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Abstract
Recently, an improved adaptive Type-II progressive censoring scheme is proposed to
ensure that the experimental time will not pass a pre-fixed time and ends the test after
recording a pre-fixed number of failures. This paper studies the inference of the com-
peting risks model fromWeibull distribution under the improved adaptive progressive
Type-II censoring. For this goal, we used the latent failure time model with Weibull
lifetime distributions with common shape parameters. The point and interval estima-
tion problems of parameters, reliability and hazard rate functions using the maximum
likelihood and Bayesian estimation methods are considered. Moreover, making use
of the asymptotic normality of classical estimators and delta method, approximate
intervals are constructed via the observed Fisher information matrix. Following the
assumption of independent gamma priors, the Bayes estimates of the scale param-
eters have closed expressions, but when the common shape parameter is unknown,
the Bayes estimates cannot be formed explicitly. To solve this difficulty, we recom-
mend using Markov chain Monte Carlo routine to compute the Bayes estimates and to
construct credible intervals. A comprehensive Monte Carlo simulation is conducted
to judge the behavior of the offered methods. Ultimately, analysis of electrodes data
from the life-test of high-stress voltage endurance is provided to illustrate all proposed
inferential procedures.
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1 Introduction

Censored data occurs when an experimenter or reliability practitioner desires to stop a
life test before getting the entire sample. Type-I (time) and Type-II (failure) censoring
schemes are the most practised schemes in reliability studies. Recently, a more general
censoring scheme termed progressive Type-II censoring scheme (PCS-T2) has been
commonly employed in reliability analysis because it saves both time and cost asso-
ciated with an experiment and is also beneficial when the units being tested are costly.
For an exhaustive bibliography list and more details on PCS-T2, we mention readers
to an extraordinary book by Balakrishnan and Cramer (2014). Unfortunately, if one
considers the PCS-T2 life test, the total experimental time may be too long due to the
high lifespan of numerous modern products. Therefore, Kundu and Joarder (2006)
suggested a progressive Type-II hybrid censoring scheme (PHCS-T2) as a mixture of
PCS-T2 and hybrid censoring schemes. It has been investigated and considered by
several authors, see for example Tian et al. (2015) and Shi et al. (2017).

Using the PHCS-T2, the test time is insured and will not pass a planned time.
But the experiment ended at a prefixed time, which causes the number of failed
members to be random and perhaps small or even zero. This is a direct effect due
to industrial-technological progress; thus, today’s products are more reliable. In this
case, the outcomes of statistical procedures may be inadequate or inefficient. To defeat
this limitation, an adaptive progressively Type-II censoring scheme (APCS-T2), intro-
duced by Ng et al. (2009), enables the test time to exceed a pre-specified time. Many
authors considered this scheme in the literature using some lifetime distributions, see
for example (Sobhi and Soliman 2016; Nassar and Abo-Kasem 2017; Nassar et al.
2018; Okasha et al. 2021; Elshahhat and Nassar 2021). Nevertheless, as shown by
Ng et al. (2009) that the APCS-T2 is efficient in parameter estimation when the total
duration of the test is not of significant interest. At the same time, if the test units are
highly reliable products, then the experiment time will be very long, and the APCS-T2
does not ensure a satisfactory total test duration. Newly, to overcome this obstacle, Yan
et al. (2021) suggested a new life-test plan called an improved adaptive progressive
Type-II censoring scheme (IAPCS-T2). It has two desirable properties. The first one is
that it can effectively ensure that the experiment stops within a designated period, and
the second one is that it can be considered as a generalization of some existing censor-
ing schemes such as PCS-T2, PHCS-T2 and APCS-T2. Accordingly, if the researcher
wants to terminate the test within a certain time, then the suggested IAPCS-T2 can be
applied. A detailed description of the IAPCS-T2 is presented in the next section.

In medical studies and life-testing analysis, the failure of units may be associated
with more than one risk factor. These risk factors or causes of failures in some sense
competingwith eachother for the breakdownof the test unit.Due to the aforementioned
reason, in the statistical literature, it is well identified as the competing risks model.
Many examples can be seen, see for instance (Crowder 2001), where failure may
happen due to more numerous than one cause. In investigating the competing risks
data, the researcher is typically interested in the evaluation of a specific risk in presence
of other risk factors. When analyzing such a data set, ideally, the data consist of the
lifetime of the failed unit and an indicator variable that expresses the cause of failure.
The causes of failure may be considered to be independent or dependent. In this
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article, we assume the latent failure time model suggested by Cox (1959), where the
competing causes of failures are independently distributed. Many studies have been
performed under this assumption using different lifetime distributions and different
censoring schemes. See for example, Kundu et al. (2003), Pareek et al. (2009), Cramer
and Schmiedt (2011), Ashour and Nassar (2017), and Ren and Gui (2021a, 2021b).

To the best of our knowledge, we have not come across any study that investigates
the estimation of the parameters and some reliability characteristics under improved
progressive Type-II censored competing risks data. So, to close this gap, our objectives
in this study are: First, developing some inferential approaches of an improved adaptive
progressively Type-II censored competing risks data for Weibull lifetime models. To
achieve this goal, we consider the same latent failure time model formulations, and it
is assumed that the latent failure times are distributed as independent Weibull random
variables with the same shape parameter and different scale parameters. In the context
of the point inference scenario, the maximum likelihood and Bayesian estimates of
the unknown parameters, reliability function (RF) and hazard rate function (HRF) are
obtained. Utilizing the asymptotic properties of the maximum likelihood estimates
(MLEs), the approximate confidence intervals (ACIs) of the different quantities are
obtained. The Bayesian estimates are reached by assuming independent gamma priors
and using the squared error loss (SEL) function. As expected, the Bayesian estimates
under the SEL function cannot be obtained in closed forms. Thus, we suggest using
Markov chain Monte Carlo (MCMC) procedure to approximate the Bayes estimates
of the unknown parameters and the associated credible intervals. Finally, the differ-
ent proposed methods are compared through a simulation study and the analysis of
competing risks data sets. The main contributions of this article essentially involve (i)
Introducing the IAPCS-T2 in the presence of the competing risks model; (ii) Assum-
ing the latent failure times are independent Weibull distributions, the classical and
Bayesian estimations of the unknown parameters, RF and HRF are investigated; (iii)
An extensive numerical study is done to compare the efficiency of the different pro-
posed estimates.

The rest of this paper is organized as follows: The model assumptions and the
corresponding likelihood function of IAPCS-T2 are described in Sect. 2. Point and
interval estimates of parameters, reliability, hazard rate functions and relative risks via
maximum likelihood and Bayesian approaches when the common shape parameter is
known and/or unknown are discussed in Sects. 3 and 4, respectively. In Sect. 5, aMonte
Carlo simulation study is performed. Analysis of one real-life data set is discussed in
Sect. 6. Finally, we conclude our study in Sect. 7.

2 Model description

Consider n identical units are placed on a life test and their lifetimes are charac-
terized by independent and identically distributed (i.i.d.) random variables indicated
by X1, . . . , Xn . Also, without loss of generality, we assume that there are just two
competing risks, then one has

Xi = min {X1i , X2i } ; i = 1, 2, . . . , n,
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where X ji , j = 1, 2 refers to the latent failure time of the i th experimental unit
under j th cause of failure. Furthermore, we assume independence of the causes of
failure, i.e., the latent failure times X1i and X2i (for i = 1, 2, . . . , n) are stochastically
independent. Also, the pairs (X1i , X2i ), i = 1, . . . , n are assumed to be i.i.d. such
as when the i th failure is noted it is assumed that the cause of failure is identified
and signed by the indicator ξi , i = 1, . . . , n, ξi ∈ {1, 2}, where ξi = 1 if the i th

failure is due to the first cause and ξi = 2 otherwise. It is also assumed that for each
i , Xi follows the two-parameter Weibull distribution with common shape parameter
α > 0 and different scale parameters θ j > 0, j = 1, 2, with the following probability
density function (PDF) and cumulative distribution function (CDF)

f j
(
x;α, θ j

) = αθ j x
α−1e−θ j xα

, and Fj
(
x;α, θ j

) = 1 − e−θ j xα

, (1)

respectively. The Weibull distribution with the PDF furnished by (1) will be indicated
as WD

(
α, θ j

)
, j = 1, 2.

Remark 1 If the failure times X1 and X2 are i.i.d random variables following
WD (α, θ1) andWD (α, θ2), respectively, then the randomvariable X = min {X1, X2}
follows WD(α, θ1 + θ2), where α is the shape parameter and (θ1 + θ2) is the scale
parameter.

