm2(χ), respectively. The asymptotic properties (bias, variance and asymp-
totic normality) of estimator (11) are derived in the following section. For this purpose,
assuming that models (3) and (4) hold, the asymptotic properties of m̂1,h(χ) and
m̂2,h(χ) are used.
Considering models (3) and (4), Nadaraya–Watson estimators for m j (χ), j = 1, 2,
are respectively defined as:

m̂ j,h(χ) =

⎧
⎪⎪⎨

⎪⎪⎩

∑n
i=1 K (h−1‖Xi − χ‖) sin(�i )
∑n

i=1 K (h−1‖Xi − χ‖) if j = 1,
∑n

i=1 K (h−1‖Xi − χ‖) cos(�i )
∑n

i=1 K (h−1‖Xi − χ‖) if j = 2,
(12)

where K is a symmetric kernel andh = h(n) is a strictly positive real-valuedbandwidth
controlling the smoothness of the estimator. Note that in this functional framework,
the support of K should be contained in R

+, since ‖χ − χ ′‖ ≥ 0, for all χ, χ ′ ∈ E .
If the kernel K is positive with support on [0, 1], the estimators given in (12) only
consider the observations sin(�i ) and cos(�i ), respectively, associated to the curves
Xi such that ‖Xi −χ‖ ≤ h, since K (h−1‖Xi −χ‖) = 0 when the distance between χ

and Xi is larger than h. The regression estimators given in (12) are the adaptations to
the functional context of the classical finite-dimensional Nadaraya–Watson estimators
for the sine and cosine regression models (Ferraty et al. 2007).
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Although the choice of the kernel function is of secondary importance, the band-
width parameter plays an important role in the performance of the Nadaraya–Watson
estimators (12) and, consequently, of the regression estimator (11). When h is exces-
sively large, the number of observations involved in the estimation method will also
be too large, and an oversmoothed estimator is obtained. Conversely, if the band-
width parameter is too small, few observations will be considered in the estimation
procedure, and an undersmoothed estimator estimator is computed. Therefore, in this
case, as in any other kernel-based estimator, in practice, data-driven bandwidth selec-
tion methods are needed. A cross-validation approach is used to select the bandwidth
parameter h for (11) in the simulation study and for the real data application. Note
that the same bandwidth is used for computing m̂1,h and m̂2,h in (12). If two different
bandwidths for sine and cosine components were considered, this would imply that
possibly different curves were chosen for computing regression estimators of sine
and cosine models, which seems quite unnatural, since the Cartesian coordinates are
directly related to the the angle itself.

4 Asymptotic results

In this section, the asymptotic bias and variance expressions for m̂h(χ), given in
(11), are derived. Moreover, the asymptotic distribution of the proposed estimator is
calculated. The proofs of all these theoretical results are collected in Appendix A.

4.1 Asymptotic bias and variance

Toderive the asymptotic bias and variance of the estimator given in (11), the asymptotic
properties of the Nadaraya–Watson estimators of m j (χ), j = 1, 2, given in (12), are
required. Using the asymptotic results given in Ferraty et al. (2007), the asymptotic
bias and variance of m̂ j,h(χ), j = 1, 2, are immediately obtained. These expressions,
jointly with the covariance between m̂1,h(χ) and m̂2,h(χ), are collected in Lemma 1.

Let ϕχ and ϕ j,χ , j = 1, 2, be the functions defined for all s ∈ R by:

ϕχ(s) = E {[m(X ) − m(χ)] | ‖X − χ‖ = s} , (13)

ϕ j,χ (s) = E
{[m j (X ) − m j (χ)] | ‖X − χ‖ = s

}
, (14)

and denote by Fχ the cumulative distribution function of the randomvariable ‖X−χ‖,

Fχ (t) = P(‖X − χ‖ ≤ t), t ∈ R.

In addition, denoting, ∀s ∈ [0, 1],

τχ,h(s) = Fχ (hs)

Fχ (h)
= P(‖X − χ‖ ≤ hs | ‖X − χ‖ ≤ h),

the following assumptions are required.
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(C1) The regression functions m j and s2j , for j = 1, 2, are continuous in a neighbor-
hood of χ ∈ E , and Fχ (0) = 0.

(C2) ϕ′
j,χ (0) , for j = 1, 2, exist.

(C3) The bandwidth h satisfies h → 0 and nFχ (h) → ∞, as n → ∞.
(C4) The kernel K is supported on [0, 1] and has a continuous derivative on [0, 1).

Moreover, K ′(s) ≤ 0 and K (1) > 0.
(C5) For all s ∈ [0, 1], τχ,h(s) → τχ,0(s), when h → 0.

Assumptions (C1), (C3)–(C4) are similar to those classically employed in the finite-
dimensional context. Regarding (C2), as pointed out by Ferraty et al. (2007), this
condition avoids the difficulties that could appear when considering differential cal-
culus on Banach spaces. Thus, regularity hypotheses on the regression function m,
such as being twice continuously differentiable, are not required. In assumption (C5),
the function τχ,0 is included in the constants that are part of the main terms of the
asymptotic expansions of the bias and the variance of the regression estimator (11).
The close expression of this function in some particular cases is provided in Ferraty
et al. (2007), Proposition 1.

Lemma 1 Let {(Xi ,�i )}ni=1 be a random sample from (X ,�) supported on E × T.
Under assumptions (C1)–(C5), for χ ∈ E, then, for j = 1, 2,

E[m̂ j,h(χ) − m j (χ)] = ϕ′
j,χ (0)

Mχ,0

Mχ,1
h + O

[
1

nFχ (h)

]

+ o(h),

Var[m̂ j,h(χ)] = s2j (χ)

nFχ (h)

Mχ,2

M2
χ,1

+ o
[

1

nFχ (h)

]

,

Cov[m̂1,h(χ), m̂2,h(χ)] = c(χ)

nFχ (h)

Mχ,2

M2
χ,1

+ o
[

1

nFχ (h)

]

,

where

Mχ,0 = K (1) −
∫ 1

0
[sK (s)]′τχ,0(s)ds,

Mχ,1 = K (1) −
∫ 1

0
K ′(s)τχ,0(s)ds

and

Mχ,2 = K 2(1) −
∫ 1

0
(K 2)′(s)τχ,0(s)ds.