Using Remark 1, the RF of the random variable X , sayRX (x), is given by

RX (x) = Pr (X > x)

= Pr (X1 > x) Pr (X2 > x)

= e−(θ1+θ2)xα

, (2)

consequently, the HRF of the random variable X is

hX (x) = α (θ1 + θ2) x
α−1. (3)

Suppose we have n identical units in the experiment, and the lifetime of these are
expressed by X1, X2, . . . , Xn . It is assumed that Xi = min{X1i , X2i }, i = 1, 2, . . . , n,
where X1i ∼ WD (α, θ1) and X2i ∼ WD (α, θ2), are independently distributed.
Before beginning the test, the failure number m < n and a progressive censoring
scheme (PCS) � = (R1, R2, . . . , Rm), Ri > 0, are determined in advance with the
understanding that some values of Ri may be changed during the experiment. Also,
let T1, T2 ∈ (0,∞), where T1 < T2, be two thresholds that are both determined in
advance. Suppose T1 is the initial threshold, and it is a notice about the test time. If
the test proceeds to T1, which implies that the test needs to be hurried up. Suppose
T2 is the secondary threshold, showing the highest time permitted by the experiment.
The experiment must be stopped at T2 if the number of failures does not reach the
wanted number of failures m. At the time of the first failure X1:m:n , the associated
cause of failure ξ1 is indicated and R1 of the left items are randomly picked and
discarded from the experiment. Similarly, at the time of the second failure X2:m:n , the
corresponding cause of failure ξ2 is determined and R2 items are randomly withdrawn
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Table 1 Types of observations for an improved adaptive progressively Type-II censored competing risk
data

Case Observations

I (X1:m:n , ξ1, R1) , . . . , (Xm:m:n , ξm , Rm )

II (X1:m:n , ξ1, R1) , . . . ,
(
Xd1:m:n , ξd1 , Rd1

)
,
(
Xd1+1:m:n , ξd1+1, 0

)
, . . . ,

(
Xm−1:m:n , ξm−1, 0

)
,

(Xm:m:n , ξm , Rm )

III (X1:m:n , ξ1, R1) , . . . ,
(
Xd1:m:n , ξd1 , Rd1

)
,
(
Xd1+1:m:n , ξd1+1, 0

)
, . . . ,

(
Xd2:m:n , ξd2 , 0

)
,(

T2, R
∗)

from the remaining items, and so on. If Xm:m:n < T1 (Case-I), the experiment stops
at the time of mth failure and the remaining survival items Rm = n − m −∑m−1

i=1 Ri

are removed, which is just the conventional PCS-T2. If Xd1:m:n < T1 < Xd1+1:m:n
(Case-II), where d1 is the number of failures before time T1 and (d1+1) < m, then we
put Rd1+1 = · · · = Rm−1 = 0 and terminate the experiment at the time of mth failure
and then all the remaining Rm = n−m −∑d1

i=1 Ri units are removed. The reader can
observe that Case II is the well-known APCS-T2. On the other hand, if Xm:m:n > T2
(Case-III), the experiment stops at T2, with the understanding that no items will be
removed when the test time exceeds the first threshold T1. In this case we have d2 < m
number of observed failures, where d2 is the number of failures before time T2. At the
time T2, all remaining units are removed, i.e., R∗ = n − d2 −∑d1

i=1 Ri . Therefore,
based on an improved adaptive progressively Type-II censored competing risk data,
we can perceive one of the different observations given by Table 1.

Furthermore, we define the indicator function

1(ξi = j) =
{
1, ξi = j, j = 1, 2

0, else.

Thus, D1 = ∑D
i=1 1 (ξi = 1) and D2 = ∑D

i=1 1 (ξi = 2) denote the total number
of observed failures due to causes 1 and 2, respectively, and D = D1 + D2, D > 0. It
is observed here that for cases I and II, we have m = D1 + D2, while d2 = D1 + D2
for Case III, and in all the cases we use D = D1 + D2 to denote to the number of
observed failures.

Remark 2 Using the independence of the latent failure times, the relative risk due to
cause 1 is given by

π1 =
∫ ∞

0
αθ1y

α−1e−(θ1+θ2)yα

dy

= θ1

θ1 + θ2
· (4)

Furthermore, the relative risk due to cause2 canbeobtainedusing the sameapproach
in Remark 2, or simply as π2 = 1−π1. Then, we have Dj ∼ Binomial(D, π j ), j =
1, 2.
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Table 2 Notation of the
IAPCS-T2

Case J D R∗ T ∗

I m − 1 m n − m −∑m−1
i=1 Ri xm:m:n

II d1 m n − m −∑d1
i=1 Ri xm:m:n

III d1 d2 n − d2 −∑d1
i=1 Ri T2

Now, based on the observed data given by Table 1, we can write the likelihood
function as follows

L(θ) = A∗
D∏

i=1

{[
f1(xi :m:n)F̄2(xi :m:n)

]1(ξi=1)[
f2(xi :m:n)F̄1(xi :m:n)

]1(ξi=2)
}

×
J∏

i=1

{[
F̄1(xi :m:n)F̄2(xi :m:n)

]Ri
}[

F̄1(T
∗)F̄2(T ∗)

]R∗
, (5)

where F̄j (·) = 1 − Fj (·), θ is the vector of unknown parameters, A∗ is a constant
which does not depend on the parameters, and the notation J , D, T ∗ and R∗ are
displayed in Table 2 for the cases I, II and III.

In the next sections, the point and interval estimations for the unknown parameter
of WD(θ j , α), reliability characteristics and relative risks will be investigated using
the frequentist and Bayesian approaches.

3 Maximum likelihood estimation

In this section, the MLEs and the corresponding ACIs of the unknown parameters
θ j , j = 1, 2 and α, the reliability characteristicsR(x) and h(x), and the relative risks
π j , j = 1, 2 are derived under the improved adaptive progressively Type-II censored
competing risk data.

3.1 Point estimates

Based on the observations as explained in the preceding section, the likelihood function
(ignoring the constant term) can be formulated from (1) and (5) as follows

L
(
θ1, θ2, α|x) = αDθ

D1
1 θ

D2
2 exp

[− (θ1 + θ2) ψ
(
x;α

)] D∏

i=1

xα
i , (6)

where xi = xi :m:n for simplicity, x is the observed data vector, ψ
(
x;α

) = R∗T ∗α +
∑D

i=1 x
α
i +∑J

i=1 Ri xα
i . Correspondingly, the log-likelihood function, denoted by l(·),
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of (6) becomes

l
(
θ1, θ2, α|x) = D log(α) + D1 log(θ1) + D2 log(θ2) − (θ1 + θ2) ψ

(
x;α

)

+α
∑D

i=1
log(xi ). (7)

Firstly, we consider the case when the scale parameters are unknown and the com-
mon shape parameter α is known. In this case, the MLEs of θ j , j = 1, 2 are obtained
by taking the first derivatives of (7) with respect to θ j then equating them to zeros.
The outcomes are as follow

θ̂1 = D1

ψ
(
x;α

) and θ̂2 = D2

ψ
(
x;α

) · (8)

On the other hand, we consider the most practical case when the common shape
parameter is unknown. In this case, theMLEs of θ j , j = 1, 2 are obtained as displayed
in (8) as a function in the unknown parameter α, i.e. θ̂1(α) and θ̂2(α), respectively.
Substituting θ̂1(α) and θ̂2(α) in (7), the profile log-likelihood of α can be expressed
as follows

p (α) = D log

[
α

ψ(x;α)

]
+ α

∑D

i=1
log(xi ). (9)

Directly, the MLE of α denoted by α̂, can be obtained by maximizing (9) with
respect to α. Since p (α) is unimodal, as pointed out by Pareek et al. (2009), then by
differentiating (9) with respect to α and then equating the result to zero, the MLE of
α such as α = q (α) takes the form

q (α) =
[

ψ ′ (x;α
)

ψ
(
x;α

) − 1

D

∑D

i=1
log(xi )

]−1

, (10)

where ψ ′ (x;α
) = R∗T ∗α log(T ∗) + ∑D

i=1 x
α
i log(xi ) + ∑J

i=1 Ri xα
i log(xi ). From

(10), it is clear that the MLE α̂ is difficult to reach mathematically. Therefore, to reach
α̂ from (10), a simple iterative procedure proposed by Pareek et al. (2009) can be
easily used for this purpose. Once we get α̂, then the MLEs θ̂1 and θ̂2 can be obtained
directly from (8).

Remark 3 From (6), several works can be obtained as special cases, such as: (i) pro-
gressively Type-II censored competing risks by Pareek et al. (2009) when T1 → ∞;
(ii) adaptive progressively Type-II censored competing risks Weibull models with
common shape parameter by Ren and Gui (2021a) when T2 → ∞; (iii) improved
adaptive Type-II progressively censored competing risks exponential data by Dutta
and Kayal (2021) when α = 1.

According to the invariance property of the MLEs, the reliability characteristics
R(t) and h(t), at the distinct time t , can be obtained from (2) and (3) by replacing the
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original values θ1, θ2 and α by their MLEs θ̂1, θ̂2 and α̂, respectively, as follow

R̂(t) = e−(θ̂1+θ̂2)t α̂ and ĥ(t) = α̂(θ̂1 + θ̂2)t
α̂−1.

Similarly, the MLE of the relative risk due to cause j can be obtained from (4) as
follows

π̂ j = θ̂ j

θ̂1 + θ̂2

= Dj

D
, j = 1, 2·

3.2 Asymptotic interval estimates

The 100(1 − γ )% two-sided ACIs of the parameters, reliability characteristics and
relative risks are formed employing the normality of MLEs in this subsection.
Let ϕ = (θ1, θ2, α)	 be the vector of unknown parameters, where ϕ1 = θ1,
ϕ2 = θ2 and ϕ3 = α, then the asymptotic distribution of ϕ̂ is approximately mul-
tivariate normal with mean vector ϕ and variance-covariance matrix I−1(ϕ), i.e.
ϕ̂ ∼ N3

[
ϕ, I−1 (ϕ)

]
, where I(ϕ) is the 3 × 3 Fisher information matrix with ele-

ments Ii j (ϕ) = E
(−∂2l/∂ϕi∂ϕ j

)
, i, j = 1, 2, 3. In this case, the second-order

partial derivatives are obtained from (7) as follow

l11 = D1

θ21
, l22 = D2

θ22
, l33 = D

α2 + (θ1 + θ2) ψ ′′ (x;α
)
, l13 = l23

= ψ ′ (x;α
)
, and l12 = l21 = 0,

where ψ ′′ (x;α
) = R∗T ∗α log2(T ∗) +∑D

i=1 x
α
i log2(xi ) +∑J

i=1 x
α
i Ri log2(xi ).