Remark 1 In the case of regression models with Euclidean response and multiple
covariates, the main term of the asymptotic bias of the Nadaraya–Watson estimator
depends on the gradient and the Hessian matrix of the regression functions (see Härdle
and Müller 2012, for further details). Nevertheless, in the present functional setting,
the leading term of the asymptotic bias of m̂ j,h depends on the first derivative of the
functions ϕ j,χ evaluated at zero.
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Now, using the previous lemma, the following theorem provides the asymptotic
bias and variance of the estimator m̂h(χ).

Theorem 1 Let {(Xi ,�i )}ni=1 be a random sample from (X ,�) supported on E × T.
Under assumptions (C1)–(C5), the asymptotic bias of estimator m̂h(χ), for χ ∈ E, is
given by:

E[m̂h(χ) − m(χ)] = ϕ′
χ (0)

Mχ,0

Mχ,1
h + O

[
1

nFχ (h)

]

+ o(h), (15)

and the asymptotic variance is:

Var[m̂h(χ)] = 1

nFχ (h)

σ 2
1 (χ)

�2(χ)

Mχ,2

M2
χ,1

+ o
[

1

nFχ (h)

]

. (16)

The asymptotic expressions of the bias and variance obtained in Theorem 1 can
be used to derive the asymptotic mean squared error (AMSE) of m̂h(χ). An asymp-
totically optimal local bandwidth for m̂h(χ) can be selected minimizing this error
criterion with respect to h. A plug-in bandwidth selector could be defined replacing
the unknown quantities in the asymptotic optimal parameter by appropriate estimates.
This problem is more complex in this functional context than in the finite-dimensional
setting (Ferraty et al. 2007). Moreover, the design of global plug-in selectors would
require obtaining integrated versions of the AMSE. Making this issue rigorous poses
challenges that continue to be topics of current research. Therefore, in this paper,
we avoid using plug-in bandwidth selectors and, as pointed out before, we employ
a suitable adapted cross-validation technique to select the bandwidth for m̂h in the
numerical studies (simulations and real data application).

4.2 Asymptotic normality

Next, the asymptotic distribution of the proposed nonparametric regression estima-
tor (11) is derived. Apart from the assumptions stated in Sect. 4.1 for computing its
asymptotic bias and variance, the following condition is needed:

(C6) ϕ′
χ (0) 
= 0 and Mχ,0 in Lemma 1 is strictly positive.

Condition (C6) is required to ensure that the leading termof the bias does not vanish.
The first part of this assumption is similar to the one stated in the finite-dimensional
setting . The second part of (C6) is specific for the infinite-dimensional framework and
it is satisfied in some standard situations. For example, if τχ,0(s) 
= I(0,1](s) (being
I(0,1] the indicator function on the set (0, 1]) and τχ,0 is continuously differentiable on
(0, 1), or if τχ,0(s) = δ1(s) (where δ1 stands for the Dirac mass at 1), then Mχ,0 > 0
for any kernel K satisfying (C4). For further details on condition (C6), we refer to
Ferraty et al. (2007).

The following theorem provides the asymptotic distribution of the nonparametric
regression estimator proposed in (11).
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Theorem 2 Under assumptions (C1)–(C6), it can be proved that , as n → ∞,

√
nFχ (h)

�(χ)Mχ,1
√

σ 2
1 (χ)Mχ,2

[m̂h(χ) − m(χ) − Bh] L−→ N (0, 1),

where
L−→ denotes convergence in distribution, with

Bh = ϕ′
χ (0)

Mχ,0

Mχ,1
h.

A simpler version of the previous theorem can be derived just by considering the
following additional assumption:

(C7) limn→∞ h
√
nFχ (h) = 0.

Condition (C7) allows the cancellation of the bias term Bh in Theorem 2. Under
this assumption (and also if (C1)–(C6) hold), the pointwise asymptotic Gaussian dis-
tribution for the functional nonparametric regression estimate is given in Corollary 1.

Corollary 1 Under assumptions (C1)–(C7), it can be proved that , as n → ∞,

√
nFχ (h)

�(χ)Mχ,1
√

σ 2
1 (χ)Mχ,2

[m̂h(χ) − m(χ)] L−→ N (0, 1).

Notice that in order to use the asymptotic distribution of m̂h in practice, for infer-
ential purposes, it is necessary to estimate the functions � and σ 2

1 . Moreover, both
constants Mχ,1 and Mχ,2 have to be computed. Assuming a uniform kernel function,
K (u) = I[0,1](u), it is obvious that Mχ,1 = Mχ,2 = 1.

Corollary 2 Under assumptions (C1)–(C7), considering K (u) = I[0,1](u) and if σ̂ 2
1

an �̂ are consistent estimators of σ 2
1 and �, respectively, it can be proved that

√

nF̂χ (h)
�̂(χ)

√

σ̂ 2
1 (χ)

[m̂h(χ) − m(χ)] L−→ N (0, 1) as n → ∞,

where

F̂χ (h) = 1

n

n∑

i=1

I{‖Xi−χ‖≤h},

being I{A} = 1 if A is true and 0 otherwise.

Remark 2 An immediate consequence of Corollary 2 is the possibility of construc-
ting (asymptotic) confidence intervals for the circular regression function. Fixing a
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confidence level 1 − α, with α ∈ (0, 1), it can be easily obtained that an asymptotic
confidence interval for m at χ ∈ E is:

⎛

⎝m̂h(χ) ∓ zα/2
1

√

nF̂χ (h)

√

σ̂ 2
1 (χ)

�̂(χ)

⎞

⎠ ,

where zα/2 denotes the (1−α)-quantile of the standard normal distribution and σ̂ 2
1 (χ)

and �̂(χ) are (consistent) estimators of σ 2
1 (χ) and �(χ), respectively.