Because the expected information matrix is in a highly complex form and needs
numerical integration, consequently, the approximate asymptotic variance-covariance
matrix I−1(ϕ̂) is utilized to build theACIs, see formore details Lawless (2003). Hence,
the approximate asymptotic variance-covariance matrix is given by

I−1 (ϕ̂
) =

⎡

⎣
l11
l12 l22
l31 l32 l33

⎤

⎦

−1

ϕ=ϕ̂

=
⎡

⎣
σ̂11
σ̂21 σ̂22
σ̂31 σ̂32 σ̂33

⎤

⎦ . (11)

Then, for arbitrary 0 < γ < 1, the two-sided 100(1 − γ )% ACI of ϕi , i = 1, 2, 3
can be expressed as

ϕ̂i ∓ zγ /2

√
σ̂i i , i = 1, 2, 3, (12)

where σ̂i i , i = 1, 2, 3 are the main diagonal components of (11) and zγ /2 is the upper
(γ /2)th percentile of the standard normal distribution.
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Moreover, based on the asymptotic normality of the MLEs it is known that R̂(t) ∼
N [R(t), σ̂ 2

R], ĥ(t) ∼ N [h(t), σ̂ 2
h ] and π̂ j (t) ∼ N [π j (t), σ̂ 2

π j
], j = 1, 2. Therefore,

the ACIs forR(t), h(t) and π j can be constructed using the corresponding normality.
To get these ACIs, we need to compute the variances of the estimators of R(t), h(t)
and π j . For this purpose, we use the delta method as proposed by Greene (2000)
to approximate these variances. Let �R,�h and �π j , j = 1, 2, are three partial
derivative vectors for R(t), h(t) and π j , respectively, as follow

�R =
(

∂R(t)

∂θ1
,
∂R(t)

∂θ2
,
∂R(t)

∂α

)
, �h =

(
∂h(t)

∂θ1
,
∂h(t)

∂θ2
,
∂h(t)

∂α

)

and

�π j =
(

∂π j

∂θ1
,
∂π j

∂θ2
,
∂π j

∂α

)
, j = 1, 2,

with the following components

∂R(t)

∂θ j
= −tαe−(θ1+θ2)tα ,

∂R(t)

∂α
= −(θ1 + θ2)t

α log(t)e−(θ1+θ2)tα ,

∂h(t)

∂θ j
= αtα−1,

∂h

∂α
= (θ1 + θ2)t

α−1 [1 + α log(t)
]

and

∂π j

∂θ j
= θ3− j

(θ1 + θ2)2
,

∂π j

∂θ3− j
= − θ j

(θ1 + θ2)2
,

∂π j

∂α
= 0, j = 1, 2.

Thus, the approximate variances of R̂(t), ĥ(t) and π̂ j , j = 1, 2 can be obtained,
respectively, as

σ̂ 2
R =

[
�R I−1(ϕ)�	

R
] ∣
∣
ϕ=ϕ̂

, σ̂ 2
h =

[
�h I−1(ϕ)�	

h

] ∣
∣
ϕ=ϕ̂

and

σ̂ 2
π j

=
[
�π j I

−1(ϕ)�	
π j

] ∣∣
ϕ=ϕ̂

, j = 1, 2.

Now, the 100(1 − γ )% ACIs forR(t), h(t) and π j are given, respectively, by

R̂(t) ∓ zγ /2

√
σ̂ 2
R, ĥ(t) ∓ zγ /2

√
σ̂ 2
h and π̂ j ∓ zγ /2

√
σ̂ 2

π j
, j = 1, 2.

4 Bayesian estimators

Over the past years, Bayes’ paradigm has grown to become the most popular approach
in many fields; including but not limited to engineering, clinical, biology, etc. The
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capability of combining prior information in the analysis makes it so worthy in relia-
bility studies where one of the significant challenges is the short availability of data.
This section deals with deriving the Bayes estimates as well as the corresponding and
highest posterior density (HPD) and Bayes credible intervals (BCIs) of the unknown
parameters under an improved adaptive progressively Type-II censoring competing
risks data by considering two cases. The first one is when the common shape parame-
ter is known, and the second case is when the common shape parameter is unknown.
Before progressing forward, we mainly consider the most important symmetric loss
function called SEL function which is defined as

� (η, η̃) = (η − η̃)2. (13)

Using (13), the Bayes estimate η̃ of η is given by the posterior mean. It is important
to mention here that other symmetric and/or asymmetric loss functions can be easily
used without much of an intractable. For more detail about the effectiveness of the
Bayesian estimation procedure in estimating model parameters in the presence of the
competing risks data, one can refer to the work of Kundu and Gupta (2007), Kundu
and Pradhan (2011) and Nassar et al. (2022).

4.1 Shape parameter known

Electing prior for the unknown model parameter is an essential matter in Bayesian
analysis. The class of gamma prior densities is quite flexible because it permits us to
model a variety of prior information, see for more details (Kundu and Howlader 2010;
Dey et al. 2018, 2021). Therefore, we assume that the random variables θ1 and θ2 have
an independent gamma prior distributions. Suppose that θ j ∼ Gamma(a j , b j ), j =
1, 2, then the joint prior distribution of θ1 and θ2 can be written as

g1(θ1, θ2) ∝ θ
a1−1
1 θ

a2−1
2 exp[−(θ1b1 + θ2b2)]. (14)

The hyper-parameters (a j , b j ), j = 1, 2, are chosen to show the prior awareness
about the unknown parameters and they necessity be known and non-negative. Setting
a j = b j = 0, j = 1, 2, in (14), one can obtain the improper priors of θ1 and θ2

given by (θ1θ2)
−1. Combining (6) with (14) and substituting in the continuous Bayes’

theorem, the joint posterior PDF, denoted by �1(·), of θ1 and θ2, can be written up to
proportional as

�1
(
θ1, θ2|x

) ∝ θ
a∗
1−1

1 θ
a∗
2−1

2 exp
[−(θ1b

∗
1 + θ2b

∗
2)
]
, (15)

where a∗
1 = a1 + D1, a∗

2 = a2 + D2, b∗
1 = b1 + ψ

(
x;α

)
and b∗

2 = b2 + ψ
(
x;α

)
.

Remark 4 It follows from (15) that the posterior distributions of θ1 and θ2 are gamma
distributions, respectively, such that

θ1|x ∼ Gamma
(
a∗
1 , b

∗
1

)
and θ2|x ∼ Gamma

(
a∗
2 , b

∗
2

)
.
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Then, the Bayes estimators θ̃1 and θ̃2 of θ1 and θ2 under the SEL function can be
obtained using Remark 4 as the posterior expectation, respectively, as

θ̃1 = a∗
1

b∗
1

and θ̃2 = a∗
2

b∗
2
· (16)

From (16), under the assumptions of improper priors ai = bi = 0, i = 1, 2,
it is clear that the Bayes estimators θ̃1 and θ̃2 of θ1 and θ2 are obtained in explicit
expressions and they will be coincide with corresponding MLEs given by (8).

As it is pointed out in Remark 4 that posterior distributions of θ1 and θ2 are gamma
distributions, then one can show that the random variable ζ j = 2θ j b∗

j , j = 1, 2,

follows χ2 distributions with υ j = 2a∗
j degree of freedom. Thus, the two-sided

100(1 − γ )% BCIs for θ j , j = 1, 2 are given, respectively, by

(
1

ζ1
χ2

(υ1,1−(α/2 )),
1

ζ1
χ2

(υ1,(α/2 ))

)
and

(
1

ζ2
χ2

(υ2,1−(α/2 )),
1

ζ2
χ2

(υ2,(α/2 ))

)
. (17)

Clearly; one can use the gamma distribution instead of chi-squared distribution to
construct these BCIs when υ j , j = 1, 2 are not integer values. Moreover, the 100(1−
γ )% HPD credible intervals of θ j (for j = 1, 2,) are the intervals

(
H

θ j
L , H

θ j
U

)
, j =

1, 2, which satisfying

1 − γ =
∫ H

θ j
U

H
θ j
L

�
θ j
j

(
θ j |x

)
dθ j and �

θ j
j

(
H

θ j
L

∣∣x
)

= �
θ j
j

(
H

θ j
U

∣∣x
)

, (18)

where �
θ j
j (·) is the posterior distribution of θ j , j = 1, 2. From (18) and after

some algebraic manipulations, the two-sided 100(1 − γ )% HPD credible intervals,(
H

θ j
L , H

θ j
U

)
, of θ j (for j = 1, 2) can be obtained by solving

1 − γ =
�
(
a∗
j , H

θ j
U b∗

j

)
− �

(
a∗
j , H

θ j
L b∗

j

)

�
(
a∗
j

) and

(
H

θ j
U

H
θ j
L

)a∗
j−1

= exp
[
−b∗

j

(
H

θ j
U − H

θ j
L

)]
, j = 1, 2, (19)

where �(a, b) = ∫ b
0 xa−1e−xdx is the incomplete gamma function. Clearly; the two

nonlinear equations (19) must be solved simultaneously to provide the HPD credible
intervals of θ j , j = 1, 2.
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Subsequently, from (15), the Bayesian estimators of the reliability characteristics
R(·) and h(·) at mission time t are given respectively as follows

R̃(t) =
∫

θ1

∫

θ2

R(t; θ1, θ2, α)�1
(
θ1, θ2|x

)
dθ1dθ2,

and

h̃(t) =
∫

θ1

∫

θ2

h(t; θ1, θ2, α)�1
(
θ1, θ2|x

)
dθ1dθ2.