Among the possible (consistent) conditional variance estimators for σ 2
1 , we suggest

to use the followingmethod based on adapting to the functional-circular framework the
approach studied in Vilar-Fernández and Francisco-Fernández (2006). In the present
context, taking into account that

σ 2
1 (χ) = Var[sin(ε) | X = χ ] = E[sin2(ε) | X = χ ] − {E[sin(ε) | X = χ ]}2,

and under the assumption that E[sin(ε) | X = χ ] = 0, only E[sin2(ε) | X = χ ]
has to be estimated. For this, in a first step, considering model (1), the residuals from
a nonparametric fit (using, for instance, the Nadaraya–Watson estimator with a pilot
bandwidth) are obtained. Then, in a second step, the estimator of the conditional
variance function σ 2

1 is defined as the nonparametric estimator (employing again the
Nadaraya–Watson estimator with another bandwidth) of the regression function using
the squared sine of the residuals as the response variables.

Regarding function �, taking into account that �(χ) = [m2
1(χ) + m2

2(χ)]1/2, a
consistent estimator for this function is straightforwardly obtained replacing in this
equation m j by the Nadaraya–Watson estimators m̂ j,h , j = 1, 2, defined in (12).

5 Simulation study

In this section, the regression estimator proposed in (11) is analyzed numerically by
simulation, considering different scenarios and model (1). For each scenario, 500
samples of size n (n = 50, 100, 200 and 400) are generated using the following
regression functions:

r1: m(X ) = atan2(0.5 + ∫
I

0 X (t)dt,
∫
I

0 X (t)dt),

r2: m(X ) = acos(−0.3
∫
I

0 X (t)dt) + 3/2acos(0.4
∫
I

0 X (t)dt),

where the random curves are simulated from

X (t) = 30U (1 − t)t1+U , t ∈ [0, 1], (17)

being U a uniformly distributed variable on [0, 1] , and the circular errors ε in (1) are
drawn from a von Mises distribution vM(0, κ), with different concentrations (κ =
5, 10 and 15).
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❁

Fig. 2 Illustration of model generation (model with regression function r1: top row; model with regression
function r2: bottom row). Left: regression function evaluated at a random sample of size n = 100 of
curves simulated from (17). Center: independent errors from a von Mises distribution with zero mean and
concentration κ = 5 (for the model with regression function r1) and κ = 15 (for the model with regression
function r2). Right: random responses obtained by adding the two previous plots

As an illustration, Fig. 2 shows two realizations of simulated data of size n = 100
(model with regression function r1 in top row and model with regression function r2
in bottom row). Left plots display the circular regression functions evaluated in the
curves generated from (17). Central panels present the random errors drawn from a
von Mises distribution with zero mean direction and concentration κ = 5 (for model
with regression function r1) and κ = 15 (for model with regression function r2). It can
be seen that the errors in the top row, corresponding to κ = 5, present more variability
than the ones generated with κ = 15. Right panels show the values of the response
variables, obtained adding the mean values in the left panels and the circular errors in
the central panels.

For each simulated sample, the Nadaraya–Watson-type estimator (11) is computed
using the kernel K (u) = 1− u2, u ∈ (0, 1), and taking the L2 metric to calculate the
distance between curves. Regarding the bandwidth h, it is selected by cross-validation,
choosing the bandwidth parameter hCV that minimizes the function:

CV(h) =
n∑

i=1

{
1 − cos

[
�i − m̂(i)

h (Xi )
]}

, (18)

where m̂(i)
h denotes the Nadaraya–Watson-type estimator computed using all obser-

vations except for (Xi ,�i ).
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Table 1 Average CASE given in
(19), over 500 replicates, using a
cross-validation bandwidth,
hCV, and an optimal bandwidth,
hCASE, as a benchmark

r1 r2
κ n hCV hCASE hCV hCASE

5 50 0.0096 0.0037 0.0122 0.0087

100 0.0046 0.0021 0.0096 0.0069

200 0.0011 0.0005 0.0052 0.0047

400 0.0004 0.0002 0.0030 0.0023

10 50 0.0020 0.0018 0.0072 0.0058

100 0.0010 0.0007 0.0062 0.0046

200 0.0005 0.0003 0.0033 0.0028

400 0.0004 9e−05 0.0026 0.0021

15 50 0.0019 0.0017 0.0056 0.0048

100 0.0007 0.0005 0.0056 0.0039

200 0.0004 0.0003 0.0021 0.0019

400 0.0002 8e−05 0.0015 0.0013

Data are generated frommodels with regression functions r1 (left) and
r2 (right) and vonMises errors with different concentration parameters
(κ = 5, 10, 15)

To evaluate the performance of the Nadaraya–Watson-type estimator m̂h , the cir-
cular average squared error (CASE), defined by Kim and SenGupta (2017):

CASE[m̂h(χ)] = 1

n

n∑

i=1

{
1 − cos

[
m(Xi ) − m̂h(Xi )

]}
, (19)

is computed. Table 1 shows the average (over 500 replicates) of the CASE when
h is selected by cross-validation. For comparative purposes, in each scenario, the
average of the minimum value of the CASE, computed using the bandwidth hCASE
that minimizes (19), is also included in Table 1. Note that the bandwidth hCASE can
not be computed in a practical situation, because the regression function is unknown.
The corresponding CASE errors are included in this table as a benchmark. In the
different scenarios, it can be seen that the average errors decrease when the sample
size increases. In addition, as expected, results are better when the error concentration
gets larger.

The appropriate performance of the nonparametric circular regression estimator
(11) is also observed in Fig. 3. In this plot, the same scenarios as those considered to
obtain Fig. 2 are used. On the left, the theoretical regression functions r1 and r2 are
shown, and, on the right, the corresponding estimates using a random sample generated
from these models are presented. The representations in the top row correspond to the
data simulated using the model with regression function r1 and those in the bottom
row with regression function r2.

To complete the study, we repeated the simulations using a k-nearest neighbor
(kNN) version of our estimator (see Burba et al. 2009, for a study of the kNN method
in a regressionmodel with scalar response a functional covariate). The results obtained
were very similar to those achieved by the Nadaraya–Watson approach, with a slightly
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Fig. 3 Theoretical regression function (left), jointly with the corresponding estimates (right), using the
specific scenarios considered in Fig. 2, for the model with regression function r1 (top row) and r2 (bottom
row)

better performance of the Nadaraya–Watson-type estimator. For reasons of space,
only the results with r1 using the kNN-type estimator are presented (Table 2). For
comparison, we also include in this table the part of Table 1 relative to r1.

6 Real data illustration

There is a quite extensive literature on the computation of daily temperature averages
or profiles, which are useful to summarize temperature patterns (see Huld et al. 2006;
Ma and Guttorp 2013; Bernhardt et al. 2018). More recently, there has been some
interest in investigating the identification of daily temperature extremes (see Glynis
et al. 2021) or the association of diurnal temperature range with mortality burden
(see Cai et al. 2021). All these approaches are possible given the high frequency
registries of temperatures that are available nowadays, claiming for a proper statistical
analysis using functional datamethods (seeRuiz-Medina andEspejo 2012, for a spatial
autoregressive functional approach, and Aguilera-Morillo et al. (2017), for spatial
functional prediction). These works, tailored for a spatial analysis, do not consider the
calendar time as a response.
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Table 2 Average CASE given in
Eq. (19), over 500 replicates,
using the kNN-type estimator
(kNN)

κ n hCV hCASE kNN

5 50 0.0096 0.0037 0.0472

100 0.0046 0.0021 0.0152

200 0.0011 0.0005 0.0070

400 0.0004 0.0002 0.0036

10 50 0.0020 0.0018 0.0216

100 0.0010 0.0007 0.0073

200 0.0005 0.0003 0.0035

400 0.0004 9e−05 0.0018

15 50 0.0019 0.0017 0.0143

100 0.0007 0.0005 0.0048

200 0.0004 0.0003 0.0024

400 0.0002 8e−05 0.0013

Data are generated from the model with regression function r1 and von
Mises errors with different concentration parameters (κ = 5, 10, 15).
For comparison, results obtained with the Nadaraya–Watson-type esti-
mator in this scenario, presented in Table 1, are also included

Daily temperature curves (obtained by data records every 10min, so each curve has
144 points) have been collected by Meteogalicia1 in Santiago de Compostela (NW-
Spain) from February 15, 2002 until December 31, 2019. The northern region of Spain
presents an oceanic climate, characterized by cool winters and warm summers, with
mild temperatures in spring and fall seasons. For the initial period from February 15,
2002 to June 28, 2005, using the available sample (Xi ,�i ), i = 1, . . . , n, where Xi

denotes the whole daily temperature curve and �i the corresponding day on a year
basis, for the day i in that period (seeFig. 1 in the Introduction), the regression estimator
proposed in (11) is computed. The fitted model is obtained using the same kernel and
metric as in the simulations and considering the cross-validation bandwidth selector
obtained minimizing (18), which gives hCV = 8.8139. As it has been explained in the
Introduction, relevant changes in temperature patterns could be revealed by comparing
the predicted days with the fitted model for some temperature curves, in a different
period, with the observed days corresponding to those temperature curves. Note that
the period selected for estimating the model contains enough data to proceed with our
nonparametric method, and it is far enough in time to mitigate temporal correlation
from the prediction experiment carried out in what follows.

As a specific example, consider the period from May 21 to May 27, 2019. For this
spring week, the 7 observed curves can be seen in Fig. 4 (left), with colors indicating
the observed days. In Fig. 4 (right), the same 7 observed curves are now colored
according to the predicted days where these curves should be observed with the model
fitted from the 2002–2005 data in Fig. 1 (left). According to the model for this early
period, the observed curves in the considered week in May 2019 correspond to days
in June, July and August. So, this week in May 2019 would be perceived as warmer
with respect to the reference period.

1 Meteogalicia: https://www.meteogalicia.gal.
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Fig. 4 Daily temperature curves in Santiago de Compostela (Spain) from May 21, 2019 to May 27, 2019
(left). Colors indicate the observed day. Temperature curves colored by predicted days using the fittedmodel
(right)

For a more general analysis, consider the temperature curves registered in 2019
and take a division by months. We denote the observed sample by (X b

j ,�
b
j ), for

j = 1, . . . , nb and b = 1, . . . , 12, being nb the number of days of month b. Similarly
to the measurement error considered for evaluating the performance of the estimator
in (19), a circular average prediction error (CAPE) is defined for each month as:

CAPEb = 1

nb

nb∑

j=1

{
1 − cos

[
�b

j − m̂h(X b
j )

]}
, (20)

where m̂h(X b
j ), for j = 1, . . . , nb and b = 1, . . . , 12, is the predicted day in the year

2019 with the fitted model using the 2002–2005 data. Note that this prediction error
is given in an easily interpretable scale since a perfect match between observed and
predicted days for a sample of temperature curves yields a null value if predictions are
located 3-months later/before than observations, then the prediction error takes value
1 (so a month time lag gives one third); if predictions and observations are 6-months
apart, then the prediction error takes value 2. Boxplots for monthly prediction errors
for 2019 are depicted in Fig. 5.

Note that there are seven months (April, May, June, September, October, Novem-
ber and December) that present prediction errors larger than 1/3, indicating that the
mismatch between the observed day for a certain curve and the predicted day (with
the model fitted for the early period) is larger than one month. On the other hand,
it is observed in Fig. 5 that January/February and July/August in 2019 behave, more
or less, as “usual” Januaries/Februaries or Julys/Augusts in the years considered in
the training sample, perhaps with only a small “shift” in days for the temperature
curves of these months. The experts from the meteorological service consulted by us
indicated that this is the expected behavior for these months in a context of global
warming. In the Atlantic climate (the one corresponding to Galicia, where the data
were recorded), one of the manifestations of climate change is the disappearance of
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Fig. 5 Boxplots for the circular prediction errors, bymonths, for 2019. Red dots: circular average prediction
error for each month. (Color figure online)

seasons, specifically, spring and fall. January/February and July/August are still the
coolest and warmest months, respectively, in the region considered in this research
and they would be the months that would distinguish the “periods" of the year.