After some simplifications, we get

R̃(t) = b
∗a∗

1
1 b

∗a∗
2

2
(
b∗
1 + tα

)a∗
1
(
b∗
2 + tα

)a∗
2
, t > 0, and h̃(t) = αtα−1

[
a∗
1

b∗
1

+ a∗
2

b∗
2

]
, t > 0.

Using the same approach, we can obtain the Bayes estimates of the relative risks
π j , j = 1, 2 as

π̃ j =
∫

θ1

∫

θ2

π j (θ1, θ2)�1
(
θ1, θ2|x

)
dθ1dθ2, j = 1, 2,

which cannot be obtained in closed forms and one can use numerical integration for this
purpose. Although the BCI/HPD credible intervals of the unknown scale parameters
are expressed in explicit forms, it is not easy to construct the same intervals for the
reliability characteristics and relative risks. To solve this problem, theMCMCapproach
can be used to generate samples by direct sampling from the joint posterior distribution
and then approximate the desired HPD credible intervals.

4.2 Shape parameter unknown

Analyzing the competing risks data under the assumption that the common shape
parameter to be known may be an unrealistic assumption. Therefore, this subsection
is devoted to studying the estimation problems when the common shape parameter
is unknown, which is most likely to occur in practice. In this case, we assume that
the random variable α follows a gamma distribution, i.e. α ∼ Gamma(a3, b3). Then,
joint prior distribution of θ1, θ2 and α can be written as

g2(θ1, θ2, α) ∝ θ
a1−1
1 θ

a2−1
2 αa3−1 exp(−(θ1b1 + θ2b2 + αb3)). (20)

It is observed that when ai , bi = 0, i = 1, 2, 3 in (20), the improper prior of θ1, θ2
and α is given by (θ1θ2α)−1. Using (6) and (20), the joint posterior distribution of θ1,
θ2 and α can be written as

�2
(
θ1, θ2, α|x) = C θ

a∗
1−1

1 θ
a∗
2−1

2 αa∗
3−1 exp

[− (θ1b∗
1 + θ2b

∗
2 + αb∗

3

)]
, (21)
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where a∗
3 = a3 + D and b∗

3 = b3 −∑D
i=1 log (xi ) and C is the normalized constant.

The Bayes estimators, based on (21), cannot be obtained analytically because they are
expressed in the ratio ofmultiple integrals. In literature, several approaches can be used
to approximate the posterior density function to obtain the Bayesian point estimates
namely; Lindley and Tierney–Kadane methods. But these approaches do not provide
the HPD credible intervals, hence, we propose to use MCMC samples generated from
the target distribution to approximate the Bayesian (point and interval) estimates. In
the present context, the Gibbs sampler along with the Metropolis–Hastings (M–H)
algorithm can be used to draw samples, for more details on the various applications
of MCMC algorithms, one may refer to Gelman et al. (2004) and Lynch (2007).

The Gibbs sampling and M–H algorithm are the two most usually applied MCMC
techniques. We apply a hybrid procedure that mixes the M–H algorithm within Gibbs
sampler to produce samples from the posterior distribution. To establish the MCMC
algorithm from (21), we first need to find the conditional posterior distributions of
θ j , j = 1, 2 and α, respectively, as

φ j (θ j |θ3− j , α, x) ∝ θ
a∗
j−1

j e−b∗
j θ j , j = 1, 2 (22)

and

φ3
(
α|θ1, θ2, x

) ∝ αa∗
3−1 exp

{− [αb∗
3 + (θ1 + θ2) ψ

(
x;α

)]}
. (23)

It is clear that the conditional posterior distributions of θ1 and θ2 given by (22)
follow the gamma distributions, respectively. Thus, the samples of the unknown scale
parameters can be easily simulated. It is also noted that the conditional posterior
distribution of α given by (23) cannot be reduced to any standard distribution. But it
follows from Theorem 2 by Kundu (2008) that φ3

(
α|x) is log-concave in the form

φ3
(
α|x) ∝ αa3+D−1 exp

(−αb∗
3

)

[
b1 + ψ

(
x;α

)]a1+D1
[
b2 + ψ

(
x;α

)]a2+D2
.

Hence, we use the hybrid algorithm (M–Hwithin Gibbs) for updating the unknown
parameters θ1, θ2 and α in order to obtain the Bayes (point and interval) estimates for
any related function of them. Now, to carry out the proposed hybrid algorithm, do the
following steps for the sample generation process:

Step 1 Set initial guesses of θ1, θ2 and α as θ
(0)
1 , θ(0)

2 and α(0), respectively.
Step 2 Set g = 1.
Step 3 Use M–H steps to generate α(g) from φ3(α

(g−1)|x) with the normal proposal
distribution as

(a) Generate α∗ from N (α(g−1), σ33).

(b) Obtain δ
(
α(g−1), α∗) = min

{
1, φ3(α

∗|x)
φ3(α(g−1)|x)

}
.

(c) Generate a sample variate u from U (0, 1).
(d) If u ≤ δ set α(g) = α∗, else set α(g) = α(g−1).
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Step 4 Generate θ
(g)
j , j = 1, 2 from (22).

Step 5 ObtainR(g)(t) and h(g)(t), for a specified time t > 0 and π
(g)
j , j = 1, 2, by

replacing θ1, θ2 and α with their θ
(g)
1 , θ(g)

2 and α(g), respectively.
Step 6 Set g = g + 1.
Step 7 Redo steps 3–6 M times to get

ϑ(g) =
(
θ

(g)
1 , θ

(g)
2 , α(g),R(g)(t), h(g)(t), π(g)

1 , π
(g)
2

)
, g = 1, 2, . . . , M .

To remove the affection of the selection of start value and to guarantee the chain
convergence, the first samples, say M0, are discarded. So, for large M , the remaining
MCMC samples with size M − M0 can be used to develop the Bayesian inference.
Thus, the approximate Bayes estimate, ϑ̃ , and the corresponding posterior variance,
Ṽ (ϑ̃), of ϑ with respect to SEL function are given respectively by

ϑ̃ = 1

M − M0

M∑

g=M0+1

ϑ(g) and Ṽ (ϑ̃) = 1

M − M0

M∑

g=M0+1

(ϑ(g) − ϑ̃)2.

To construct the two-sided BCI of the parameter ϑ , order the simulated MCMC
samples of ϑ(g) as ϑ(M0+1), ϑ(M0+2), . . . , ϑ(M). Hence, the 100(1 − γ )% two-sided
BCIs of ϑ is given by

(
ϑ(M−M0)(γ /2), ϑ(M−M0)(1−(γ /2))

)
.

On the other hand, one can choose the shortest interval, that involves values of the
highest probability density, which is referred to HPD credible interval. According to
the procedure proposed by Chen and Shao (1999), the HPD credible interval of the
unknown parameter ϑ can be constructed. First, order the simulated MCMC variates
of ϑ(g) for g = M0 + 1, . . . , M . Hence, the 100(1 − γ )% two-sided HPD credible
interval of the unknown parameter ϑ is given by

(
ϑ(g∗), ϑ(g∗+(1−γ )(M−M0))

)
,

where g∗ = M0 + 1, . . . , M is chosen such that

ϑ(g∗+[(1−γ )(M−M0)]) − ϑ(g∗) = min
1≤g≤γ (M−M0)

(
ϑ(g+[(1−γ )(M−M0)]) − ϑ(g)

)
.

Here [y] denotes the largest integer less than or equal to y.

5 Monte Carlo simulation

To evaluate the performance of the theoretical results including point and interval esti-
mators using the maximum likelihood and Bayesian methods, an extensive Monte
Carlo simulation study is performed when true values of (θ1, θ2, α) are taken as
(0.2, 0.4, 0.6). Thus, the corresponding actual value of the reliability parametersR(t)
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andh(t) are 0.6036 and0.4039, formission time t = 0.75, respectively.By considering
different combinations of n(total test units), m(effective sample size), R(removal pat-
tern) and Ti , i = 1, 2(threshold points), we generate a large 1000 improved adaptive
Type-II progressive censored samples fromWeibull distribution. Two various choices
of n and Ti , i = 1, 2 are used such as n(= 40, 80), T1(= 0.5, 0.8) and T2(= 0.8, 1.5).
It is to be mentioned here that, when the number of failures m achieves, the experi-
ment is terminated. In this study, the percentages of failure information (m/n)100%
are considered to be such as 50 and 75%. To evaluate the performance of removal pat-
terns, for each combination of (n,m), different four censoring schemes are considered
namely; uniform (U), left (L), middle (M) and right (R) censoring schemes.

To generate an improved adaptive Type-II progressive censored competing risks
data from Weibull distribution, do the following algorithm:

Step 1 Set the parameter values of θ j , j = 1, 2 and α.
Step 2 Carried out Type-II progressively censored competing risks sample using the

algorithm described by Balakrishnan and Sandhu (1995) as

(a) Generate independent observations of sizem as ω1, ω2, . . . , ωm from uniform
distribution.

(b) For a specific values of n, m and Ri , i = 1, 2, . . . ,m, set υi =
ω

(
i+∑m

j=m−i+1 R j

)−1

i , i = 1, 2, . . . ,m..
(c) Set Ui = 1 − υmυm−1 · · · υm−i+1 for i = 1, 2, . . . ,m.
(d) Generate PCS-T2 competing risks sample from WD(α, θ j ) by Xi =

F−1(ui ;α, θ j ), j = 1, 2, i = 1, 2, . . . ,m.