Moreover, to analyze more deeply the direction of the displacements observed
in Fig. 5, circular boxplots (Buttarazzi et al. 2018) of the differences between the
observed days and those predicted by our nonparametric estimator are computed.
Figure6 shows these circular boxplots, for all the months, that is, the circular boxplots
of �b

j − m̂h(X b
j ), for j = 1, . . . , nb and b = 1, . . . , 12. Note the large variability

in predictions for April, May, June and October, as well as the small variability but
with a clear shift (prediction errors are not centered at zero) for September (warmer
than expected according to the fitted model), November and December (cooler than
expected). Additionally, to rule out that year 2019 was a singular year, we replicated
this experiment for years 2017, 2018 and 2020, showing a very similar pattern in all
cases.

We also repeated this study using the kNN-type estimator compared in the simula-
tions. The results and conclusions derived are practically the same as those obtained
with the Nadaraya–Watson-type estimator. Figure7 shows the same information as
that presented in Fig. 5, but using the kNN-type estimator.

As a final comment, it should be highlighted the potential use of the proposed
method in order to explain climate change effects on agriculture. The IPCC 2022
(Pörtner HO et al. 2022, Chap. 5) indicates that temperature trend changes have modi-
fied the life cycle of crops (both shortening or prolonging them, depending on latitude).
In some areas, these effects have lead farmers to change their agricultural practices. In
addition, the IPCC 2022 (Pörtner HO et al. 2022) also notices that temperature vari-
ability directly affects both the characteristics of some harvests (e.g. acidity or colour
of fruits) and the risk of pests and diseases. Understanding temperature variability
throughout the year can be useful for adapting agricultural practices.
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Fig. 6 Circular boxplots for the circular prediction errors, by months, for 2019. The months are in order
from left to right and from top to bottom

Fig. 7 Boxplots for the circular prediction errors, bymonths, for 2019. Red dots: circular average prediction
error for each month, using kNN-type estimator. (Color figure online)

7 Discussion

Regression analysis of models involving non-Euclidean data represents a challenging
problem given the need of developing new statistical approaches for its study. In this
paper, we focus on one of these non-standard settings. In particular, we consider a
regression model with a circular response and a functional covariate. A nonparamet-
ric estimator of Nadaraya–Watson type of the corresponding regression function is
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proposed and analyzed from a theoretical and a practical point of view. Asymptotic
bias and variance expressions, as well as asymptotic normality of the nonparamet-
ric approach are derived. The finite sample performance of the estimator is assessed
by simulations and illustrated using a real data set. From a practical perspective, our
methodology allows modeling the relation between a temperature curve (as a covari-
ate) and a day (as a response), enabling to illustrate how temperature patterns change
on a local scale.

As in any kernel-basedmethod an important tuning parameter, called the bandwidth
or smoothing parameter, has to be selected by the user. In this paper, a cross-validation
approach was proposed for this task and used in numerical studies. Other possible
selectors of plug-in type or based on bootstrap resampling methods could also be
designed. While the use of global plug-in bandwidths in the infinite-dimensional con-
text can be very intricate, given the difficulty of dealing with integrated versions of
the AMSE, a bootstrap bandwidth selection method could be easily formulated. The
idea would consist in approximating the CASE, given in (19) (or the mean of the
CASE), by a bootstrap version of this error criterion using bootstrap samples obtained
from bootstrap residuals. For this, two pilot bandwidths are needed, one to obtain the
residuals and another to compute the bootstrap samples. This second pilot bandwidth
can also be used to compute the Nadaraya–Watson-type estimator of m employed
instead of the theoretical regression function in the bootstrap expression of the CASE
(19).Repeating this processmany times, the bootstrap bandwidthwould be obtained by
minimizing the averaged bootstrap CASE. Theoretical justification for this functional-
circular bootstrapping procedure as well as the design of practical rules to obtain both
pilot bandwidths are open problems out of the scope of the present paper, but of interest
for a future research.

In this paper, we have focused on a Nadaraya–Watson-type estimator for m in
model (1). However, a local linear-type estimator could be also defined. In that case,
local linear regression estimators formodelswith aEuclidean response and a functional
covariate are required. Moreover, using the asymptotic theory on these estimators
(Baíllo and Grané 2009; Ferraty and Nagy 2022) and with similar arguments to those
employed in the present paper for (11), asymptotic results for the local linear-type
regression estimator could also be derived.

A possible extension of the model assumed in this paper would consist in including
additional type of covariates. In a practical situation, this kind of complexmodels could
help to obtain better predictions. The most natural way to address this problem (fol-
lowing our kernel methodology) would be to use product kernels defined on possibly
different spaces for the estimators of the sine and cosine components of the response.
For instance, the ideas in García-Portugués et al. (2013) for cylindrical density estima-
tion, and the ones in Racine and Li (2004) or in Li and Racine (2004) for categorical
data can be employed to define the corresponding weights in this context. This type
of product kernel estimators have been recently studied in nonparametric functional
regression in Shang (2014) and in Selk and Gertheiss (2022), for models with scalar
response and different types of covariates (functional, real-valued or discrete-valued),
and they could be directly employed in our circular-functional framework as regression
estimators of the sine and cosine models. The important bandwidth selection prob-
lem in this context could be accomplished by a cross-validation procedure or using a
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Bayesian approach (Shang 2014).We think that a deep study of these extendedmodels
is an interesting point that could be addressed in further research.

It should be noticed that the temperature curves considered in our data illustra-
tion exhibit temporal dependence. The nonparametric approach for estimating the
regression function is not affected by data dependencies, but such an issue should
be accounted for when obtaining the asymptotic properties and a more appropri-
ate bandwidth parameter. Considering that the proposed estimator is computed as the
atan2 of nonparametric regression estimators for sine and cosine models, results about
nonparametric regression for scalar responses and functional covariate with temporal
dependence could be employed to address this issue (Attouch et al. 2010, 2013; Fer-
raty and Vieu 2006; Masry 2005; Ling et al. 2019; Kurisu 2022). Note also that our
real data application considers a single location, but if the data collection presents also
a high spatial frequency, it would be possible to proceed with a spatial analysis. For
this, an extension to the infinite-dimensional context of the regression model assumed
in Meilán-Vila et al. (2021) could be considered, using the results obtained in Ruiz-
Medina and Espejo (2012) or in Aguilera-Morillo et al. (2017) for spatial functional
data as part of the analysis.