Step 3 Determine d1 at the threshold time T1 and discard Xi , i = d1 + 2, . . . ,m for
Case-II and -III.

Step 4 Generate the first m − d1 − 1 order statistics from a truncated distribution
f (x)/F̄

(
xd1+1

)
with sample size n − d1 − 1−∑d1

i=1 Ri as Xd1+2, . . . , Xm ,
where f (·) and F(·) are given by (1) and F̄(·) = 1 − F(·).

Step 5 Assign the cause of failure for each sample point as 1 or 2 with probability π1
and π2, respectively.

Step 6 Collect one of the data observations of improved adaptive progressively Type-
II censored competing risks as depicted in Table 1.

Using each simulated data, the MLEs and associated ACIs (when the significance
level is set to be γ = 0.05) of θ1, θ2,α,R(t) and h(t) are computed.Here,we suggest to
apply the Newton–Raphsonmethod via ’maxLik’ package in R programming software
in order to evaluate any MLE of the unknown parameters α and θ j , j = 1, 2. For
Bayesian estimation, we took two informative priors for α and θ j , j = 1, 2 called;
Prior I (a1, a2, a3) = (0.4, 0.8, 1.2) and bi = 2, i = 1, 2, 3 also Prior II (a1, a2, a3) =
(2, 4, 6) and bi = 10, i = 1, 2, 3. It is clear that the values of both priors I and II are
selected in such away that priormeans are the same as the original expected value of the
corresponding parameter. In practice, if one does not have prior information about the
unknown parameters of interest, it is better to use the frequentist method rather than the
Bayesian method because the latter is computationally more expensive. As described
in Sect. 4, we use the M–H algorithm within the Gibbs sampler to generate 12,000
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MCMC samples and discard the first 2000 values as ’burn-in’. Hence, using 10,000
MCMC samples, the average Bayes MCMC estimates and the associated 95% HPD
credible intervals are computed. To get the objective posterior samples, we recommend
utilizing the ‘coda’ package proposed by Plummer et al. (2006). Comparison of the
point estimates are examined in terms of their root mean squared errors (RMSEs) and
mean relative absolute biases (MRABs) using the following formulas

RMSE =
√

1

G

∑G

j=1

(
ϑ̂

( j)
s − ϑs

)2
, s = 1, 2, 3, 4, 5,

and

MRAB = 1

G

∑G

j=1

|ϑ̂ ( j)
s − ϑs |

ϑs
, s = 1, 2, 3, 4, 5,

respectively, where ϑ̂
( j)
s denotes the obtained estimate using any estimation method

at the j − th sample of the unknown parameter ϑs , G is the number of generated
sequence data, ϑ1 = θ1, ϑ2 = θ2, ϑ3 = α, ϑ4 = R(t) and ϑ5 = h(t).

Also, the performances of the interval estimates are compared by their average
confidence lengths (ACLs) and the coverage probabilities (CPs) based on samples
generated by direct sampling as

ACLϑs (1 − γ )% = 1

G

∑G

j=1

(
U

ϑ̂
( j)
s

(1 − γ )% − L
ϑ̂

( j)
s

(1 − γ )%
)
, s = 1, 2, 3, 4, 5,

and

CPϑs (1 − γ )% = 1

G

∑G

j=1
1∗(

L
ϑ̂

( j)
s

(1−γ )%;U
ϑ̂

( j)
s

(1−γ )%

) (ϑs) , s = 1, 2, 3, 4, 5,

where 1∗(·) is the indicator function, L(·) andU (·) denote the lower and upper bounds,
respectively, of the interval estimate of ϑs . The average point estimates with their
respective RMSEs andMRABs are reported in Tables 3, 4, 5, 6 and 7, while the ACLs
with their CPs are listed in Tables 8 and 9. It is important to mention here that the out-
comes of the relative risks and BCIs are not reported here due to space limitations. All
necessary computational algorithms are coded in R statistical programming language
version 4.0.4.

From the simulation results declared in Tables 3, 4, 5, 6, 7, 8 and 9, we have the
followingfindings. In general, it can be noticed that the classical andBayes estimates of
the unknown parameters θ1, θ2, α,R(t) and h(t) are satisfactory in terms of minimum
RMSEs and MRABs. As n(or m) grows, for all estimates, the RMSEs, MRABs and
ACLsdecreasewhile their associatedCPs increase. The sameaforementionedoutcome
can be found when the values of the progressive censoring, Ri ’s, decreases. The alike
pattern is observed in asymptotic/Bayes interval estimates, when (n or m increases),
such that their ACLs tend to decrease but their CPs tend to increase. Thus, to get better
estimation results, one may dispose to raise n.
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Table 3 The average estimates with their (RMSEs, MRABs) of θ1

(T1, T2) (n,m) Scheme MLE MCMC
Prior→ I II

(0.4,0.8) (40,20) U 0.1819(0.0837, 0.3380) 0.1735(0.0603, 0.1917) 0.1947(0.0559, 0.1011)

L 0.0602(0.1519, 0.7014) 0.1092(0.1166, 0.5163) 0.1627(0.0748, 0.2593)

M 0.0964(0.1183, 0.5394) 0.1703(0.0686, 0.2168) 0.1659(0.0714, 0.2422)

R 0.4217(0.3375, 1.1317) 0.2219(0.0678, 0.1385) 0.2112(0.0616, 0.1261)

(40,30) U 0.1746(0.0791, 0.3224) 0.1981(0.0516, 0.1122) 0.2159(0.0511, 0.0912)

L 0.0816(0.1251, 0.5944) 0.1255(0.1023, 0.4415) 0.2118(0.0520, 0.0626)

M 0.1684(0.0799, 0.3334) 0.2056(0.0543, 0.0614) 0.2047(0.0523, 0.0647)

R 0.2549(0.1021, 0.4016) 0.2002(0.0531, 0.0906) 0.2109(0.0510, 0.0729)

(80,40) U 0.1782(0.0586, 0.2394) 0.2026(0.0502, 0.0690) 0.2055(0.0477, 0.0493)

L 0.0819(0.1227, 0.5909) 0.1888(0.0535, 0.1209) 0.2041(0.0562, 0.0910)

M 0.0940(0.1133, 0.5326) 0.2268(0.0596, 0.1633) 0.2091(0.0499, 0.0684)

R 0.4107(0.2344, 1.0547) 0.1938(0.0635, 0.1203) 0.2086(0.0524, 0.0784)

(80,60) U 0.1785(0.0579, 0.2373) 0.2026(0.0512, 0.0531) 0.2054(0.0502, 0.0451)

L 0.0887(0.1152, 0.5562) 0.1993(0.0537, 0.0716) 0.2127(0.0521, 0.0643)

M 0.1802(0.0608, 0.2465) 0.1972(0.0549, 0.0878) 0.2108(0.0501, 0.0556)

R 0.2589(0.0834, 0.3438) 0.2244(0.0574, 0.1236) 0.2021(0.0516, 0.0561)

(0.8,1.5) (40,20) U 0.1809(0.0757, 0.3051) 0.2242(0.0597, 0.1274) 0.1995(0.0464, 0.0702)

L 0.0513(0.1511, 0.7434) 0.2152(0.0550, 0.0929) 0.2081(0.0522, 0.0609)

M 0.1154(0.0987, 0.4440) 0.1735(0.0689, 0.2038) 0.1905(0.0563, 0.1240)

R 0.1735(0.0578, 0.2366) 0.2207(0.0539, 0.1116) 0.2119(0.0513, 0.0760)

(40,30) U 0.1563(0.0728, 0.3013) 0.1868(0.0568, 0.1334) 0.2074(0.0512, 0.0596)

L 0.0751(0.1285, 0.6246) 0.2008(0.0544, 0.0668) 0.2134(0.0531, 0.0692)

M 0.1401(0.0799, 0.3402) 0.1970(0.0554, 0.0883) 0.2016(0.0516, 0.0617)

R 0.2040(0.0719, 0.2822) 0.2095(0.0508, 0.0667) 0.2113(0.0491, 0.0589)

(80,40) U 0.1545(0.0648, 0.2711) 0.1961(0.0521, 0.0855) 0.1988(0.0527, 0.0734)

L 0.0501(0.1508, 0.7491) 0.2154(0.0602, 0.0830) 0.1948(0.0557, 0.0968)

M 0.1179(0.0895, 0.4133) 0.1179(0.0895, 0.4133) 0.2021(0.0520, 0.0608)

R 0.1215(0.0852, 0.3986) 0.2099(0.0534, 0.0669) 0.2032(0.0523, 0.0679)

(80,60) U 0.1624(0.0566, 0.2344) 0.2116(0.0519, 0.0602) 0.2039(0.0498, 0.0472)

L 0.0784(0.1235, 0.6077) 0.2022(0.0535, 0.0585) 0.2099(0.0509, 0.0507)

M 0.1263(0.0812, 0.3735) 0.1983(0.0502, 0.0719) 0.2137(0.0518, 0.0687)

R 0.1237(0.0823, 0.3834) 0.2077(0.0506, 0.0411) 0.2080(0.0503, 0.0449)

Further, it can be seen that the Bayes (point/interval) estimate for each unknown
parameter has a significant behaviour compared to the other estimate with respect
to the least RMSE, MRAB and ACL values as well as the highest CP values. This
consequence is anticipated due to the fact that Bayesian estimates include additional
prior information about the unknownparameter of interest.When the thresholds T1 and
T2 increase, in most cases, it is observed that the RMSEs and MRABs associated with
all unknown parameters decrease. Besides, the ACLs of ACI/HPD credible intervals
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Table 4 The average estimates with their (RMSEs, MRABs) of θ2