The numerical analysis carried out in this researchwas performedwith the statistical
environment R (Development Core Team 2022), using the functions supplied with the
fda.usc package (Febrero-Bande and Oviedo de la Fuente 2012).
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Appendix A: Proofs of the theoretical results

Proof of Lemma 1 For a fixed χ , the asymptotic bias and variance of m̂ j,h(χ), for
j = 1, 2, can be directly obtained using the asymptotic properties of the Nadaraya–
Watson estimator for models with a Euclidean response and a functional covariate
(Ferraty et al. 2007).

Regarding the covariance between estimators m̂1,h(χ) and m̂2,h(χ), a decomposi-
tion can be obtained following similar arguments to those used by Friedlander (1980)
(see also Liu 1999) in the finite-dimensional case. In that setting, analytic arguments
about the Taylor expansion of the function 1/z around zero were employed and, there-
fore, the result can be extended to the functional framework. Denoting

R1 = 1

nFχ (h)

n∑

i=1

K (h−1‖Xi − χ‖) sin(�i ),

R2 = 1

nFχ (h)

n∑

i=1

K (h−1‖Xi − χ‖) cos(�i ) and

S = 1

nFχ (h)

n∑

i=1

K (h−1‖Xi − χ‖),

it follows that

Cov[m̂1,h(χ), m̂2,h(χ)]

= Cov

[ 1
nFχ (h)

∑n
i=1 K (h−1‖Xi − χ‖) sin(�i )

1
nFχ (h)

∑n
i=1 K (h−1‖Xi − χ‖)

,

1
nFχ (h)

∑n
i=1 K (h−1‖Xi − χ‖) cos(�i )

1
nFχ (h)

∑n
i=1 K (h−1‖Xi − χ‖)

]

= μR1

μS

μR2

μS

[
σ 2
S

μ2
S

+ Cov(R1, R2)

σR1σR2

σR1

μR1

σR2

μR2

− Cov(R2, S)

σR2σS

σR2

μR2

σS

μS
− Cov(R1, S)

σR1σS

σR1

μR1

σS

μS

]

+ o
[

1

nFχ (h)

]

= μR1

μS

μR2

μS

[
σ 2
S

μ2
S

+ Cov(R1, R2)

μR1μR2

− Cov(R2, S)

μR2μS
− Cov(R1, S)

μR1μS

]

+ o
[

1

nFχ (h)

]

, (A1)

where μR1 and σ 2
R1
, μR2 and σ 2

R2
, and μS and σ 2

S denote the expectation and variance
of R1, R2 and S, respectively. Now, using Lemma 4 and 5 of (Ferraty et al. 2007), it
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can be obtained that

μR1 → m1(χ)Mχ,1, (A2)

μR2 → m2(χ)Mχ,1, (A3)

μS → Mχ,1, (A4)

and

σ 2
S = Mχ,2

nFχ (h)
[1 + o(1)], (A5)

Cov(R1, S) = m1(χ)
Mχ,2

nFχ (h)
[1 + o(1)], (A6)

Cov(R2, S) = m2(χ)
Mχ,2

nFχ (h)
[1 + o(1)]. (A7)

Moreover, taking into account the continuity of m1, m2 and c, and using the results
by Ferraty et al. (2007), p. 283, it follows that

Cov(R1, R2)

= 1

nF2
χ (h)

{

E

[

sin� cos�K 2(h−1‖X − χ‖)
]

− E

[

sin�K (h−1‖X − χ‖)
]

E

[

cos�K (h−1‖X − χ‖)
]}

= 1

nF2
χ (h)

{

[c(χ) + m1(χ)m2(χ) + o(1)]E
[

K 2(h−1‖X − χ‖)
]

− [m1(χ) + o(1)]E
[

K (h−1‖X − χ‖)
]

[m2(χ) + o(1)]E
[

K (h−1‖X − χ‖)
]}

= [c(χ) + m1(χ)m2(χ)] Mχ,2

nFχ (h)
[1 + o(1)], (A8)

since

{E[K (h−1‖X − χ‖)]}2 = O[F2
χ (h)],

E[K 2(h−1‖X − χ‖)] = Fχ (h)

[

K 2(1) −
∫ 1

0
(K 2)′(s)τχ,h(s)ds

]

= Fχ (h)Mχ,2.

Therefore, considering (A1) and using (A2)–(A8), it can be directly obtained that

Cov[m̂1,h(χ), m̂2,h(χ)]
= c(χ)

nFχ (h)

Mχ,2

M2
χ,1

+ o
[

1

nFχ (h)

]

.
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�

Proof of Theorem 1 First, to obtain the bias of m̂h(χ), given in (11), the function
atan2(m̂1,h, m̂2,h) is expanded in Taylor series around (m1,m2), where for simplicity,
m̂ j,h and m j denote m̂1,h(χ) and m(χ), respectively, for j = 1, 2, to get

atan2(m̂1,h, m̂2,h)

= atan2(m1,m2) + m2

m2
1 + m2

2

(m̂1,h − m1)

− m1

m2
1 + m2

2

(m̂2,h − m2) + m1m2

(m2
1 + m2

2)
2
(m̂2,h − m2)

2

− m1m2

(m2
1 + m2

2)
2
(m̂1,h − m1)

2 − m2
1 − m2

2

(m2
1 + m2

2)
2
(m̂1,h − m1)(m̂2,h − m2)

+O
[
(m̂1,h − m1)

3
]

+ O
[
(m̂2,h − m2)

3
]
. (A9)

Hence, noting that �(χ) = [m2
1(χ) + m2

2(χ)]1/2 and taking expectations in the
above expression, it follows that

E[m̂h(χ)] − m(χ)

= m2(χ)

�2(χ)
E[m̂1,h(χ) − m1(χ)] − m1(χ)

�2(χ)
E[m̂2,h(χ) − m2(χ)]

+m1(χ)m2(χ)

�4(χ)
E{[m̂2,h(χ) − m2(χ)]2}

−m1(χ)m2(χ)

�4(χ)
E{[m̂1,h(χ) − m1(χ)]2}

−m2
1(χ) − m2

2(χ)

�4(χ)
E{[m̂1,h(χ) − m1(χ)][m̂2,h(χ) − m2(χ)]}

+O{[m̂1,h(χ) − m1(χ)]3} + O{[m̂2,h(χ) − m2(χ)]3}.

Noting that E
[
(m̂ j,h − m j )

2
] = Var(m̂ j,h) + [E(m̂ j,h − m j )]2, and using the

results in Lemma 1, it is obtained that

E[m̂h(χ) − m(χ)]
= m2(χ)

�2(χ)
ϕ′
1,χ (0)

Mχ,0

Mχ,1
h − m1(χ)

�2(χ)
ϕ′
2,χ (0)

Mχ,0

Mχ,1
h + O

[
1

nFχ (h)

]

+ o(h)

= 1

�2(χ)

Mχ,0

Mχ,1
h[m2(χ)ϕ′

1,χ (0) − m1(χ)ϕ′
2,χ (0)] + O

[
1

nFχ (h)

]

+ o(h).

(A10)

Now, expression (A10) can be further simplify, expanding the function atan2 at
[m1(X ),m2(X )] in Taylor series around [m1(χ),m2(χ)], as in (A9). Taking condi-
tional expectations in that expansion, one gets that
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E[m(X ) − m(χ) | ‖X − χ‖ = s]
= m2(χ)

�2(χ)
E[m1(X ) − m1(χ) | ‖X − χ‖ = s]

−m1(χ)

�2(χ)
E[m2(X ) − m2(χ) | ‖X − χ‖ = s]

+m1(χ)m2(χ)

�4(χ)
E{[m2(X ) − m2(χ)]2 | ‖X − χ‖ = s}

−m1(χ)m2(χ)

�4(χ)
E{[m1(X ) − m1(χ)]2 | ‖X − χ‖ = s}

−m2
1(χ) − m2

2(χ)

�4(χ)
E{[m1(X ) − m1(χ)][m2(X ) − m2(χ)] | ‖X − χ‖ = s}

+O{[m1(X ) − m1(χ)]3} + O{[m2(X ) − m2(χ)]3}. (A11)

Noting that ϕχ(s) = E[m(X )−m(χ) | ‖X −χ‖ = s] and ϕ j,χ (s) = E[m j (X )−
m j (χ) | ‖X −χ‖ = s], for j = 1, 2, ∀s ∈ R, deriving expression (A11) with respect
to s and replacing the obtained result in (A10), it follows that

E[m̂h(χ) − m(χ)] = ϕ′
χ (0)

Mχ,0

Mχ,1
h + O

[
1

nFχ (h)

]

+ o(h).

In order to derive thevarianceof the estimator m̂h(χ), the function atan22(m̂1,h, m̂2,h)

is expanded in Taylor series around (m1,m2) to obtain that

atan22(m̂1,h, m̂2,h)

= atan22(m1,m2) + 2atan2(m1,m2)m2

m2
1 + m2

2

(m̂1,h − m1)

−2atan2(m1,m2)m1

m2
1 + m2

2

(m̂2,h − m2)

+2atan2(m1,m2)m1m2

(m2
1 + m2

2)
2

(m̂2,h − m2)
2

−2atan2(m1,m2)m1m2

(m2
1 + m2

2)
2

(m̂1,h − m1)
2

−2atan(m1,m2)(m2
1 − m2

2)

(m2
1 + m2

2)
2

(m̂1,h − m1)(m̂2,h − m2)

+ m2
1

(m2
1 + m2

2)
2
(m̂2,h − m2)

2 + m2
2

(m2
1 + m2

2)
2
(m̂1,h − m1)

2

− 2m1m2

(m2
1 + m2

2)
2
(m̂1,h − m1)(m̂2,h − m2)

+O
[
(m̂1,h − m1)

3
]

+ O
[
(m̂2,h − m2)

3
]
. (A12)
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Taking expectations in the Taylor expansions given in (A9) and (A12), one gets that

Var[m̂h(χ)]
= atan22[m1,h(χ),m2,h(χ)]

+2atan2[m1(χ),m2(χ)]m2(χ)

�2(χ)
E[m̂1,h(χ) − m1(χ)]

−2atan2[m1(χ),m2(χ)]m1(χ)

�2(χ)
E[m̂2,h(χ) − m2(χ)]

+2atan2[m1(χ),m2(χ)]m1(χ)m2(χ)

�4(χ)
E{[m̂2,h(χ) − m2(χ)]2}

−2atan2[m1(χ),m2(χ)]m1(χ)m2(χ)

�4(χ)
E{[m̂1,h(χ) − m1(χ)]2}

−2atan[m1(χ),m2(χ)][m2
1(χ) − m2

2(χ)]
�4(χ)

E{[m̂1,h(χ) − m1(χ)][m̂2,h(χ) − m2(χ)]}

+m2
1(χ)

�4(χ)
E{[m̂2,h(χ) − m2(χ)]2} + m2

2(χ)

�4(χ)
E{[m̂1,h(χ) − m1(χ)]2}

−2m1(χ)m2(χ)

�4(χ)
E{[m̂1,h(χ) − m1(χ)][m̂2,h(χ) − m2(χ)]}

−
(

atan2[m1(χ),m2(χ)] + m2(χ)

�2(χ)
E[m̂1,h(χ) − m1(χ)]

−m1(χ)

�2(χ)
E[m̂2,h(χ) − m2(χ)] + m1(χ)m2(χ)

�4(χ)
E{[m̂2,h(χ) − m2(χ)]2}

−m1(χ)m2(χ)

�4(χ)
E{[m̂1,h(χ) − m1(χ)]2}

−m2
1(χ) − m2

2(χ)

�4(χ)
E{[m̂1,h(χ) − m1(χ)][m̂2,h(χ) − m2(χ)]}

+O{[m̂1,h(χ) − m1(χ)]3} + O{[m̂2,h(χ) − m2(χ)]3}
)2

+O{[m̂1,h(χ) − m1(χ)]3} + O{[m̂2,h(χ) − m2(χ)]3}.