(T1, T2) (n,m) Scheme MLE MCMC
Prior→ I II

(0.4,0.8) (40,20) U 0.3717(0.1082, 0.2158) 0.3687(0.0430, 0.0787) 0.3998(0.0365, 0.0490)

L 0.1179(0.2883, 0.7053) 0.3676(0.0648, 0.0897) 0.3610(0.0663, 0.1198)

M 0.1932(0.2229, 0.5189) 0.3734(0.0529, 0.0741) 0.3874(0.0332, 0.0336)

R 0.8393(0.6995, 1.1015) 0.4482(0.0678, 0.1450) 0.4194(0.0387, 0.0701)

(40,30) U 0.3480(0.1059, 0.2138) 0.3869(0.0308, 0.0434) 0.3917(0.0302, 0.0246)

L 0.1627(0.2434, 0.5933) 0.3618(0.0571, 0.0955) 0.4140(0.0295, 0.0497)

M 0.3343(0.1208, 0.2383) 0.3831(0.0341, 0.0498) 0.3937(0.0263, 0.0204)

R 0.4979(0.1359, 0.2789) 0.3954(0.0287, 0.0252) 0.4060(0.0274, 0.0317)

(80,40) U 0.3601(0.0813, 0.1649) 0.4013(0.0258, 0.0239) 0.4077(0.0297, 0.0364)

L 0.1686(0.2358, 0.5784) 0.3842(0.0321, 0.0396) 0.3914(0.0285, 0.0261)

M 0.1885(0.2204, 0.5287) 0.3691(0.0361, 0.0773) 0.3998(0.0226, 0.0184)

R 0.8302(0.4569, 1.0756) 0.3994(0.0288, 0.0214) 0.3982(0.0256, 0.0272)

(80,60) U 0.3539(0.0824, 0.1657) 0.3905(0.0271, 0.0240) 0.4014(0.0264, 0.0205)

L 0.1750(0.2286, 0.5625) 0.3949(0.0276, 0.0196) 0.3913(0.0264, 0.0216)

M 0.1972(0.0549, 0.0878) 0.4119(0.0346, 0.0494) 0.4009(0.0252, 0.0185)

R 0.5236(0.1412, 0.3130) 0.3821(0.0276, 0.0447) 0.4020(0.0270, 0.0239)

(0.8,1.5) (40,20) U 0.3596(0.1174, 0.2388) 0.3785(0.0352, 0.0614) 0.4037(0.0288, 0.0292)

L 0.1024(0.2996, 0.7440) 0.3594(0.0626, 0.1200) 0.3771(0.0343, 0.0583)

M 0.2285(0.1843, 0.4315) 0.3723(0.0446, 0.0732) 0.4019(0.0349, 0.0361)

R 0.3558(0.0801, 0.1655) 0.3612(0.0506, 0.1005) 0.4068(0.0293, 0.0344)

(40,30) U 0.3186(0.1082, 0.2284) 0.4041(0.0322, 0.0307) 0.4026(0.0265, 0.0263)

L 0.1512(0.2516, 0.6219) 0.3734(0.0378, 0.0662) 0.3791(0.0314, 0.0520)

M 0.2811(0.1357, 0.3036) 0.4005(0.0300, 0.0386) 0.3915(0.0278, 0.0254)

R 0.4146(0.0933, 0.1862) 0.3708(0.0400, 0.0729) 0.4134(0.0305, 0.0496)

(80,40) U 0.3108(0.1069, 0.2361) 0.4025(0.0292, 0.0293) 0.3995(0.0273, 0.0172)

L 0.1015(0.2996, 0.7462) 0.3778(0.0359, 0.0559) 0.3812(0.0328, 0.0467)

M 0.2343(0.1722, 0.4142) 0.4709(0.0543, 0.0854) 0.4177(0.0353, 0.0615)

R 0.2436(0.1627, 0.3929) 0.3772(0.0342, 0.0568) 0.4059(0.0289, 0.0323)

(80,60) U 0.3211(0.0945, 0.2045) 0.3956(0.0261, 0.0167) 0.4021(0.0262, 0.0231)

L 0.1551(0.2464, 0.6122) 0.3896(0.0281, 0.0260) 0.3925(0.0256, 0.0189)

M 0.2492(0.1570, 0.3771) 0.3991(0.0275, 0.0170) 0.3954(0.0246, 0.0125)

R 0.2462(0.1580, 0.3851) 0.3943(0.0261, 0.0163) 0.3971(0.0257, 0.0118)

tend to decrease while associated CPs tend to increase. This may not be too surprising,
because when the values of the thresholds T1 and T2 increase, the investigator gathers
more extra information.

Comparing the impact of different scenarios of the censoring schemes, for each set
based on the lowest RMSEs, MRABs and ACLs as well as the highest CPs, the simu-
lation results indicate that both classical and Bayes estimates have better performance
based on scheme U (next, scheme L) than other schemes. This effect is due to the fact
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Table 5 The average estimates with their (RMSEs, MRABs) of α

(T1, T2) (n,m) Scheme MLE MCMC
Prior→ I II

(0.4,0.8) (40,20) U 0.6765(0.1910, 0.2301) 0.5714(0.0415, 0.0479) 0.6110(0.0344, 0.0364)

L 1.3720(0.9154, 1.2960) 0.5647(0.0566, 0.0599) 0.6012(0.0424, 0.0248)

M 1.0510(0.5622, 0.7766) 0.6132(0.0469, 0.0404) 0.6111(0.0316, 0.0301)

R 2.3320(2.1501, 2.8870) 0.6440(0.0520, 0.0803) 0.6217(0.0361, 0.0461)

(40,30) U 0.6649(0.1888, 0.2163) 0.5832(0.0405, 0.0402) 0.5914(0.0267, 0.0161)

L 1.1464(0.6310, 0.9148) 0.5804(0.0429, 0.0389) 0.6093(0.0277, 0.0263)

M 0.7184(0.2371, 0.2910) 0.6082(0.0307, 0.0257) 0.5931(0.0247, 0.0167)

R 1.1768(0.7007, 0.9624) 0.5918(0.0306, 0.0189) 0.5960(0.0239, 0.0150)

(80,40) U 0.6377(0.1192, 0.1529) 0.5799(0.0308, 0.0336) 0.5827(0.0294, 0.0288)

L 1.0389(0.4877, 0.7324) 0.5881(0.0312, 0.0208) 0.5943(0.0294, 0.0148)

M 0.3690(0.0362, 0.0773) 0.5890(0.0336, 0.0191) 0.5955(0.0264, 0.0144)

R 2.1890(1.7260, 2.6480) 0.6400(0.0555, 0.0785) 0.5933(0.0307, 0.0138)

(80,60) U 0.6384(0.1140, 0.1441) 0.5913(0.0279, 0.0160) 0.5904(0.0256, 0.0167)

L 1.1837(0.6272, 0.9731) 0.5998(0.0274, 0.0118) 0.5949(0.0263, 0.0090)

M 0.6464(0.1528, 0.1776) 0.6107(0.0263, 0.0272) 0.5972(0.0256, 0.0112)

R 0.3821(0.0277, 0.0447) 0.5889(0.0291, 0.0194) 0.5948(0.0240, 0.0091)

(0.8,1.5) (40,20) U 0.6078(0.1261, 0.1672) 0.6311(0.0469, 0.0637) 0.5815(0.0303, 0.0308)

L 0.8020(0.2987, 0.3890) 0.6252(0.0553, 0.0615) 0.5901(0.0350, 0.0216)

M 0.7400(0.2376, 0.2920) 0.6157(0.0387, 0.0417) 0.6118(0.0321, 0.0329)

R 1.0937(0.5245, 0.8231) 0.6153(0.0466, 0.0431) 0.5955(0.0244, 0.0098)

(40,30) U 0.6199(0.1248, 0.1647) 0.6191(0.0352, 0.0423) 0.6005(0.0276, 0.0164)

L 0.7662(0.2290, 0.3022) 0.6030(0.0336, 0.0191) 0.5997(0.0282, 0.0147)

M 0.6676(0.1440, 0.1859) 0.6056(0.0235, 0.0198) 0.6022(0.0280, 0.0167)

R 0.6585(0.1362, 0.1739) 0.6061(0.0357, 0.0324) 0.5823(0.0293, 0.0299)

(80,40) U 0.5699(0.0848, 0.1149) 0.5930(0.0262, 0.0137) 0.5915(0.0265, 0.0154)

L 0.8151(0.2956, 0.3999) 0.4934(0.0750, 0.1168) 0.6273(0.0466, 0.0593)

M 0.7436(0.1944, 0.2572) 0.6021(0.0303, 0.0180) 0.5976(0.0210, 0.0095)

R 0.6192(0.1263, 0.1639) 0.6063(0.0304, 0.0230) 0.5882(0.0267, 0.0206)

(80,60) U 0.6137(0.0859, 0.1125) 0.6040(0.0286, 0.0220) 0.5884(0.0279, 0.0193)

L 0.7846(0.2154, 0.3109) 0.6041(0.0275, 0.0182) 0.5937(0.0265, 0.0108)

M 0.7026(0.1431, 0.1939) 0.5865(0.0269, 0.0224) 0.5978(0.0257, 0.0097)

R 0.6963(0.1309, 0.1763) 0.5902(0.0275, 0.0163) 0.5949(0.0268, 0.0098)

that the expected duration test under scheme U (or scheme L), where the remaining
n−m live units are removed via the uniform (or left) pattern, is greater than any other
competing censoring scheme.