By straightforward calculations, it can be obtained that

Var[m̂h(χ)]
= m2

1(χ)

�4(χ)
E{[m̂2,h(χ) − m2(χ)]2} + m2

2(χ)

�4(χ)
E{[m̂1,h(χ) − m1(χ)]2}

−2m1(χ)m2(χ)

�4(χ)
E{[m̂1,h(χ) − m1(χ)][m̂2,h(χ) − m2(χ)]}

−m2
2(χ)

�4(χ)
{E[m̂1,h(χ) − m1(χ)]}2 − m2

1(χ)

�4(χ)
{E[m̂2,h(χ) − m2(χ)]}2

+2m1(χ)m2(χ)

�4(χ)
E[m̂1,h(χ) − m1(χ)]E[m̂2,h(χ) − m2(χ)]

+O{[m̂1,h(χ) − m1(χ)]3} + O{[m̂2,h(χ) − m2(χ)]3}.
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So, noting that E
[
(m̂ j,h − m j )

2
] = Var(m̂ j,h) + [E(m̂ j,h − m j )]2, it can be

obtained that the conditional variance is:

Var[m̂h(χ)]
= m2

1(χ)

�4(χ)
Var[m̂2,h(χ)] + m2

2(χ)

�4(χ)
Var[m̂1,h(χ)]

−2m1(χ)m2(χ)

�4(χ)
Cov[m̂1,h(χ), m̂2,h(χ)]

+O
{
[m̂1,h(χ) − m1(χ)]3

}
+ O

{
[m̂2,h(χ) − m2(χ)]3

}
.

Therefore, using Lemma 1, one gets that

Var[m̂h(χ)] = m2
1(χ)

�4(χ)

s22 (χ)

nFχ (h)

Mχ,2

M2
χ,1

+ m2
2(χ)

�4(χ)

s21 (χ)

nFχ (h)

Mχ,2

M2
χ,1

−2m1(χ)m2(χ)

�4(χ)

c(χ)

nFχ (h)

Mχ,2

M2
χ,1

+ o
[

1

nFχ (h)

]

.

Considering equations (7)–(10), and taking into account that f 21 (χ) + f 22 (χ) = 1,
it follows that

m2
1(χ)s22 (χ) + m2

2(χ)s21 (χ) − 2m1(χ)m2(χ)c(χ)

= f 21 (χ) f 22 (χ)�2(χ)σ 2
2 (χ) − 2 f2(χ) f 31 (χ)�2(χ)σ12(χ)

+ f 41 (χ)�2(χ)σ 2
1 (χ) + f 22 (χ) f 21 (χ)�2(χ)σ 2

2 (χ)

+2 f 32 (χ) f1(χ)�2(χ)σ12(χ) + f 42 (χ)�2(χ)σ 2
1 (χ)

−2 f 21 (χ) f 22 (χ)�2(χ)σ 2
2 (χ) + 2 f 31 (χ) f2(χ)�2(χ)σ12(χ)

−2 f 32 (χ) f1(χ)�2(χ)σ12(χ) + 2 f 21 (χ) f 22 (χ)�2(χ)σ 2
1 (χ)

= �2(χ)σ 2
1 (χ).

Therefore,

Var[m̂h(χ)] = 1

nFχ (h)

σ 2
1 (χ)

�2(χ)

Mχ,2

M2
χ,1

+ o
[

1

nFχ (h)

]

.

�

Proof of Theorem 2 In order to derive the asymptotic distribution of m̂h , given in (11),
we compute the asymptotic distribution of M̂ = m̂1,h/m̂2,h and apply Theorem A of
Serfling (1980). First, using similar arguments to those in Lemma 6 of Ferraty et al.
(2007), it can be obtained that

M̂(χ) − E[M̂(χ)] = m̂1,h(χ)

m̂2,h(χ)
− E[m̂1,h(χ)]

E[m̂2,h(χ)] + o
[

1
√
nFχ (h)

]

.
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However, the following decomposition holds:

m̂1,h(χ)

m̂2,h(χ)
− E[m̂1,h(χ)]

E[m̂2,h(χ)]
= {m̂1,h(χ) − E[m̂1,h(χ)]}E[m̂2,h(χ)]

m̂2,h(χ)E[m̂2,h(χ)] + {E[m̂2,h(χ)] − m̂2,h(χ)}E[m̂1,h(χ)]
m̂2,h(χ)E[m̂2,h(χ)]

Therefore, M̂(χ) − E[M̂(χ)] has the same asymptotic distribution as

N (χ) = {m̂1,h(χ) − E[m̂1,h(χ)]}E[m̂2,h(χ)]
m̂2,h(χ)E[m̂2,h(χ)] + {E[m̂2,h(χ)] − m̂2,h(χ)}E[m̂1,h(χ)]

m̂2,h(χ)E[m̂2,h(χ)] .

Note that

[m̂1,h(χ)/m̂2,h(χ)] − {E[m̂1,h(χ)]/E[m̂2,h(χ)]}

can be expressed as an array of independent centered random variables and, conse-
quently, the Central Limit Theorem can be applied. Moreover, using the Theorem of
Slutsky, it can be obtained that N (χ) also follows a normal distribution.

The asymptotic bias and variance of M̂ could be computed by expanding the
function m̂1,h/m̂2,h in Taylor series around m1/m2 and using similar steps to those
employed to derive E[m̂h(χ)] and Var[m̂h(χ)]. Therefore, denoting by bh and v the
leading terms of the asymptotic bias and variance of M̂ , respectively, it follows that,
as n → ∞,

M̂(χ) − m1(χ)/m2(χ) − bh
v1/2(χ)

L−→ N (0, 1).

Finally, applying Theorem A of Serfling (1980) and Theorem 1, it can be obtained
that , as n → ∞,

√
nFχ (h)

�(χ)Mχ,1
√

σ 2
1 (χ)Mχ,2

[m̂h(χ) − m(χ) − Bh] L−→ N (0, 1).

�

Proof of Corollary 1 This result can be obtained by combining Theorem 2 and assump-
tion (C7). �

Proof of Corollary 2 Using the Glivenko–Cantelli Theorem, it follows that

F̂χ (h)

Fχ (h)

P−→ 1.

Therefore, using this result, assumption (C7), and the consistency of estimators σ̂ 2
1

and l̂, as well as Theorem 2, Corollary 2 can be directly obtained. �
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