One of the major problems in Bayesian analysis is evaluating the convergence
of the MCMC chain. Therefore, the trace and autocorrelation plots of the simulated
MCMC draws of each unknown parameter are displayed (when (n,m) = (40, 20),
(T1, T2) = (0.4, 0.8), and censoring scheme U as an example) in Fig. 1. The trace
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Table 6 The average estimates with their (RMSEs, MRABs) ofR(t)

(T1, T2) (n,m) Scheme MLE MCMC
Prior→ I II

(0.4,0.8) (40,20) U 0.6364(0.0719, 0.0969) 0.6315(0.0345, 0.0509) 0.6075(0.0161, 0.0156)

L 0.8894(0.2888, 0.4735) 0.6682(0.0781, 0.1096) 0.6446(0.0557, 0.0742)

M 0.8097(0.2166, 0.3415) 0.6345(0.0424, 0.0558) 0.6289(0.0332, 0.0479)

R 0.5401(0.0877, 0.1251) 0.5739(0.0423, 0.0550) 0.5904(0.0224, 0.0234)

(40,30) U 0.6511(0.0718, 0.0931) 0.6099(0.0171, 0.0179) 0.5990(0.0132, 0.0104)

L 0.8404(0.2393, 0.3923) 0.6626(0.0667, 0.1017) 0.5916(0.0192, 0.0199)

M 0.6667(0.0975, 0.1147) 0.6102(0.0197, 0.0203) 0.6039(0.0155, 0.0103)

R 0.5854(0.0484, 0.0661) 0.6053(0.0172, 0.0169) 0.5948(0.0165, 0.0154)

(80,40) U 0.6399(0.0559, 0.0755) 0.6000(0.0155, 0.0114) 0.5954(0.0146, 0.0138)

L 0.8314(0.2298, 0.3774) 0.6164(0.0206, 0.0269) 0.6054(0.0182, 0.0139)

M 0.8148(0.2186, 0.3501) 0.6048(0.0197, 0.0161) 0.5987(0.0169, 0.0123)

R 0.5195(0.0924, 0.1420) 0.6106(0.0222, 0.0226) 0.5996(0.0164, 0.0090)

(80,60) U 0.6431(0.0568, 0.0741) 0.6064(0.0153, 0.01101 0.5993(0.0142, 0.0071)

L 0.5998(0.0274, 0.0118) 0.6065(0.0162, 0.0114) 0.6011(0.0148, 0.0051)

M 0.6388(0.0678, 0.0722) 0.5999(0.0146, 0.0085) 0.5974(0.0150, 0.0102)

R 0.5710(0.0443, 0.0623) 0.5994(0.0181, 0.0114) 0.6010(0.0145, 0.0063)

(0.8,1.5) (40,20) U 0.6385(0.0763, 0.1041) 0.6051(0.0211, 0.0197) 0.6003(0.0122, 0.0089)

L 0.8860(0.2837, 0.4680) 0.6191(0.0315, 0.0368) 0.6104(0.0196, 0.0189)

M 0.7588(0.1625, 0.2572) 0.6334(0.0401, 0.0558) 0.6085(0.0157, 0.0153)

R 0.6793(0.0877, 0.1284) 0.6143(0.0233, 0.0254) 0.5938(0.0161, 0.0162)

(40,30) U 0.6731(0.0830, 0.1191) 0.6099(0.0158, 0.0165) 0.5986(0.0153, 0.0091)

L 0.8343(0.2321, 0.3822) 0.6171(0.0231, 0.0290) 0.6074(0.0169, 0.0133)

M 0.7073(0.1125, 0.1722) 0.6055(0.0177, 0.0145) 0.6073(0.0163, 0.0134)

R 0.6014(0.0575, 0.0757) 0.6143(0.0209, 0.0242) 0.5896(0.0188, 0.0231)

(80,40) U 0.6745(0.0806, 0.1202) 0.6037(0.0139, 0.0077) 0.6037(0.0145, 0.0067)

L 0.8877(0.2847, 0.4707 0.6095(0.0223, 0.0193) 0.6166(0.0221, 0.0280)

M 0.7530(0.1529, 0.2476) 0.5948(0.0185, 0.0191) 0.5934(0.0183, 0.0185)

R 0.7376(0.1377, 0.2224) 0.6107(0.0186, 0.0188) 0.5979(0.0150, 0.0103)

(80,60) U 0.6673(0.0705, 0.1063) 0.6003(0.0149, 0.0081) 0.5995(0.0143, 0.0067)

L 0.8301(0.2273, 0.3753) 0.6081(0.0166, 0.0141) 0.6018(0.0147, 0.0058)

M 0.7362(0.1365, 0.2198) 0.6037(0.0132, 0.0064) 0.5988(0.0154, 0.0080)

R 0.7390(0.1374, 0.2244) 0.6017(0.0144, 0.0056) 0.6006(0.0143, 0.0058)

plots of the MCMC results look like random noise and the autocorrelation values
close to zero as the lag value increases. However, Fig. 1 showed that the MCMC
draws are mixed adequately and thus the estimation results are reasonable. To sum
up, the Bayesian estimation utilising the hybrid MCMC algorithm is recommended to
estimate the unknown parameters and the reliability indices ofWD under an improved
adaptive progressive Type-II censored competing risks data.
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Fig. 1 Trace and autocorrelation
plots for MCMC draws of θ1,
θ2, α, R(t) and h(t) under
MCMC method
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Table 7 The average estimates with their (RMSEs, MRABs) of h(t)

(T1, T2) (n,m) Scheme MLE MCMC
Prior→ I II

(0.4,0.8) (40,20) U 0.4031(0.1042, 0.2026) 0.3496(0.0570, 0.1346) 0.4055(0.0183, 0.0392)

L 0.2192(0.2152, 0.4749) 0.3047(0.1131, 0.2457) 0.3518(0.0686, 0.1297)

M 0.2937(0.1715, 0.3560) 0.3714(0.0490, 0.0812) 0.3771(0.0301, 0.0674)

R 1.8180(1.5560, 3.5020) 0.4782(0.0911, 0.1915) 0.4363(0.0361, 0.0803)

(40,30) U 0.3771(0.0985, 0.1954) 0.3837(0.0255, 0.0527) 0.4036(0.0102, 0.0179)

L 0.2680(0.1657, 0.3601) 0.3177(0.0909, 0.2133) 0.4258(0.0232, 0.0546)

M 0.3797(0.1120, 0.2248) 0.3998(0.0130, 0.0271) 0.3983(0.0096, 0.0194)

R 0.8209(0.4644, 1.0337) 0.3954(0.0137, 0.0296) 0.4123(0.0103, 0.0222)

(80,40) U 0.3775(0.0718, 0.1458) 0.3945(0.0120, 0.0244) 0.4023(0.0059, 0.0097)

L 0.2575(0.1639, 0.3697) 0.3788(0.0284, 0.0635) 0.3968(0.0135, 0.0245)

M 0.2937(0.1439, 0.3029) 0.3939(0.0147, 0.0291) 0.4066(0.0072, 0.0142)

R 1.8780(1.5410, 3.6500) 0.4195(0.0168, 0.0396) 0.4038(0.0091, 0.0144)

(80,60) U 0.3754(0.0780, 0.1559) 0.3937(0.0120, 0.0256) 0.4026(0.0054, 0.0107)

L 0.2953(0.1297, 0.2816) 0.3991(0.0073, 0.0128) 0.4031(0.0042, 0.0055)

M 0.3804(0.0826, 0.1627) 0.4155(0.0139, 0.0295) 0.4096(0.0079, 0.0164)

R 0.8567(0.4762, 1.1211) 0.4014(0.0085, 0.0172) 0.4031(0.0036, 0.0064)

(0.8,1.5) (40,20) U 0.3639(0.1113, 0.2281) 0.4216(0.0229, 0.0457) 0.3951(0.0133, 0.0250)

L 0.1314(0.2778, 0.6749) 0.3980(0.0304, 0.0485) 0.3874(0.0208, 0.0427)

M 0.2723(0.1568, 0.3420) 0.5695(0.0909, 0.1429) 0.4046(0.0139, 0.0277)

R 0.5541(0.1594, 0.3729) 0.3984(0.0218, 0.0364) 0.4133(0.0112, 0.0251)

(40,30) U 0.3250(0.1037, 0.2161) 0.4074(0.0100, 0.0202) 0.4102(0.0103, 0.0215)

L 0.1842(0.2238, 0.5440) 0.3870(0.0199, 0.0417) 0.3979(0.0085, 0.0165)

M 0.3063(0.1173, 0.2563) 0.4047(0.0139, 0.0272) 0.3997(0.0087, 0.0154)

R 0.4440(0.0967, 0.1926) 0.3930(0.0223, 0.0391) 0.4096(0.0088, 0.0177)

(80,40) U 0.2979(0.1155, 0.2670) 0.3984(0.0091, 0.0165) 0.3974(0.0081, 0.0169)

L 0.1316(0.2758, 0.6741) 0.3911(0.0153, 0.0319) 0.4127(0.0140, 0.0283)

M 0.2804(0.1357, 0.3080) 0.4148(0.0182, 0.0381) 0.4153(0.0152, 0.0315)

R 0.2527(0.1652, 0.3825) 0.3978(0.0114, 0.0220) 0.4028(0.0098, 0.0217)

(80,60) U 0.3303(0.0887, 0.1929) 0.4103(0.0089, 0.0188) 0.4008(0.0066, 0.0107)

L 0.1941(0.2120, 0.5194) 0.3998(0.0068, 0.0131) 0.4012(0.0052, 0.0088)

M 0.2852(0.1265, 0.2948) 0.3941(0.0108, 0.0242) 0.4081(0.0067, 0.0127)

R 0.2793(0.1287, 0.3086) 0.3990(0.0069, 0.0123) 0.4038(0.0051, 0.0063)

6 Electrodes data analysis

To illustrate the relevance of the offered inference procedures to a real phenomenon,
we shall apply the real-life test data set reported byDoganaksoy et al. (2002). Recently,
this dataset has also been investigated byAhmed et al. (2020) andRen andGui (2021a).
The dataset includes 58 electrodes that were placed on a high-stress voltage endurance
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Table 10 Voltage endurance life-test results (in 1000’s hours) of 58 electrodes

Observation[Cause]

0.002[E] 0.003[E] 0.005[E] 0.008[E] 0.013[+] 0.021[E] 0.028[E] 0.031[E]

0.031[+] 0.052[+] 0.053[+] 0.064[E] 0.067[+] 0.069[E] 0.076[E] 0.078[+]

0.104[E] 0.113[+] 0.119[E] 0.135[+] 0.144[E] 0.157[+] 0.160[E] 0.168[D]

0.179[+] 0.191[D] 0.203[D] 0.211[D] 0.221[E] 0.226[E] 0.236[E] 0.241[+]

0.257[+] 0.261[D] 0.264[D] 0.278[D] 0.282[E] 0.284[D] 0.286[D] 0.298[D]

0.303[E] 0.314[D] 0.317[D] 0.318[D] 0.320[D] 0.327[D] 0.328[D] 0.328[D]

0.348[D] 0.348[+] 0.350[D] 0.360[D] 0.369[D] 0.377[D] 0.387[D] 0.392[D]

0.412[D] 0.446[D]

life test. The failures were attributed to one of two (modes) causes, the first cause
named Mode E (insulation defect due to a processing problem which tends to occur
early in life), and the second cause calledMode D (degradation of the organic material
which typically occurs at a later stage). Nevertheless, the total number of observed
failures due to causes of Mode E and D are 18 and 27, respectively. Also, the other
13 unfilled electrodes due to the missing cause (denoted by ‘+’) were still running.
For computational convenience, each observed value in the original dataset has been
divided by one thousand. The transformed failure times of the insulation voltage
endurance test are shown in Table 10. In this application, from the full competing
risks samples, we particularly concentrate only on those observations which were
completely observed and left those observations which were still running.

Firstly, to indicate whether the Weibull distribution can furnish an acceptable fit
for the given data, the Kolmogorov–Smirnov (K–S) test is employed. Considering
that the latent cause of failures has independent Weibull distributions, using the null
and alternative hypotheses, H0 : Data follows Weibull distribution v.s H1 : Data do
not follow Weibull distribution, respectively. The MLEs via the Newton–Raphson
procedure are employed to inspect the validity of the Weibull distribution to fit the
data. For the sample with failures due toMode E (cause 1) and the sample with failures
due to Mode D (cause 2), the K–S distance between empirical and fitted distribution
functions, at a significance level γ = 0.05, and the corresponding P-value for each
sample are computed and reported in Table 11. It is seen from Table 11 that the
P-values are greater than the specified significance level which indicates that the
null hypothesis of the underlying Weibull distribution cannot be rejected. For further
explanation, the probability–probability (P–P) plots and the fitted reliability plots,
where the K–S distances are marked with blue lines, are plotted in Fig. 2. It shows that
the fitted reliability functions are quite close to the corresponding empirical reliability
functions.

Now, for specifiedm = 25 and progressive censoring R = (0∗2, 1∗20, 0∗3), where
0∗n stands 0 is repeated for n times, three different improved adaptive progressively
Type-II censored samples under different choices of Ti , i = 1, 2 are generated and
provided in Table 12. Before proceeding to calculate the desired (point and interval)
estimates, using the three generated data samples reported in Table 12, the correspond-
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Table 11 Fitting of Weibull models for the electrodes dataset

Sample MLE(SE) K–S(P-value)
α θ

Mode E 0.8665(0.1697) 7.5021(2.9779) 0.1142(0.952)

Mode D 5.2581(0.7958) 306.16(252.75) 0.0925(0.975)
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Fig. 2 Fitted RFs and P–P plots for electrodes dataset

ing profile log-likelihood functions (9) are calculated and plotted in Fig. 3, where the
best starting points are the maximum points with a vertical dashed line. It shows that
the profile log-likelihood functions of α, based on samples 1, 2 and 3, are unimodal
and their MLEs are close to 1.2, 0.45 and 1.0, respectively. So, we suggest assuming
these starting points as initial values to run any further computational iteration.

Currently, based on the three generated samples in Table 12, the proposed point
estimates as well as the interval estimates of the unknown parameters α and θi , i =
1, 2; the relative risk rates πi , i = 1, 2; and the reliability characteristics R(t) and
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Table 12 Improved adaptive progressively Type-II censored samples generated from electrodes data

Sample T1(J ) T2(D) Failure times (D1, D2) R∗

1 0.42(24) 0.50(25) 0.002[E] 0.003[E] 0.005[E] 0.021[E] 0.031[E] (12,13) 0

0.069[E] 0.104[E] 0.144[E] 0.168[D] 0.203[D]

0.221[E] 0.236[E] 0.264[D] 0.282[E] 0.286[D]

0.303[E] 0.317[D] 0.320[D] 0.328[D] 0.348[D]

0.360[D] 0.377[D] 0.392[D] 0.412[D] 0.446[D]

2 0.23(11) 0.38(25) 0.002[E] 0.003[E] 0.005[E] 0.021[E] 0.031[E] (12,13) 11

0.069[E] 0.104[E] 0.144[E] 0.168[D] 0.203[D]

0.221[E] 0.236[E] 0.261[D] 0.264[D] 0.278[D]

0.282[E] 0.284[D] 0.286[D] 0.298[D] 0.303[E]

0.314[D] 0.317[D] 0.318[D] 0.320[D] 0.327[D]

3 0.18(9) 0.30(22) 0.002[E] 0.003[E] 0.005[E] 0.021[E] 0.031[E] (12,10) 16

0.069[E] 0.104[E] 0.144[E] 0.168[D] 0.191[D]

0.203[D] 0.211[D] 0.221[E] 0.226[E] 0.236[E]

0.261[D] 0.264[D] 0.278[D] 0.282[E] 0.284[D]

0.286[D] 0.298[D]
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Fig. 3 Profile log-likelihood functions of α

h(t) at distinct time t = 0.1, are calculated. In the Bayesian estimation procedure,
because we do not have any prior information about the unknown parameters, the
hyperparameters are taken into account as ai = bi = 0.001. Using theM–H algorithm
within the Gibbs sampler proposed in Sect. 4, we generate 50,000MCMC samples and
discard the first 10,000 iterations. To visually explore the convergence and blending
of Markovian chains, using each generated sample, both density and trace plots of
the unknown parameters based on 40,000 MCMC simulated variates are displayed
in Fig. 4. The horizontal solid line in each histogram (or density) plot represents the
sample mean while the horizontal dashed lines in each histogram plot represent the
two bounds of HPD credible interval estimates. Figure4 shows, for each unknown
parameter, that the posterior density is almost symmetrical and its MCMC variates
are mixed well. The MLEs and Bayes estimates (with their standard errors (SEs)),
as well as the asymptotic/HPD credible intervals (with their lengths), are calculated
and shown in Table 13. It is found that the point estimates of α, θi , πi (for i = 1, 2),
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Sample 1 Sample 2 Sample 3

Fig. 4 Density (left) and Trace (right) plots from electrodes dataset

R(t) and h(t) obtained via the maximum likelihood and Bayesian estimation methods
are quite close to each other. Also, the outcomes of Table 13 indicated that the HPD
credible intervals are slightly shorter than the other confidence intervals in terms of
their interval lengths. It can also be seen that the pre-specified of T1 and T2 play
an important role in estimation problems of any parametric function of the unknown
parameters. Thus, the results of the proposed methods under an electrodes dataset give
a good explanation to our model.
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7 Conclusion remarks

In this paper, we have investigated the estimation problems of Weibull distribution
based on improved adaptive Type-II progressively censored competing risks data.
To achieve our objective, the maximum likelihood and Bayesian estimation meth-
ods are considered. The point and approximate confidence interval estimates for the
unknown parameters as well as the reliability and hazard rate functions are studied.
In the Bayesian paradigm, the Metropolis-Hastings algorithm within Gibbs sampler
is offered to acquire the Bayesian estimates under the squared error loss function
and the associated credible intervals are also obtained. Through Monte Carlo simu-
lation investigations, it is evident that the Bayesian estimation is more satisfactory
than the maximum likelihood estimation method and both are applicable and feasible.
It is also shown that the predetermined thresholds provide a significant effect on the
proposed point and interval estimates of the unknown parameters. Furthermore, the
real-life data analysis using electrodes data set confirms that our methods are practi-
cable. This study is primarily related to the analysis of an improved adaptive Type-II
progressively censored competing risks data, where the lifetime items of the individ-
ual failure causes are independent and follow Weibull distribution. It is worth saying
that although the problem of only two competing risks factors is considered, the same
inferential methodologies suggested here can be easily generalized to multiple failure
factors and other censoring schemes.
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